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We give an alternative self-contained proof of the homogenization theorem for
periodic multi-parameter integrals that was established by the authors. The proof in
that paper relies on the so-called compactness method for Γ -convergence, while the
one presented here is by direct verification: the candidate to be the limit
homogenized functional is first exhibited and the definition of Γ -convergence is then
verified. This is done by an extension of bounded gradient sequences using the Acerbi
et al . extension theorem from connected sets, and by the adaptation of some
localization and blow-up techniques developed by Fonseca and Müller, together with
De Giorgi’s slicing method.

1. Introduction

In a recent paper, we developed a framework to deal with some multi-param-
eter homogenization problems by establishing a general Γ -convergence result for
sequences of periodic integral functionals [4, theorem 2.2]. We also gave applica-
tions to different ‘degenerate’ homogenization processes (soft inclusions, iterated
homogenization, thin inclusions), showing the versatility of this unified approach.
The proof of the abstract result that we gave there is based on the so-called com-
pactness method of the general theory for variational functionals due to Dal Maso
and Modica [10]. Generally speaking, this method relies both on a compactness
theorem in De Giorgi’s Γ -convergence sense and on an integral representation the-
orem for variational functionals. In order to apply it to the multi-parameter case, it
is necessary to adapt certain techniques from [6]. Therefore, this proof uses various
particular results that are not easily accessible for a non-specialist reader.
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In this article, we give a different proof of [4, theorem 2.2] (cf. theorem 2.2) by
direct verification of Γ -convergence. More precisely, we first exhibit the candidate to
be the limit homogenized functional, we then verify the definition of Γ -convergence.
The sketch of this alternative proof is the following. We first prove that the effec-
tive domain of the Γ - lim inf of the sequence is equal to the effective domain of the
candidate functional (cf. proposition 3.1). To accomplish this, we assume a connect-
ness condition that permits us to extend bounded energy sequences thanks to the
Acerbi et al . extension theorem [3]. The second step consists of showing that the
candidate functional is a lower bound of the Γ - lim inf on this domain (cf. proposi-
tion 3.3). We adapt to this situation the localization and blow-up method developed
by Fonseca and Müller [14,15] to deal with similar problems, which has been already
applied to nonlinear homogenization problems by Michaille et al . [1, 17] and uses
the well-known De Giorgi cut-off and slicing method [11]. The proof is then com-
pleted by a density argument (cf. proposition 3.5). Following [18], we first prove
that the candidate functional is the upper bound of the Γ - lim sup on a subspace
of piecewise affine continuous functions and we then extend this property to the
whole Sobolev space by approximation. In contrast to the original proof, the new
one is self contained and no abstract result from Γ -convergence theory is required.

2. Multi-parameter homogenization theorem

We begin this section by recalling the definition of Γ -convergence. Let {Fn} be a
sequence of functionals defined on Lp(Ω; Rm), where Ω ⊂ R

N is a bounded domain,
and, for each u ∈ Lp(Ω; Rm), define(

Γ - lim inf
n→∞

Fn

)
(u) := inf

{
lim inf
n→∞

Fn(un) : un → u in Lp(Ω; Rm)
}

,(
Γ - lim sup

n→∞
Fn

)
(u) := inf

{
lim sup

n→∞
Fn(un) : un → u in Lp(Ω; Rm)

}
.

Clearly,
Γ - lim inf

n→∞
Fn � Γ - lim sup

n→∞
Fn.

We say that {Fn} Γ -converges to F̄ as n → ∞ with respect to the strong topology
of Lp(Ω; Rm) and we write

F̄ = Γ - lim
n→∞

Fn

whenever, for every u ∈ Lp(Ω; Rm),

F̄ (u) =
(
Γ - lim inf

n→∞
Fn

)
(u) =

(
Γ - lim sup

n→∞
Fn

)
(u).

The following well-known result makes precise the variational nature of this notion
of convergence; for deeper discussions of this theory, we refer the reader to [5,7,9].

Theorem 2.1 (De Giorgi and Franzoni [12]). Let G : Lp(Ω; Rm) → R be continu-
ous and assume that F̄ = Γ - limn→∞ Fn. For each n ∈ N, let ûn ∈ Lp(Ω; Rm) be
such that

Fn(ûn) + G(ûn) � inf{Fn + G} + εn,
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with εn → 0 as n → ∞. Then

lim sup
n→∞

(inf{Fn + G}) � inf{F̄ + G}.

Moreover, if {ûn} is relatively compact in Lp(Ω; Rm), then

lim
n→∞

(inf{Fn + G}) = inf{F̄ + G}

and every cluster point û of {ûn} satisfies F̄ (û) + G(û) = inf{F̄ + G}.

Let m, N and k be positive integers and write Y for the unit cell [0, 1[N . Let
Λ be a non-empty subset of R

k such that 0 ∈ cl(Λ). Suppose that to every λ ∈ Λ
there corresponds a Carathéodory function Wλ : R

N × R
mN → [0, +∞[ satisfying,

for each ξ ∈ R
mN ,

(C1) Wλ(·, ξ) is Y -periodic: ∀(x, z) ∈ R
N × Z

N , Wλ(x + z, ξ) = Wλ(x, ξ).

Consider a family of closed subsets {Tλ}λ∈Λ ⊂ Y and a function r : Λ → [0, r̄] with
r̄ > 0. Define Eλ := Y \ Tλ + Z

N , and rλ(x) := r̄ if x ∈ Eλ and rλ(x) := r(λ) if
x ∈ R

N \ Eλ = Tλ + Z
N . Assume that there exist p ∈ ]1, +∞[r and c0 > 0 such

that1

(C2) ∀λ ∈ Λ, ∀x ∈ R
N , ∀ξ′, ξ ∈ R

mN , rλ(x)|ξ|p � Wλ(x, ξ) � c0rλ(x)(1 + |ξ|p).
We also require the following ‘localization’ condition: ∃T ⊂ Y such that

(C3) ∀λ ∈ Λ, Tλ ⊂ T and E := Y \T +Z
N is connected, open and ∂E is Lipschitz.

Let {λn} ⊂ Λ be such that λn → 0 as n → ∞. For every n ∈ N and ξ ∈ R
mN ,

we define

Gξ
n(w; A) :=

⎧⎨⎩
∫

A

Wλn
(x, ξ + ∇w) dx if w�A∈ W 1,p

0 (A; Rm),

+∞ otherwise,

where w ∈ Lp
loc(R

N ; Rm) and A belongs to Ub(RN ), the class of all bounded open
subsets of R

N . For every ξ ∈ R
mN and n ∈ N, define S̄ξ, Sξ

n : Ub(RN ) → [0,∞[ by

S̄ξ(A) := inf{Ḡξ(w; A) : w ∈ Lp(A; Rm)}

and

Sξ
n(A) := inf{Gξ

n(w; A) : w ∈ Lp(A; Rm)},

respectively.

Theorem 2.2. Let Ω ⊂ R
N be a bounded domain and assume that (C1), (C2)

and (C3) hold. Let the following conditions hold.

(H1) ∀ξ ∈ R
mN , ∃Ḡξ : Lp

loc(R
N ; Rm) × Ub(RN ) → [0, +∞] such that, ∀k ∈ N

∗,
∀v ∈ Lp

loc(R
N ; Rm),

Ḡξ(v; ]0, k[N ) = Γ - lim
n→∞

Gξ
n(v; ]0, k[N ).

1This permits different types of singular behaviours, r(λ) → 0 or dist(Tλ, Σ) → 0 as λ → 0,
where Σ is a submanifold of R

N .
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(H2) ∀kn → ∞, ∀ξ ∈ R
mN ,2

lim
n→∞

1
kN

n

Sξ
n(]0, kn[N ) = inf

k∈N∗

{
1

kN
S̄ξ(]0, k[N )

}
.

Then, for every εn → 0, the functionals Fn : Lp(Ω; Rm) → [0, +∞], defined by

Fn(u) :=

⎧⎨⎩
∫

Ω

Wλn

(
x

εn
,∇u

)
dx if u ∈ W 1,p(Ω; Rm),

+∞ otherwise,

satisfy Γ - limn→∞ Fn = F hom, where F hom : Lp(Ω; Rm) → [0, +∞] is given by

F hom(u) :=

⎧⎨⎩
∫

Ω

W hom(∇u) dx if u ∈ W 1,p(Ω; Rm),

+∞ otherwise,

with

W hom(ξ) := inf
k∈N∗

inf
v

{
1

kN
Ḡξ(v; ]0, k[N ) : v ∈ Lp(]0, k[N ; Rm)

}
.

3. Proof of the theorem

3.1. Effective domain of Γ - lim inf Fn

The first step is to identify the effective domain of Γ - lim infn→∞ Fn, which is
defined by

dom
(
Γ - lim inf

n→∞
Fn

)
:=

{
u ∈ Lp(Ω; Rm) :

(
Γ - lim inf

n→∞
Fn

)
(u) < ∞

}
.

The arguments used in the proof of the following proposition are standard. For
more details we refer the reader to [7].

Proposition 3.1. Under (C1), (C2) and (C3),

dom
(
Γ - lim inf

n→∞
Fn

)
= W 1,p(Ω; Rm).

Proof. Let u ∈ dom(Γ - lim infn→∞ Fn). By definition, there is a sequence un → u
in Lp(Ω; Rm) such that, up to a subsequence, {Fn(un)} is bounded. From the first
inequality in (C2), it follows that

sup
n∈N

∫
Ω∩εnE

|∇un|p dx < ∞.

By (C3), E = Y \T +Z
N is a periodic connected open set with Lipschitz boundary. If

E = ∅, then, up to a subsequence, un ⇀ u weakly in W 1,p, hence u ∈ W 1,p(Ω; Rm).
When E 
= ∅, we extend un from Ω ∩ εnE to the whole of Ω, keeping the above
uniform boundedness property. This extension is not difficult to construct when the
complement of E is disconnected (see [16]), and it is no longer possible in the general
case, where Ω ∩ εE may be disconnected so that we cannot expect to control the
W 1,p norm of the extended function. This extension problem is considered in [3].

2This hypothesis is the most difficult to verify in practice (see [4] for some examples).
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Theorem 3.2 (Acerbi et al . [3]). Let E be a periodic connected open subset of R
N

with Lipschitz boundary. There exist constants k0, k1, k2 > 0 such that, for every
bounded open set Ω ⊂ R

N and ε > 0, there exists a linear and continuous extension
operator Pε : W 1,p(Ω ∩ εE; Rm) → W 1,p

loc (Ω; Rm) with

(a) Pεu = u a.e. in Ω ∩ εE;

(b)
∫

Ω(εk0)
|Pεu|p dx � k1

∫
Ω∩εE

|u|p dx;

(c)
∫

Ω(εk0)
|∇(Pεu)|p dx � k2

∫
Ω∩εE

|∇u|p dx

for every u ∈ W 1,p(Ω ∩ εE; Rm), where Ω(α) := {x ∈ Ω : dist(x, ∂Ω) > α}.

For each n ∈ N, we define

vn := Pεn(un|Ω∩εnE).

We deduce that, for every n′, {vn : n � n′} is bounded in W 1,p(Ω′; Rm) for
every open set Ω′ ⊂ Ω with dist(Ω′, ∂Ω) > εn′k0. Let us consider an increas-
ing sequence {Ωi} of open subsets of Ω with Lipschitz boundaries and such that, in
the limit, we obtain Ω. Let Ωi belong to this sequence. We assume, moreover, that
dist(Ωi, ∂Ω) > 0. Thus, by the reflexivity of W 1,p and the Rellich theorem, there
exist v ∈ W 1,p(Ωi; Rm) and a subsequence of {vn} that converges to v strongly
in Lp(Ωi; Rm) and weakly in W 1,p(Ωi; Rm). We can extract a diagonal subse-
quence, still denoted by {vn}, which converges to a function v ∈ W 1,p

loc (Ω; Rm)
strongly in Lp

loc(Ω; Rm) and weakly in W 1,p
loc (Ω; Rm). Now let Ω′ ⊂⊂ Ω be arbi-

trary. For every n, we have, in particular, that un = vn a.e. in Ω′ ∩ εnE. Since
1Ω′∩εnE ⇀ LN (Y \T ) weakly in Lp(Ω′), we deduce that LN (Y \T )u = LN (Y \T )v.
As LN (Y \ T ) > 0, we have that u = v a.e. in Ω′, for every Ω′ ⊂⊂ Ω. Hence u = v
a.e. in Ω. Thus

‖∇u‖p,Ω′ � lim inf
n→∞

‖∇vn‖p,Ω′ � c,

for every Ω′ ⊂⊂ Ω, with the constant c being independent of Ω′. Consequently,
u ∈ W 1,p(Ω; Rm). Hence dom(Γ -lim infn→∞ Fn) ⊂ W 1,p(Ω; Rm). Finally, by the
second inequality in (C2), it follows easily that equality holds in the previous inclu-
sion.

3.2. Lower bound on the Γ - lim inf Fn

We have to prove that (
Γ - lim inf

n→∞
Fn

)
(u) � F hom(u)

for every u ∈ Lp(Ω; Rm). By proposition 3.1 above, this is trivially satisfied when
u 
∈ W 1,p(Ω; Rm). Let u ∈ W 1,p(Ω; Rm) and consider a sequence un → u in
Lp(Ω; Rm). Without loss of generality, we can suppose that {Fn(un)} is bounded.
We are thus reduced to proving∫

Ω

W hom(∇u(x)) dx � lim inf
n→∞

∫
Ω

Wλn

(
x

εn
,∇un(x)

)
dx. (3.1)
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Proposition 3.3. If (C1), (C2), (H1) and (H2) are satisfied, then (3.1) holds.

Proof. We denote by M(Ω) the set of all Radon measures in Ω and define

M+(Ω) := {ν ∈ M(Ω) : ν � 0}.

Consider the sequence {µn} ⊂ M+(Ω) defined by

µn := Wλn

(
·

εn
,∇un

)
dx.

By assumption, {µn} is uniformly bounded in M+(Ω), and hence there exists
µ ∈ M+(Ω) such that, up to a subsequence, µn ⇀ µ weakly in M(Ω). Let µhom ∈
M+(Ω) be defined by µhom := W hom(∇u)dx. The idea is to compare the limit
measure µ with µhom. Since µ(Ω) � lim infn→∞µn(Ω), it suffices to prove that
µhom(Ω) � µ(Ω).

Localization

We write LN for the Lebesgue measure in R
N as well as for its restriction to Ω.

Consider the Lebesgue decomposition of the limit measure µ = µa + µs, where
µa and µs are, respectively, the absolutely continuous and the singular part of µ
with respect to LN . Thus there exists f ∈ L1(Ω; R+) such that µa = f dx and the
Besicovitch differentiation theorem ensures that

f(x0) = lim
ρ→0+

µa(Qρ(x0))
LN (Qρ(x0))

= lim
ρ→0+

µ(Qρ(x0))
LN (Qρ(x0))

for LN -almost every x0 ∈ Ω. Here, Qρ(x0) is the open cube centred at x0 and of
side ρ in all directions. Fix x0 such that the previous equality holds. Since µn ⇀ µ
in M(Ω), the Alexandroff theorem yields, in particular, that

µ(Qρ(x0)) = lim
n→∞

µn(Qρ(x0))

whenever µ(∂Qρ(x0)) = 0. As µ(Ω) < ∞, the latter holds for every ρ ∈ ]0, ρ0] \ D,
where D is a countable set. In the sequel, we will take ρ such that µ(∂Qρ(x0)) = 0.
Consequently, it suffices to prove that

W hom(∇u(x0)) � lim
ρ→0+

lim
n→∞

1
ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un(x)

)
dx. (3.2)

Assume first that un ∈ ū + W 1,p
0 (Qρ(x0); Rm), where ū : R

N → R
m is the affine

function defined by ū(x) := u(x0) + ∇u(x0) · (x − x0). Then∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx � εN

n S∇u(x0)
n

(
1
εn

Qρ(x0)
)

.

Lemma 3.4. Let Cub(RN ) be the class of all open cubes in R
N . If (C1), (C2), (H1)

and (H2) hold, then ∀ξ ∈ R
mN , ∀Q ∈ Cub(RN ),

lim
n→∞

Sξ
n((1/εn)Q)

LN ((1/εn)Q)
= W hom(ξ).
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Proof. Fix ξ ∈ R
mN and Q ∈ Cub(RN ). Given k ∈ N

∗ and n ∈ N large enough, let
kn ∈ N

∗ be the largest integer such that (kn − 2)]0, k[N+k(zn + ê) ⊂ (1/εn)Q for
an appropriate zn ∈ Z

N , where ê := (1, 1, . . . , 1). From (C1) and (C2), it follows
that Sξ

n is a subadditive and Z
N -invariant set function satisfying

0 � Sξ
n(A) � c0r̄(1 + |ξ|p)LN (A)

for all A ∈ Ub(RN ). Therefore,

Sξ
n

(
1
εn

Q

)
� (kn − 2)NSξ

n(]0, k[k) + Sξ
n

(
1
εn

Q \ [(kn − 2)[0, k]N + k(zn + ê)]
)

.

Since, up to a set of zero Lebesgue measure, the set

(1/εn)Q \ [(kn − 2)[0, k]N + k(zn + ê)]

may be written as the disjoint union of kN
n − (kn − 2)N integer translations of open

sets contained in ]0, k[N , we deduce that

Sξ
n

(
1
εn

Q

)
� (kn − 2)NSξ

n(]0, k[N ) + (kN
n − (kn − 2)N )ckN ,

where c = c0r̄(1 + |ξ|p). We thus obtain the estimate

Sξ
n((1/εn)Q)

LN ((1/εn)Q)
� Sξ

n(]0, k[N )
kN

+
kN

n − (kn − 2)N

(kn − 2)N
c.

From (H1), we have that

lim sup
n→∞

Sξ
n(]0, k[N ) � S̄ξ(]0, k[N )

for every k ∈ N
∗. Since kn → ∞ as n → ∞,

lim sup
n→∞

Sξ
n((1/εn)Q)

LN ((1/εn)Q)
� inf

k∈N∗

{
S̄ξ(]0, k[N )

kN

}
= W hom(ξ).

Similarly, for every n ∈ N, let kn ∈ N
∗ be such that (1/εn)Q ⊂ ]0, kn[N+zn for a

suitable zn ∈ Z
N . We then have

Sξ
n(]0, kn[N ) � Sξ

n((1/εn)Q) + Sξ
n((]0, kn[N+zn) \ (1/εn)Q̄),

and so
Sξ

n(]0, kn[N )
kN

n

� Sξ
n((1/εn)Q)

LN ((1/εn)Q)
+

kN
n − (kn − 2)N

(kn)N
c.

From (H2), we see that

W hom(ξ) = lim
n→∞

1
kN

n

Sξ
n(]0, kn[N ) � lim inf

Sξ
n((1/εn)Q)

LN ((1/εn)Q)
,

which completes the proof.
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By lemma 3.4, we have

W hom(∇u(x0)) � lim
n→∞

1
ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx,

and we thus get inequality (3.2). We next indicate how to remove the restriction
un ∈ ū + W 1,p

0 (Qρ(x0); Rm) by the application of a well-known technique intro-
duced by De Giorgi in [11].

Cut-off and slicing method of De Giorgi

We say that a function ϕ is a cut-off function between A′ and A, with A′ ⊂⊂ A ∈
Ub(RN ), if ϕ ∈ D(A), 0 � ϕ � 1 and ϕ ≡ 1 on A′. Let α ∈ ]0, 1] and l ∈ N

∗. For
each i ∈ {0, . . . , l}, define Qi := Q(1−α+iα/l)ρ(x0) and consider a cut-off function
ϕi between Qi−1 and Qi (i � 1) such that ‖∇ϕi‖∞ � 2l/αρ. Setting

ui
n(x) := ū(x) + ϕi(x)(un(x) − ū(x)),

we obtain ui
n ∈ ū + W 1,p

0 (Qρ(x0); Rm), with

∇ui
n =

⎧⎪⎨⎪⎩
∇un on Qi−1,

∇u(x0) + (un − ū) ⊗ ∇ϕi + ϕi(∇un − ∇u(x0)) on Qi \ Qi−1,

∇u(x0) on Qρ(x0) \ Qi.

We have the following estimates,

1
ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇ui

n

)
dx � 1

ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx + Ei

l,α(ρ, n),

where

Ei
l,α(ρ, n) :=

1
ρN

∫
Qi\Qi−1

Wλn

(
x

εn
,∇ui

n

)
dx + c0r̄(1 + |∇u(x0)|p)(1 − (1 − α)N ).

Noticing that∫
Qρ(x0)

Wλn(x/εn,∇ui
n) dx = εN

n

∫
1/εnQρ(x0)

Wλn(x,∇u(x0) + ∇wi
n) dx,

with wi
n ∈ W 1,p

0 (1/εnQρ(x0); Rm), we conclude that, for every i ∈ {1, . . . , l},

S∇u(x0)
n ((1/εn)Qρ(x0))
LN ((1/εn)Qρ(x0))

� Ei
l,α(ρ, n) +

1
ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx.

Consequently, averaging these inequalities over the layers Qi \ Qi−1, we obtain

S∇u(x0)
n ((1/εn)Qρ(x0))
LN ((1/εn)Qρ(x0))

� Ēl,α(ρ, n) +
1

ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx, (3.3)

where

Ēl,α(ρ, n) :=
1
l

l∑
i=1

Ei
l,α(ρ, n).
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From (C2) and the definition of ui
n, it follows that there exists a constant c > 0

such that

Wλn(·,∇ui
n) � c[1 + |∇u(x0)|p + (2l/αρ)p|un − ū|p + rλn(·)|∇un|p].

Then we deduce that

Ēl,α(ρ, n) � c

[
Rl,α +

(
2l

αρ

)p 1
ρN

∫
Qρ(x0)

|un − ū|p dx

+
1

lρN

∫
Qρ(x0)

rλn

(
x

εn

)
|∇un|p dx

]
,

where Rl,α := (1 − (1 − α)N ) + 1/l. By the coercivity condition,

rλn(x/εn)|∇un(x)|p � Wλn(x/εn,∇un(x)),

and since
1

ρN

∫
Qρ(x0)

Wλn
(x/εn,∇un) dx � K,

with K being a constant independent of ρ and n, we deduce that, for a suitable
constant c′ > 0, we have

Ēl,α(ρ, n) � c′
[
Rl,α +

(
2l

αρ

)p 1
ρN

∫
Qρ(x0)

|un − ū|p dx

]
.

Hence

lim sup
n→∞

Ēl,α(ρ, n) � c′
[
Rl,α +

(
2l

αρ

)p 1
ρN

∫
Qρ(x0)

|u − ū|p dx

]
.

Let us recall that every function u ∈ W 1,p(Ω; Rm) satisfies the following weak
differentiability property,

lim
ρ→0+

1
ρN

∫
Qρ(x0)

1
ρp

|u(x) − u(x0) − ∇u(x0) · (x − x0)|p dx = 0, r

for LN -almost every x0 ∈ Ω (see [19, theorem 3.4.2]). Thus, letting ρ → 0, we have
that

lim sup
ρ→0

lim sup
n→∞

Ēl,α(ρ, n) � c′Rl,α.

We conclude from (3.3) and lemma 3.4 that

W hom(∇u(x0)) � c′Rl,α + lim
ρ→0+

lim
n→∞

1
ρN

∫
Qρ(x0)

Wλn

(
x

εn
,∇un

)
dx.

Finally, we let l → ∞ and α → 0 to prove our claim.

3.3. Upper bound on the Γ - lim sup Fn

We prove that, for every u ∈ Lp(Ω; Rm),

F hom(u) �
(
Γ - lim sup

n→∞
Fn

)
(u).

By definition of F hom, this is trivially satisfied when u 
∈ W 1,p(Ω; Rm).
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Proposition 3.5. If (C1), (C2) and (H1) hold, then ∀u ∈ W 1,p(Ω; Rm), ∃un → u
in Lp(Ω; Rm) such that limn→∞ Fn(un) = F hom(u).

Proof. We divide the proof into two parts.

Part 1 (piecewise affine continuous functions). Let us denote by Aff(Ω; Rm) the
subspace of piecewise affine continuous functions.

Lemma 3.6. If (C1), (C2) and (H1) hold, then ∀u ∈ Aff(Ω; Rm), ∃un → u in
Lp(Ω; Rm) with un ∈ u + W 1,p

0 (Ω; Rm) such that limn→∞ Fn(un) = F hom(u).

Proof. We begin by proving the lemma for an arbitrary linear function. The proof
is adapted from [18, lemma 2.1 (a)]. Let ξ ∈ R

mN . By the definition of W hom, for
every δ > 0, there exist k ∈ N

∗ and ψδ ∈ Lp(]0, k[N ; Rm) such that

W hom(ξ) � 1
kN

Ḡξ(ψδ; ]0, k[N ) < W hom(ξ) + δ.

Fix δ > 0. According to (H1), there exists a sequence {ψδ
n} ⊂ W 1,p

0 (]0, k[N ; Rm)
such that limn→∞ ‖ψδ

n − ψδ‖p,]0,[N = 0 and

lim
n→∞

Gξ
n(ψδ

n; ]0, k[N ) = Ḡξ(ψδ; ]0, k[N ). (3.4)

We extend ψδ
n from ]0, k[N to R

N by kY -periodicity, and, for each n ∈ N, we define

uδ
n(x) :=

{
ξ · x + εnψδ

n(x/εn) if x ∈ Ωεnk,

ξ · x if x ∈ Ω \ Ωεnk,

where Ωεnk is the union of all the cubes of side εnk that are contained in Ω. Of
course, uδ

n − ξ · x ∈ W 1,p
0 (Ω; Rm). Since

‖uδ
n − ξ · x‖p,Ω � εn

LN (Ω)
kN

‖ψδ
n‖p,]0,k[N ,

we have that limn→∞ ‖uδ
n − ξ · x‖p,Ω = 0. By definition of Fn and uδ

n,

Fn(uδ
n) =

∫
Ωεnk

Wλn

(
x

εn
, ξ + ∇ψδ

n

(
x

εn

))
dx +

∫
Ω\Ωεnk

Wλn

(
x

εn
, ξ

)
dx.

By kY -periodicity, we obtain∫
Ωεnk

Wλn

(
x

εn
, ξ + ∇ψδ

n

(
x

εn

))
dx =

LN (Ωεnk)
kN

∫
]0,k[N

Wλn(y, ξ + ∇ψδ
n(y)) dy.

By (3.4), we deduce that there exists n0 ∈ N such that

W hom(ξ) − δ <
1

kN

∫
]0,k[N

Wλn(y, ξ + ∇ψδ
n) dy < W hom(ξ) + δ

for every n � n0. We thus have the following estimates,

LN (Ωεnk)[W hom(ξ) − δ] � Fn(uδ
n) � LN (Ωεnk)[W hom(ξ) + δ] + c′LN (Ω \ Ωεnk)
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for every n � n0, where c′ = c0r̄(1 + |ξ|p). Consequently, for every δ > 0,

F hom(ξ · x) − δLN (Ω) � lim inf
n→∞

Fn(uδ
n) � lim sup

n→∞
Fn(uδ

n) � F hom(ξ · x) + δLN (Ω).

By a standard diagonalization argument [5, corollary 1.16], we obtain a map-
ping n �→ δn such that δn → 0 as n → ∞, limn→∞ ‖uδn

n − ξ · x‖p,Ω = 0 and
limn→∞ Fn(uδn

n ) = F hom(ξ · x). Finally, setting un := uδn
n , we obtain the required

sequence. The case of an arbitrary u ∈ Aff(Ω; Rm) follows by a straightforward
generalization of the above construction.

Part 2 (density argument). Before dealing with a general u ∈ W 1,p(Ω; Rm), we
establish the following properties of the homogenized integrand.

Lemma 3.7. Under (C1), (C2) and (C3), we have the following.

(i) If (H1) holds, then ∃c1 > 0 such that ∀ξ ∈ R
mN

c1|ξ|p � W hom(ξ) � c0r̄(1 + |ξ|p).

(ii) If (H1) and (H2) hold, then ∃c2 > 0 such that ∀ξ′, ξ ∈ R
mN

|W hom(ξ′) − W hom(ξ)| � c2(1 + |ξ′|p−1 + |ξ|p−1)|ξ′ − ξ|.

Proof. (i) From (H1), it follows easily that Ḡξ(0; ]0, k[N ) � kNc0r̄(1+ |ξ|p) for every
ξ ∈ R

mN . Hence the upper estimate for W hom follows. For the coercivity condition,
we may argue as in [3, proposition 3.3]. By lemma 3.6, there exists a sequence
un → ξ · x in Lp with un ∈ ξ · x + W 1,p

0 (Ω; Rm) and such that

lim
n→∞

Fn(un) = F hom(ξ · x) = W hom(ξ)LN (Ω).

Let Ω′ ⊂ R
N be an open set with Ω ⊂⊂ Ω′. Letting un = ξ · x outside of Ω, we

extend it to Ω′. Consider the extension operator

Pεn : W 1,p(Ω′ ∩ εnE; Rm) → W 1,p
loc (Ω′; Rm)

given by the theorem of Acerbi et al . [3]. For every n ∈ N with εn small enough
such that Ω ⊂ Ω′(εnk0), we have

‖Pεnun‖p
p,Ω � k1‖un‖p

p,Ω∩εnE + k1‖ξ · x‖p
Ω′\Ω

and

‖∇(Pεnun)‖p
p,Ω � k2‖∇un‖p

p,Ω∩εE + k2|ξ|pLN (Ω′ \ Ω).

Using the inequality r̄‖∇un‖p
p,Ω∩εnE � Fn(un), together with arguments similar to

the proof of proposition 3.1, we deduce that, up to a subsequence, Pεnun ⇀ ξ · x
in W 1,p(Ω; Rm). Hence, by weak lower-semicontinuity, we obtain

lim inf
n→∞

‖∇(Pεnun)‖p
p,Ω � |ξ|pLN (Ω),

and from

lim inf
n→∞

‖∇(Pεnun)‖p
p,Ω � k2

r̄
W hom(ξ)LN (Ω) + k2|ξ|pLN (Ω′ \ Ω),
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it follows that

|ξ|pLN (Ω) � k2

r̄
W hom(ξ)LN (Ω) + k2|ξ|pLN (Ω′ \ Ω).

Since Ω′ ⊃⊃ Ω is arbitrary, the lower estimate for W hom(ξ) follows.
(ii) First, observe that, for every A ∈ Ub(RN ),

Sξ
n(A) = inf

{∫
A

QWλn(x,∇w) dx : w ∈ ξ · x + W 1,p
0 (A; Rm)

}
,

where QWλn is the quasi-convexification of Wλn (see [2, 8]). Fix ξ′, ξ ∈ R
mN . For

every n ∈ N, consider a function wn ∈ ξ · x + W 1,p
0 ((1/εn)]0, 1[N ; Rm) such that∫

An

QWλn
(x,∇wn) dx � Sξ

n(An) + δn,

with An := (1/εn)]0, 1[N and δn := εnr(λn) → 0 as n → ∞. We have

Sξ′

n (An) − Sξ
n(An) �

∫
An

|QWλn(x, ξ′ − ξ + ∇wn) − QWλn(x,∇wn)| dx + δn.

By [8, ch. 4, lemma 2.2], it follows from (C2) that, for a suitable constant c > 0,

|QWλn
(·, ξ′ − ξ + ∇wn) − QWλn(·,∇wn)|

� crλn
(1 + |ξ′|p−1 + |ξ|p−1 + |∇wn|p−1)|ξ′ − ξ|.

Then we have to estimate the integral∫
An

rλn(x)|∇wn|p−1 dx = r̄

∫
An∩Eλn

|∇wn|p−1 dx + r(λn)
∫

An\Eλn

|∇wn|p−1 dx.

On the one hand, Hölder’s inequality yields∫
An∩Eλn

|∇wn|p−1 dx � LN (An ∩ Eλn)1/p

(∫
An∩Eλn

|∇wn|p dx

)(p−1)/p

� 1

ε
N/p
n

‖∇wn‖p−1
p,An∩Eλn

.

On the other hand, using the coercivity condition in (C2), we can deduce that∫
An

rλn
(x)|∇wn|p dx � Sξ

n(An) + εnr(λn) � c0r̄(1 + |ξ|p) 1
εN

n

+ δn,

which gives, in particular,

‖∇wn‖p−1
p,An∩Eλn

�
[
c0(1 + |ξ|p) 1

εN
n

+ δn/r̄

](p−1)/p

.

Consequently, there exists a constant c such that∫
An∩Eλn

|∇wn|p−1 dx � c

εN
n

[(1 + |ξ|p−1) + ε(N+1)(p−1)/p
n ].

https://doi.org/10.1017/S0308210500003498 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003498


Multi-parameter homogenization by localization and blow-up 813

By similar arguments, we obtain∫
An\Eλn

|∇wn|p−1 dx � c

εN
n

[
(1 + |ξ|p−1)

1
r(λn)(p−1)/p

+ ε(N+1)(p−1)/p
n

]
.

We thus deduce that∫
An

|∇wn|p−1 dx � c

εN
n

[(r̄ + r̄1/p)(1 + |ξ|p−1) + 2r̄ε(N+1)(p−1)/p
n ].

Therefore, there exists a constant c such that

εN
n Sξ′

n (An) − εN
n Sξ

n(An) � c(1 + |ξ′|p−1 + |ξ|p−1 + ε(N+1)(p−1)/p
n )|ξ′ − ξ| + εN

n δn.

Letting n → ∞, we get

W hom(ξ′) − W hom(ξ) � c(1 + |ξ′|p−1 + |ξ|p−1)|ξ′ − ξ|.

Now we can complete the proof by a standard density argument. First, note
that F hom is a continuous function on W 1,p(Ω; Rm). In fact, from lemma 3.7 (ii),
it follows that

|F hom(u) − F hom(v)| � c(1 + ‖∇u‖p
p,Ω + ‖∇v‖p

p,Ω)(p−1)/p‖∇u − ∇v‖p,Ω ,

for every u, v ∈ W 1,p(Ω; Rm). Since Ω has Lipschitz boundary, the space Aff(Ω; Rm)
is dense in W 1,p(Ω; Rm) for the strong topology (see [13]). Let u ∈ W 1,p(Ω; Rm) and
consider {uk} ⊂ Aff(Ω; Rm) such that uk → u as k → ∞ strongly in W 1,p(Ω; Rm).
Then limk→∞ F hom(uk) = F hom(u). By lemma 3.6, ∀k ∈ N, ∃{uk

n} ⊂ W 1,p(Ω; Rm)
such that uk

n → uk in Lp(Ω; Rm) as n → ∞ and limn→∞Fn(uk
n) = F hom(uk).

Setting
f(k, n) := |Fn(uk

n) − F hom(u)| + ‖uk
n − u‖p,Ω ,

we have
lim

k→∞
lim

n→∞
f(k, n) = 0.

By diagonalization (see [5, corollary 1.16]), there exists a mapping n → kn, increas-
ing to ∞ as n → ∞, such that limn→∞ f(kn, n) = 0. Defining un := ukn

n , we have
thus proved the result.
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