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Abstract

Background. Cardiovascular diseases represent a major health issue in patients with schizo-
phrenia (SCZ) and bipolar disorder (BD), but the exact nature of cardiometabolic (CM)
abnormalities involved and the underlying mechanisms remain unclear. Psychiatric medica-
tions are known risk factors, but it is unclear whether there is a connection between the dis-
orders (SCZ/BD) themselves and CM abnormalities.
Methods. Using polygenic risk scores and linkage disequilibrium score regression, we inves-
tigated the shared genetic bases of SCZ and BD with 28 CM traits. We performed Mendelian
randomization (MR) to elucidate causal relationships between the two groups of disorders.
The analysis was based on large-scale meta-analyses of genome-wide association studies.
We also identified the potential shared genetic variants and inferred the pathways involved.
Results. We found tentative polygenic associations of SCZ with glucose metabolism abnor-
malities, adverse adipokine profiles, increased waist-to-hip ratio and visceral adiposity (false
discovery rate or FDR<0.05). However, there was an inverse association with body mass
index. For BD, we observed several polygenic associations with favorable CM profiles at
FDR<0.05. MR analysis showed that SCZ may be causally linked to raised triglyceride and
that lower fasting glucose may be linked to BD. We also identified numerous single nucleotide
polymorphisms and pathways shared between SCZ/BD with CM traits, some of which are
related to inflammation or the immune system.
Conclusions. Our findings suggest that SCZ patients may be genetically predisposed to several
CM abnormalities independent of medication side effects. On the other hand, CM abnormal-
ities in BD may be more likely to be secondary. However, the findings require further
validation.

Introduction

Increased rates of cardiovascular diseases (CVDs) have become a major area of concern for
patients with schizophrenia (SCZ) or bipolar disorder (BD) (Weiner et al., 2011; Ringen
et al., 2014). People with SCZ have a life expectancy of around 15–20 years shorter than
the average population, while the life expectancy for bipolar patients is 10–15 years shorter
(Laursen, 2011). Deaths from CVDs have been proposed as a major contributor to the
increased mortality (Laursen, 2011; Ringen et al., 2014).

The metabolic syndrome (MetS) is a key risk factor for cardiovascular morbidity and mor-
tality. It represents a cluster of metabolic abnormalities, including dyslipidemia, impaired glu-
cose tolerance, insulin resistance, hypertension and central obesity (Kaur, 2014). A raised
prevalence of MetS has been observed in both SCZ (McEvoy et al., 2005) and BD
(Vancampfort et al., 2013) patients.

The underlying causes for increased risk of MetS are not completely understood. A variety
of factors, including smoking, physical inactivity, inadequate health-care services, medications
and underlying genetics may all contribute to the heightened risks (Ringen et al., 2014). In
particular, anti-psychotics and mood stabilizers are known contributors to metabolic abnor-
malities (Newcomer, 2006; Pramyothin and Khaodhiar, 2010). Nevertheless, metabolic abnor-
malities have also been observed in drug-naïve SCZ patients. For example, meta-analyses
(Perry et al., 2016; Greenhalgh et al., 2017; Pillinger et al., 2017a) revealed worse glucose
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profiles in drug-naïve SCZ subjects than in controls. Another
meta-analysis reported elevated triglycerides, but lower low-
density cholesterol (LDL) and total cholesterol (TC) in first-
episode psychosis patients (Pillinger et al., 2017b) [see (Chadda
et al., 2013) for review].

Very few studies have investigated metabolic traits in
drug-naïve bipolar patients. A recent study showed an increased
rate of insulin resistance in these patients, but there was no differ-
ence in the rate of MetS (Guha et al., 2014). Nevertheless, SCZ
and BD are known to have a partially shared genetic basis
(Cardno and Owen, 2014), and they share certain clinical charac-
teristics and both are responsive to antipsychotics (Murray et al.,
2004). Given the relationship between SCZ and BD, it will be
interesting to explore whether BD itself is linked to cardiometa-
bolic (CM) abnormalities.

Regarding the limitations of prior work, previous individual
studies are usually of small sample size (most N < 100), and
often included only a subset of metabolic parameters. Although
a few meta-analyses have been performed, the range of traits stud-
ied was limited (mainly glucose and lipid) and heterogeneity
among studies was inevitable (see online Supplementary Text
S1). Another limitation is that causal relationship is difficult to
infer due to cross-sectional design and confounding factors. As
(germline) genetic variations are not affected by drugs, explor-
ation of shared genetic bases may be more useful in discerning
whether the disorders (SCZ/BD) themselves contribute to CM
abnormalities. Also, our study included large samples from
GWAS, totaling over a million participants.

As both psychiatric and CM traits are highly heritable, it is rea-
sonable to hypothesize that a shared genetic basis may contribute
to the comorbidities. In a related work, Andreassen et al. (2013)
proposed an approach to identify loci associated with both SCZ
and CM traits. Compared to this work, we also covered BD, ana-
lyzed a wider range of CM traits, utilized a much larger SCZ sam-
ple, and investigated the directions of associations (see online
Supplementary Text S1).

The overall analytic workflow is described in Fig. 1. Firstly, we
made use of large-scale GWAS meta-analyses results for SCZ, BD
and a comprehensive panel of 28 CM traits to test for associations
of polygenic risk scores (PRS). Linkage disequilibrium score
regression (LDSR) was conducted as well. We also examined
PRS associations with cardiovascular risk factors in the
Northern Finland Birth Cohort (NFBC) with individual-level
data. We then performed Mendelian randomization (MR) ana-
lysis to assess the causal relationship between the two groups of
disorders. Finally, we ‘zoomed in’ to discover the genetic variants

shared between SCZ and BD with each metabolic trait and
inferred the likely involved pathways.

We adopted a variety of analytic methods as each approach has
its own strengths and limitations. For example, PRS is a widely used
technique, but it is relatively difficult to account for linkage disequi-
librium (LD) and sample overlap in PRS analyses. Although LDSR
takes into account these factors, it relies on other assumptions, for
example that the causal variants are randomly distributed in the
genome regardless of the LD structure, and (ideally) all single
nucleotide polymorphisms (SNPs) contribute equal variances.
While PRS analyses are often performed on individual-level data,
in order to increase the sample size, we also employed a more com-
plex analytical technique that requires only summary statistics. On
the other hand, MR is used to assess the causal relationship
between the traits.

To our knowledge, this is the first systemic and the most com-
prehensive study to date on the shared genetic bases of CM traits
with both SCZ and BD, and the first to uncover shared genetic
variants between BD and CM diseases with large-scale GWAS
data. Except for a recent study, which employed MR to study
the relationship between body mass index (BMI) and psychiatric
disorders (Hartwig et al., 2016), we are unaware of other works
studying causal links of SCZ/BD with CM traits.

Materials and methods

Due to space limits, readers are encouraged to refer to online
Supplementary Text S1 for details.

GWAS samples for summary statistics

Summary statistics for SCZ (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014) was based on a large-
scale meta-analysis (N = 82 315) available from https://www.
med.unc.edu/pgc. Summary statistics for BD was based on a
recent study (Hou et al., 2016) (N = 40 255) available from
https://www.ebi.ac.uk/gwas/downloads/summary-statis tics. We
also obtained GWAS summary statistics for a range of CM traits
(references and sample size given in online Supplementary Text
S1), including LDL, high-density lipoprotein (HDL), TC, trigly-
cerides (TG), BMI, fasting glucose (FG), fasting insulin (INS),
waist-to-hip ratio (WHR), type 2 diabetes, coronary artery disease
(CAD), leptin, adiponectin, systolic blood pressure and diastolic
blood pressure (SBP/DBP), body fat percentage, subcutaneous
adipose tissue (SAT) volume, visceral adipose tissue volume, peri-
cardial fat (PAT) volume, SAT attenuation (SATHU), visceral

Fig. 1. The overall analytic workflow. First, we
made use of large-scale GWAS meta-analyses
results for SCZ, BD and a comprehensive panel
of 28 metabolic and cardiovascular traits to test
for shared genetic bases by PRS and LDSR. We
also examined PRS associations with cardiovascu-
lar risk factors in the NFBC with individual geno-
type and phenotype data. We then performed
MR analysis to assess the causal relationship
between the two groups of disorders. Finally, we
‘zoomed in’ to discover the genetic variants
shared between SCZ and BD with each metabolic
trait and inferred the likely involved pathways by
gene-set analyses.
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adipose tissue attenuation (VATHU) and VAT/SAT ratio. For FG,
INS, WHR, leptin, VAT, VAT/SAT ratio, we obtained the sum-
mary statistics both with and without adjustment for BMI. For
PAT, we included test statistics adjusted for height and weight.
Summary statistics was downloaded via http://ldsc.broadinsti-
tute.org and https://grasp.nhlbi.nih.gov/FullResults.aspx. The
analyses are primarily based on samples of European ancestry.

Polygenic score analysis

PRS can be formulated as a weighted sum of allelic counts, with
the weights determined by the effect sizes of individual genetic
variants. PRS analysis was conducted using two different meth-
ods: individual-level genotype data and summary statistics.

Individual-level analysis: PRS testing in the NFBC 1966
Individual-level PRS testing was performed on GWAS data of the
NFBC 1966. Data was accessed from dbGaP (phs000276.v2.p1)
(Sabatti et al., 2009). We included TG, HDL, LDL, BMI, WHR,
FG, INS, SBP and DBP in the analysis. After quality control pro-
cedures, 4982 individuals and 334 458 SNPs were retained (see
online Supplementary Text S1). Gender and the top ten principal
components were included as covariates (Price et al., 2006).
Analyses were repeated with and without BMI as a covariate.

PRS testing based on GWAS summary statistics
In this approach, only the summary statistics for each pair of traits are
required. Association testing was carried out by a method first
described by Johnson (2012). Details of this methodology were also
described in several other studies (Ehret et al., 2011; Dastani et al.,
2012; Palla and Dudbridge, 2015) and see online Supplementary
Text S1. The formula is equivalent to the ‘inverse variance weighted’
(IVW) approach in MR (discussed below). However, in a PRS ana-
lysis, we do not require the variants to be strongly associated with
the disease and pleiotropic effects are allowed.

In order to investigate the bi-directional effects of the polygenic
risk of SCZ and BD on metabolic traits, we performed two sets of
analyses, one using PRS from SCZ/BD to regress on CM traits and
the other using PRS from CM traits to regress on SCZ/BD.

Analysis in PRsice
For both types of analyses (summary statistics and individual
genotype-based) listed above, PRS analyses were performed by
‘PRsice’ (Euesden et al., 2015). Details are given in online
Supplementary Text S1.

Control for multiple testing by the false discovery rate (FDR)
approach
Multiple testingwas corrected by the FDRprocedure, which controls
the expected proportion of false positives (FP) among those
declared to be significant. As an example, among all the hypothesis
with FDR (or q-value) <0.05, we expect that on average the propor-
tion of FPwill be <5% (or the proportion of true positives is expected
to be >95%). In this study, FDR <0.05 is regarded as significant
while hypotheses with corresponding FDR between 0.05 and 0.1
are considered suggestive (see online Supplementary Text S1).

Cross-trait LDSR

Cross-trait LDSR was performed to assess genetic correlations
(Bulik-Sullivan et al., 2015). We employed the LDSC program
(https://github.com/bulik/ldsc, ver 1.0.0, accessed June 2017) for

the analysis, following default parameter settings. This approach
allows sample overlap and accounts for LD between markers.
The program ‘popcorn’, which accounts for differing ethnic groups
of samples, was used for LDSR involving the Japanese DM sample
(Brown et al., 2016). We also assessed the significance of the cross-
trait LDSC intercept, which reflects the degree of sample overlap.
LDSR was not conducted for SBP and DBP as these were exome-
based studies and LDSC was not designed for such studies.

MR analysis

Next, we performed MR analysis to assess causal relationships
between SCZ/BD and CM disorders. MR utilized genetic variants
as ‘instruments’ to represent the risk factor and analyzed the rela-
tionship with an outcome. Intuitively, MR is analogous to a ran-
domized controlled trial (RCT). For example, in MR subjects with
genetically lower LDL are analog to receiving a lipid-lowering
drug in RCT. Compared to conventional observational studies,
MR is less susceptible to confounding and reverse causality
(Smith et al., 2008; Wehby et al., 2008).

Details are in online Supplementary Text S1. Briefly, we per-
formed two-sample MR with GWAS summary statistics using
the package ‘TwoSampleMR’ (Hemani et al., 2018). SNPs passing
genome-wide significance ( p < 5 × 10−8) were selected as instru-
ments. We conducted MR with four approaches, namely inverse-
variance weighted (IVW) (Ehret et al., 2011; Burgess et al., 2013),
MR Egger (Bowden et al., 2015), weighted median and weighted
mode methods (Bowden et al., 2016; Hartwig et al., 2017). The
latter three methods were employed to examine whether the
results are robust in the presence of horizontal pleiotropy (i.e.
the instrument genetic variant(s) affect the outcome via pathways
other than through the exposure).

In the main text, we primarily reported the IVW estimates,
however, if Egger’s method revealed significant imbalanced plei-
otropy, MR Egger result was presented (this method can give
unbiased estimates in the presence of imbalanced pleiotropy).
Note that in PRS analysis horizontal pleiotropy is allowed, but
it will affect the validity of causal inference in MR. PRS studies
can elucidate shared genetic bases but are not designed for causal
inference. For easy interpretation, units of exposures/outcomes
are included in online Supplementary Table S15.

While there is overlap between the subjects used in GWAS of
CM traits and the control subjects of SCZ/BD GWAS, the chance
of false positive associations (in PRS or MR analysis) due to sam-
ple overlap is likely low according to Burgess et al. (2016), as
detailed in online Supplementary Text S1.

Discovering shared SNPs and pathway

For each pair of diseases (psychiatric v. metabolic), we computed
for every SNP the probability of being associated with both dis-
eases (known as tdr11). We also selected SNPs with tdr11⩾ 0.5
and mapped them to genes, and inferred the pathways involved
(see online Supplementary Text S1).

Results

SCZ and CM traits

Results from PRS and LDSR analysis
The associations of SCZ with CM traits using paired summary
statistics are shown in Table 1 and online Supplementary
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Table S12. Intuitively, PRS from CM traits can be regarded as a
proxy of the actual level of the trait (Evans et al., 2013). For binary
traits, the polygenic scores may be regarded as the underlying
liability to the corresponding disorder.

Here, we briefly describe findings with at least suggestive evi-
dence (FDR<0.1). The strongest association was observed for BMI
(lowest p = 1.67 × 10−11) in PRS analysis when SCZ was used

either as the predictor or target phenotype. Interestingly, the coef-
ficient was negative, signifying an inverse association. For lipid
traits, we observed a positive polygenic association of SCZ with
HDL, but no significant associations with LDL and TG. For adi-
pokines, we observed positive associations with leptin (BMI-
adjusted) and an inverse association with adipokine when SCZ
PRS was treated as exposure. Both raised leptin and reduced

Table 1. Polygenic association testing of SCZ with CM traits using summary statistics

Polygenic score analysis LD score

SCZ as target SCZ as base

best_p pval coef FDR best_p pval coef FDR rg p FDR

Adiponectin 0.05 7.87 × 10−2 −4.82 × 10−3 3.97 × 10−1 0.4 1.62 × 10−3 −3.03 × 10−3 6.92 × 10−3 −0.002 0.967 0.968

BMI 0.05 2.82 × 10−12 −6.18 × 10−2 1.67 × 10−11 0.03 1.22 × 10−1 −6.40 × 10−3 1.22 × 10−9 −0.068 0.006 0.157

CAD −0.025 0.375 0.828

DBP 0.03 2.42 × 10−1 2.62 × 10−3 8.56 × 10−1 0.5 1.32 × 10−1 −3.44 × 10−2 5.60 × 10−1

DM −0.033 0.387 0.828

DM-2nd set 0.3 7.74 × 10−2 3.00 × 10−3 3.43 × 10−1 0.5 2.99 × 10−3 2.03 × 10−2 2.13 × 10−2 0.067 0.096 0.705

Fat-percentage 0.2 1.65 × 10−2 4.42 × 10−3 9.52 × 10−2 0.1 1.93 × 10−1 1.65 × 10−3 6.29 × 10−1 −0.016 0.601 0.843

FG 0.05 1.28 × 10−2 1.11 × 10−2 4.67 × 10−2 0.001 1.17 × 10−1 −2.21 × 10−3 3.16 × 10−1 −0.029 0.383 0.828

FG-adjBMI 0.005 7.48 × 10−2 1.53 × 10−2 2.63 × 10−1 0.001 7.85 × 10−2 −2.55 × 10−3 3.57 × 10−1 −0.021 0.537 0.843

HDL 0.2 8.83 × 10−4 1.74 × 10−2 3.36 × 10−3 0.01 7.23 × 10−7 7.26 × 10−3 6.27 × 10−6 0.046 0.165 0.705

INS 0.005 5.50 × 10−3 2.06 × 10−2 5.50 × 10−2 0.03 5.41 × 10−2 −1.65 × 10−3 5.41 × 10−1 0.013 0.789 0.888

INS-adjBMI 0.005 3.64 × 10−2 1.73 × 10−2 3.56 × 10−1 0.03 4.84 × 10−2 −1.44 × 10−3 4.68 × 10−1 0.015 0.783 0.888

LDL 0.1 1.26 × 10−2 −1.33 × 10−2 1.26 × 10−1 0.05 4.73 × 10−2 −2.54 × 10−3 1.81 × 10−1 −0.025 0.442 0.828

Leptin 0.001 6.92 × 10−3 4.09 × 10−2 6.92 × 10−2 0.1 2.86 × 10−2 3.27 × 10−3 1.55 × 10−1 0.069 0.140 0.705

Leptin-adjBMI 0.5 1.95 × 10−2 1.03 × 10−2 1.83 × 10−1 0.005 5.86 × 10−3 4.80 × 10−3 3.28 × 10−2 0.092 0.060 0.705

PAT 0.5 3.55 × 10−2 −3.34 × 10−3 1.25 × 10−1 0.05 4.03 × 10−1 −2.74 × 10−3 8.99 × 10−1 0.053 0.460 0.828

PAT-adjHtWt 0.4 5.42 × 10−1 −9.70 × 10−4 9.47 × 10−1 0.001 1.84 × 10−1 7.88 × 10−3 9.64 × 10−1 0.054 0.352 0.828

SAT 0.03 4.02 × 10−2 −5.11 × 10−3 2.27 × 10−1 0.03 5.84 × 10−3 −7.60 × 10−3 3.72 × 10−2 −0.026 0.596 0.843

SATHU 0.2 2.92 × 10−1 −2.06 × 10−3 8.96 × 10−1 0.5 4.55 × 10−1 −1.89 × 10−3 9.87 × 10−1 −0.210 0.209 0.705

SBP 0.2 9.95 × 10−2 −1.15 × 10−3 6.04 × 10−1 0.01 7.05 × 10−3 −1.59 × 10−1 7.05 × 10−2

TC 0.3 4.27 × 10−2 −9.38 × 10−3 1.99 × 10−1 0.03 2.92 × 10−1 −1.40 × 10−3 8.39 × 10−1 −0.023 0.422 0.828

TG 0.3 8.80 × 10−2 −8.71 × 10−3 3.33 × 10−1 0.001 1.83 × 10−1 2.70 × 10−3 9.76 × 10−1 −0.043 0.142 0.705

VAT 0.001 2.64 × 10−2 1.56 × 10−2 2.64 × 10−1 0.005 3.47 × 10−2 −7.60 × 10−3 3.47 × 10−1 0.005 0.934 0.968

VAT-adjBMI 0.1 1.12 × 10−3 6.50 × 10−3 1.12 × 10−2 0.5 5.50 × 10−3 5.94 × 10−3 3.52 × 10−2 0.027 0.625 0.843

VATHU 0.001 1.08 × 10−2 −2.01 × 10−2 1.08 × 10−1 0.5 2.86 × 10−1 −2.68 × 10−3 7.79 × 10−1 −0.030 0.670 0.862

VATSAT 0.005 2.66 × 10−1 4.58 × 10−3 9.08 × 10−1 0.005 1.39 × 10−1 −5.35 × 10−3 7.29 × 10−1 0.033 0.549 0.843

VATSAT-adjBMI 0.1 5.12 × 10−1 −1.33 × 10−3 8.43 × 10−1 0.005 1.54 × 10−1 −5.15 × 10−3 9.42 × 10−1 0.019 0.744 0.888

WHR 0.5 3.75 × 10−2 1.10 × 10−2 3.43 × 10−1 0.3 2.87 × 10−2 1.95 × 10−3 1.02 × 10−1 −0.032 0.203 0.705

WHR-adjBMI 0.2 1.91 × 10−4 2.11 × 10−2 1.50 × 10−3 0.5 3.91 × 10−5 3.63 × 10−3 1.92 × 10−4 −0.001 0.968 0.968

SCZ was treated as the target phenotype (i.e. dependent variable) on the left block and treated as the base phenotype (i.e. as predictor variable) in the middle block. Best p, best p value
threshold; coef, regression coefficient; rg, genetic correlation.
BMI, body mass index; CAD, coronary artery disease; DM, type 2 diabetes mellitus (sample mainly from Caucasians); DM-2nd set, type 2 diabetes (sample from Japanese); FG, fasting glucose;
FG.adjBMI, fasting glucose adjusted for BMI; INS, fasting insulin; INS.adjBMI, fasting insulin adjusted for BMI; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglycerides; TC,
total cholesterol; WHR, waist-to-hip ratio; WHR.adjBMI, WHR adjusted for BMI; SBP and DBP, systolic blood pressure and diastolic blood pressure; SAT, subcutaneous adipose tissue volume;
VAT, visceral adipose tissue volume; PAT, pericardial fat volume; SATHU, subcutaneous adipose tissue attenuation; VATHU, visceral adipose tissue attenuation; adjHtWt, adjusted for height
and weight.
Results with FDR <0.05 are in bold while suggestive associations (0.05 ⩽ FDR ⩽ 0.1) are italics. PRS analysis was not conducted for CAD and DM due to significant sample overlap. LDSR was
not performed for SBP and DBP as these are exome-based studies.
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adiponectin are associated with heightened CM risks (Han et al.,
2007; Koh et al., 2008). As for measures of central obesity and fat
deposition, positive association with WHR, BMI-adjusted WHR
and BMI-adjusted visceral adiposity were observed. Finally, PRS
of FG and fasting insulin were positively associated with SCZ;
we also found a positive polygenic link of SCZ PRS with DM.

LDSR revealed a significant genetic correlation of lower BMI
with SCZ, although there were no other significant results. The
intercepts from cross-trait LDSR (reflecting sample overlap)
were largely non-significant. While adiponectin showed p < 0.05,
we expect (0.05*26)∼one ‘false-positive’ at α = 0.05.

An earlier study (Bulik-Sullivan et al., 2015) conducted LDSR
on SCZ with 15 of the 28 CM traits included here. While we have
repeated the analyses, the results are generally similar and the
conclusions are the same. The same trait (BMI) achieved signifi-
cant ( p < 0.05) correlation with SCZ. The results from Bulik-
Sullivan et al. (2015) are included in online Supplementary
Table S13 for reference (some differences may be due to, e.g. dif-
ferent versions of the code).

For analyses of the NFBC, the most significant association was
WHR adjusted for BMI (FDR = 0.055; online Supplementary
Table S1). We were unable to replicate other significant results
from analyses using summary statistics, probably owing to a much
smaller sample size of NFBC compared with GWAS meta-analyses.

Results from MR
In the MR analysis (Table 2 and online Supplementary
Table S14), when SCZ was considered as exposure, the most sig-
nificant result was observed for TG. There was evidence of imbal-
anced horizontal pleiotropy, but no evidence of heterogeneity
under MR Egger. The Egger’s method suggested that SCZ may
be causally related to an increase in TG, while the weighted
median approach showed a trend towards significance ( p =
0.077). We observed a nominally significant association with peri-
cardial fat volume by IVW approach, which was stronger after
adjusting for BMI (FDR = 0.288). We did not observe a significant
causal relationship with other CM traits.

When SCZ was regarded as the outcome, there was no evi-
dence of causal relationships for any CM trait, except that insulin
was weakly significant ( p = 0.042).

The full results of MR analysis are presented in online
Supplementary Table S14. It includes results from IVW, weighted
median, weighted mode and MR Egger. Other details, including
F-statistic (reflecting instrument strength), I2 for MR Egger,
SIMEX-corrected Egger regression, SIMEX-corrected pleiotropy
test and heterogeneity test results are also presented.

Results from shared SNP/pathway analysis
The full results of the shared SNPs analyses with tdr11 > 0.5 are
presented in online Supplementary Tables S5 and S7. The top
three genes shared between SCZ/BD and each CM trait are
shown in online Supplementary Table S2. Across all CM traits,
we discovered 15 422 and 2890 shared genetic loci with tdr11 >
0.5 and >0.8, respectively (clumping at R2 = 0.1 with 250-kb win-
dows; online Supplementary Table S11). Selected top pathways
are presented in Table 3, taken from the top 25 most commonly
top-ranked pathways across all traits (with reduced repetitions of
similar pathways). Full results are in online Supplementary
Table S9. If the direction of effect is not considered (Table 3),
the most frequently listed pathway was ‘neuronal system’; other
pathways included insulin secretion, VEGF signaling, aldosterone
synthesis and secretion, statin pathway, epidermal growth factor

receptor (EGFR) signaling, lipoprotein metabolism etc. We
also presented pathways derived from SNPs having the same dir-
ection of associations with CM disorders, given the polygenic
association of SCZ with worse CM risks with regard to several
metabolic parameters. In this case, the most often top-ranked
pathway was antigen processing and presentation (see online
Supplementary Table S9).

BD and CM traits

Results from polygenic score analysis and LDSR
Table 4 shows the polygenic associations of BD with CM traits
using paired summary statistics. Similar to SCZ, we observed an
inverse association with BMI when BD was treated as the expos-
ure or outcome. We also observed a polygenic association of lower
WHR with BD, but the result became non-significant after adjust-
ment by BMI. For lipid traits, we observed polygenic associations
of BD with higher HDL, as well as lower LDL, TC and TG. We
also detected polygenic associations with lower leptin levels and
SBP. All the above results have FDR <0.05.

In LDSR, no genetic correlations achieved FDR<0.1, although
several traits were nominally significant with FDR <0.2. These
included BMI and WHR, which showed negative genetic correla-
tions with BD, consistent with PRS analysis. FG and insulin
showed nominally significant negative genetic correlations with
BD. Interestingly, we observed a marginally significant positive
correlation with DM. The overall direction of genetic correlations
from LD score analysis leaned towards lower CM risks, broadly in
line with PRS analyses. The LDSR intercepts were non-significant
apart from CAD and DM.

Bulik-Sullivan et al. (2015) have conducted LDSR on BD and
15 of the CM traits. However, our analysis is new. It is based on an
expanded GWAS meta-analysis (N = 40 255) (Hou et al., 2016)
instead of the PGC study in 2011 (N = 16 731) (Psychiatric
GWAS Consortium Bipolar Disorder Working Group, 2011). In
the PGC-2011 analysis, no CM traits achieved nominal signifi-
cance, while the present analysis revealed several traits with p <
0.05, possibly due to larger sample size.

As for the analyses of NFBC, we did not observe any results
passing FDR correction (see online Supplementary Table S1).
Nevertheless, for a few traits showing at least p < 0.05 at the opti-
mal p value threshold (including INS, TG and SBP), the directions
of associations were negative, largely in line with the PRS analysis
and LDSR.

Results from MR
In an MR analysis (Table 5 and online Supplementary Table S14),
when BD was treated as the exposure, there was no evidence of a
causal relationship with CM traits. On the other hand, when CM
traits were considered as exposures, we observed a few nominally
significant results, but only BMI and FG (including BMI-adjusted
FG) passed FDR threshold at 0.1; no results had FDR <0.05.
Lower FG appeared to be causally related to BD (IVW: beta =
−4.474, p = 0.0097, FDR = 0.067). Results for SBP and WHR
(BMI-adjusted) were only nominally significant. We did not
observe evidence of heterogeneity or imbalanced horizontal plei-
otropy for the above results.

For BMI, there was evidence of both imbalanced pleiotropy
and heterogeneity (under IVW and Egger). This may reflect the
genetic instruments were measuring different quantities, casting
doubt on the assumption of MR being valid for all genetic var-
iants. MR Egger suggested a nominally significant causal effect,
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however, it was not supported by the weighted median or
weighted mode approaches.

Results from shared SNP/pathway analysis
Full results of shared SNPs analyses are presented in online
Supplementary Tables S6 and S8. Across all CM traits, we
found totally 3115 and 297 shared genetic loci with tdr11 > 0.5
and >0.8, respectively (see online Supplementary Table S11).
Several top pathways (Table 3; see online Supplementary
Table S10) appeared to be related to epigenetic regulation, such
as ‘chromatin modifying enzymes’, ‘HATSs acetylate histones’
and ‘Positive epigenetic regulation of rRNA expression’. Some
other pathways are related to immune system functioning, such
as ‘Antigen processing and presentation’, ‘Phagosome’ and
‘TGF-beta super family signaling’ (Chen and Ten Dijke, 2016).

Discussion

In this study, we have performed a variety of analyses to reveal the
possible shared genetic basis of SCZ and BD with CM traits.
Potential polygenic associations are discussed below.

SCZ and CM traits

Raised cardiovascular morbidity and mortality are well established
in SCZ, yet it is difficult to disentangle the numerous possible
underlying factors, including the side effects of antipsychotics.
Despite increased cardiovascular risks in SCZ patients, surpris-
ingly, we found evidence for an inverse relationship between
PRS of BMI and SCZ. The association was consistent in both
PRS and LDSR analyses. Interestingly, two large-scale studies

Table 2. MR analysis of SCZ with CM traits

SCZ as exposure SCZ as outcome

b se pval FDR b se pval FDR

Adiponectin 0.001 0.013 0.964 0.970 Adiponectin 0.008 0.108 0.941 0.941

BMI −0.019 0.013 0.148 0.691 BMI 0.044 0.111 0.694 0.941

DBP −0.179 0.457 0.696 0.970 DBP 0.007 0.019 0.725 0.941

Fat-percentage −0.002 0.013 0.893 0.970 Fat-percentage 0.207 0.121 0.088 0.475

FG −0.001 0.009 0.877 0.970 FG −0.049 0.116 0.674 0.941

FG-adjBMI 0.000 0.009 0.970 0.970 FG-adjBMI −0.191 0.106 0.071 0.475

HDL 0.023 0.024 0.332 0.970 HDL 0.031 0.041 0.458 0.941

INS 0.004 0.007 0.597 0.970 INS 1.066 0.523 0.042 0.475

INS-adjBMI 0.006 0.007 0.416 0.970 INS-adjBMI 0.131 0.423 0.756 0.941

DM-2nd set −0.062 0.104 0.553 0.970 DM-2nd set −0.009 0.022 0.678 0.941

LDL 0.008 0.013 0.534 0.970 LDL 0.005 0.028 0.871 0.941

Leptin −0.016 0.015 0.304 0.970 PAT −0.029 0.084 0.732 0.941

Leptin-adjBMI −0.005 0.012 0.685 0.970 PAT-adjHtWt −0.059 0.060 0.328 0.941

PAT 0.060 0.030 0.047 0.443 SBP −0.002 0.013 0.902 0.941

PAT-adjHtWt 0.072 0.031 0.021 0.288 TC −0.003 0.031 0.921 0.941

SAT 0.002 0.023 0.925 0.970 TG 0.017 0.043 0.695 0.941

SATHU 0.011 0.029 0.704 0.970 VATSAT 0.264 0.158 0.095 0.475

SBP 0.259 0.605 0.669 0.970 VATSAT-adjBMI 0.163 0.135 0.230 0.920

TC 0.023 0.015 0.114 0.637 WHR −0.008 0.104 0.940 0.941

TGa 0.186 0.048 3.37 × 10−4 0.009 WHR-adjBMI −0.032 0.100 0.752 0.941

VAT −0.015 0.023 0.528 0.970

VAT-adjBMI −0.004 0.023 0.850 0.970

VATHU 0.002 0.030 0.946 0.970

VATSAT −0.005 0.023 0.837 0.970

VATSAT-adjBMI −0.001 0.023 0.956 0.970

WHR 0.007 0.013 0.605 0.970

WHR-adjBMI 0.016 0.014 0.255 0.970

b: coefficient estimate from MR; se, standard error; pval, p-value; FDR, false discovery rate.
aMR results for TG was taken from Egger’s method as there was significant (unbalanced) horizontal pleiotropy ( p = 0.001). Several traits do not have SNPs passing genome-wide significance,
which also overlap with the SCZ GWAS SNPs, and hence are excluded here. Due to sample overlap between CAD and DM (Caucasian sample) with SCZ/BD, these traits are not included in the
MR analysis here. Results with FDR <0.05 are in bold. Results with 0.05 <FDR <0.1 are in italics.
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reported subjects with lower BMI had an increased risk of SCZ
(Sorensen et al., 2006; Zammit et al., 2007). A few studies in
drug-naïve patients also revealed a trend of lower BMI
(Spelman et al., 2007; Padmavati et al., 2010), although some
did not (Ryan et al., 2003; Venkatasubramanian et al., 2007).
The underlying mechanism is unknown, but one hypothesis is
that poor nutritional status, however subtle, may adversely affect
neural development (Zammit et al., 2007) which leads to psych-
otic disorders. We noted that Bulik-Sullivan et al. (2015) have
reported a negative genetic correlation between BMI and SCZ,
but here we provided further support with a different analytic
approach (PRS), and suggested that the association is not causal
but more likely attributable to shared genetic liability.

For other associations discussed below, we observed polygenic
associations at FDR <0.05 (i.e. expected proportion of FP is ∼5%),
but did not find concordant evidence from LDSR. Also in view of

other limitations of the current study (see discussions below), the
findings may be considered more tentative, and further studies are
required to confirm the results. Nevertheless, we believe our find-
ings still provide a useful guide for future investigations, and they
are broadly consistent with previous epidemiology studies.

In this study, we observed tentative polygenic associations of
SCZ with glucose abnormalities, adverse adipokine profiles, cen-
tral obesity and increased visceral adiposity. Notably, multiple
studies have found impaired glucose tolerance or insulin resist-
ance in drug-naïve SCZ patients and their relatives, e.g.
(Pillinger et al., 2017a). Despite the negative genetic correlation
between BMI and SCZ, an opposite trend for WHR was observed.
Several clinical studies, e.g. (Ryan et al., 2004; Sengupta et al.,
2008) also reported increased WHR in drug-free patients. WHR
might predict CM risks independent of BMI (Yusuf et al.,
2005). Raised leptin and reduced adiponectin have also been

Table 3. Selected top pathways derived from SNPs shared between SCZ/BD and CM traits

Pathway Freq AvgRank Present_In

SCZ

Neuronal system 11 40.5 BMI, CAD, DM, HDL, DM-2nd_set, TC, TG, VAT, VAT-adjBMI,
VATSAT-adjBMI, WHR

Insulin secretion – homo sapiens (human) 9 21 DBP, DM, FG, FG-adjBMI, Fat-percentage, HDL, DM-2nd_set, SBP, TG

VEGF 9 37.4 BMI, CAD, LDL, PAT, TC, TG, VAT-adjBMI, WHR, WHR-adjBMI

Aldosterone synthesis and secretion – homo sapiens
(human)

9 42 BMI, CAD, FG, HDL, TC, TG, VAT, WHR, WHR-adjBMI

RXR and RAR heterodimerization with other nuclear
receptor

9 65.6 BMI, CAD, DM, FG-adjBMI, HDL, LDL, TC, TG, WHR-adjBMI

Axon guidance 8 34.8 BMI, CAD, FG, Fat-percentage, Leptin, TG, VATSAT, VATSAT-adjBMI

Statin pathway 7 22.3 BMI, CAD, Fat-percentage, HDL, LDL, TC, TG

Signaling by EGFR 7 51.7 BMI, FG, Fat-percentage, HDL, Leptin, WHR, WHR-adjBMI

Lipoprotein metabolism 6 3.2 CAD, Fat-percentage, HDL, LDL, TC, TG

Proton pump inhibitor pathway, pharmacodynamics 6 29.8 BMI, DBP, DM, FG, SAT, TG

Erythropoietin signaling 6 39.2 LDL, PAT, TC, TG, VAT-adjBMI, WHR-adjBMI

IL-7 signaling 6 42.2 LDL, PAT, TC, TG, VAT-adjBMI, WHR-adjBMI

Brain-derived neurotrophic factor signaling pathway 6 42.3 BMI, CAD, Fat-percentage, HDL, Leptin, WHR

cAMP signaling pathway – homo sapiens (human) 6 48.5 BMI, CAD, FG, HDL, Leptin, WHR

BD

Chromatin modifying enzymes 7 53.1 BMI, HDL, DM-2ndset, LDL, PAT-adjHtWt, TC, TG

Alpha linolenic acid and linoleic acid metabolism 5 53.2 FG, FG-adjBMI, HDL, LDL, TC

Antigen processing and presentation – homo sapiens
(human)

4 12.2 TC, TG, WHR, WHR-adjBMI

Cell adhesion molecules – homo sapiens (human) 4 17 TC, TG, WHR, WHR-adjBMI

Amyloid fiber formation 4 20.5 HDL, DM-2ndset, TC, TG

Histone acetyltransferases (HATs) acetylate histones 4 22.8 HDL, DM-2ndset, TC, TG

ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA
expression

4 23.5 HDL, DM-2ndset, TC, TG

TGF-beta super family signaling pathway canonical 4 27.5 CAD, LDL, SAT, TC

Phagosome – homo sapiens (human) 4 28.5 TC, TG, WHR, WHR-adjBMI

Positive epigenetic regulation of rRNA expression 4 29.5 HDL, DM-2ndset, TC, TG

Freq, frequency of being top listed across all CM traits; AvgRank, average rank of pathway if top listed.
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reported in clinical studies of SCZ patients (Bartoli et al., 2015;
Stubbs et al., 2016) (online Supplementary Text S1).

As for lipid traits, our results were generally consistent with a
recent meta-analysis (Pillinger et al., 2017b) on lipid profiles,
which reported higher TG but favorable cholesterol profiles
among first-episode psychosis patients, although they did not
reveal changes in HDL observed in this study.

In general, we did not find evidence for a causal relationship
between SCZ and CM traits, with the exception of TG. This sug-
gests that SCZ per se may not directly cause changes in CM traits;
the associations of SCZ with CM abnormalities are more likely
due to shared genetic liability or environmental risk factors. In
other words, similar risk factors may influence the risks of both
SCZ and CM disorders together, but through different pathways.

BD and CM traits

For BD, we also found potential polygenic associations (at FDR
<5%) with several CM traits. However, for many traits, we did
not observe concordant results using LDSR, except for BMI and
WHR. Also, as the relationships between BD and CM traits are
less well-studied than SCZ, the supporting clinical evidence is
generally weaker. On top of other limitations of this study, we
caution that the results should be considered tentative rather
than confirmatory, but we believe they are still valuable in adding
knowledge to this under-researched area.

Similar to SCZ, we also observed an inverse genetic relation-
ship between BMI and BD. One previous clinical study reported
an increased prevalence of overweight in BD (Maina et al.,

Table 4. Polygenic association testing of BD with CM traits using summary statistics

BD as target BD as base LD score

best_p pval coef FDR best_p pval coef FDR rg p FDR

Adiponectin 0.005 1.05 × 10−1 −1.78 × 10−2 3.90 × 10−1 0.2 5.92 × 10−2 −1.01 × 10−3 2.16 × 10−1 −0.026 0.741 0.770

BMI 0.2 3.54 × 10−11 −9.23 × 10−2 3.54 × 10−1 0.2 7.30 × 10−6 −1.96 × 10−3 3.47 × 10−5 −0.094 0.014 0.127

CAD 0.017 0.652 0.765

DBP 0.4 6.36 × 10−1 −5.01 × 10−4 8.78 × 10−1 0.2 4.00 × 10−2 −2.82 × 10−2 4.00 × 10−1

DM 0.112 0.043 0.151

DM-2nd set 0.4 3.06 × 10−2 −7.63 × 10−3 1.61 × 10−1 0.5 2.40 × 10−2 −7.34 × 10−3 1.41 × 10−1 −0.053 0.415 0.717

Fat-percentage 0.001 1.50 × 10−2 −2.60 × 10−2 1.50 × 10−1 0.3 5.99 × 10−3 −1.68 × 10−3 2.66 × 10−2 −0.076 0.147 0.362

FG 0.001 4.14 × 10−2 −6.00 × 10−2 4.14 × 10−1 0.005 5.59 × 10−2 −1.55 × 10−3 5.59 × 10−1 −0.121 0.044 0.151

FG-adjBMI 0.005 1.04 × 10−1 −2.87 × 10−2 7.08 × 10−1 0.005 1.52 × 10−2 −2.02 × 10−3 1.28 × 10−1 −0.140 0.015 0.127

HDL 0.03 2.51 × 10−6 7.64 × 10−2 2.51 × 10−5 0.3 2.01 × 10−9 3.22 × 10−3 2.01 × 10−8 0.091 0.084 0.226

INS 0.005 2.16 × 10−2 3.62 × 10−2 2.16 × 10−1 0.2 3.17 × 10−2 −8.07 × 10−4 1.16 × 10−1 −0.152 0.039 0.151

INS-adjBMI 0.3 2.95 × 10−2 −1.63 × 10−2 1.03 × 10−1 0.01 2.49 × 10−2 −1.31 × 10−3 1.20 × 10−1 −0.155 0.019 0.127

LDL 0.4 8.94 × 10−5 −3.74 × 10−2 5.41 × 10−4 0.3 5.49 × 10−3 −1.62 × 10−3 2.53 × 10−2 −0.020 0.708 0.765

Leptin 0.03 1.37 × 10−2 −3.51 × 10−2 1.37 × 10−1 0.05 3.94 × 10−3 −2.11 × 10−3 2.24 × 10−2 −0.047 0.540 0.717

Leptin-adjBMI 0.03 3.13 × 10−2 −2.38 × 10−2 1.08 × 10−1 0.5 1.50 × 10−3 −2.24 × 10−3 6.43 × 10−3 −0.032 0.685 0.765

PAT 0.01 5.62 × 10−2 1.27 × 10−2 3.38 × 10−1 0.01 2.19 × 10−1 −3.40 × 10−3 9.86 × 10−1 0.102 0.364 0.717

PAT-adjHtWt 0.005 1.63 × 10−1 −1.11 × 10−2 4.87 × 10−1 0.01 3.31 × 10−1 −2.70 × 10−3 9.96 × 10−1 0.056 0.553 0.717

SAT 0.05 2.22 × 10−1 5.90 × 10−3 7.71 × 10−1 0.005 4.15 × 10−1 −2.17 × 10−3 9.99 × 10−1 0.018 0.799 0.799

SATHU 0.01 2.46 × 10−1 −9.03 × 10−3 9.35 × 10−1 0.001 4.72 × 10−2 1.04 × 10−2 2.98 × 10−1 −0.130 0.395 0.717

SBP 0.5 4.06 × 10−1 −7.15 × 10−4 9.41 × 10−1 0.2 8.63 × 10−5 −8.72 × 10−2 8.63 × 10−4

TC 0.3 1.02 × 10−2 −2.53 × 10−2 3.27 × 10−2 0.05 1.83 × 10−2 −1.74 × 10−3 1.83 × 10−1 −0.108 0.045 0.151

TG 0.4 8.53 × 10−3 −2.79 × 10−2 3.96 × 10−2 0.05 2.47 × 10−4 −2.50 × 10−3 2.33 × 10−3 −0.029 0.554 0.717

VAT 0.5 1.03 × 10−1 −6.22 × 10−3 3.44 × 10−1 0.2 2.38 × 10−1 −1.40 × 10−3 7.38 × 10−1 −0.048 0.551 0.717

VAT-adjBMI 0.001 2.33 × 10−2 −3.38 × 10−2 2.33 × 10−1 0.2 6.04 × 10−2 −2.23 × 10−3 2.72 × 10−1 −0.084 0.285 0.641

VATHU 0.5 3.44 × 10−1 3.72 × 10−3 9.39 × 10−1 0.2 3.58 × 10−1 1.27 × 10−3 8.33 × 10−1 0.081 0.431 0.717

VATSAT 0.5 1.55 × 10−1 −5.38 × 10−3 5.14 × 10−1 0.5 1.13 × 10−1 −1.76 × 10−3 3.30 × 10−1 −0.034 0.672 0.765

VATSAT-adjBMI 0.5 2.48 × 10−2 −8.48 × 10−3 1.60 × 10−1 0.5 1.11 × 10−1 −1.77 × 10−3 3.94 × 10−1 −0.048 0.558 0.717

WHR 0.001 6.34 × 10−4 −1.64 × 10−1 6.34 × 10−3 0.001 2.72 × 10−3 −5.28 × 10−3 2.21 × 10−2 −0.113 0.005 0.127

WHR-adjBMI 0.005 5.49 × 10−2 −5.82 × 10−2 4.32 × 10−1 0.001 1.63 × 10−1 −2.48 × 10−3 7.93 × 10−1 −0.078 0.068 0.205

BD was treated as the target phenotype (i.e. dependent variable) on the left block and treated as the base phenotype (i.e. as predictor variable) in the middle block. Best p, best p value
threshold; coef, regression coefficient. Please refer to the legends of Table 1 for other abbreviations. PRS analysis was not conducted for CAD and DM due to significant sample overlap. LDSR
was not performed for SBP and DBP as these are exome-based studies.

Psychological Medicine 1293

https://doi.org/10.1017/S0033291718001812 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718001812


2008), but it has several limitations (see online Supplementary
Text S1). We observed an inverse genetic relationship between
BD and LDL, TC and TG. This result could be confounded by
BMI, although studies have found a lower cholesterol level in
bipolar patients (Gabriel, 2007; Sagud et al., 2007). There is also
evidence of a correlation between low cholesterol levels and sui-
cide risks (Lester, 2002). Overall, we observed tentative polygenic
associations of BD with favorable metabolic parameters, suggest-
ing that other secondary risk factors (e.g. medications) may play a
larger part than the disorder itself in affecting cardiovascular risks
(see online Supplementary Text S1).

As for MR analysis, again the results were largely negative.
When BD was considered as the outcome, lower FG appeared
to be causally linked to BD. The underlying mechanisms remain
elusive, but interestingly a recent study reported greater mood
lability being associated with lower fasting glucose levels (Gupta
et al., 2016). However, yet another small-scale study revealed
more glucose abnormalities in drug-naive bipolar patients
(Guha et al., 2014). Further studies are required to elucidate the
exact relationship.

Clinical implications

We highlight the potential clinical relevance here, but we caution
that the link between the disorders requires further validation in
clinical studies.

Our findings suggest that increased awareness and better mon-
itoring of CM risks in psychosis patients may be warranted, espe-
cially for SCZ. Taken together, we found tentative polygenic
associations with adverse glucose and adipokine profiles, central
obesity and increased visceral adiposity in SCZ. These findings
are grossly consistent with epidemiological studies. If our findings
are validated, this would suggest proper management of CM risk
factors may be required from the disease onset, and even in patients
taking drugs with less metabolic side effects. Also, the measure-
ment of WHR (instead of BMI alone) may be useful in screening
for metabolic risks, due to its close association with visceral adipos-
ity. Moreover, adipokines such as leptin and adiponectin may
warrant further investigations as biomarkers for CV risks in SCZ.

On the other hand, there was preliminary evidence of associa-
tions with favorable cholesterol profiles in SCZ and BD, and an

Table 5. MR analysis of BD with CM traits

BD as exposure BD as outcome

b se pval FDR b se pval FDR

Adiponectin 0.015 0.013 0.252 0.913 Adiponectin −0.115 0.164 0.483 0.610

BMI 0.007 0.023 0.748 0.913 BMIa,b 0.984 0.374 0.010 0.067

Fat-percentage 0.019 0.024 0.410 0.913 DBP 0.044 0.023 0.054 0.148

FG −0.004 0.009 0.638 0.913 Fat-percentage 0.479 0.253 0.059 0.148

FG-adjBMI −0.007 0.009 0.454 0.913 FG −0.474 0.183 0.010 0.067

HDL 0.009 0.016 0.585 0.913 FG-adjBMI −0.505 0.174 0.004 0.067

INS −0.003 0.009 0.745 0.913 HDL 0.071 0.064 0.266 0.443

INS-adjBMI −0.009 0.008 0.257 0.913 INS −0.997 0.733 0.174 0.316

LDL −0.017 0.018 0.367 0.913 INS-adjBMI −0.572 0.597 0.338 0.520

Leptin −0.004 0.030 0.902 0.980 DM-2nd set −0.051 0.034 0.133 0.266

Leptin-adjBMI 0.000 0.026 0.994 0.994 LDL −0.001 0.057 0.980 0.980

PAT −0.010 0.039 0.789 0.913 PAT −0.065 0.174 0.710 0.747

PAT-adjHtWt −0.028 0.039 0.476 0.913 PAT-adjHtWt −0.077 0.127 0.542 0.610

SAT 0.036 0.030 0.232 0.913 SBP 0.024 0.010 0.021 0.105

SATHU −0.020 0.053 0.713 0.913 TCa 0.006 0.061 0.127 0.266

TC −0.020 0.018 0.264 0.913 TG −0.046 0.077 0.549 0.610

TG −0.008 0.016 0.607 0.913 VATSAT 0.195 0.244 0.424 0.606

VAT 0.019 0.040 0.635 0.913 VATSAT-adjBMI 0.127 0.198 0.522 0.610

VAT-adjBMI 0.002 0.042 0.963 0.994 WHR −0.362 0.191 0.059 0.148

VATHU −0.012 0.048 0.803 0.913 WHR-adjBMI −0.287 0.140 0.041 0.148

VATSAT −0.017 0.044 0.707 0.913

VATSAT-adjBMI −0.021 0.042 0.616 0.913

WHR −0.008 0.013 0.546 0.913

WHR-adjBMI −0.007 0.013 0.611 0.913

Results with FDR <0.05 are in bold. Results with 0.05 < FDR < 0.1 are in italics.
aMR results taken from Egger’s method as (unbalanced) horizontal pleiotropy was significant.
bSignificant heterogeneity ( p = 0.0217).
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overall favorable CM profile in BD patients. These results suggest
that hypercholesterolemia in SCZ and many CM abnormalities in
BD may be secondary (and hence more readily modifiable)
instead of being related to the underlying pathophysiology of
SCZ/BD.

Shared pathways of SCZ/BD with CM traits

We highlight a few pathways here (see Supplementary Text S1 for
further discussions). For example, it is interesting to note that
pathways associated with immune functioning (e.g. antigen pro-
cessing, complement pathways) were ranked highly among a
number of CM traits. Notably, immune system dysfunction has
been implicated in SCZ and BD (Mondelli et al., 2015) as well
as CM abnormalities (Fernandez-Ruiz, 2016). Recent studies
have suggested that chronic inflammation may be an important
mediator linking metabolic abnormalities and severe mental ill-
nesses (Henderson et al., 2015). For example, elevations of
pro-inflammatory cytokines such as tumor necrosis factor-alpha
and interleukin-6 have been observed both in patients with psych-
osis and MetS. Chronic systemic inflammation may be coupled
with microglia activation in the brain, which may disturb neur-
onal functions (Henderson et al., 2015).

Lipid metabolism and the statin pathway were ranked among
the top. Statins lower the risk of CAD (Taylor et al., 2013), yet
it has also been investigated as an adjunctive therapy for SCZ
due to its anti-inflammatory properties (Vincenzi et al., 2014).
Another top-listed pathway was EGFR-1 signaling pathway,
which was implicated not only in cardiovascular abnormalities
(Makki et al., 2013), but also brain functioning and pathology
of SCZ (Iwakura and Nawa, 2013).

Study limitations

There are a few limitations to our study. Most studies were per-
formed in Caucasians, and it is worthwhile to extend to other eth-
nic groups. For analyses using paired summary results, we were
unable to control for other clinical factors, for instance adjusting
for WHR/BMI when studying lipid traits. Further clinical studies
of metabolic abnormalities in SCZ and bipolar patients (ideally
longitudinal ones), coupled with genetic testing, will be useful
in providing more solid evidence of shared genetic susceptibilities.
As alluded to earlier, LDSR and PRS each have its strengths and
limitations (see online Supplementary Text S1). In addition, both
methods, as well as MR, assume linearity of SNP effects. Also,
SCZ and BD are likely to be heterogeneous disorders, and the
association with CM abnormalities may differ within different
patient subgroups.

While we have discussed a few shared pathways, further experi-
mental studies are required to elucidate the exact mechanisms
involved. Interestingly, we did not find uniformly increased poly-
genic risks of all metabolic abnormalities in SCZ and BD. Further
investigations into the complex links between CM risk factors and
SCZ and BD might shed light on new therapeutic measures for
both types of disorders.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718001812 and at https://drive.
google.com/open?id=1ISsvv90qXzCBFodekfGonTxuvU9h-9ZQ.
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