
Math. Struct. in Comp. Science (2005), vol. 15, pp. 383–406. c© 2005 Cambridge University Press

doi:10.1017/S0960129504004657 Printed in the United Kingdom

Periodic Linear Programming with applications

to real-time scheduling

K. SUBRAMANI†

Lane Department of Computer Science and Electrical Engineering, West Virginia University,

Morgantown, WV 26506

Email: ksmani@csee.wvu.edu

Received 12 February 2003; revised 1 September 2004

In this paper we introduce a new mathematical modelling technique called Periodic Linear

Programming; the periodic properties of Periodic Linear Programs (PLPs) permit the

specification of inter-period constraints in embedded systems, in a straightforward and

natural manner. We analyse PLPs in which the relationship between program variables is

restricted to the class of difference constraints. Our analysis establishes that such PLPs can

be reduced to simple linear programs, and hence decided in polynomial time. The class of

difference constraints is extremely important from the perspective of embedded systems

design, in that it permits the specification of complex timing constraints in real-time

specification languages. A PLP can be thought of as a finite-description tool that represents

infinite-state systems; although we use this tool purely for the purpose of modelling real-time

scheduling problems, PLPs also find applications in other areas, such as concurrency design.

In studying this programming paradigm, we develop novel techniques that, to the best of

our knowledge, are not part of the literature. We build on the PLP structure to introduce a

generalisation called Periodic Quantified Linear Programming; this programming paradigm

permits the specification and analysis of uncertainty in the parameters of a PLP.

Consequently, a Periodic Quantified Linear Program (PQLP) is the natural modelling tool to

capture the requirements of periodic, embedded systems that are characterised by

uncertainty in the execution times of processes, periodicity and relative timing constraints. In

this paper, we use the PQLP structure to model and solve the periodic version of the

zero-clairvoyant scheduling problem. Modelling uncertainty in the problem description is a

typical technique used to incorporate a measure of fault-tolerance in the specification.

1. Introduction

Real-time scheduling problems are characterised by the presence of complex timing

constraints between tasks and the existence of execution time variability. It is important

to note that constraints such as relative timing constraints cannot be represented by

precedence graphs (which are necessarily acyclic). A traditional scheduling model, such as

the one described in Pinedo (1995) fails to account for either of the above characteristics.

A third issue in real-time scheduling problems is the issue of clairvoyance, which

specifies when the execution time of a job is known and can be used in the computation

† This work was conducted in part at the VLSI CAD Laboratory at the University of California, San Diego,

where the author was a Visiting Associate Professor.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 384

of schedules. To this end, the E-T-C (Execution Time Constraints) scheduling framework

was proposed in Subramani (2002b). This model addresses the issues of specifying

constraints, execution time variability and clairvoyance in real-time scheduling problems

in a very broad and flexible manner. The E-T-C scheduling model is built on extensions

of Linear Programming and Quantified Linear Programming (Subramani 2003b); these

mathematical programming models are single-shot in nature. Consequently, the model

itself is suitable only for expressing constraint relationships between jobs in the same

period (intra-period). However, applications abound in which there are relationships

between successive invocations of job-sets (inter-period). One such application can be

found in Ancilloti et al. (1993), which is concerned with the modelling of a traffic control

system; additional applications are discussed in Section 4. In such systems, the positioning

of jobs within a scheduling window is affected by the positioning of jobs in the previous

scheduling window, and in turn affects the positioning of jobs in the succeeding scheduling

window, thereby necessitating the use of inter-period constraints.

Observe that even the task of constraint specification in such systems is a non-trivial

task and requires the generalisation of familiar mathematical programming models.

Accordingly, we focus our efforts on developing a model that permits the specification of

such inter-period constraints, and introduce the Periodic Linear Programming structure,

which is a generalisation of Linear Programming. This generalisation permits a finite

specification of an infinite-state system in a manner similar to Timed Automata (Alur and

Dill 1994) and the structures in Esparza (1997) and Baldan et al. (2001).

We establish that a restricted class of PLPs can be reduced to traditional linear

programs, and hence decided in polynomial time; the restrictions that we impose on

PLP structure, nevertheless, permit the capturing of requirements in typical embedded

systems (Kuchinski 1997). The analysis of Periodic Linear Programs (PLPs) requires the

development of novel techniques that, to the best of our knowledge, have not been studied

in the literature.

We build on the PLP structure to introduce an additional mathematical programming

paradigm called Periodic Quantified Linear Programming, which is used to give effective

models of uncertainty in zero-clairvoyant real-time systems.

The main contributions of this paper are:

(i) the development of new mathematical modelling tools in the form of Periodic Linear

Programs (PLPs) and Periodic Quantified Linear Programs (PQLPs);

(ii) the establishing of sufficient conditions for the existence of periodic solutions for

PLPs; and

(iii) the development of a polynomial time algorithm for zero-clairvoyant scheduling

systems, in the presence of inter-period constraints.

The rest of this paper is organised as follows. Section 2 defines the general form of

the Periodic Linear Programming structure and the restrictions that we shall be studying

in this paper. The PQLP model and the associated decision problem are discussed in

Section 3. In Section 4, we discuss issues in the specification of embedded systems that

can be effectively captured through PLPs. Section 5 provides a detailed analysis of the

restricted PLP problem that permits efficient decidability. In Section 6, we describe the

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 385

zero-clairvoyant scheduling problem with inter-period constraints (ZCIPC) in real-time

systems. A polynomial time algorithm for ZCIPC is developed in Section 7. We extend the

ideas in Section 7, to the case in which the execution times of jobs are constrained through

arbitrary convex domains. An example is detailed in Section 9, while implementation

results are discussed in Section 10. Section 11 describes related work in the literature, and

we conclude in Section 12 by summarising our contributions and outlining directions for

future research.

2. Periodic Linear Programs

Linear programming models, for example, ∃�x A ·�x ��b, have been widely used in the

modelling of relationships between the program variables of complex systems. However,

these models can only represent single-shot situations, that is, all relationships must be

completely and explicitly specified before the model is solved. Real-time embedded systems

are often periodic in nature, which means that the same program variables and constraints

occur repetitively in fixed-length periods. Furthermore, there are temporal constraints

among instantiations of program variables in successive periods; such relationships cannot

be captured by simple linear programming models. To this end, we introduce the concept

of a Periodic Linear Program (PLP).

In what follows, we assume that the program variables represent instants in time and

that the time axis is broken into periods of fixed-length.

Definition 2.1. A mathematical program of the form

∃ �xi, i = 1, 2, . . . ,∞ A · �xi � �bi,

C · [�xi �xi+1]T � �di, (1)

where �xi = [xi1, x
i
2, . . . , x

i
n]

T represents the program variables of the ith period, is called a

Periodic Linear Program.

In Definition 2.1, A is an m× n rational matrix called the intra-period constraint matrix,

C is an m′ × 2 · n rational matrix called the inter-period constraint matrix, �bi is an m-vector

and �di is an m′-vector. Note that inter-period constraints are permitted between successive

periods only. We assume that the length of the period is L, that is, the window for �xi is

the continuous real interval [(i − 1) · L, i · L]. We enforce the requirement that �xi � �i · L,

since the program variables represent time instants, where �i · L is the vector in which every

component is i · L; these constraints are part of the intra-period constraint matrix A.

Observe that we must be able to derive �bi from �b1; likewise, we must be able to derive

the vectors �di fom �d1. Otherwise, the PLP does not have a compact description and the size

of the problem is undefined. We only consider PLPs in which bij = b1
j +uj ·(i−1)·L, uj ∈ Z

and dij = d1
j + vj · (i − 1) · L, vj ∈ Z . Furthermore, for each constraint li in A · �xi � �bi,

the ui value is fixed and part of the input; the same holds for each constraint lj of the

system C · [�xi �xi+1]T � �di and the variable vj . Thus, we see that a PLP has a compact

description, in that it is completely described by {A, �b, C, �d} and the variable set M =

{u1, u2, . . . , um, v1, v2, . . . , vm′ }. Each element of M is called a constraint interpreter or a

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 386

constraint multiplier, for reasons that will become apparent later. In other words, we have

a finite and implicit description of a (possibly) infinite state system.

For instance, Systems (2) and (3) together represent a PLP.

(A)

 1 −1

−1 1

1 0

 ·

[
xi1
xi2

]
�

 −2

5

15 + (i − 1).15

 (�bi) (2)

(C)
[

1 0 −1 0
]

·
[

5
]
(�di) (3)

In the first two constraints of the intra-period constraint matrix, the constraint multiplier

is 0, whereas in the third constraint, the constraint multiplier is 1.

Definition 2.2. An Order k restriction of a PLP as described in System (1), is the simple

Linear Program that results by restricting the constraint system to k successive periods,

starting from the first period.

Accordingly, the Order 1 restriction of a PLP is A · �x1 � �b1, that is, the intra-period

constraints only, the Order 2 restriction is: A · �x1 � �b1, C · [�x1 �x2]T � �d1, A · �x2 � �b2 and

so on, where the comma operator represents conjunction.

Definition 2.3. An Order k solution of a PLP is the Linear Programming solution of the

Order k restriction.

Note that an Order k restriction has k × n variables in all.

Definition 2.4. The solution of a PLP is the solution to the Order ∞ restriction; a PLP is

said to be feasible, if it has an Order ∞ solution.

The PLP-decidability problem is as follows: Given a PLP specification, is it feasible?

Observe that the above decision problem may not have a succinct solution, in that

the Order ∞ restriction may be feasible, but require the specification of infinitely many

different program variables for the description of the solution. We now focus on a class

of solutions that can be succinctly described.

Definition 2.5. The solution of the Order ∞ restriction of a PLP is said to be cyclic, with

period k, if the solution vector for the jth period can be computed using Algorithm 1.

Algorithm 1 Cyclic solutions to a PLP

Function Cyclic-Solution (A, �bi,C, �di, j)

1: if (j � k) then

2: Form the Order j restriction of the PLP.

3: Solve the restriction as a Linear Program over n × j variables.

4: Return �xj.

5: else

6: Let�z = Cyclic-Solution (A, �bi,C, �di, j − k).

7: Set �xj =�z + k ·�L.

8: end if

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 387

The motivation behind the definition of Cyclic solutions with Period k, is that once

the solution to the Order k restriction has been computed, the solution to the Order p

restriction for any p, can be computed through Algorithm 1; in other words, if a PLP has

a cyclic solution, this solution can be succinctly described. Furthermore, as will be shown

in Section 5, if we are assured that a feasible PLP has a cyclic solution, the process of

deciding it is greatly simplified. Note that depending upon the nature of the constraints

involved, it is perfectly possible for a feasible PLP not to have a cyclic solution.

In order to reduce the cumbersomeness of the notation, we shall use �a + c1 to mean

that every component of the vector �a is increased by c1.

2.1. Restrictions to PLPs

As defined above, PLPs are extremely general structures and, at this point, it is not

clear they are even decidable, much less in polynomial time. We now place the following

restrictions on the PLPs that we shall be analysing:

(a) The vectors �bi and �di are integral for all i = 1, 2, . . . ,.

(b) Every constraint in A is either a (strict) difference constraint or an absolute constraint.

Note that a constraint of the form xi−xj � c1 is called a difference constraint (Cormen

et al. 1992). A constraint of the form xi � c1 or xi � c2 is called an absolute constraint.

(c) The constraints in C are difference constraints only.

(d) The constraint multiplier for a difference constraint is 0, whereas the constraint

multiplier for a constraint of the form xi � c1 is +1 and the constraint multiplier for

a constraint of the form xi � c2 is −1.

The reasoning behind the restrictions on the constraint multipliers is as follows: an

intra-period difference constraint in the first period, say x1
1 − x1

2 � 7, will stay the same

in the second period, except that the variables will be x2
1 and x2

2, respectively. The same

argument applies for inter-period difference constraints as well. Hence, the constraint

multipliers for these constraints should be zero. In the case of absolute constraints (which

are only permitted in the intra-period constraint matrix), a constraint of the form x1
1 � c1

in the first period will be transformed into to x2
1 � c1 + L in the second period and

xi1 � c1 + (i − 1) · L, in the ith period, that is, the constraint multiplier is 1. Likewise, a

constraint of the form x1
1 � c1 will be transformed into xi1 � c1 + (i − 1) · L in the ith

period, and hence −xi1 � −c1 − (i− 1) ·L. In other words, the constraint multiplier is −1.

Restricting the PLP structure as discussed above results in the following properties.

(a) The vector �di stays the same for all periods i, that is, we can set �di =�d.

(b) If the jth constraint of the intra-period constraint matrix is a difference constraint, bij
is the same for all periods i. If the jth constraint of the intra-period constraint matrix

is an absolute constraint of the form xk � (), then bij = b1
j + (i − 1) · L, and if it is a

constraint of the form xk � (), then bij = b1
j − (i − 1) · L.

(c) The intra-period constraint system for the ith period can be derived from the intra-

period constraint system for the first period by shifting the origin to the point

((i − 1) · L, (i − 1) · L, . . . , (i − 1) · L). Hence, the Order 1 restriction PLP, viz.,

U1 : A · �x1 � �b1 is feasible if and only if the intra-period constraint system for the

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 388

ith period, viz., Ui : A · �xi � �bi is feasible, for i = 2, 3, . . . ,∞. Furthermore, if �z1 is a

solution to U1, then �zi = �z1 + (i − 1) · L is a solution to Ui, and vice versa. The name

given to this property is Solution Preservation through Shift of Origin (SPSO).

Accordingly, we can refer to an arbitrary PLP as

∃ �xi, i = 1, 2, . . . ,∞ A · �xi � �bi,

C · [�xi �xi+1]T ��d (4)

From this point onwards, when we refer to a PLP, we mean a Periodic Linear Program

with the above restrictions, that is, System (4).

3. Periodic Quantified Linear Programs

Linear Programming models do not permit the specification of uncertainty, even in

single-shot situations. One technique for permitting the specification of uncertainty in

linear programs is through the use of Quantified Linear Programs.

Definition 3.1. A linear program in which some of the program variables are universally

quantified over a specified domain is called a Quantified Linear Program (QLP).

For instance, the mathematical program described in System (5) is a QLP:

∃x1∀y1 ∈ [0, 4]∃x2 ∃x3 . . . ∀y2 ∈ [9, 14] A · [x1 x2 x3 y1 y2]
T ��b (5)

Typically, x variables are existentially quantified and y variables are universally quantified.

It is also customary to separate the coefficients of the existentially quantified and

universally quantified variables. Accordingly, we write a QLP as

Q(�x, �y) G ·�x + H ·�y ��b (6)

where Q(�x, �y) represents the quantifier specification of the QLP. As is the case with

Linear Programming models, Quantified Linear Programming models are restricted in

that they can only capture single-shot situations. A QLP is completely described by its

quantifier string, which specifies the ordering on the variables, and the constraint system.

The semantics of a QLP is as follows: an existential player non-deterministically makes

moves for the x variables, and a universal player non-deterministically guesses values

for the y variables. The guesses are made in the order specified by the quantifier string;

furthermore, the guesses made by either player could depend on the values guessed up

to the current juncture by the other player. When all the guesses have been made, we

check whether all the constraints of the constraint system G ·�x + H ·�y ��b hold; if they

have, the existential player has won the game, otherwise the universal player wins. We say

that the QLP is true if the existential player has a winning strategy against any strategy

adopted by the universal player. These programming structures find wide application

in the specification of clairvoyant scheduling problems (Subramani 2002b). A detailed

introduction to Quantified Linear Programming and methodologies to decide QLPs is

available in Subramani (2003b).

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 389

Definition 3.2. A Periodic Quantified Linear Program (PQLP) is a Periodic Linear Program

in which some of the program variables are universally quantified over a specified

domain.

Just as PLPs are implicit descriptions of an infinite Linear Program, we intend that a

PQLP is an implicit description of an infinite QLP. There is one issue though that must

be addressed, viz., the description of the quantifier string of a PQLP. Definition 3.2 does

not explicitly account for the length of the quantifier specification. However, if a PQLP is

to be succinctly described, there must be a compact description for its infinite quantifier

string, that is, the description must incorporate some form of periodicity. Observe that a

PLP could be specified as in System (4), and the interpretation of the constraint system is

straightforward, since all the quantifiers are existential. However, in the case of a PQLP

the presence of both existential and quantifiers in the quantifier specification requires a

careful explanation of the semantics involved. We shall postpone the discussion of this

issue till Section 6, where a PQLP is used to model a real-world problem and the quantifier

string will be interpreted in a manner that is consistent with the demands of the problem.

For the present, a PQLP is denoted by:

Qi(
�xi, �yi)

G · �xi + H · �yi � �bi

I · �xi + J · �yi � �d

i = 1, 2, . . . ,∞ (7)

where,

(a) The constraint matrices G and I are restricted in exactly the same way as the constraint

matrices of a PLP,

(b) The application of the quantifier specification Qi(
�xi, �yi) will be decided by the problem

being modelled.

4. Motivation

Inter-period constraints are useful for modelling relationships that exist between jobs

across scheduling windows, where a scheduling window is a period. In a typical application

it is important to control jitter, that is, the variation in the arrival time of tasks

across periods. Consider the requirement that the jitter between the fourth task in

the current period and the first task in the succeeding period be no greater than 5.

Such a relationship can easily be represented through an inter-period constraint as:

xi+1
1 − xi4 � 5, ∀i = 1, 2, . . . ,∞. (Choi 2000) describes a number of application areas in

which jitter minimisation is of paramount importance.

4.1. A traffic control system

Consider the operation of a typical traffic control system, such as the one discussed in

Ancilloti et al. (1993) (See Figure 1).

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 390

Central Controller

Local Controller

Fig. 1. A traffic controller.

Each intersection in the traffic system possesses a local controller, which carries out

local control functions in addition to communicating with a central controller.

In any scheduling window the local controller displays red, green and yellow lights in

strict sequential order. The repetition of the sequential order in each period represents a

cyclic schedule. The duration for which a particular light is displayed depends upon the

traffic pattern, as monitored by detectors at the intersection. For instance, the green light

for a particular direction stays on longer when the traffic is heavy than when it is light.

The other lights are controlled in similar fashion. The detectors issue signals when they

recognise the presence of an automobile. These signals are used by the local controller

to modify the parameters of the cyclic schedule. Some of the information collected from

the sensors is passed on to the central controller, which then uses it to improve the traffic

flows taking the current conditions into account.

An inter-period constraint would place restrictions between the signal lengths in the

same period, whereas an intra-period constraint would place timing restrictions between

signal lengths of adjacent periods.

4.2. Real-time embedded systems

Larsen et al. (2003) discusses the design of an embedded controller for a real-time coffee

machine. In this machine there is a continuous operation that begins with the user selecting

the number of coffee cups that he wants. The process of delivering the coffee to the user is

constituted of a number of sub-tasks. For instance, there is a task that decides how much

coffee is to be released; a second task that controls the creamer amount and yet another

task that controls the sugar levels. All these sub-tasks are performed in a strict sequential

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 391

order. Furthermore, there are relative timing constraints between these sub-tasks of the

form:

(a) Release the creamer at least 8 seconds after the coffee has been poured;

(b) Move the coffee cup within 2 inches of the sugar orifice (distance constraints can be

converted into timing requirements, (Muscatella et al. 1997; Muscatella et al., 1998).)

There are also constraints between successive instantiations of the same task: for

example,

(a) Wait at least 15 seconds, between orders so that the milk can be replenished.

4.3. Protocols in RDBMS

Consider a real-time data base system as described in Bestavros and Fay-Wolfe (1997).

The query-processor has to execute a sequence of steps to process each query. In order

to maintain a consistent database, certain delay requirements need to be met between

processes in successive invocations. For instance,

(a) Wait at least 10 seconds between successive update() operations (inter-period con-

straint),

(b) A Change-Balance() operation precedes an update() operation by at least 4 seconds

(intra-period constraint),

(c) A Change-Balance() operation occurs only after a Check-Balance() operation (intra-

period constraint).

We thus see that the PLP framework can be put to good use in modelling constraints

in a wide variety of periodic embedded systems.

5. PLP decidability

In this section we show that the class of PLPs that have been restricted as discussed

in Section 2 can be decided in polynomial time. Before we proceed with our analysis,

we introduce the concept of projection in polyhedral spaces, as discussed in Chandru and

Rao (1999) and Schrijver (1987). Given a polyhedral system in Euclidean space �d, we

can project this system onto a lower dimensional space �d′
, d′ < d, while preserving the

set of solutions to the original system (Schrijver 1987). One of the commoner techniques

for achieving this projection is the Fourier–Motzkin (FM) elimination method (Dantzig

and Eaves 1973; Hochbaum and Naor 1994), which is based on variable elimination.

Let us focus on the PLP described by System (8):

A · �xi � �bi,

C · [�xi �xi+1]T � �d

i = 1, 2, . . . ,∞ (8)

Observe that System (8) is in fact a progression of linear programs, with additional

constraints being added in every period. Let S1 = A · �x1 � �b1 denote the Order 1 restriction

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 392

to System (8). Now consider the Order 2 restriction of the PLP, that is,

A · �x1 � �b1, A · �x2 � �b2, C · [�x1 �x2]T ��d. (9)

When System (9) is projected onto the space spanned by �x1 by eliminating the variables

in �x2, we get a polyhedral set S2 = A′ · �x1 � �b′1. Observe that any solution to System (8)

must belong to S2. Accordingly, we can reformulate System (8) as

A′ · �xi � �b′i,

C · [�xi �xi+1]T � �d

i = 1, 2, . . . ,∞ (10)

It is clear that the original PLP (described by System (8)) is feasible if and only if

the reformulated PLP (described by System (10)) is too. From the properties of Fourier–

Motzkin elimination, we know that projecting out a variable in a system of difference and

absolute constraint with an integral right-hand side, results in a system with difference

and absolute constraints with an integral right-hand side. In other words, the class of

restricted PLPs is closed under FM elimination and the intra-period constraint system

A′ · �xi � �b′1 also satisfies the restrictions discussed in Section 2. Each reformulation of the

intra-period constraint matrix results in a (possibly) different polyhedral set. Let Si denote

the polyhedral system that results from projecting the Order i restriction of System (8)

onto �x1 space.

Lemma 5.1. S1 ⊇ S2 ⊇ S3 . . .

Proof. Observe that each Si, i = 1, 2, . . . ,∞ is a polytope formed by adding constraints

to the polyhedral set Si−1, further restricting the feasible space. The claim follows.

We need to consider the following two possibilities only:

(i) The sequence of sets Si converges to some polyhedron in �x1 space.

(ii) Sk = φ for some k, that is, the reformulation process results in an infeasible set.

Corollary 5.1 follows immediately from Lemma 5.1.

Corollary 5.1. If Sk 	= Sk+1, then Sk ⊃ Sk+1.

Lemma 5.2. If Sk = Sk+1, for some k, then Sj = Sk, ∀j � k.

Proof. The inter-period constraint system C · [�xi �xi+1]T ��d can be thought of as a

reformulation operator ∇ applied to the intra-period constraint system (input set), in that

at each stage its application results in a (possibly) new intra-period constraint matrix

(output set), that is, ∇(Si) = Si+1. Since Sk = Sk+1, this means that ∇(Sk) = Sk+1 = Sk .

Now observe that the reformulation operator is independent of the periods involved. So,

reapplying ∇ to Sk will result in the same set Sk . In other words, Sk is a fixed-point of the

reformulation operator (Istrescu 1981).

Lemma 5.3. The reformulation operator ∇, described in Lemma 5.2 can be applied at most

O(n3 · L) times to the intra-period constraint system, at which time, either a fixed-point is

reached or the reformulated system becomes infeasible.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 393

Proof. In order to prove Lemma 5.3, we need to further analyse the structure of the

constraint systems that constitute a (restricted) PLP. It is well known that a system of m

linear inequalities on n variables constituted entirely of absolute and difference constraints

can be represented as a constraint network on (n + 1) vertices having m edges (Cormen

et al. 1992; Dechter et al. 1991).

In the constraint network there is a vertex for each variable, and a relative constraint

between variables xi and xj is represented by an edge between these two vertices. Absolute

constraints are represented as edges between the vertex corresponding to the variable and

a special vertex x0. The constraint network has a negative cost cycle if and only if the

system is infeasible (Cormen et al. 1992; Dechter et al. 1991).

Furthermore, if the system is feasible, that is, the constraint network has no negative cost

cycles, then the single-source shortest path distances from x0 to the vertices representing

the other variables is a solution to the constraint system.

From the previous discussion, it is clear that the sets Si, i = 1, 2, . . . can be represented

as constraint networks. Let Gi denote the constraint network representing Si. Without loss

of generality, we can assume that the network has an edge between each pair of vertices;

if the constraint set does not specify an edge between a vertex pair, we consider it to

be an edge of weight ∞. Consider the set Sk+1 = ∇(Sk). If Sk ⊃ Sk+1, then, as per the

mechanics of the FM elimination procedure, one or more edges in Gk (possibly an edge

with infinite weight) has been replaced by an edge of smaller weight to get Gk+1. The

weight of a newly created edge is at least one unit lesser than the weight of the edge it

replaces. In other words, the weight of an edge can only decrease by the application of

the ∇ operator.

We make the following observations:

(i) The constraints 0 � x1
i � L, i = 1, 2, . . . n are part of the Si unless they have been

replaced by tighter constraints. Accordingly, the single-source shortest path to all

vertices in the constraint network Gi must be non-negative in a feasible solution.

(ii) If the weight of an edge is finite, it can never exceed L, since the constraints specify

relative distance constraints between points in time.

If the weight of an edge drops to −(n + 1) · L, at least one vertex will have negative

shortest path from the source, causing a constraint violation. From the construction of

the constraint network, we know that there are at most O(n2) edges in the network.

Consequently, after O(n2 · (n + 1) · L) = O(n3 · L) applications, the ∇ operator reaches a

fixed point, or the reformulated system is inconsistent.

Theorem 5.1. A feasible PLP must have a cyclic solution with period 1.

Proof. As argued in Lemma 5.3, if the PLP is feasible, the ∇ operator will produce a

fixed-point of the intra-period constraint system after at most k = O(n3 · L) applications.

Thus, Sk = Sk+1 = . . . = S∞. Let A′ · �xi � �b′i denote the reformulated intra-period constraint

system, when the fixed-point is reached. Now, the inter-period constraint system is

redundant, so the PLP can be described as

∃�xi i = 1, 2, . . . ,∞ A′ · �xi � �b′i (11)

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 394

Let �z1 denote a solution to the system A′ · �x1 � �b′1. From the structure of the intra-

period constraint matrix and the solution preservation through shift of origin property, it

follows that �zi = �z1 + (i − 1) · L is a solution to the intra-period constraint system for the

ith window.

Observe that the existence of a period 1 cyclic solution trivially implies that the PLP is

feasible. Hence, we have the following theorem.

Theorem 5.2. A PLP is feasible if and only if it has a cyclic solution with period 1.

The principal consequence of the above analysis is that we can set

�xi+1 = �xi + L (12)

in System (4), while preserving its solution space. Thus the inter-period constraints between

window [(i − 1) · L, i · L] and [i · L, (i + 1) · L] can be merged using Equation (12), and

System (8) can be expressed in terms of the �xi only. This linear system is denoted by

M · �xi � �f i

i = 1, 2, . . . ,∞ (13)

The polyhedral system (13) is called the Periodic Polytope corresponding to the PLP

(1); this system is composed of n variables and m + m′ constraints.

Algorithm 2 Deciding a PLP

Function PLP-Solve (A, �bi,C,�d)

1: Form the composite system M · �xi � �f i, by using equation (12).

2: Set i = 1 to get the system M · �x1 � �f 1.

3: if ({M · �x1 � �f 1} 	= φ) then

4: Let �z1 denote a solution to this system.

5: “PLP is feasible.”

6: return(Cyclic solution �zi = �z1 + (i − 1) · L)

7: else

8: “PLP is infeasible.”

9: end if

Algorithm 2 formalises our strategy for solving PLPs. Observe that because of the

nature of the constraints involved, Algorithm 2 can be implemented in O((m + m′) · n)
steps using a variation of the Bellman–Ford algorithm (Cormen et al. 1992).

Given a periodic vector of the form zi = z1 + (i − 1) · L and a PLP as specified by

System (4), �zi is not a solution to the PLP if and only if at least one of the constraints in

the Order k system is violated for some finite k. (See Definition 2.2.)

The analysis of this section proving the existence of period 1 cyclic solutions for

PLPs exploited their structure. In particular, for the analysis to hold, the following two

conditions must be met:

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 395

P1: The inter-period constraint set, that is, ∇ = C · [�s1 �s2]T ��d is independent of the

period involved. Hence, it acts as a contractive operator that contracts the solution

space with each successive application until either a fixed-point is reached or the

reformulated system becomes infeasible. This is the gist of Lemma 5.2.

P2: If ∇(Si) 	= Si, there is a discrete, measurable difference in the two sets. This is the

gist of Lemma 5.3 where we exploited the fact that the weight of an edge is always

integral and drops by at least unity as a result of applying the ∇ operator. This is not

true for general constraint systems in which the changes effected by the ∇ operator

are not measurable. Consequently, a PLP defined by such a constraint system may

have an infinite-dimensional solution, but not a cyclic one. In other words, it is

possible for a PLP to be feasible, but not have a fixed-point solution; in this case,

Algorithm 2 is an incomplete decision procedure.

6. Zero-clairvoyant scheduling with inter-period constraints

In this section we describe the modelling of a practical real-time scheduling problem using

Periodic Quantified Linear programs.

6.1. Job model

Assume an infinite time axis starting at time t = 0 and divided into intervals of length L.

These intervals are called scheduling windows, that is, the first scheduling window is [0, L],

the second scheduling window is [L, 2 · L], and, in general, the ith scheduling window is

[(i − 1) · L, i · L]. The scheduling windows are also referred to as periods. We are given

a set of ordered, non-preemptive jobs {J1, J2, . . . Jn} with instances in each scheduling

window. The set Γ1 = {J1
1 , J

1
2 , . . . , J

1
n} corresponds to the instance of the job set in the first

scheduling window; the sets Γi, i = 2, . . . ,∞ are defined similarly. The instances of a job

within a scheduling window are called tasks. Associated with each job Ji is its execution

time ei. During execution, Ji can take anywhere from li to ui to complete; we denote

this by ei ∈ [li, ui]. Note that the value of ei may be different for instances of the same

task in different windows. Using intervals to model the execution time of a job permits

a degree of fault-tolerance, since it is rarely the case that a job will have exactly the

same running time in each instance of its invocation. Let �ei = [ei1, e
i
2, . . . , e

i
n]

T denote the

execution times of the tasks in the ith window and �si = [si1, s
i
2, . . . , s

i
n]

T denote their start

times. Let E denote the axis-parallel hyper-rectangle (aph) Πn
i=1[li, ui]. Since the jobs are

non-preemptive, the finish time of job Jk in scheduling window i is (sik + eik).

6.2. Constraint model

The constraints on the system are described in terms of scheduling window i:

(i) Intra-period constraints These constraints are difference constraints between the start

or finish time of a task in a period, and the start or finish time of another task in

the same period. For instance, the requirement that the job J2 should start at least 10

seconds after job J1 finishes in each period is represented as si2 � si1 + ei1 + 10.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 396

Intra-period constraints also include absolute constraints, that is, a constraint of

the form si1 � 7 + (i − 1) · L. Thus, the intra-period constraints can be described

by System (14):

G ·�si + H ·�ei � �bi (14)

(ii) Inter-period constraints These constraints are difference constraints between the start

or finish time of a task in a period, and the start or finish time of a task in the adjacent

period. For instance, the requirement that job Jn in the current period completes at least

15 seconds before job J2 in the next period commences is represented as si+1
2 � sin +15.

Thus, the inter-period constraints can be described by System (15):

I · [�si �si+1]T + J · [�ei �ei+1]T � �d (15)

Observe that System (14) and System (15) together constitute a PLP, as described

in Section 2.1, in that the constraints are restricted to be of the form required by a

PLP.

In System (14), G and H are m× n matrices and �bi is an integral m-vector; similarly, in

System (15), I and J are m′ · n matrices and �d in an integral m′-vector.

Note that we are interested in ‘hard’ real-time systems only (Stankovic and

Ramamritham 1998), in that the constraints cannot be violated, regardless of the values

assumed by the execution times of tasks.

6.3. Query model

In order to completely characterise a real-time scheduling problem, we need to specify

the type of schedulability query involved. As described in Subramani (2002b), there are

three types of schedulability queries as far as real-time scheduling is concerned: viz., zero-

clairvoyant, partially clairvoyant and totally clairvoyant. The point at which the execution

time of a job becomes available to the dispatcher determines the type of clairvoyance.

In this paper, we shall be concerned with zero-clairvoyant scheduling; in this form of

scheduling, the dispatcher is not aware of the execution time of a job, even after it has

finished execution. There are a number of practical instances for which zero-clairvoyant

scheduling is the only methodology available, since online computation is not permitted.

For an overview of zero-clairvoyant scheduling in the presence of intra-period constraints

only, see Subramani (2002a).

For the case in which there are no inter-period constraints, the zero-clairvoyant

scheduling query is given by

∃�s ∀�e ∈ E G ·�s + H ·�e ��b, (16)

where E is the aph Πn
i=1[li, ui], representing the variation in the execution time of each

job. Note that there is only one period in System (16) and the query is asking whether

there exists a single start-time vector�s that holds for all valid execution times of each job

in the job set. Let �zs denote such a vector. Then, we must have G · �zs ��b − H ·�e for all

�e ∈ E.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 397

In the presence of inter-period constraints, we are essentially interested in the same

guarantee, that is, we desire a start-time vector that does not know the execution time

of a job, even after it has completed executing. Thus, we are interested in the following

schedulability query:

∃�s1, �s2 . . . ∀�e1, �e2, . . . [(14), (15)] (17)

In System (17), the start-time vector �si for the ith window does not depend on the

execution time vector of any scheduling window.

System (17) can be described succinctly in the following form:

∃�si ∀�ei ∈ E i = 1, 2, . . . ,∞
G ·�si + H ·�ei � �bi

I · [�si �si+1]T + J · [�ei �ei+1]T � �d (18)

Observe that System (18) is, in fact, a Periodic Quantified Linear Program (PQLP).

It is to be understood that each execution time vector �ei belongs to its own execution

time domain E, that is, the execution time vectors of different scheduling windows are

independent of each other. The PQLP, as specified, can be interpreted in a variety of

ways; for the purposes of this paper, we attach the semantics of System (17) to System

(18). This issue was first raised in Section 3 and has now been adequately addressed.

Definition 6.1. The zero-clairvoyant scheduling problem, with inter-period constraints

(ZCIPC), is concerned with deciding whether System (18) is true.

System (18) is also referred to as the schedulability query or the schedulability predicate.

The chief features of the zero-clairvoyant scheduling problem are as follows:

(a) The jobs are ordered, that is, the execution sequence is known. This is unlike traditional

scheduling models, where the goal is to determine the execution sequence so as to

optimise an objective function.

(b) The matrices (G, H) and (I, J) permit the specification of complex constraints, such

as relative timing requirements; constraints of traditional scheduling problems such as

precedence requirements, deadline and ready-time requirements are easily represented

in this framework.

(c) The execution times of the jobs are not fixed constants, but range-bound variables.

Specifying the execution time of a job as a range, greatly enhances the fault-tolerance

of the system.

7. The scheduling algorithm

In this section, we shall focus on developing a polynomial time algorithm for the ZCIPC

problem.

As was the case with PLPs, we define the Order k restriction of the PQLP specified by

System (18).

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 398

Definition 7.1. An Order k restriction of a PQLP as described in System (1) is the simple

Quantified Linear Program that results by restricting the constraint system to k successive

periods, starting from the first period.

Accordingly,

(a) The Order 1 restriction of the PQLP is

∃�s1∀�e1 ∈ E

G · �s1 + H · �e1 � �b1

That is, only the intra-period constraints of the first window are in the constraint set.

(b) The Order 2 restriction is

∃�s1, �s2 ∀�e1, �e2 ∈ E

G · �s1 + H · �e1 � �b1

G · �s2 + H · �e2 � �b2

I · [�s1 �s2]T + J · [�e1 �e2]T � �d

(c) The Order k restriction is given by

∃�s1, �s2 . . . �sk ∀�e1 �e2, . . . , �ek ∈ E

G ·�si + H ·�ei � �bi

I · [�si �si+1]T + J · [�ei �ei+1]T � �d

i = 1, 2, . . . , k − 1

G · �sk + H · �ek � �bk

If Pk
s is used to define the Order k restriction of the PQLP, the ZCIPC problem can be

thought of as deciding the truth value of P∞
s .

7.1. Constraint analysis

Note that for each k, Pk
s is a fixed-dimensional Quantified Linear Program, and hence can

be decided using the quantifier elimination procedure discussed in Subramani (2003b). This

procedure uses variable substitution to eliminate all the universally quantified variables,

that is, �ek through �e1, and then the Fourier–Motzkin elimination procedure is used to

eliminate the existentially quantified variables �sk through �s2. In each step, the dimension

of the QLP is reduced by 1; the procedure terminates when either an inconsistency is

reached or a feasible range is found for the variable s11. As discussed previously, the

Fourier–Motzkin procedure preserves the difference constraint structure. The intra-period

constraint set, I · [�si �si+1]T + J · [�ei �ei+1]T ��d, which serves as the reformulation operator

∇, is independent of the period involved and thus condition P1 is satisfied. ∇ is repeatedly

applied to the intra-period constraint set, G · �s1 + H · �e1 � �b1, until a fixed-point is

obtained or an inconsistency is detected. Once again, the reformulation operator can be

applied at most O(n3 ·L) times, on account of the restricted structure of the constraint set.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 399

Furthermore, the elimination of either an existentially quantified variable or a universally

quantified variable from the restricted constraint set preserves integrality and hence, if the

reformulated polyhedron is different from the current polyhedron, the change is discrete

and measurable. It follows that condition P2 is also satisfied and thus the entire discussion

in Section 5 that demonstrated the existence of fixed-point solutions for PLPs can be

applied to the case of PQLPs as well. The existence of a fixed-point solution implies the

existence of a cyclic solution with period 1. We therefore have the following theorem.

Theorem 7.1. System (18) is feasible if and only if it has a cyclic solution with period 1.

Proof. The proof follows from the discussions in Section 5 and this section.

Theorem 7.1 permits us to set �si+1 = �si +L in the schedulability specification System 18.

By combining all the constraints, we get the following PQLP:

∃�si ∀�ei ∈ E i = 1, 2, . . . ,∞
M ·�si + N · [�ei �ei+1]T � �f i (19)

Setting i = 1, we get the system

∃�s1 ∀�e1 �e2 ∈ E

M · �s1 + N · [�e1 �e2]T � f 1 (20)

In the case of PLPs it was straightforward to compute �z1 by using the Bellman–Ford

procedure (See Section 5). In the current case, we have the universally quantified execution

time variables that need to be resolved. However, note that System (20) is a standard

QLP. We can therefore apply the quantifier elimination procedure of Subramani (2003b)

to obtain a solution, say �z1. Then the solution vector for the ith scheduling window can

be computed as �zi = �z1 + (i − 1) · L.

To recapitulate,

(a) The ZCIPC (zero-clairvoyant scheduling with inter-period constraints) problem is

captured through the PQLP (18). The semantics of the specification are as described

in Section 6.3.

(b) Restricting the number of scheduling windows to k results in System (18) becoming a

k-dimensional QLP. For each k, the resultant QLP can be solved by using the variable

elimination methods described in Subramani (2003b). As is the case with PLPs, the

PQLP must converge to a fixed-point solution. Since a fixed-point solution implies the

existence of a cyclic solution with period 1, we can set �si+1 = �si+L in the schedulability

specification.

(c) Setting i = 1, we get a QLP on the variables �si, �ei and �e2. This QLP is composed

of (m + m′) constraints on 3 · n variables. The universally quantified variables can be

eliminated in O((m+m′) ·n) time (Subramani 2003b) and the resultant set of difference

constraints can be solved in O((m+m′) · n) time using a Bellman–Ford type approach.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 400

8. Extending the execution time domain to an arbitrary convex set

Thus far we have focussed on the case in which the execution time domain, viz. E, is an

axis-parallel hyper-rectangle. However, there are applications in which there are complex

relationships between the execution times themselves. For instance, in real-time embedded

systems it is of paramount importance to bound the power that is expended during

execution. Such a requirement can be captured through the constraint
∑n

i=1 e
2
i � r2

(Subramani 2002b), where ei represents the execution time of the ith job. Note that

modelling execution time constraints as convex sets is far more general than modelling

them as uncertainty ranges. We now show that the fixed-point techniques developed in

the previous section can be used in this case as well.

Let C denote an arbitrary convex set. The schedulability query then becomes

∃�si ∀�ei ∈ C i = 1, 2, . . . ,∞
G ·�si + H ·�ei � �bi

I · [�si �si+1]T + J · [�ei �ei+1]T � �d (21)

Although the set C is not an aph, the semantics used in Section 6 to describe System

(21) are still applicable. Accordingly, we can define the Order k restriction of this system

in precisely the same fashion as before. This restriction is given by

∃�s1, �s2 . . . �sk ∀�e1 �e2, . . . , �ek ∈ C

G ·�si + H ·�ei � �bi

I · [�si �si+1]T + J · [�ei �ei+1]T � �d

i = 1, 2, . . . , k − 1

G · �sk + H · �ek � �bk (22)

Observe that we can write the Order k restriction as

∃�s1, �s2 . . . �sk ∀�e1 �e2, . . . , �ek ∈ C

G ·�si+ � −H ·�ei + �bi

I · [�si �si+1]T � −J · [�ei �ei+1]T +�d

i = 1, 2, . . . , k − 1

G · �sk � −H · �ek + �bk (23)

Each constraint on the right-hand side of System (23) is an affine function over the
�ei variables. We now show that this affine function can be replaced by a single rational

number using convex minimisation. The reduction results in the transformation of the

original scheduling model to a simple linear program over difference constraints.

Note that each intra-period and inter-period constraint is independently reduced in the

above transformation procedure. Consider the vector �r1 of the first scheduling window.

Its first component, say r1(1), is obtained by minimising (�b1 − H · �e1)1 over C; the other

components of �r1 are similarly obtained. Now consider the vector �q1. Its components are

computed by minimising the appropriate inter-period constraint over the domain C × C.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 401

Algorithm 3 Transformation procedure

Function Order-k-To-LP (A,�b,C,�d)

1: for (i = 1 to k − 1) do

2: {For each period}
3: Let�ri = minC(�bi − H ·�ei). {Reducing the intra-period constraints}
4: Let �qi = minC×C(�d − J · [�ei �ei+1]T)i. {Reducing the inter-period constraints}
5: end for

6: Let�ri = minC(�bk − H · �ek).

Note that the cartesian product of two convex domains is convex, so this minimisation

is, in fact, also a convex minimisation call.

Because of the structure of the constraint set, we need to compute �r1 and �q1 only.

The vectors �r2 through �rk can be computed through offsets, while the vectors �q2

through �qk−1 are identical to �q1. Thus the entire procedure consists of (m + m′) convex

minimisation calls, and hence the total time taken is O((m+m′) · C), where C is the fastest

convex minimisation algorithm (Hiriart-urruty and Lemarechal 1993). Subramani (2002a)

provides a detailed argument establishing that replacing each constraint by a number as

specified by Algorithm 3 preserves the solution space. Thus, in the Order k restriction, the

execution time variables can be eliminated through convex minimisation to get a simple

linear program, which in turn can be solved using Bellman–Ford techniques.

Observe that the inter-period constraint set is identical in structure to the case in which

the execution time domain is an aph, and hence condition P1 is trivially satisfied. In the

case of PQLPs it was straightforward to argue that the elimination procedure preserved

integrality and hence condition P2 is satisfied as well. In the case of arbitrary convex sets

though, the result of a convex minimisation call may not be integral, and hence we cannot

directly conclude that P2 is satisfied. However, observe that in any implementation of

C on a computer, there exists only finite precision. Let Θ denote the resolution of the

computer, that is, the smallest number that can be represented on it. If the application

of the ∇ operator results in a reformulated system, then at least one of the edges in the

corresponding constraint network drops by at least Θ. Thus, the analysis in Section 5 lets

us conclude that ∇ can be applied at most O(n3 · L
Θ

) times, before a fixed-point is reached

or an infeasibility is detected. It follows that condition P2 is satisfied also, and hence

System (21) has a cyclic solution with period 1.

Algorithm 4 formalises the procedure discussed above. It is clear it takes time at most

O((m + m′) · n + (m + m′) · C), where C is the fastest convex minimisation algorithm.

9. Example

Consider the following set of specifications for a periodic job set consisting of two jobs

{J1, J2}. Let the period of the job set, that is, L, be 15, and the execution times belong to

the aph τ = (ei1 ∈)[2, 4] × (ei2) ∈)[1, 3]. Assume that the following constraints have been

imposed on the execution of the jobs.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 402

Algorithm 4 Zero-clairvoyant scheduler with convex-constrained execution time domain

Function Zero-Clairvoyant-Convex(G, H �bi, I, J, �d)

1: Set �si+1 = �si + L in System (21) to get the combined system:

∃�si ∀�ei ∈ C i = 1, 2, . . . ,∞
M ·�si + N · [�ei �ei+1]T � �f i (24)

2: Set i = 1 in System (24) to get the system:

∃�s1 ∀�e1 ∀�e2 ∈ C

M · �s1 + N · [�e1 �e2]T � �f 1 (25)

3: Solve System (25) using convex minimisation and the Bellman–Ford approach.

4: if (no solution exists) then

5: return(The specification is infeasible.)

6: end if

7: Let �z1 be a solution to the System (25).

8: Set �zi = �z1 + (i − 1) · L to be the cyclic solution.

(i) In each period, Job J2 starts at least 2 units after job J1 finishes: si1 + ei1 +2 � si2, ∀i =

1, 2, . . .;

(ii) In each period, Job J2 starts within 5 units of job J1 finishing: si2 � si1 + ei1 + 5, ∀i =

1, 2, . . .;

(iii) Job J1 in each period starts at least 5 units after job J1 finishes in the previous period

finishes:

si2 + ei2 + 5 � si+1
1 , ∀i = 1, 2, . . .;

(iv) Job J2 finishes before the end of the period:

si2 + ei2 � 15 + (i − 1) · 15, ∀i = 1, 2,

Expressing the constraint system in form [(14)–(15)], we get

G

 1 −1

−1 1

0 1

 ·

[
si1
si2

]
+ H

 1 0

−1 0

0 1

 ·

[
ei1
ei2

]
�

 −2

5

15 + (i − 1).15

�bi (26)

and

C
[

0 1 −1 0 0 1 0 0
]

·

si1
si2
si+1
1

si+1
2

ei1
ei2
ei+1
1

ei+1
2

�
[

5
]
�d (27)

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 403

Table 1. Machine characteristics.

Speed 450 Mhz

Processor AMD K-6

Memory 256 Mb RAM

Cache 1 MB L2

Operating System Suse Linux 7.0

Kernel 2.2.16

File System ReiserFS

Language Perl 5.005-03

Software lp-solve

Table 2. Summary of results for zero-clairvoyant scheduling.

(n) IrPC (m) IPC (m′) Time (seconds)

5 11 20 0.05

10 21 40 0.05

15 31 60 0.09

20 41 80 0.10

25 51 100 0.18

30 61 120 0.17

35 71 140 0.28

40 81 160 0.38

45 91 180 0.51

50 101 200 0.59

100 201 400 1.81

We set �si+1 = �si + L to get the following fixed-point solution:[
si1
si2

]
=

[
0 + (i − 1) · 15

6 + (i − 1) · 15

]
(28)

Inspection of the solution confirms that the constraint set is indeed satisfied in each

scheduling window.

10. Implementation

We implemented the above-mentioned strategy for instances of the ZCIPC problem in

which the execution time domain was an aph.

Table 1 describes system specifications, while Table 2 presents our implementation

results. We chose to use the less-efficient, but more general lp-solve software, as opposed

to Bellman–Ford procedures.

In Table 2, n denotes the number of jobs, m denotes the number of intra-period

constraints and m′ denotes the number of inter-period constraints.

11. Related work

Linear programming models have been widely used in the AI community to model

and decide constraint-based schedulability problems (Dechter et al. 1991; Muscatella

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 404

et al. 1997). The general framework of Quantified Linear Programming was outlined

in Subramani (2003b), in which a polynomial time procedure was discussed for certain

classes of QLPs.

The E-T-C scheduling framework was proposed in Subramani (2002b) to model general,

intra-period constraints using linear programs and QLPs. Within this model, zero-

clairvoyant scheduling has been analysed in Subramani (2002a), and partially clairvoyant

scheduling has been analysed in Gerber et al. (1995) and Subramani (2003a). The problem

of deciding schedulability queries for non-preemptable jobs in the presence of inter-

period constraints was proposed in Choi (1997). Choi (2000) considered the problem

of deciding partially clairvoyant schedulability when all constraints are strictly relative

and demonstrated the existence of convergent schedules in the presence of inter-period

constraints. These techniques are fundamentally different from ours and do not generalise

easily. Our work here, that is, the use of fixed-point theory represents the first attempt

to specify a formal framework for capturing inter-period constraints and generalises the

work in Subramani (2002a) to the case of inter-period constraints.

In other real-time scheduling work, Fohler (Fohler 1995) studied the joint scheduling

of distributed, complex periodic and hard, aperiodic jobs. In their model, the periodic

jobs are considered preemptable. Liu and Layland (1973) is a seminal paper in the area

of preemptive scheduling of periodic jobs; schedulability conditions are derived in terms

of the Earliest Deadline First (EDF) heuristic. They showed that EDF scheduling was

optimal, in that if there exists a preemptive schedule, then there exists a preemptive

schedule using the EDF heuristic. Precedence constrained scheduling of real-time jobs is

discussed in Chetto et al. (1990).

12. Conclusions

The principal contributions of this paper include the following:

1 Definition of the Periodic Linear Programming and Periodic Quantified Linear Pro-

gramming frameworks;

2 Analysis of the conditions under which these frameworks have cyclic solutions;

3 Capture of the requirements of a problem in real-time scheduling using Periodic

Quantified Linear Programs;

4 Generalisation of the execution time domain of jobs to arbitrary convex sets.

The analysis that we have used is, to the best of our knowledge, completely novel and

not part of the literature. It would be interesting to see if the results hold for a class

of constraints that is wider than difference constraints, such as sum constraints. From

Subramani (2003b), it follows that the analysis of this paper does indeed hold for Totally

Unimodular constraint matrices.

The principal open question concerns the applicability of our techniques to partially

clairvoyant and totally clairvoyant scheduling systems. In the case of partially clairvoyant

scheduling, a pseudo-polynomial time algorithm is known (Choi 2000), but there are no

known results for totally clairvoyant scheduling. We suspect that our techniques can be

extended to these systems to provide polynomial time algorithms.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

Periodic Linear Programming with applications to real-time scheduling 405

We are also interested in additional real-world problems that can be modelled through

Periodic Linear Programs. It would be interesting to see if there is any equivalence between

the PQLP framework and the Timed Automata framework of Alur and Dill (1994). We

would like to mention that Papadimitriou (1994) describes various periodic machine

scheduling problems using variants of Periodic-SAT, and exploring the connections

between PLPs and Periodic-SAT problems would be rewarding.

13. Acknowledgements

I am indebted to Michael Bond of the West Virginia Library System for his efforts in the

implementation of the algorithms. I am also grateful to Kim G. Larsen for drawing my

attention to Larsen et al. (2003).

References

Alur, R. and Dill, D. L. (1994) A theory of timed automata. Theoretical Computer Science 126 (2)

183–235.

Ancilloti, P., Buttazo, G., Di Natale, M. and Mok, A.K. (1993) Tracs: A flexible real-time

environment for traffic control systems. In: Proceedings IEEE Workshop on Real-Time Applications

50–53.

Baldan, P., Corradini, A. and Konig, B. (2001) A static analysis technique for graph transformation

systems. In: Proceedings of CONCUR 2001, Springer-Verlag 381–395.

Bestavros, A. and Fay-Wolfe, V. (eds.) (1997) Real-Time Database and Information Systems, Research

Advances, Kluwer Academic Publishers.

Chandru, V. and Rao, M.R. (1999) Linear programming. In: Algorithms and Theory of Computation

Handbook, CRC Press, Boca Raton, Florida.

Chetto, H., Silly, M. and Bouchentouf, T. (1990) Dynamic scheduling of real-time tasks under

precedence constraints. JRTS 2 181–194.

Choi, S. (1997) Dynamic Time-based scheduling for Hard Real-Time Systems, Ph.D. thesis, University

of Maryland, College Park.

Choi, S. (2000) Dynamic time-based scheduling for hard real-time systems. Journal of Real-Time

Systems.

Cormen, T.H., Leiserson, C. E. and Rivest, R. L. (1992) Introduction to Algorithms, MIT Press and

McGraw-Hill Book Company, Boston, Massachusetts, 2nd edition.

Dantzig, G. B. and Eaves, B. C. (1973) Fourier-Motzkin Elimination and its Dual. Journal of

Combinatorial Theory (A) 14 288–297.

Dechter, R., Meiri, I. and Pearl, J. (1991) Temporal constraint networks. Artificial Intelligence 49

61–95.

Esparza, J. (1997) Decidability of model-checking for infinite-state concurrent systems. Acta

Informatica 34 85–107.

Fohler, G. (1995) Joint scheduling of distributed complex, periodic and hard aperiodic tasks

in statically scheduled systems. In: Proceedings IEEE Real-Time Systems Symposium, IEEE

Computer Society Press.

Gerber, R., Pugh, W. and Saksena, M. Parametric Dispatching of Hard Real-Time Tasks. IEEE

Transactions on Computers.

Hiriart-urruty, J. B. and Lemarechal, C. (1993) Convex Analysis and Minimization Algorithms,

Springer-Verlag.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

K. Subramani 406

Hochbaum, D. S. and Naor, J. (1994) Simple and fast algorithms for linear and integer programs

with two variables per inequality. SIAM Journal on Computing 23 (6) 1179–1192.

Istratescu, V. I. (1981) Introduction to Linear Operator theory, Marcel Dekker Inc., New York.

Kuchinski, K. (1997) Embedded system synthesis by timing constraints solving. In: International

Symposum on Systems Synthesis, IEEE Computer Society 50–57.

Larsen, K.G., Steffen, B. and Weise, C. (2003) Continuous modelling of real time and hybrid

systems. BRICS Technical Report, Aalborg Universitet.

Liu, C. L. and Layland, J.W. (1973) Scheduling algorithms for multiprogramming in a hard-real-time

environment. Journal of the ACM 20 (1) 46–61.

Muscettola, N., Smith, B., Chien, S., Fry, C., Rabideau, G., Rajan, K. and Yan, D. (1997) In-

board planning for autonomous spacecraft. In: The Fourth International Symposium on Artificial

Intelligence, Robotics, and Automation for Space (i-SAIRAS).

Muscettola, N., Morris, P., Pell, B. and Smith, B. (1998) Issues in temporal reasoning for autonomous

control systems. In: The Second International Conference on Autonomous Agents, Minneapolis.

Papadimitriou, C.H. (1994) Computational Complexity, Addison-Wesley.

Pinedo, M. (1995) Scheduling: theory, algorithms, and systems, Prentice-Hall.

Schrijver, A. (1987) Theory of Linear and Integer Programming, John Wiley and Sons.

Stankovic, J. A., Spuri, M., Ramamritham, K. and Buttazzo, G.C. (1998) (eds.) Deadline Scheduling

for Real-Time Systems, Kluwer Academic Publishers.

Subramani, K. (2002a) An analysis of zero-clairvoyant scheduling. In: Katoen, J.-P. and Stevens, P.

(eds.) Proceedings of the 8th International Conference on Tools and Algorithms for the

construction of Systems (TACAS). Springer-Verlag Lecture Notes in Computer Science 2280 98–

112.

Subramani, K. (2002b) A specification framework for real-time scheduling. In: Grosky, W. I. and

Plasil, F. (eds.) Proceedings of the 29th Annual Conference on Current Trends in Theory and

Practice of Informatics (SOFSEM). Springer-Verlag Lecture Notes in Computer Science 2540

195–207.

Subramani, K. (2003a) An analysis of partially clairvoyant scheduling. Journal of Mathematical

Modelling and Algorithms 2 (2) 97–119.

Subramani, K. (2003b) An analysis of quantified linear programs. In: Calude, C. S. et al. (eds.)

Proceedings of the 4th International Conference on Discrete Mathematics and Theoretical

Computer Science (DMTCS). Springer-Verlag Lecture Notes in Computer Science 2731 265–277.

https://doi.org/10.1017/S0960129504004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004657

