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We consider the propagation of a non-Boussinesq gravity current in an axisymmetric
configuration (full cylinder or wedge). The current of density ρc is released from
rest from a lock of radius r0 and height h0 into an ambient fluid of density ρa

in a container of height H . When the Reynolds number is large, the resulting
flow is governed by the parameters ρc/ρa and H ∗ = H/h0. We show that the one-
layer shallow-water model, carefully combined with a Benjamin-type front condition,
provides a versatile formulation for the thickness and speed of the current, without
any adjustable constants. The results cover in a continuous manner the range of
light ρc/ρa � 1, Boussinesq ρc/ρa ≈ 1, and heavy ρc/ρa � 1 currents in a fairly wide
range of depth ratio, H ∗. We obtain finite-difference solutions for the propagation
and show that a self-similar behaviour develops for large times. This reveals the main
features, in particular: (a) The heavy current propagates faster and its front is thinner
than that for the light counterpart; (b) For large time, t , both the heavy and light
currents spread like t1/2, but the thickness profiles display significant differences; (c)
The energy-constrained propagation with the thickness of half-ambient-depth (when
H ∗ is close to 1) is a very limited occurrence, in contrast to the rectangular geometry
counterpart in which this effect plays a major role. The predictions of the simple model
are supported by some axisymmetric Navier–Stokes finite-difference simulations.

Key words: axisymmetric, bare spot, gravity current, Navier Stokes, non-Boussinesq,
self-similar, shallow water

1. Introduction
We consider the propagation of a gravity current of density ρc into an ambient

fluid of density ρa in a container of height H . The geometry is cylindrical and the
propagation is in the positive radial direction over (or beneath) a horizontal wall.
When ρc/ρa > 1, we refer to a heavy (dense, bottom) current, and when ρc/ρa < 1 we
refer to a light (ceiling, top) current. (Note that the light or heavy term is with respect
to the ambient.) The current is released from a lock (of radius r0 and height h0)
adjacent to the horizontal boundary on which it will spread out. The configuration
is illustrated in figure 1. We assume that the Reynolds number Re = uref h0/ν is large
and hence viscous effects can be discarded (here uref is the typical speed of the
current and ν is the representative kinematic viscosity of the fluids). The flow can be
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Figure 1. Schematic description of the (a) heavy and (b) light currents released from a
cylinder lock of radius r0 and height h0 into an ambient of height H .

considered axisymmetric in both a full cylinder and a wedge (assuming a sufficiently
large opening angle).

It is well known that in the Boussinesq case ρc/ρa ≈ 1, the light and heavy currents
display the same behaviour. To be specific, in the configuration of figure 1, the
bottom and top Boussinesq currents would appear as mirror images with respect to
the horizontal boundary (but note that our figure emphasized the lack of symmetry).
The Boussinesq currents depend on one parameter only, the depth ratio

H ∗ = H/h0, (1.1)

which can be in the range [1, ∞). This does not make it an easy problem in general,
but after many years of investigation there is a solid body of knowledge and well-
developed prediction tools for this current; this is illustrated and discussed by Ungarish
(2007a, 2009).

The non-Boussinesq flow is more complicated. First, there is the mathematical
difficulty introduced by the fact that the propagation depends on an additional
parameter, the density ratio ρc/ρa , which theoretically is in the range (0, ∞). (We
exclude from our direct analysis the special ρa = 0 case of a liquid propagating freely
into a gas or vacuum). Second, the setup of experiments and simulations with fluids of
significantly different densities requires more resources than the relatively simple (like
water-saline) systems used for the Boussinesq cases. For these reasons, laboratory
experiments and Navier–Stokes simulations of non-Boussinesq currents are scarce
even for the two-dimensional (rectangular) geometry, and practically non-existent for
the axisymmetric case.

The investigations of the two-dimensional non-Boussinesq currents clearly
demonstrate that the Boussinesq symmetry for light–heavy currents disappears when
ρc/ρa departs from 1, and that the non-Boussinesq effects are important in both
the initial (slumping) and the developed (self-similar) stages; see (Ungarish 2007b,
hereafter referred to as U) and the references therein. Valuable insights into the
observed behaviour and useful predictions of the speed of propagation were obtained
by shallow-water (SW) models (Lowe, Rottman & Linden 2005; U). The extension of
these results to the axisymmetric geometry is a non-trivial task that requires dedicated
studies. An attempt in this direction is presented here.

The analytical model presented by Lowe, Rottman & Linden (2005) (following
Keller & Chyou 1991) uses a two-layer SW formulation. The solution, which
was derived for a full-depth lock exchange, H ∗ =1, considers only the slumping
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The propagation of high-Re non-Boussinesq axisymmetric gravity currents 269

stage during which the vertical fronts (shocks) move with constant speed. In the
cylindrical geometry, the matching conditions for the interface (which are an essential
component in that solution) are complicated by curvature terms, and the constant
speed assumption is, in general, not valid. In view of these additional analytical
difficulties, and the restriction to H ∗ = 1, the extension of the Lowe et al. (2005)
model to the axisymmetric problem was not pursued here. The model of U uses a
one-layer SW formulation. It has been applied to various lock-depth release, H ∗ � 1,
and covers in a continuous manner the slumping, intermediate and self-similar stages
of propagation. The major advantage of this model is the mathematical simplicity
that allows for a continuous coverage of the full (H ∗, ρc/ρa) parameters domain (the
Boussinesq current is now a narrow strip about ρc/ρa = 1 in this domain). U showed
good agreement with available data, and more recent numerical simulations provide
further support to the applicability of this model to a wide range of parameters
(Bonometti, Balachandar & Magnaudet 2008; Bonometti & Balachandar 2009). It
makes sense to attempt an extension of this model for the current that propagates
in a cylindrical geometry. An inspection reveals that the main assumptions can be
carried over, and the additional curvature terms do not complicate significantly the
mathematical formulation (although they may complicate or defy analytical solutions).
More importantly, the resulting equations are expected to reproduce continuously the
initial, intermediate and long-time phases, until viscous forces become important.

We wish to emphasize that a versatile theoretical model for the axisymmetric
current is of practical importance. Various applications to environmental, industrial
and hazard-prediction problems are concerned with radial-cylindrical gravity currents.
One could hope to fill the gap of knowledge with Navier–Stokes (NS) simulations.
However, even for Boussinesq cases, the axisymmetric numerical codes for the NS
equations reveal an instability that renders, eventually, unphysical flow fields. There
is evidence that these simulations disagree with experimental observations after the
current has spread out to rN ≈ 2.5–3, scaled with r0; see Patterson et al. (2006) and
Ungarish (2007a). The full three-dimensional simulations overcome this difficulty (the
problematic axisymmetric instability is dissipated by the three-dimensional motion)
but a typical run requires weeks of CPU time on powerful computers (Cantero,
Balachandar & Garcia 2007). On the other hand, the SW Boussinesq axisymmetric
model is not subject to that instability and provides fairly accurate predictions for
larger rN than the NS axisymmetric simulations (see Ungarish 2007a). We expect that
these properties carry over to the non-Boussinesq problems.

The foregoing considerations provide the motivation for the present study. The
objective is to investigate the propagation of the axisymmetric non-Boussinesq gravity
current using, mainly, an extension of the one-layer SW model. This is expected to
point out, in simple terms, the major differences between the ‘light’ and ‘heavy’ currents
and between the axisymmetric and two-dimensional non-Boussinesq counterparts.
Moreover, the resulting model is expected to be a useful (approximate but very fast)
prediction tool for the whole range of light, Boussinesq and heavy inviscid currents.

The structure of the paper is as follows. The SW model is formulated in § 2. The
main results are presented in § 3: finite-difference solutions of the SW equations for
the release-from-rest problem, the tendency to self-similar propagation (which can
be expressed analytically) and some comparisons with NS simulations. These results
point out the differences between the light and heavy currents and illustrate the
prediction capabilities of the simple SW model. Some concluding remarks are given
in § 4.
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270 M. Ungarish

2. Formulation
We consider incompressible, immiscible fluids, and assume that the viscous effects

are negligible (both in the interior and at the boundaries). The density of the current
and the ambient is ρc and ρa , respectively. The typical flow is conveniently described
in a cylindrical system, and we assume axial symmetry and no swirl (azimuthal)
velocity component. The current propagates into the positive r direction, and the
gravitational acceleration g acts into the negative z direction. The bottom and the
top of the container are at z = 0 and z =H . The propagating fluid is originally in
a reservoir of radius r0 and height h0 located adjacent to the boundary on which
propagation occurs, i.e. the bottom for the heavy current and the top for the light
current; see figure 1.

We use dimensional variables unless stated otherwise. The thickness of the current
is h(r, t) and its horizontal velocity (z-averaged) is u(r, t). Initially, at t = 0, h = h0 and
u =0. We assume a shallow current that is relevant for h0/r0 � 1.

The continuity equation is

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
= −uh

r
. (2.1)

The momentum balances are used below. Let p denote the pressure reduced with
+ρagz, and the subscripts a, c denote the ambient and the current domains. The SW
approximation shows that in the z direction the pressure obeys the hydrostatic balance
for both a and c fluids. The one-layer model also argues that the r-momentum flux of
the return flow in the ambient is, in many cases of interest, negligible (compared with
that of the current) and hence pa = C. Consequently, pressure continuity pc = pa at
the interface (z = h(r, t) for the heavy current, and z = H − h(r, t) for the light) yields

pc(r, z, t) = −�ρgz + |�ρ|gh(r, t) + C1, (2.2)

where �ρ = ρc − ρa , and C1 =C and C +�ρH for the heavy and light currents,
respectively. Finally, the z-averaged r-momentum equation is employed for the c

fluid to express the balance between the inertial forces (proportional to ρc) and the
−∂pc/∂r term, which is eliminated by (2.2). We assume that the deviation of the real
horizontal velocity component from the z-averaged u is small, which is a reasonable
approximation for low-viscosity fluids released from rest. We obtain

∂u

∂t
+ u

∂u

∂r
= −|�ρ|

ρc

g
∂h

∂r
. (2.3)

The system (2.1) and (2.3) for h(r, t) and u(r, t) is hyperbolic, and the characteristic
equations can be expressed as(

|�ρ|
ρc

g

)1/2

dh ± h1/2 du = ∓
(

|�ρ|
ρc

g

)1/2
uh

r
dt (2.4)

on

dr

dt
= u ±

(
|�ρ|
ρc

g

)1/2

h1/2. (2.5)

For obtaining realistic gravity current solutions, the system of equations must be
subjected to a boundary condition at the nose (or front) r = rN (t); see Ungarish (2009)
for a discussion. The vertical surface that moves with the nose of the inviscid SW
gravity current is treated as a discontinuity. Following Benjamin (1968), it can be
shown that volume and momentum balances about the front, supplemented by the
constraint that the energy in this domain cannot increase, require that the velocity of
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propagation must be connected with the height of the current at the front by

uN =

(
|�ρ|
ρa

g

)1/2

h
1/2
N Fr(a), and a �

1

2
, (2.6)

where N denotes the nose (front), a = hN/H and Fr(a) is Benjamin’s Froude number
function:

Fr(a) = [(2 − a)(1 − a)/(1 + a)]1/2 . (2.7)

The effect of the curvature terms on the front boundary condition, which is of the
order of magnitude of h0/r0, was neglected; this is consistent with the previous SW
simplifications.

We emphasize that (2.1) and (2.3)–(2.7) are applicable to both heavy and light
currents (this is the reason for using the absolute value of �ρ). The non-Boussinesq
effect is already evident: (2.6) indicates that the speed of the front is proportional
to |�ρ|/ρa , while according to (2.3) and (2.4) the intrinsic speed of the current is
proportional to |�ρ|/ρc. This apparent conflict is accommodated by the thickness
(representing the pressure distribution) that thus becomes a function of ρc/ρa . This
interplay between speed and height is the backbone of the model. Estimates of the
effect of the return flow suggest that the momentum balance (2.3) is restricted to,
roughly, H ∗(ρc/ρa) > 2, but there are indications that the model is useful beyond this
bound (U; Bonometti et al. 2008; Bonometti & Balachandar 2009). The other two
equations of the model, (2.1) and (2.6), have a wider range of relevance and thus
restrain the global error.

3. Results
3.1. Numerical solutions to the SW equations

The gravity current in two-dimensional rectangular geometry displays a constant-
speed propagation during the initial slumping stage. In this case, the constant speed
uN and height hN can be obtained by simple analytical methods as summarized by
U. The axisymmetric current is, in general, different.

Consider the characteristic equations (2.4) and (2.5). The axisymmetric system
contains a non-zero term on the right-hand side of (2.4), whose contribution is zero
at t =0, but develops with time (on a forward-propagating characteristic, the value
is negative). Therefore, the axisymmetric current starts with the same uN and hN

as the rectangular current, but, in general, the subsequent values of these variables
will decrease. This is the effect of the diverging geometry, which is relevant to both
Boussinesq and non-Boussinesq currents.

There is an exception: when H ∗ < 2 and ρc/ρa is sufficiently small, the initial uN

is determined by the energy limitation hN = H/2. As long as this limitation must be
enforced on the axisymmetric current, it propagates with the appropriate constant
speed. However, even these exceptional circumstances are relaxed after a small distance
of propagation, �r . We estimate this distance of restricted (choked) conditions using
the forward characteristic in (2.4), with the initial conditions h ≈ h0, r ≈ r0 and the
increments �h= h0 − H/2, �r ≈ u�t , �u = 0. We obtain

�r

r0

≈ 1 − 1

2
H ∗, (H ∗ � 2). (3.1)

This estimate was confirmed by finite-difference solutions to the SW equations. The
main conclusion is that the energy-restricted half-depth current is a minor occurrence
in the axisymmetric geometry. This is in contrast with the rectangular geometry,
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Figure 2. Thickness profiles for various t of (a) light ρc/ρa = 0.25 and (b) heavy ρc/ρa = 4
axisymmetric currents released from rest. H ∗ = 4. Finite-difference solutions to the SW
equations.
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Figure 3. Velocity profiles of the currents above.

where the half-depth restriction plays a major role in the propagation of currents
with ρc/ρa < 1.4 (approximately) and H ∗ < 2 (Birman, Martin & Meiburg 2005; Lowe
et al. 2005; U).

The SW equations (2.1) and (2.3), subject to (2.6), u(r = 0, t) = 0, and realistic
initial conditions for h and u, must, in general, be solved numerically. However, the
computational effort (by Lax–Wendroff or similar method for a hyperbolic system) is
insignificant. Here, we present finite-difference solutions obtained by a Lax–Wendroff
scheme on grids with 500 intervals over 0 � r � rN .

Hereafter, we scale r by r0; h, z by h0; u by uref =(|�ρ|gh0/ρc)
1/2; and t by r0/uref .

Typical solutions to a light ρc/ρa = 0.25 and heavy ρc/ρa = 4 current, both with
H ∗ = 4, are displayed in figures 2 and 3. (The two-dimensional counterpart of
figure 2 is shown in figure 3 of U.) For comparison, the solution to the Boussinesq
axisymmetric case is given in figure 4.

The SW solutions show significant differences between the light and heavy currents.
The heavy current propagates faster, and after a while most of the volume is
concentrated in a narrow ring (torus) following the rim rN (t). The light current
propagates slower and tends to develop a more-or-less r-independent thickness.

These different behaviours at large times are well described analytically as follows.
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Figure 4. The h and u profiles for various t of Boussinesq ρc/ρa = 1 axisymmetric current.
H ∗ = 4. (The SW equations in scaled form are the same as those for the non-Boussinesq cases.)

3.2. Self-similar stage

After a significant propagation, the current ‘forgets’ the initial conditions and a self-
similar behaviour is expected. Now the current is sufficiently thin (or deep) so that
the Fr at the front becomes constant. We define

F2 =
ρc

ρa

F r2(0) = 2
ρc

ρa

. (3.2)

We use dimensionless variables as defined above. The exact solution to (2.1), (2.3)
and nose boundary conditions is now

rN (t) = At1/2, u = ṙNy, h = ṙ2
N

1

2
(y2 + c), (3.3)

where

y =
r

rN

, c =
2

F2
− 1 =

ρa

ρc

− 1; (3.4)

the over dot denotes the time derivative and A is a constant. These results were also
derived by Fanneløp & Jacobsen (1984), but with an unspecified value of Fr(0).

Both light and heavy currents propagate with t1/2. There is, however, a difference
in the expected shape. For very light currents the small F produces c � 1, and hence
the profile is a spreading cylinder, h ≈ (A2/8)ct−1, with a relatively small contribution
from the y2 term. The opposite structure of a sharp tail-to-head difference is expected
for the very heavy current as follows.

First, we note that c decreases when F increases. For ρc/ρa > 1, we obtain negative
values of c, and hence in this case h predicted by (3.3) is negative for y <y1, where

y1 = (1 − ρa/ρc)
1/2 . (3.5)

This possible peculiar negative h has been reported by Fanneløp & Jacobsen (1984)
and Gratton & Vigo (1994) for a self-similar heavy current (however, with an
unspecified value Fr(0), which left the position y1 undetermined; here we use the
specific (3.2) and obtain the clear-cut (3.5)). These previous studies suggested that
the negative h of the similarity result means that the heavy current leaves behind a
bare bottom, or an empty spot, in the region y <y1At1/2, approximately. However,
the evolvement of this peculiar shape for a realistic current released from behind a
lock needs clarification.
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We observe that the region where the classic similarity result (3.3) yields a negative
h is actually covered by a thin horizontal tail of the current. This corresponds to
another branch of the long-time exact solutions to the SW equations (2.1) and (2.3),
namely

h(r, t) = C/t2, u(r, t) = r/t, (3.6)

where C is a constant of the order unity. The numerical SW results indicate that
this solution develops for small r during the transition from slumping to similarity
phases. For a heavy current this inner-solution branch spreads out and prevails for
large times because it is able to coexist with the fast-moving nose. (For a Boussinesq
and light current this inner domain is pushed back by fluid hindered by the slow
nose, see the negative u in figures 3a and 4, and then disappears. More details on this
quite slow process can be found in Ungarish 2009, §§ 6.3 and 16.3.3.1.)

The self-similar flow for ρc/ρa > 1 combines the horizontal ‘tail’ (3.6) for 0 � y <ym

and the prominent head (3.3) for ym � y � 1, where ym ≈ y1. The volume of the fluid
in the tail decays like t−1, which justifies the simplification of a bare bottom left
behind a very heavy current. The appearance of such a structure is consistent with
the observations during the Thorney Island experimental release of heavy gas in the
atmosphere (see figure 6.7 in Simpson 1997), but reliable data for comparisons are
unavailable; moreover, viscous effects are expected to affect the decay of the thin
tail. We note in passing that the Boussinesq axisymmetric current also displays, for a
while, a ring–tail profile (i.e. most of the volume is in a ring that follows rN ). However,
this is a transient stage of the Boussinesq current; eventually, the volume flows back
from the ring into the tail (see the negative u in figure 4), and the self-similar solution
has no bare spot.

Finally, the constant A follows from the volume conservation in the y domain
[yj , 1], where yj = 0 for ρc/ρa � 1, or y1 for a heavier current. This yields

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

(
2
ρa

ρc

− 1

)−1/4

, (ρa/ρc > 1),

2

[
2
ρa

ρc

− 1 +

(
ρa

ρc

− 1

)2
]−1/4

, (ρa/ρc � 1).

(3.7)

The self-similar analytical results describe well the main features displayed by the
numerical solution to the SW equations for large t . However, the formulas (3.3) are
not a complete prediction tool because initial conditions are not satisfied, and t can
be replaced by t + γ . For practical use of the self-similar results, the constant γ must
be determined by matching with another solution or experiment, which accounts for
the initial conditions.

3.3. Navier–Stokes support

Some NS simulations were carried out to gain support for the SW results. We
used an axisymmetric finite-difference code of the type described by Ungarish &
Huppert (2004). As pointed out above, the Boussinesq axisymmetric simulations
become unreliable for rN > 2.5 (approximately). We found that the non-Boussinesq
cases are prone to a similar instability (actually, more pronounced when |ρc/ρa − 1|
increases).

The results shown in figures 5 and 6 are for ρc/ρa = 1/2 and 2, with H ∗ = 2. (Note
that here the parameters are different from those of figure 2, because the latter would
have required significantly more CPU, storage and processing resources.) The NS
runs were performed for a container of radius 4.5, h0/r0 = 0.5, free-slip boundaries,
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Figure 5. NS results (density function contours) for currents with H ∗ =2 at times t =1 and
3. (a,b) Light current with ρc/ρa = 1/2. (c,d ) Heavy current with ρc/ρa = 2.
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results.

Re =1.8 × 104 and 400 × 200 grid (stretched in z to increase the resolution of the
current). The density function varies from zero in the ambient to one in the pure
current, and the diffusion term added in the density transport equation to smooth out
the jump at the interface corresponds to a Schmidt number of about 10; this artificial
term is insignificant for the times discussed here; see Bonometti & Balachandar (2008).
Various verification runs with changes of grid, time step and other parameters were
also performed. Note that in the frames of figure 5 the z/r axis ratio is stretched; for
estimating the ‘real’ appearance of the currents, we must recall the z/h0, r/r0 scaling,
and that h0/r0 = 0.5. The complex NS interface is only roughly reproduced by the
SW smooth h(r, t). This discrepancy also appears in Boussinesq cases (see Ungarish
2007a).
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These simulations confirm the SW differences between the heavy and light currents,
but cannot be used to verify the self-similar propagation (expected for large rN ),
because unphysical instabilities appear for rN > 2.5. Consider the details of rN as a
function of t given in figure 6. The NS results (the symbols in the figure) show that
light current with ρc/ρa = 1/2 propagates slower than the heavy current with ρc/ρa =2.
The agreement with the SW results is fair. The discrepancies can be attributed to a
combination of deviations from the idealized SW conditions. First, it could be expected
that SW results based on Benjamin’s Fr exaggerate the speed of propagation. SW
results with the Huppert–Simpson Fr (see Ungarish 2009) are also shown in figure 6,
and indeed improve the agreement; this trend for the two-dimensional counterpart
was shown by Bonometti & Balachandar (2009). In addition, the real flow is affected
by an initial adjustment stage (during which the SW assumption of a small height
to length ratio of the flow domain is not satisfied), shear and mixing at the interface
and the appearance of the above-mentioned instability; these hindering effects are
not taken into account by the SW approximations. We see that the NS current shows
a non-physical tendency to accelerate at t ≈ 3; this illustrates the limitation of the
simulations. For more accurate and longer time comparisons, it is necessary to employ
more sophisticated and three-dimensional NS codes and powerful computers; this is
a major project beyond our objective.

4. Concluding remarks
We presented a compact SW model for the high-Reynolds axisymmetric gravity

current that covers a quite wide parameter range of density ratio of current to ambient
fluids, ρc/ρa , and of the depth ratio H ∗, and contains no adjustable constants. This
set of hyperbolic equations for the thickness h(r, t) and speed u(r, t) must be solved,
in general, numerically–but this requires insignificant computer time. For large times
a self-similar behaviour, which can be described analytically, appears; however, for
practical applications this result must be matched with numerical or experimental
data that contain the appropriate initial conditions. The Boussinesq currents are now
a narrow strip about ρc/ρa = 1 in the wide parameters domain (H ∗, ρc/ρa) covered
by the model.

The main differences between the axisymmetric light and heavy currents, and
between the two-dimensional (rectangular) counterparts, were elucidated.

We showed that the SW results are consistent with NS axisymmetric simulations.
However, the axisymmetric codes seem unable to reproduce realistic propagations
beyond rN ≈ 3 (scaled with the initial r0). A comprehensive assessment of the SW
model requires three-dimensional NS simulations and/or dedicated experiments,
which are presently unavailable. We hope that this paper will provide the motivation
and guiding lines for these investigations. An interesting and useful feature of the
Boussinesq SW model is that it remains a reliable prediction tool beyond the rN

where the NS axisymmetric simulations fail. We expect that this important property
carries over to the non-Boussinesq case.

The suggested theory is a potentially advantageous tool for the understanding
and modelling of the axisymmetric gravity current; but we must keep in mind that
further tests are necessary for a clear-cut determination of the range of validity and
accuracy of the results. The present model is expected to be a useful extension of the
corresponding two-dimensional counterpart, because radial–cylindrical propagation is
relevant in practical natural and hazard-prediction problems. The fact that Boussinesq
and non-Boussinesq light and heavy currents can now be treated in a unified form by a
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single simple formulation is expected to promote the investigation of non-Boussinesq
cases. This model is amenable to extensions to more complex circumstances, in
particular to rotating systems.
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