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The investigation in this article was motivated by an extended generalized inverse
Gaussian (EGIG) distribution, which has more than one turning point of the failure
rate for certain values of the parameters. In order to study the turning points of a failure
rate, we appeal to Glaser’s eta function, which is much simpler to handle. We present
some general results for studying the reationship among the change points of Glaser’s
eta function, the failure rate, and the mean residual life function (MRLF).Additionally
we establish an ordering among the number of change points of Glaser’s eta function,
the failure rate, and the MRLF. These results are used to investigate, in detail, the
monotonicity of the three functions in the case of the EGIG. The EGIG model has one
additional parameter, δ, than the generalized inverse Gaussian (GIG) model’s three
parameters; see Jorgensen [7]. It has been observed that the EGIG model fits certain
datasets better than the GIG of Jorgensen [7]. Thus, the purpose of this article is to
present some general results dealing with the relationship among the change points
of the three functions described earlier. The EGIG model is used as an illustration.
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1. INTRODUCTION

In reliability studies, the sense of variation of the failure rate is of major concern since
it includes system wearout or burnin or, in some cases, a nonmonotonic failure rate.
Generally, the survival and failure time data are frequently modeled by increasing or
decreasing failure rates. This might be inappropriate when the course of the disease
is such that the mortality reaches a peak after some finite period and then declines. In
such a case, the failure rate is upside-down bathtub- shaped and the data are analyzed
with appropriate models like log-normal, inverse Gaussian, log-logistic, and Burr-
type XII distributions having nonmonotonic failure rates. In addition to bathtub- and
upside-down bathtub-shaped failure rates, Wong [9–11] presented situations in which
the failure rate curve is roller-coaster-shaped and remarked that the bathtub does
not hold water anymore. His articles suggest some plausible physical reasons for the
formulation of his roller-coaster type. He also remarked that believing in an erroneous
failure rate can lead us into making wrong decisions and, worst of all, spending a great
deal of effort in developing the wrong reliability methods.

Since most of the failure rates have complex expressions because of the integral
in the denominator, the determination of the monotonicity is not straightforward. To
alleviate this difficulty, Glaser [4] presented a method to determine the monotonicity
of the failure rate with one turning point. Glaser’s method uses the density function
instead of the failure rate, which, in many cases, is much simpler. Glaser’s method
can be used in many complicated examples.

There are situations, as in the cases of the roller-coaster failure rates described
earlier, in which there is more than one turning point of the failure rate. For such
situations, Gupta and Warren [6] extended Glaser’s techniques and discussed some
examples. More specifically, they established the connection between the turning
points of Glaser’s eta function and the failure rate function and showed that the number
of turning points of the failure rate function does not exceed the number of turning
points of Glaser’s eta function. They also investigated the location of the turning
points of the failure rate in relation to the location of the turning points of the eta
function.

Since the mean residual life function (MRLF) or life expectancy is intimately
related to the failure rate function, various researchers have investigated the mono-
tonicity of the MRLF in relation to the monotonicity of the failure rate. It is well
known that in the case of increasing (decreasing) failure rate, the MRLF is decreasing
(increasing); see Bryson and Siddiqui [3]. In the case of bathtub- and upside-down
bathtub-shaped failure rates, Gupta and Akman [5] presented conditions for determin-
ing the shape of the MRLF. They also investigated the location of the turning points
of the MRLF. Tang, Lu, and Chew [8] extended Gupta and Akman’s [5] result for the
case of multiple turning points. Bekker and Mi [2] presented an improved version of
the proof of the Tang et al. [8] result.

The investigation in this article was motivated by an extended generalized inverse
Gaussian (herein abbreviated EGIG) distribution that has more than one turning point
of the failure rate for certain values of the parameters. We present some general results
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for studying the relationship among change points of Glaser’s eta function, the failure
rate, and the MRLF. Additionally, we establish an ordering among the number of
change points of Glaser’s eta function, the failure rate, and the MRLF. These results
are used to investigate, in detail, the monotonicity of the three functions in the case
of the EGIG.

The EGIG model has one additional parameter, δ, than the generalized inverse
Gaussian (GIG) model’s three parameters; see Jorgensen [7]. It has been observed
that the EGIG model fits certain datasets better than the GIG model.

The presentation of this article is organized as follows: in Section 2, basic proper-
ties of the EGIG model are discussed. In Section 3 we present some definitions and the
monotonicity of Glaser’s eta function for the EGIG model. Section 4 contains some
general results establishing the relationships among the turning points of Glaser’s
eta function, the failure rate, and the MRLF. These results are used in Section 5 to
determine the shape of the MRLF in the case of one or two change points of Glaser’s
eta function. For the EGIG model, complete investigation of the monotonicity of the
three functions is also provided. Finally, in Section 6 we present some conclusions
and comments.

2. BASIC PROPERTIES OFTHE EGIG MODEL

The probability density function of the EGIG model is given by

f (x) = 1

(2/δ)(b/a)λ/2δKλ/δ(2
√

ab)
xλ−1e−axδ−bx−δ

, x > 0, (2.1)

where Kν(z) is a modified Bessel function of the third kind with index ν. Special
cases of (2.1) are the generalized inverse Gaussian distribution, the inverse Gaussian
distribution, the gamma distribution, the Weibull distribution, and the exponential
distribution. In a recent article, Al-Zamel, Ali, and Kalla [1] proposed a unified form
of the gamma-type and inverse Gaussian distribution, with (2.1) as a special case. We
discard some of the restrictions set by Al-Zamel et al. [1] placed upon the parameters
in (2.1) for the sake of generality. Instead, we adopt a similar domain of variation for
the parameters to that given by Jorgensen [7]; that is

λ ∈ R, (a, b, δ) ∈ �λ, (2.2)

where

�λ =

⎧⎪⎪⎨
⎪⎪⎩

(a, b, δ) : a > 0, b ≥ 0, δ > 0 iff λ > 0

(a, b, δ) : a > 0, b > 0, δ > 0 iff λ = 0

(a, b, δ) : a ≥ 0, b > 0, δ > 0 iff λ < 0.

(2.3)
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In the case that a = 0 or b = 0, the normalizing constants in (2.1) are given by∫ ∞

0
xλ−1e−bx−δ

dx = 1

δ
�

(
−λ

δ

)
bλ/δ , b, δ, λ > 0 (2.4)

and ∫ ∞

0
xλ−1e−axδ

dx = 1

δ
�

(
λ

δ

)
a−λ/δ , a, δ, λ > 0. (2.5)

In a manner consistent with Jorgensen [7], we denote the function described by (2.1)
and (2.3) by N−δ

λ (a, b) and the class of such functions as

N−δ
λ = {N−δ

λ (a, b) : (a, b, δ) ∈ �λ, x > 0}. (2.6)

Note that

x ∼ N−δ
λ =⇒ Xδ ∼ N−1

λ/δ , (2.7)

where N−1
λ/δ is the class of generalized inverse Gaussian density functions; see

Jorgensen [7]. It is readily seen that

E(Xk) =
(√

b

a

)k/δ
K(λ+k)/δ(2

√
ab)

Kλ/δ(2
√

ab)
, k ∈ R, (2.8)

and

Var(X) =
(

b

a

)1/δ

⎡
⎣K(λ+2)/δ(2

√
ab)

Kλ/δ(2
√

ab)
−

(
K(λ+1)/δ(2

√
ab)

Kλ/δ(2
√

ab)

)2
⎤
⎦ . (2.9)

Furthermore, in (2.8), we can define k = δj for some j so that the results of Jorgensen
[7] can be applied.

3. GLASER’S η(x), FAILURE RATE, AND MRLF FUNCTIONS

In the introductory section of this article, many well-known distributions are listed
as special cases of the extended generalized inverse Gaussian distribution. These
aforementioned distributions are often used to model lifetime data. In this section we
develop methods for determining the shape of the failure rate function and MRLF for
a random variable following the extended generalized inverse Gaussian distribution.

3.1. Background

We introduce the following terminology used throughout the remainder of the text.

Definition 3.1: Suppose g : R
+ �→ R

+ is a differentiable function with g′(t) contin-
uous. Then the following hold:
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1. g(t) ∈ I (increasing) ⇔ g′(t) > 0, ∀t > 0.

2. g(t) ∈ D (decreasing) ⇔ g′(t) < 0, ∀t > 0.

3. g(t) ∈ I∗ (nondecreasing) ⇔ g′(t) ≥ 0, ∀t > 0, with equality on a set of
measure 0.

4. g(t) ∈ D∗ (nonincreasing) ⇔ g′(t) ≤ 0, ∀t > 0, with equality on a set of
measure 0.

5. g(t) ∈ C (constant) ⇔ g′(t) = 0, ∀t > 0.

6. g(t) ∈ B (bathtub) ⇔ ∃t1 such that g′(t) < 0 for t ∈ (0, t1), and g′(t1) = 0
and g′(t) > 0 for t ∈ (t1, ∞).

7. g(t) ∈ U (upside-down bathtub) ⇔ ∃t1 such that g′(t) > 0 for t ∈ (0, t1),
and g′(t1) = 0 and g′(t) < 0 for t ∈ (t1, ∞).

8. g(t) ∈ BU (bathtub upside-down bathtub) ⇔ ∃t1, t2 such that g′(t) < 0 for
t ∈ (0, t1), g′(t1) = 0, g′(t) > 0 for t ∈ (t1, t2), g′(t2) = 0, and g′(t) < 0 for
t ∈ (t2, ∞).

9. g(t) ∈ UB (upside-down bathtub bathtub) ⇔ ∃t1, t2 such that g′(t) > 0 for
t ∈ (0, t1), g′(t1) = 0, g′(t) < 0 for t ∈ (t1, t2), g′(t2) = 0, and g′(t) > 0 for
t ∈ (t2, ∞).

10. g(t) ∈ (B)UBU · · · (roller coaster) ⇔ g(t) is a sequence of BU, respec-
tively, UB, shape.

Definition 3.2: Glaser’s eta function, η(x), for a random variable X with probability
density function f (x) is defined as η(x) = −f ′(x)/f (x).

Definition 3.3: The failure rate function, h(x), for a random variable X with proba-
bility density function f (x) is defined as h(x) = f (x)/S(x), where S(x) is the survival
function given by S(x) = 1 − F(x).

Definition 3.4: The mean residual life function, μ(x), for a random variable X with
probability density function f (x) and positive real support is defined as

μ(x) = E[X − x|X > x]. (3.1)

An easily computed form is given by

μ(x) =
∫ ∞

x S(y) dy

S(x)
. (3.2)

The two aforementioned reliability functions h(x) and μ(x) are connected through
the well-known relation

μ′(x) = h(x)μ(x) − 1. (3.3)
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TABLE 1. Shapes of η(x) for f (x) ∈ N−δ
λ

# Type L Cases η(x) ∈ # Type Q (a > 0, δ �= 1) Cases η(x) ∈
1 a = 0 U 1 � = −1 I
2 δ = 1, λ < 1, b > 0 U 2 � = 0, λ < 1 I∗
3 δ = 1, λ < 1, b = 0 D 3 � = 0, 0 < δ < 1, λ = 1 D
4 δ = 1, λ = 1, b > 0 I 4 � = 0, δ > 1, λ = 1 I
5 δ = 1, λ = 1, b = 0 C 5 � = 0, λ > 1 I
6 δ = 1, λ > 1, b > 0 I 6 � = 1, 0 < δ < 1, λ < 1, b = 0 D
7 δ = 1, λ > 1, b = 0 I 7 � = 1, 0 < δ < 1, λ < 1, b > 0 U

8 � = 1, 0 < δ < 1, λ > 1, b = 0 U
9 � = 1, 0 < δ < 1, λ > 1, b > 0 U

10 � = 1, λ = 1 U
11 � = 1, δ > 1, λ < 1, b = 0 B
12 � = 1, δ > 1, λ < 1, b > 0 UB
13 � = 1, δ > 1, λ > 1, b = 0 I
14 � = 1, δ > 1, λ > 1, b > 0 I

3.2. Glaser’s η(x) for the EGIG Model

Suppose that X ∼ N−δ
λ . Then

η(x) = − f ′(x)
f (x)

= 1 − λ

x
+ aδxδ−1 − bδx−δ−1 (3.4)

and

η′(x) = 1

xδ+2
[aδ(δ − 1)x2δ + (λ − 1)xδ + bδ(δ + 1)]. (3.5)

By defining g : R
+ �→ R

+ as

g(x) = aδ(δ − 1)x2δ + (λ − 1)xδ + bδ(δ + 1), (3.6)

we have

η′(x) = g(x)

xδ+2
, (3.7)

where g(x) is quadratic in xδ . If δ �= 1 and a �= 0 then g(x) is a quadratic function in
xδ , a type Q case. Otherwise, if δ = 1 or a = 0, then g(x) is a linear function in xδ , a
type L case. Since x > 0, it follows that η′(x) and g(x) share the same sign. Table 1
displays the shape of η(x) for all of �λ. Note that � is defined as

� :=

⎧⎪⎨
⎪⎩

−1 iff (λ − 1)2 < 4δ2(δ2 − 1)ab

0 iff (λ − 1)2 = 4δ2(δ2 − 1)ab

1 iff (λ − 1)2 > 4δ2(δ2 − 1)ab.
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3.3. Monotonicity ofThe Failure Rate Function

We assume that f (t) is twice-differentiable. We present the following extension of a
result due to Glaser [4].

Theorem 3.5: Suppose η(x) ∈ I∗(D∗).

1. If η(x) ∈ I∗, then h(x) ∈ I.

2. If η(x) ∈ D∗, then h(x) ∈ D.

We now define ε = limx→0+ f (x). The following result, due to Glaser [4],
determines the monotonicity of h(x) when η(x) ∈ B(U).

Theorem 3.6: Suppose η(x) ∈ B(U).

1. If η(x) ∈ B, then we have the following:
(a) if ε = 0, then h(x) ∈ I.

(b) if ε = ∞, then h(x) ∈ B.

2. If η(x) ∈ U, then we have the following:
(a) if ε = 0, then h(x) ∈ U.

(b) if ε = ∞, then h(x) ∈ D.

When η(x) ∈ UB(BU), the following general results, due to Gupta and Warren
[6], hold.

Theorem 3.7: Suppose η(x) ∈ UB with x1 and x2 such that η′(x1) = η′(x2) = 0. Then
we have the following:

1. If ε = 0, then
(a) if h′(x1) < 0, then h(x) ∈ UB.

(b) if h′(x1) = 0, then h(x) ∈ I∗.

(c) if h′(x1) > 0, then h(x) ∈ I.

2. If h′(0) < 0, then h(x) ∈ B.

Suppose η(x) ∈ BU with x1 and x2 such that η′(x1) = η′(x2) = 0. Then we have the
following:

1. If h′(0) < 0, then
(a) if h′(x1) < 0, then h(x) ∈ D.

(b) if h′(x1) = 0, then h(x) ∈ D∗.

(c) if h′(x1) > 0, then h(x) ∈ BU.

2. If ε = 0, then h(x) ∈ U.
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4. CHANGE POINTS OF η(x), h(x), AND μ(x) (GENERAL RESULTS)

In this section, we seek to extend the results of Gupta and Warren [6] and Bekker and
Mi [2] so that the shape of μ(x) can be inferred from the shape of η(x). From Gupta
and Warren [6], we begin with the following Theorem.

Theorem 4.1: Suppose that Glaser’s η(x) function has change points x1, x2, . . . , xn,
is differentiable, and is strictly monotone on (xn, ∞). Then the following hold:

1. h(x) does not have a critical point on [xn, ∞).

2. h(x) has at most one change point in each of (xj−1, xj), for j = 1, 2, . . . , n,
where x0 = 0.

From Bekker and Mi [2] we have the following Theorem.

Theorem 4.2: Suppose that the failure rate function h(x) has change points
x′

1, x′
2, . . . , x′

m, is differentiable, and is strictly monotone on (x′
m, ∞). Then the

following hold:

1. μ(x) does not have a critical point on [x′
m, ∞).

2. μ(x) has at most one change point in each of (x′
k−1, x′

k), for k = 1, 2, . . . , m,
where x′

0 = 0.

As a consequence of the above two results, we may state the following Theorems.

Theorem 4.3: Suppose that Glaser’s η(x) function has change points x1, x2, . . . , xn,
is differentiable, and is strictly monotone on (xn, ∞). Then μ(x) has at most n change
points and opposite monotonicity on [xn, ∞).

Theorem 4.4: Suppose that Glaser’s η(x) function has change points x1, x2, . . . , xn, is
differentiable, and is strictly monotone on (xn, ∞). Then μ(x) has at most two change
points in each of (xj−1, xj), for j = 1, 2, . . . , n, where x0 = 0.

In what follows, we will denote the n change points of η(x) by x1, x2, . . . , xn,
the m change points of h(x) by x′

1, x′
2, . . . , x′

m, and the l change points of μ(x) by
x∗

1 , x∗
2 , . . . , x∗

l . Additionally, x0 = x′
0 = x∗

0 = 0. Note that

l ≤ m ≤ n. (4.1)

Therefore, although μ(x) has at most two change points in each of (xj−1, xj), certainly
there cannot be two change points of μ(x) in each of these intervals or else inequality
(4.1) is violated.

One can note that if (xj−1, xj) ⊂ (x′
k−1, x′

k) (i.e., there is no change point of h(x)
in (xj−1, xj)) for some j = 1, 2, . . . , n and k = 1, 2, . . . , m, then by Theorem 4.2, μ(x)
has at most one change point in (xj−1, xj). Thus, we may state the following theorem.
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Theorem 4.5: Suppose that h′(xj−1)h′(xj) > 0 for some j = 1, 2, . . . , n. Then the
following hold:

1. If μ′(xj−1)μ
′(xj) > 0, then there exists no change points of μ(x) in [xj−1, xj]

and
(a) if μ′(xj−1) > 0, then μ(x) ∈ I in [xj−1, xj];
(b) if μ′(xj−1) < 0, then μ(x) ∈ D in [xj−1, xj].

2. If μ′(xj−1)μ
′(xj) < 0, then there exists a unique change point of μ(x) in

[xj−1, xj] and
(a) if μ′(xj−1) > 0, then μ(x) ∈ U in [xj−1, xj];
(b) if μ′(xj−1) < 0, then μ(x) ∈ B in [xj−1, xj].

We now present three simplifying results for later usage. The first of which is due
to Gupta and Warren [6].

Lemma 4.6: Suppose that η(x) has n change points x1, x2, . . . , xn. Then the follow-
ing hold:

1. If η′(x) > 0 for all x ∈ (xj−1, xj), for some j = 1, 2, . . . , n, and there exists
x′

j ∈ (xj−1, xj) such that h′(x′
j) = 0, then h(x) ∈ U in [xj−1, xj].

2. If η′(x) < 0 for all x ∈ (xj−1, xj), for some j = 1, 2, . . . , n, and there exists
x′

j ∈ (xj−1, xj) such that h′(x′
j) = 0, then h(x) ∈ B in [xj−1, xj].

The following result is due to Bekker and Mi [2].

Lemma 4.7: Suppose that h(x) has m change points x′
1, x′

2, . . . , x′
m. Then the follow-

ing hold:

1. If h′(x) > 0 for all x ∈ (x′
j−1, x′

j), for some j = 1, 2, . . . , m, and there exists
x∗

j ∈ (xj−1, xj) such that μ′(x∗
j ) = 0, then μ(x) ∈ B in [x′

j−1, x′
j].

2. If h′(x) < 0 for all x ∈ (x′
j−1, x′

j), for some j = 1, 2, . . . , m, and there exists
x∗

j ∈ (xj−1, xj) such that μ′(x∗
j ) = 0, then μ(x) ∈ U in [x′

j−1, x′
j].

Finally, the last of our three simplifying results is given as follows.

Lemma 4.8: Suppose that ψ(x) = μ′(x)S(x). Then ψ(x) and h(x) have the same
monotonicity.

Proof: It is readily seen that ψ(x) = μ′(x)S(x) = h(x)
∫ ∞

x S(y)dy − S(x). By
differentiating both sides, we have ψ ′(x) = h′(x)

∫ ∞
x S(y)dy. Therefore, ψ ′(x) and

h′(x) have the same sign and zeros and ψ(x) and h(x) have the same monotonicity. �

For the case that there exists a change point x′
k of h(x) in (xj−1, xj) for some

j = 1, 2, . . . , n and k = 1, 2, . . . , m, we state the following Theorem.
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Theorem 4.9: Suppose that h′(xj−1)h′(xj) < 0 for some j = 1, 2, . . . , n.

(1) If h′(xj−1) > 0, then
(a) if μ′(xj−1) > 0 and μ′(xj) > 0, then there exists no change points of μ(x)

in [xj−1, xj] and μ(x) ∈ I in [xj−1, xj];
(b) if μ′(xj−1) > 0 and μ′(xj) < 0, then there exists a unique change point x∗

i ,
for some i = 1, 2, . . . , l, in (xj−1, xj). In fact, x∗

i ∈ (x′
k , xj) and μ(x) ∈ U in

[xj−1, xj];
(c) if μ′(xj−1) < 0 and μ′(xj) > 0, then there exists a unique change point x∗

i ,
for some i = 1, 2, . . . , l, in (xj−1, xj). In fact, x∗

i ∈ (xj−1, x′
k) and μ(x) ∈ B

in [xj−1, xj].
(2) If h′(xj−1) < 0, then

(a) if μ′(xj−1) < 0 and μ′(xj) < 0, then there exists no change points of μ(x)
in [xj−1, xj] and μ(x) ∈ D in [xj−1, xj];

(b) if μ′(xj−1) < 0 and μ′(xj) > 0, then there exists a unique change point x∗
i ,

for some i = 1, 2, . . . , l, in (xj−1, xj). In fact, x∗
i ∈ (x′

k , xj) and μ(x) ∈ B in
[xj−1, xj];

(c) if μ′(xj−1) > 0 and μ′(xj) < 0, then there exists a unique change point x∗
i ,

for some i = 1, 2, . . . , l, in (xj−1, xj). In fact, x∗
i ∈ (xj−1, x′

k) and μ(x) ∈ U
in [xj−1, xj].

Proof:

1. Suppose that h′(xj−1) > 0. This implies that h′(xj) < 0. Thus, there exists a
x′

k such that x′
k ∈ (xj−1, xj) and h′(x′

k) = 0, for some k = 1, 2, . . . , m. Then
h′(x) > 0 for x ∈ [xj−1, x′

k), h′(x′
k) = 0, and h′(x) < 0 for x ∈ (x′

k , xj]. By
Lemma 4.8, we can say the same for ψ ′(x).
(a) Suppose that μ′(xj−1) > 0 and μ′(xj) > 0. Then ψ(xj−1) > 0 and ψ(xj) > 0.

Since ψ ′(x) > 0 for x ∈ [xj−1, x′
k), then ψ(x) > 0 for x ∈ [xj−1, x′

k]. Fur-
thermore, since ψ ′(x) < 0 for x ∈ (x′

k , xj] and ψ(xj) > 0, then ψ(x) > 0 for
x ∈ [x′

k , xj]. Thus, ψ(x) > 0, and, therefore, μ′(x) > 0, for x ∈ [xj−1, xj].As
a result, μ(x) ∈ I in [xj−1, xj].

(b) Suppose that μ′(xj−1) > 0 and μ′(xj) < 0. Then ψ(xj−1) > 0 and ψ(xj) < 0.
Since ψ ′(x) > 0 for x ∈ [xj−1, x′

k), then ψ(x) > 0 for x ∈ [xj−1, x′
k]. Fur-

thermore, since ψ ′(x) < 0 for x ∈ (x′
k , xj] and ψ(xj) < 0, then there exists

a unique x∗
i such that x∗

i ∈ (x′
k , xj) and μ′(x∗

i ) = 0, for some i = 1, 2, . . . , l.
Thus, ψ(x) > 0, and μ′(x) > 0 for x ∈ [xj−1, x∗

i ), ψ(x∗
i ) = μ′(x∗

i ) = 0,
and ψ(x) < 0 and μ′(x) < 0 for x ∈ (x∗

i , xj]. As a result, μ(x) ∈ U.

(c) Suppose that μ′(xj−1) < 0 and μ′(xj) > 0. A set of arguments similar to
that in part (b) may be used.

2. Suppose that h′(xj−1) < 0. A similar set of arguments to that of the above can
be used. �
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Our next theorem is the only result that requires the computation of the solutions
of h′(x) = 0.

Theorem 4.10: Suppose that h′(xj−1)h′(xj) < 0 for some j = 1, 2, . . . , n and that x′
k

is the unique change point of h(x) in [xj−1, xj].
1. If h′(xj−1) > 0, μ′(xj−1) < 0, and μ′(xj) < 0, then the following hold:

(a) If μ′(x′
k) < 0, then there exists no change points of μ(x) in [xj−1, xj] and

μ(x) ∈ D in [xj−1, xj].
(b) If μ′(x′

k) = 0, then there exists no change points of μ(x) in [xj−1, xj] and
μ(x) ∈ D∗ in [xj−1, xj].

(c) If μ′(x′
k) > 0, then there exists two change points of μ(x) in [xj−1, xj].

In fact, one change point lies in [xj−1, x′
k) and the other in (x′

k , xj] and
μ(x) ∈ BU in [xj−1, xj].

2. If h′(xj−1) < 0, μ′(xj−1) > 0, and μ′(xj) > 0, then the following hold:
(a) If μ′(x′

k) > 0, then there exists no change points of μ(x) in [xj−1, xj] and
μ(x) ∈ I in [xj−1, xj].

(b) If μ′(x′
k) = 0, then there exists no change points of μ(x) in [xj−1, xj] and

μ(x) ∈ I∗ in [xj−1, xj].
(c) If μ′(x′

k) < 0, then there exists two change points of μ(x) in [xj−1, xj].
In fact, one change point lies in [xj−1, x′

k) and the other in (x′
k , xj] and

μ(x) ∈ UB in [xj−1, xj].

Proof:

1. Suppose that h′(xj−1) > 0. This implies that h′(xj) < 0. Thus, there exists a
x′

k such that x′
k ∈ (xj−1, xj) and h′(x′

k) = 0, for some k = 1, 2, . . . , m. Then
h′(x) > 0 for x ∈ [xj−1, x′

k), h′(x′
k) = 0, and h′(x) < 0 for x ∈ (x′

k , xj]. By
Lemma 4.8, we can say the same for ψ ′(x). Furthermore, since μ′(xj−1) < 0
and μ′(xj) < 0, then ψ(xj−1) < 0 and ψ(xj) < 0. Thus, ψ(x) > 0 for some
x ∈ [xj−1, xj] if and only if ψ(x′

k) > 0. In this case, ψ(x) < 0 and μ′(x) < 0
for x ∈ [xj−1, x∗

i−1) ∪ (x∗
i , xj], ψ(x∗

i−1) = ψ(x∗
i ) = μ′(x∗

i ) = μ′(x∗
i−1) = 0, and

ψ(x) > 0 and μ′(x) > 0 for x ∈ (x∗
i−1, x∗

i ), for some i = 1, 2, . . . , l.As a result,
we have the following:
(a) If ψ(x′

k) < 0, and therefore μ′(x′
k) < 0, then μ(x) ∈ D.

(b) If ψ(x′
k) = 0, and therefore μ′(x′

k) = 0, then μ(x) ∈ D∗.

(c) If ψ(x′
k) > 0, and therefore μ′(x′

k) > 0, then μ(x) ∈ BU.

2. Suppose that h′(xj−1) < 0, μ′(xj−1) > 0, and μ′(xj) > 0. A set of arguments
similar to that of the above can be used. �

We must consider the case that η(x) and μ(x) share a common change point and
either h′(x) �= 0 for all x ∈ [xj−1, xj+1] or h′(xj) = 0. To this end, we state the following
preliminary result due to Gupta and Warren [6].
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Lemma 4.11: Suppose η′(x) has n zeroes x1, x2, . . . , xn and that η(x) ∈ B(U) on the
interval (xj−1, xj+1) for some j = 1, 2, . . . , n. Then xj is a common critical point of
η(x) and h(x) if and only if h(x) ∈ D∗(I∗) on (xj−1, xj+l).

Thus, we may state the following Theorem.

Theorem 4.12: Suppose η′(xj) = 0 and μ′(xj) = 0 for some j = 1, 2, . . . , n − 1.

1. If h′(x) �= 0 for all x ∈ [xj−1, xj+1], then xj is the only change point of μ(x) in
[xj−1, xj+1] and
(a) if μ′(xj−1) < 0, then μ(x) ∈ B in [xj−1, xj+1];
(b) if μ′(xj+1) > 0, then μ(x) ∈ U in [xj−1, xj+1].

2. If h′(x) = 0, then xj is the only change point of μ′(x) in [xj−1, xj+1] and
(a) if h(x) ∈ D∗ in [xj−1, xj+1] and μ′(xj−1) < 0, then μ(x) ∈ D in [xj−1, xj+1];
(b) if h(x) ∈ D∗ in [xj−1, xj+1] and μ′(xj−1) > 0, then μ(x) ∈ U in [xj−1, xj+1];
(c) if h(x) ∈ I∗ in [xj−1, xj+1] and μ′(xj−1) < 0, then μ(x) ∈ B in [xj−1, xj+1];
(d) if h(x) ∈ I∗ in [xj−1, xj+1] and μ′(xj−1) > 0, then μ(x) ∈ I in [xj−1, xj+1];

Proof:

1. Suppose that h′(x) �= 0 for all x ∈ [xj−1, xj+1]. The result follows from
Theorem 4.5.

2. Suppose that h′(xj) = 0. The result from Lemma 4.11 and Theorem 4.2. �

Finally, we consider the case that η(x) and μ(x) share a common change point
and h(x) has a change point in [xj−1, xj) and/or (xj, xj+1]. To this end, we generalize
Theorem 4.9 as follows:

Theorem 4.13: Suppose η′(xj) = 0 and μ′(xj) = 0 for some j = 1, 2, . . . , n − 1 and
that h′(xj)h′(xj+1) < 0. Let x′

k be the zero of h′(x) in (xj, xj+1).

1. If h′(xj) > 0, then the following hold:
(a) If μ′(xj+1) > 0, then there exists no change points of μ(x) in (xj, xj+1] and

μ(x) ∈ I in (xj, xj+1].
(b) If μ′(xj+1) < 0, then there exists a unique change point x∗

i for some i =
1, 2, . . . , l, in (xj, xj+1). In fact, x∗

i ∈ (x′
k , xj+1) and μ(x) ∈ U in (xj, xj+1].

2. If h′(xj) < 0, then the following hold:
(a) If μ′(xj+1) < 0, then there exists no change points of μ(x) in (xj, xj+1] and

μ(x) ∈ D in (xj, xj+1].
(b) If μ′(xj+1) > 0, then there exists a unique change point x∗

i , for some i =
1, 2, . . . , l, in (xj, xj+1). In fact, x∗

i ∈ (x′
k , xj+1) and μ(x) ∈ B in (xj, xj+1].

Theorem 4.14: Suppose η′(xj) = 0 and μ′(xj) = 0 for some j = 1, 2, . . . , n − 1 and
that h′(xj−1)h′(xj) < 0. Let x′

k be the zero of h′(x) in (xj−1, xj).
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1. If h′(xj) > 0, then the following hold:
(a) If μ′(xj−1) < 0, then there exists no change points of μ(x) in [xj−1, xj) and

μ(x) ∈ D in [xj−1, xj).

(b) If μ′(xj−1) > 0, then there exists a unique change point x∗
i , for some i =

1, 2, . . . , l, in (xj−1, xj). In fact, x∗
i ∈ (xj−1, x′

k) and μ(x) ∈ U in [xj−1, xj).

2. If h′(xj) < 0, then the following hold:
(a) If μ′(xj−1) > 0, then there exists no change points of μ(x) in [xj−1, xj) and

μ(x) ∈ I in [xj−1, xj).

(b) If μ′(xj−1) < 0, then there exists a unique change point x∗
i , for some i =

1, 2, . . . , l, in (xj−1, xj). In fact, x∗
i ∈ (xj−1, x′

k) and μ(x) ∈ B in [xj−1, xj).

Remark 4.15: We can combine the results of Theorems 4.13 and 4.14 to determine
the shape of μ(x) in the interval [xj−1, xj+1].

The power of the methods outlined above is realized by the diminished number
of solutions of h′(x) = 0 needing to be computed; that is, the methods developed
by Bekker and Mi [2] require one to compute all of the solutions of h′(x) = 0 and
the value of μ′(x) at these solutions to determine the shape of μ(x). Alternatively,
in the methods above, one must usually only compute the value of h′(x) and μ′(x)
at the solutions of η′(x) = 0 to determine the shape of μ(x). Certainly, the solutions
of η′(x) = 0 are much easier to obtain than the solutions of h′(x) = 0. Thus, we can
assert that our methods are more computationally tractable.

5. CHANGE POINTS OF μ(x) WHEN η(x) HAS ONE OR TWO CHANGE
POINTS

We employ the results stated in the previous section to determine the shape of μ(x)
when η(x) has n = 1 or 2 change points. Furthermore, we extend the well-known case
that h(x) ∈ I(D). We first state the shape of μ(x) when η(x) has n = 1 change point.
We omit the case that h(x) has no change points since Theorem 4.5 deals with this
situation. Recall that ε = limx→0+ f (x) and μ = μ(0) is the mean.

Theorem 5.1: Suppose that η(x) has n = 1 change point (namely x1) and that
h′(0)h′(x1) < 0. Then the following hold:

1. If h′(0) > 0 and
(a) εμ ≥ 1, then μ′(x1) > 0 and μ(x) ∈ I;

(b) εμ < 1, then μ′(x1) > 0 and μ(x) ∈ B.

2. If h′(0) < 0 and
(a) εμ ≤ 1, then μ′(x1) < 0 and μ(x) ∈ D;

(b) εμ > 1, then μ′(x1) < 0 and μ(x) ∈ U.

Proof: The proof follows from Theorem 4.9. �
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Next, we state the shape of μ(x) when η(x) has n = 2 change points. In the
following result, we omit the case that h(x) ∈ I(D) and h(x) ∈ B(U) since each is
easily seen from Theorems 4.2 and 5.1, respectively.

Theorem 5.2: Suppose that η(x) has n = 2 change points (namely x1 and x2) and
h(x) has two change points (namely x′

1 and x′
2).

1. If h′(0) > 0, then
(a) if εμ ≥ 1 and μ′(x1) > 0, then μ(x) ∈ U;

(b) if εμ ≥ 1 and μ′(x1) < 0, then μ(x) ∈ U;

(c) if εμ < 1 and μ′(x1) > 0, then μ(x) ∈ BU;

(d) if εμ < 1 and μ′(x1) < 0, then
(i) if μ′(x′

1) < 0, then μ(x) ∈ D;

(ii) if μ′(x′
1) = 0, then μ(x) ∈ D∗;

(iii) if μ′(x′
1) > 0, then μ(x) ∈ BU.

2. If h′(0) < 0, then
(a) if εμ ≤ 1 and μ′(x1) < 0, then μ(x) ∈ B;

(b) if εμ ≤ 1 and μ′(x1) > 0, then μ(x) ∈ B;

(c) if εμ > 1 and μ′(x1) < 0, then μ(x) ∈ UB;

(d) if εμ > 1 and μ′(x1) > 0, then
(i) if μ′(x′

1) < 0, then μ(x) ∈ I;

(ii) if μ′(x′
1) = 0, then μ(x) ∈ I∗;

(iii) if μ′(x′
1) > 0, then μ(x) ∈ UB.

Proof: The proof follows from Theorems 4.9 and 4.10. �

We now extend the well-known case that n = 0.

Theorem 5.3: Suppose that h(x) ∈ I∗(D∗).

1. If h(x) ∈ I∗, then μ(x) ∈ D.

2. If h(x) ∈ D∗, then μ(x) ∈ I.

Proof: The proof is similar to that of Theorem 3.5. �

The Shape of η(x), h(x), and μ(x) for the EGIG Model

Table 2 displays the shapes of η(x), h(x), and μ(x) when f (x) ∈ N−δ
λ . The case

numbers correspond to those in Table 1.
When η(x) has at most one change point, the results follow from Theorems 5.1

and 5.3. When η(x) has two change points, the monotonicity of h(x) and μ(x) can be
seen as follows.
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TABLE 2. Shapes of η(x), h(x), and μ(x) for f (x) ∈ N−δ
λ

L# η(x) ∈ h(x) ∈ μ(x) ∈ Q# η(x) ∈ h(x) ∈ μ(x)

1 U U B 1 I I D
2 U U B 2 I∗ I D
3 D D I 3 D D I
4 I I D 4 I I D
5 C C C 5 I I D
6 I I D 6 D D I
7 I I D 7 U U B

8 U U B
9 U U B

10 U U B
11 B B U
12a1 UB UB BU
12a2 UB UB D∗
12a3i UB UB D
12a3ii UB UB D∗
12a3iii UB UB BU
12b UB I∗ D
12c UB I D
13 I I D
14 I I D

Suppose that � = 1, δ > 1, λ < 1, and b > 0. Then g(x) has roots x1 = αl/δ and
x2 = γ 1/δ , where

α = 1 − λ + √
(λ − 1)2 − 4δ2(δ2 − 1)ab

2aδ(δ − 1)
,

γ = 1 − λ + √
(λ − 1)2 − 4δ2(δ2 − 1)ab

2aδ(δ − 1)
.

It can be verified that α > 0 and γ > 0. Since the leading coefficient of g(x) is positive,
it follows that η(x) ∈ UB. In reference to Theorem 3.7, it follows that (a) if h′(x1) < 0,
then h(x) ∈ UB, (b) if h′(x1) = 0, then h(x) ∈ I∗, and (c) if h′(x1) > 0, then h(x) ∈ I.
We first consider the case that h(x) ∈ UB. Certainly, μ′(x2) < 0 and since ε = 0,
then μ′(0) < 0. Thus, (a1) if μ′(x1) > 0, then by Theorem 4.9 μ(x) ∈ BU. Alterna-
tively, (a2) if μ′(x1) = 0, then by Theorems 4.13 and 4.14, μ(x) ∈ D∗. Finally, (a3)

if μ′(x1) < 0, then by Theorem 4.1, μ(x) ∈ D in [x1, ∞). However, in the interval
[0, x1), we must apply Theorem 4.10. Thus, (a3i) if μ′(x′

1) < 0, then μ(x) ∈ D, (a3ii)

if μ′(x′
1) = 0, then μ(x) ∈ D∗, and (a3iii) if μ′(x1) > 0, then μ(x) ∈ BU. We next

consider the case that h(x) ∈ I ∪ I∗. By Theorem 5.3, it follows that μ(x) ∈ D.

6. CONCLUSION

Apart from the probability density functions, the failure rate and the MRLF are two
basic functions for analyzing survival or reliability data. The monotonicity of these
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functions describe the aging characteristic of the underlying distribution. It has been
observed that, in some cases, there is more than one turning point of the failure rate.
In this article, we have dealt with the monotonicity of three functions: (1) Glaser’s
eta function, (2) the failure rate, and (3) the MRLF for roller-coaster failure rates. We
have presented some general results dealing with the change points of these functions.
Additionally, we have established an ordering between the number of change points of
these functions. These results are used to investigate, in detail, the monotonicity of the
three functions in the case of the EGIG model. For certain values of the parameters,
the EGIG model has two turning points of the failure rate. However, because of the
complexity of the model, it was not feasible to obtain analytic expressions for these
turning points.

The statistical inference of the EGIG model and the importance of the additional
parameter δ will be presented elsewhere.

We hope that our investigation will be useful for reliability theoreticians interested
in determining the monotonicity of the failure rate and the MRLF when these functions
have more than one turning point. Additionally, the EGIG model will prove to be more
useful for data analysts using the GIG or even the inverse Gaussian model.
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