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A new scaling parameter is developed for the circulation shed by a rigid, rectangular
panel pitching periodically about its leading edge. This parameter is the product of
a kinematic and a geometric component. The kinematic component describes the
relationship between the mean vorticity flux from the panel surface and the panel
motion. The geometric component depends on the ratio of pitching amplitude to the
span of the panel. The kinematic component is developed based on the connection
between the surface pressure distribution and the resulting surface vorticity flux, which
are supported in a stroke-averaged sense by pressure measurements on the surface of
the panel. The parameter gives a robust scaling for the total spanwise circulation shed
in a half-cycle by the panel. It provides a useful predictive tool, in that it can be either
complementary to the formation number or provide an alternative scaling parameter
when vortex saturation and pinch-off do not occur.
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1. Introduction
It is well known that a wing or fin oscillating in a pitching and/or heaving

motion can produce a thrust force on the body (Koochesfahani 1989; Anderson et al.
1998). Bodies of high aspect ratio will generate a nominally two-dimensional reverse
von Kármán street under conditions of efficient thrust production (Triantafyllou,
Triantafyllou & Yue 2000) and low-aspect-ratio bodies will generate a highly three-
dimensional wake (Dong, Mittal & Najjar 2006; Buchholz & Smits 2006, 2008;
Borazjani & Sotiropoulos 2010). Wake dynamics can impact the thrust performance
of oscillating foils, and reflect the forcing history of the body (Young & Lai 2007).
Therefore, qualitative and quantitative descriptions of the wakes shed by oscillating
wings can provide insight into the physical mechanisms of force generation, which can
then lead to improved models for the design of biomimetic propulsors for underwater
vehicles and fish habitat structures, and also provide a useful characterization of the
local environment experienced by agents swimming or flying in groups.

Here we examine the spanwise circulation shed by a rectangular panel pitching
about its leading edge. Buchholz & Smits (2008) demonstrated that the vortex
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FIGURE 1. (a) The fairing and panel assembly. (b) Orientation in the water channel and
coordinate system definition. These images appear in Buchholz & Smits (2008).

topology of the wake is robust with respect to Reynolds number, Strouhal number,
and geometric parameter variations, and that it bears a striking resemblance to a
broad range of low-aspect-ratio unsteady wakes. This qualitative generality of the wake
suggests that a similarity parameter for wake circulation may also exist. If such a
parameter can be found and generalized to other geometries and kinematics, it will
provide an important tool for the prediction of force augmentation by vortex shedding,
and elucidate quantitative aspects of the wakes of unsteady wings and fins. We propose
such a parameter, composed of the product of a non-dimensional circulation and a
geometric scaling. This new parameter has a nearly constant value for low-aspect-ratio
panels with varying Strouhal number, aspect ratio, and pitching amplitude. The physics
of parameter variation are discussed, and its application is considered in the context of
vortex formation number.

2. Experimental methods
This investigation extends the work of Buchholz & Smits (2006, 2008) and Green

& Smits (2008), where further details of the experiments may be found. Experiments
were conducted in a water channel of width 0.46 m, depth 0.29 m and length 2.44 m
with flow conditioning consisting of a 5:1 contraction, honeycomb flow straightener
and screens. The experimental setup in the water channel is shown in figure 1(b),
which also defines the coordinate system. Three rigid rectangular panel propulsors
were investigated with aspect ratios AR = S/C = 0.54, 0.83 and 2.38 (where S is the
panel span and C = 120 mm is the chord). The highest aspect ratio may be considered
a quasi-two-dimensional case since it spanned the depth of the water channel to within
5 mm of the bottom and top surfaces (an acrylic plate was placed on the water surface
to prevent free surface effects that could affect the flow dynamics and visualization).
Each panel was pitched about its leading edge by a pitching shaft located near the
trailing edge of a stationary, modified NACA 0012-64 aerofoil, as shown in figure 1(a).
The Reynolds numbers based on the chord length C of the panel ReC = U∞C/ν were
of O(104), where U∞ is the free-stream velocity and ν is the kinematic viscosity of
the fluid. The Strouhal number was varied by modifying the free-stream velocity while
keeping the pitching frequency constant. Here, the Strouhal number is St = fA/U∞,
where f is the pitching frequency, and A is the peak-to-peak pitching amplitude of
the trailing edge. The combinations of panel aspect ratio, and pitching amplitude are
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Designation S (mm) C (mm) A (mm) AR= S/C A/S

P1A2 65 120 20 0.54 0.31
P1A3.1 65 120 31 0.54 0.48
P1A4 65 120 40 0.54 0.62
P2A2 100 120 20 0.83 0.20
P2A3.1 100 120 31 0.83 0.31
P4A3.1 286 120 31 2.38 0.11

TABLE 1. Summary of panel aspect ratio and pitching amplitude combinations, and case
designations. Cases are named according to panel number and pitching amplitude. For
example, P1A2 is panel 1 pitched with a peak-to-peak trailing edge amplitude of 20 mm.

summarized in table 1, where panel numbers (P1, P2, P4) are chosen to conform with
the notation used by Buchholz & Smits (2008).

The flow field was interrogated using digital particle image velocimetry (DPIV)
on the horizontal symmetry plane of each panel. Details of the DPIV system
and its application are given by Buchholz & Smits (2008). Two-dimensional, two-
component velocity fields were computed by conducting local spatial cross-correlations
on corresponding 64 × 64 and 32 × 32 pixel windows with 50 % overlap, to produce
128 × 128 = 16384 vectors. Phase averaging was achieved by using a rotary encoder
mounted to the pitching shaft to trigger data acquisition at the desired panel position.
Phase-averaged vorticity distributions presented here are generated from 30 velocity
fields unless otherwise noted.

Surface pressure distributions on the panel were measured at discrete chordwise
positions on the symmetry line of the panel using a Validyne DP-15 differential
pressure transducer with one port connected to a pressure port on the panel
surface and the other port open to the atmosphere. Green & Smits (2008) provide
further details. All pressure measurements reported here are relative to a baseline
measurement with no flow in the water channel and no motion of the panel (that is,
hydrostatic pressure), and they were phase-averaged over (typically) 28 cycles.

3. Results
Spanwise vorticity fields, derived from DPIV measurements on the symmetry plane,

were used to make qualitative observations of wake patterns, and to compute the
circulation of spanwise vorticity shed from the trailing edge.

3.1. Wake circulation

At ReC = O(104), spanwise vorticity was shed from the trailing edge in the form of
a discrete vortex structure often followed by a more elongated structure (shear-layer-
like), or a train of discrete vortices resulting (presumably) from a Kelvin–Helmholtz-
like instability. For the low-aspect-ratio panels, the wake bifurcated to produce two
streams of transversely oriented, counter-rotating vortex pairs, as shown in figures 2(a)
and 2(b). For the high-aspect-ratio panel, a reverse von Kármán street was observed
(figure 2c).

The circulation Γ shed in one stroke (one half-cycle) of period T is defined from
phase-averaged realizations at t/T = 0 such that the panel is parallel to the free stream
and the trailing edge is moving in the positive y-direction. The vorticity shed in the
previous half-cycle is considered because it is detached from the panel but it has not
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FIGURE 2. Vorticity contours in the wake of pitching panels. (a) AR = 0.54, A/S = 0.31,
St = 0.17, ReC = 28, 200; (b) AR = 0.54, A/S = 0.48, St = 0.27, ReC = 27, 600; (c) AR =
2.38, A/S= 0.11, St = 0.36, ReC = 7, 200. Contour values are ± n2 s−1, n= 2, 3, 4, . . . , 10.
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FIGURE 3. Wake circulation values: (a) raw dimensional data; (b) non-dimensionalized
according to (3.3); (c) non-dimensionalized according to (3.5) with β = 7; (d) non-
dimensionalized according to (3.5) with β = 2.

had time to significantly diffuse and be annihilated through interactions with adjacent
structures. Figure 2(a) shows a box surrounding a representative structure of interest.
The circulation is calculated by numerical quadrature of the vorticity distribution above
a vorticity threshold of 1 s−1, as in Buchholz & Smits (2008). The result was found to
be insensitive to the threshold, and the uncertainty in the circulation measurements is
estimated to be approximately 5 %.

Figure 3(a) shows dimensional circulation values for the cases summarized in
table 1 as a function of Strouhal number. Because the Strouhal number is varied by
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changing the free-stream velocity, figure 3(a) shows that the circulation is insensitive
to free-stream velocity within the investigated parameter range, and thus depends
primarily on the panel geometry and kinematics. The low-aspect-ratio panels with
small pitching amplitude (P1A2, P2A2) have lower circulation values than those with
higher pitching amplitude (P1A3.1, P2A3.1). The circulation values of the high-aspect-
ratio panel (P4A3.1) are similar to those of the low-aspect-ratio, low-amplitude panels.
In the following discussion, we will consider the scaling of all these data, although we
will focus primarily on the performance of panels P1 and P2.

3.2. Kinematic scaling of circulation
Physical constraints exist that can help guide the development of a similarity parameter
to scale the circulation data. For periodic oscillation, for example, the circulation
shed in one oscillation cycle must equal the net circulation generated in that same
period. Thus, in accordance with Kelvin’s circulation theorem, a change in the bound
circulation must result in the shedding of vorticity of equal strength and opposite sign.
This suggests an unsteady aerodynamic model for the circulatory lift (see, for example,
Theodorsen 1935). Alternatively, we may consider the flux of vorticity from the panel.
A streamwise pressure gradient along a viscous wall will result in a flux of spanwise
vorticity at the surface with magnitude given by (Lighthill 1963)

−ν ∂ωz

∂y
=−ν ∂

∂y

(
∂v

∂x
− ∂u

∂y

)
≈ ν

(
∂2u

∂y2

)
= ν∇2u= 1

ρ

∂p

∂x
. (3.1)

Wu & Wu (1993, 1996) extended this work to arbitrarily moving boundaries:

−ν(n ·∇ω)=−n× ∇p

ρ
− n× a+ (n× τw) ·K + n{n · (∇ × τw)}, (3.2)

where n is the wall normal vector, a is the acceleration of the boundary, τw is the
wall shear stress, and K is the wall curvature. Panel kinematics dictate that n × a ≈ 0
everywhere on the panel surface, and since there is no surface curvature the second
and third terms on the right side of (3.2) vanish. The fourth term on the right describes
the introduction of wall-normal vorticity by rotation of vorticity initially parallel to the
boundary, and because we are only concerned with spanwise vorticity this term is not
relevant. Hence, pressure gradients are expected to be the dominant source of spanwise
vorticity on the surface of the panel.

Given the insensitivity of circulation to free-stream velocity, the aggregate
streamwise pressure gradients on the panel may also be insensitive to free-stream
velocity and depend primarily on panel geometry and kinematics. A kinematic scaling
may therefore be based on the dynamic pressure associated with the maximum
transverse velocity of the panel, proportional to fA for small angles. The resulting
vorticity flux occurs over a time proportional to the period of motion 1/f , so that we
arrive at a non-dimensional circulation given by

Γ ∗PG =
Γ

(fA)2 1
f

= Γ

fA2
. (3.3)

The dimensionless circulation data are significantly compressed compared with the
dimensional data, as shown in figure 3(b). The effectiveness of the parameter can
be quantified by considering the normalized standard deviation of the circulation
σΓ = σΓ /Γ . For the dimensional data of figure 3(a), the low-aspect-ratio panels (P1
and P2) yield σΓ = 0.38, whereas σΓ = 0.15 after scaling the data according to (3.3).
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3.3. Geometrical considerations
The failure of (3.3) to fully collapse the circulation data might be expected since
the scaling addresses only kinematics, and not geometry. Figure 3(b) reveals a
distinct inverse relationship between the non-dimensional circulation and the ratio
A/S reported in table 1. Buchholz & Smits (2008) showed that the quantity A/S
was an important parameter governing the propulsive efficiency and suggested that it
is essentially an aspect ratio of the wake such that, for small A/S, two-dimensional
interactions between spanwise vortices dominate, whereas for larger A/S self-induction
of individual structures becomes more important to wake dynamics. Green & Smits
(2008) further elucidated the role of A/S based on pressure measurements on panels of
two different aspect ratios. In particular, they developed a similarity parameter for the
pressure coefficient given by

CP
∗ = CP

(
1+ βA

S

)
, (3.4)

where CP is the coefficient of pressure such that CP = 1p/(1/2)ρU2, 1p is the
peak-to-peak amplitude of the pressure variation, and β = 7. They found this scaling to
also collapse the thrust coefficient data of Buchholz & Smits (2008).

Expressing (3.3) in the form of (3.4) yields

Γ ∗GS = Γ ∗PG

(
1+ βA

S

)
. (3.5)

Figure 3(c) demonstrates that this scaling is highly effective in collapsing the low-
aspect-ratio data (σΓ = 0.070, and the mean value Γ ∗GS = 58.0), although the high-
aspect-ratio values are distinct from those of the low-aspect-ratio panels. However, by
putting β = 2 in (3.5), the scaling also collapses the panel P4 data, as figure 3(d)
shows. In this case, σΓ = 0.046, which is within the experimental error. It should
be noted that several other scaling parameters were tested, including a kinematic
parameter based on the bound circulation variation predicted by Theodorsen’s theory
(Theodorsen 1935), a formation number proposed by Dabiri (2009) and other plausible
variable combinations. These parameters were all found to be less effective in
collapsing the circulation data than (3.5). The relation between (3.5) and Dabiri’s
formation number formulation is further discussed in § 4.3.

4. Discussion
Here, we explore the physical basis for (3.5) and provide further evidence of its

robustness. The parameter is then discussed in the context of vortex formation number.

4.1. Physical basis for the circulation scaling
In §§ 3.2 and 3.3 it was shown that the circulation is insensitive to free-stream velocity,
and therefore depends primarily on the kinematics and geometry of the panel. Similar
measurements at ReC = 640 (not shown), where St is modified by varying pitching
frequency while keeping the free-stream velocity constant, reveal an almost linear
relationship between circulation and Strouhal number. Applying (3.5) to these low-
Reynolds-number data yields a similar collapse as shown in figure 3(c), but with a
mean value of about 35 instead of 58. The difference is attributed to the viscous nature
of the low-Reynolds-number flow in which the boundary layer thickness is comparable
to the peak-to-peak amplitude of the trailing edge. We anticipate that other factors will
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FIGURE 4. (a) Phase-averaged pressure variation over one cycle for AR = 0.54, A/S = 0.31
and St = 0.27 at varying chordwise measurement locations; (b) streamwise pressure gradient
on the symmetry plane (St = 0.27).

change the value of the parameter, such as planform and cross-sectional shape, and the
nature of the motion (e.g. pitch versus plunge).

The assumptions regarding pressure and pressure gradient on which (3.5) is based
can be more rigorously assessed by considering the spatial and temporal variations
in the surface pressure. Figure 4 shows the experimental data for case P1A2, where
the measurements were acquired while the panel is advancing for 0 < t/T < 0.25
and 0.75 < t/T < 1. Figure 4(a) clearly shows that the amplitude of the pressure
fluctuation increases toward the trailing edge of the panel for configuration P1A2
and so, locally, the assumed dependence of pressure on (fA)2 is supported. However,
whereas pressure was assumed to be driven by the transverse velocity, the pressure
maxima occur at the extrema of the motion. This suggests that the pressure distribution
is primarily an inertial response. According to ideal unsteady aerodynamic theory
(Theodorsen 1935), forces governed by these inertial effects do not contribute to
the bound circulation. Since flow separation causes significant deviation from the
ideal flow assumptions on which the theory is based, it is difficult to separate
non-circulatory forces, conceptually and quantitatively, from the circulatory forces.
Nevertheless, the data suggest a strong inertial effect.

The pressure gradient dp/dx was estimated at each time step using central
differences at the mid-points between five pressure ports positioned on the panel
symmetry line between x/c = 0.375 and 0.875 (see Green & Smits 2008 for details
of the geometry and measurements). Surprisingly, at all three Strouhal numbers
considered, the magnitude of the streamwise pressure gradient exhibits a consistent
and significant variation, with chordwise position revealing maxima in |dp/dx| at
x/c ≈ 0.56 for t/T = 0.2, 0.4 and 0.8 and minima at x/c ≈ 0.69, as shown in
figure 4(b). The pressure gradient distribution is reasonably robust as the panel
advances, indicating that most of the spanwise vorticity is generated in a localized
chordwise region. However, for t/T = 0.6 and 1.0, when the transverse velocity is
large, the magnitude of dp/dx is much smaller and deviates from the distributions
seen more frequently near the extrema of the transverse displacement. There does
not appear to be a direct relationship between instantaneous transverse velocity
and vorticity flux, even though the kinematic scaling of (3.3) suggests a primary
dependence on the panel transverse velocity. We will now show, however, that when
we consider the vorticity flux due to pressure gradient integrated in space and time, we
find the required support for the proposed scaling.
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P1A2 (DPIV) P1A2 (4.1) P1A4 (4.1)
St Γ St Γ St Γ

0.18 0.0150 0.17 0.0163
0.28 0.0156 0.27 0.0166 0.27 0.0365
0.47 0.0138 0.44 0.0171 0.44 0.0400
Mean 0.0148 0.0167 0.0383

TABLE 2. Comparison of wake circulation Γ (m2 s−1) between measured values and
values calculated according to (4.1) in one half-cycle. The flow cases are given in table 1.
Note that there are slight differences in Strouhal number between the DPIV and pressure
measurements.

4.2. Pressure distribution and vorticity flux

On the symmetry plane, (3.1) can be integrated over one half-cycle to predict the
circulation shed in that stroke. Due to the symmetry of the motion, the integration may
instead be evaluated on one side of the panel for the complete cycle,

Γ = − 1
ρ

∫ T/2

0

∫ C

0

∂p

∂x
dx dt

∣∣∣∣
1

− 1
ρ

∫ T/2

0

∫ C

0

∂p

∂x
dx dt

∣∣∣∣
2

≈ 1
ρ

∫ T

0

∫ C

0

∣∣∣∣∂p

∂x

∣∣∣∣ dx dt, (4.1)

where we assume a pressure gradient of constant sign during a single stroke, and the
subscripts 1 and 2 distinguish the sides of the panel. Since the panel is instrumented
between x/c = 0.375 and 0.875, the integration is conducted only over this spatial
extent.

Evaluating (4.1) discretely with 1t/T = 0.02 for case P1A2 yields the circulation
values shown in the middle column of table 2 for one half-cycle. The pertinent
beginning and end points of the half-cycle are defined by the change in sign of the
vorticity shed into the wake. Since the time integration in (4.1) is conducted over a
whole cycle, this distinction is not relevant for the pressure data. The mean circulation
values computed by integration of the pressure gradients are within approximately
12 % of the DPIV measurements given in the first column. This is not necessarily
expected since the computed circulations are based on measurements over only half of
the panel chord. Figure 4(b), however, indicates that |dp/dx| is generally decreasing at
the most upstream measurement, so it is likely that it would be small further upstream
where the displacements are small. It is also plausible that the pressure gradient
upstream of this point is balanced by a pressure gradient of opposite sign near the
trailing edge in order to relieve the pressure acting on the panel, as discussed in Green
& Smits (2008). As to the dependence on Strouhal number, the DPIV data and the
circulation values computed using pressure gradients are nearly invariant with Strouhal
number: the maximum deviation from the mean is 2.4 and 6.8 % for the pressure- and
DPIV-based measurements, respectively. Table 2 also lists circulation values computed
from the pressure data for configuration P1A4, in which the frequency is the same
as P1A2 and the amplitude is doubled so that the resulting circulation values would
be expected to increase by a factor of approximately 2.37 according to (3.5). The
ratio of circulation for P1A4 to P1A2 derived from pressure gradients using (4.1)
is approximately 2.29, validating the scaling for values of A/S that are larger than
previously considered.
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A
B

FIGURE 5. Vortex skeleton model proposed by Buchholz & Smits (2008), highlighting two
adjacent, like-signed vortices shed from the trailing edge.

4.3. Relation to vortex formation number and vortex topology

The formation number n of a piston-formed vortex ring is defined by n= Ut/D, where
U is the piston velocity, t is dimensional time, and D is piston diameter (Gharib,
Rambod & Shariff 1998). It is a dimensionless parameter governing pinch off of
the vortex ring such that beyond n ≈ 4 no additional vorticity is entrained. Dabiri
(2009) proposed that the formation number of a vortex ring can be expressed by a
non-dimensional circulation T̂ ∝ Γ/(D1U), where the length and velocity scales D
and 1U are determined from the kinematics and geometry of the problem. The role
of formation number in the flow dynamics and performance of wings and fins has
been demonstrated by Milano & Gharib (2005), Ringuette, Milano & Gharib (2007),
Rival, Prangemeier & Tropea (2009), Taira & Colonius (2009) and Chen, Colonius &
Taira (2010), and Dabiri (2009) postulated that formation number may govern forward
locomotion by periodically oscillating wings or fins. There is limited evidence for this
claim, although Rival et al. (2009) showed that application of Dabiri’s formulation
yields a useful scaling for the maximum circulation of the leading-edge vortex
produced by an aerofoil plunging with uniform amplitude and reduced frequency.

For the wakes investigated here, formation number must be interpreted in the
appropriate context. While the transition from a von Kármán-like wake as in
figure 2(c) to a bifurcating wake, such as those shown in figure 2(a,b), seems a
plausible manifestation of the pinch-off process in a two-dimensional sense, one must
take into account the history of vortex shedding and the constraints imposed by the
solenoidal condition on the vorticity field. For example, the wake model presented
by Buchholz & Smits (2008) asserts that the two adjacent like-signed vortices shed
in one stroke are components of distinct vortex ring structures, as shown in figure 5.
According to this model, the first spanwise vortex to be shed in the stroke, labelled A,
is connected to a vortex ring that was initiated in the previous stroke, and is therefore
part of a pre-existing downstream structure. In contrast, vortex B is connected to
a new upstream structure still in the process of being shed by the panel. While
viscous effects may allow diffusion and reconnection of structures, their origins make
them fundamentally distinct. Therefore the strength of vortex A is pre-defined and
the division between A and B is not directly related to a formation-number-governed
pinch-off phenomenon.
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Since (3.5) relates the total circulation shed in one half-cycle to the kinematic and
geometric variables governing the creation of that circulation, and the shed circulation
consists of more than one vortex structure, (3.5) does not perform the role of a
formation number in the present context. Rather, it is a complementary parameter
in the general case where both parameters may be relevant. For example, formation
number may govern the strength of a single vortex ring structure whereas the proposed
parameter would govern the total shed circulation. Whether or not vortex pinch-off
occurs, (3.5) provides a useful scaling of the total vorticity shed in a stroke. It
provides an important bound that can be used to help quantify existing wake structure
models and inform low-order unsteady aerodynamic models.

Nevertheless, for an appropriate circulation measurement, interpreting (3.5) as a
formation number seems plausible. For example, Rival et al. (2009) showed that T̂
applied to the leading-edge vortex of their plunging aerofoil exhibits considerably
reduced scatter when computed using D = 2c = 4h0 and 1U = 2πfh0, compared to
the dimensional circulation. Their expression for formation number, T̂ = Γ/(8πfh2

0),
is completely analogous to (3.3). Thus, it is possible that (3.5) may be applied to
individual vortex structures, and perform the role of a three-dimensional formation
number for periodic flows. It is also noteworthy that, if the formation number
formulation of Dabiri (2009) (T̂) is implemented in the present work with D =
4AS/(2A + 2S) (the hydraulic diameter of the peak-to-peak projection of the panel
in the streamwise direction) and 1U = fA, we arrive at (3.5) with β = 1. The resulting
variability in T̂ is σΓ = 0.082, which is approximately 17 % larger than for (3.5) with
β = 7.

5. Conclusions
A new scaling parameter is proposed for the circulation shed by finite-aspect-ratio,

rigid, rectangular panels pitching about their leading edges. The parameter is the
product of a kinematic scaling, and a geometric scaling based on the work of Green
& Smits (2008). The underlying tenet guiding the development of the parameter is
that in periodic, symmetric motion, the circulation shed by the panel in a stroke or
half-cycle must be equal to the circulation generated during that interval by pressure
gradients acting on the surface. The parameter yields an approximately constant value
with variations in panel aspect ratio, pitching amplitude, and Strouhal number for
low-aspect-ratio panels at ReC = O(104), and thereby provides a useful bound for
quantitative prediction of wake properties. It is postulated here that the proposed
parameter may either complement or replace formation number in the quantitative
description of unsteady wakes. It was also suggested that in some applications, this
parameter may be equivalent to a three-dimensional formation number for periodic
flows.
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