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In this paper, inverse spectral problems for Sturm–Liouville operators on a tree (a
graph without cycles) are studied. We show that if the potential on an edge is known
a priori, then b − 1 spectral sets uniquely determine the potential functions on a tree
with b external edges. Constructive solutions, based on the method of spectral
mappings, are provided for the considered inverse problems.
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1. Introduction

This paper concerns the theory of inverse spectral problems for Sturm–Liouville
operators on geometrical graphs. Inverse problems consist in recovering differential
operators from their spectral characteristics. Differential operators on graphs (quan-
tum graphs) have applications in various fields of science and engineering (mechan-
ics, chemistry, electronics, nanoscale technology and others) and have attracted
considerable attention from mathematicians in recent years. There is an extensive
literature devoted to differential operators on graphs and their applications; we
mention only some research papers and surveys [1, 2, 5–7,10,16].

There are a variety of different inverse problems studied for quantum graphs,
one of which is to recover the coefficients of the operator when some information
is known a priori. This paper is focused on the reconstruction of the potential of
the Sturm–Liouville operator on a tree (a graph without cycles) with a prescribed
structure and standard matching conditions in the vertices. Yurko [14, 15] studied
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such inverse problems on trees using the Weyl vector, the system of spectra or the
spectral data as given spectral characteristics. These problems are generalizations of
the well-studied inverse problems for Sturm–Liouville operators on a finite interval
(see the monographs [3,8,9,11] and references therein). By the method of spectral
mappings [3, 13], Yurko proved uniqueness theorems and developed a constructive
algorithm for the solution of inverse problems on trees.

In this paper we formulate and solve partial inverse problems for the Sturm–
Liouville operator on the tree. We suppose that the Sturm–Liouville potential is
known on part of the graph and show that we need less data to recover the potential
on the remaining part. To our knowledge, the only work in this direction is that
of Yang [12] where the potential is known on a half of one edge and completely
on the other edges of the star-shaped graph, and the author solves the Hochstadt–
Lieberman-type problem [4] by using a part of the spectrum.

In this paper we assume that the potential is known on one edge of a tree, then
reconstruct the potential on the remaining part by using the system of spectra or
the Weyl functions. By developing the ideas of Yurko [14, 15], we show that one
needs one less spectral set or one less Weyl function for the solution of the partial
inverse problem. We consider separately the cases of boundary and internal edges,
present constructive solutions and corresponding uniqueness theorems for both of
them.

The results of this paper can be generalized to the case in which the potential is
known on several edges. However, in this case the number of given spectra sufficient
to recover the potential on the whole graph depends not only on the number of these
edges, but also on their location (see the example in § 5). We note that the method of
spectral mappings works also for graphs with cycles (see [16]), so one can generalize
our results in this direction.

The paper is organized as follows. In § 2 we introduce the notation and briefly
describe the solution of inverse problems on trees by Yurko [14,15]. In § 3 we formu-
late our main results and outline their constructive solutions. Proofs of the technical
lemmas from § 3 are contained in § 4. In § 5 we illustrate our method by an example.

2. Inverse problems on a tree

In this section, we introduce the notation and provide the main results of Yurko on
the inverse problems on trees (see [14,15] for more details).

Consider a compact tree G with vertices V = {vi}m+1
i=1 and edges E = {ej}m

j=1.
For each vertex v ∈ V , we denote the set of edges associated with v by Ev and call
the size of Ev the degree of v. Assume that the tree G does not contain vertices
of degree 2. The vertices of degree 1 are called boundary vertices. Denote the set
of boundary vertices of the graph G by ∂G. For the sake of convenience, let each
boundary vertex vi be an end of the edge ei; such edges are called boundary edges.
All other vertices and edges are called internal. Let the vertex vr ∈ ∂G be the root
of the tree.

Each edge ej ∈ E is viewed as a segment [0, Tj ] and is parametrized by the
parameter xj ∈ [0, Tj ]. The value xj = 0 correspond to one of the end vertices of
the edge ej , and xj = Tj corresponds to another one. For a boundary edge, the end
xj = 0 corresponds to the boundary vertex vj .
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A function on the tree G can be represented as a vector function y = [yj ]mj=1,
where yj = yj(xj), xj ∈ [0, Tj ], j = 1, m. Let ej = [vi, vk], i.e. the vertex vi

corresponds to the end xj = 0 and the vertex vk corresponds to xj = Tj . Introduce
the following notation:

yj(vi) = yj(0), yj(vk) = yj(Tj),
y′

j(vi) = y′
j(0), y′

j(vk) = −y′
j(Tj).

If vi ∈ ∂G, we omit the index of the edge and write y(vi) and y′(vi).
Consider the Sturm–Liouville equation on G,

−y′′
j + qj(xj)yj = λyj , xj ∈ [0, Tj ], j = 1, m, (2.1)

where λ is the spectral parameter, qj ∈ L[0, Tj ]. We call the function q = [qj ]mj=1
the potential on the graph G. The functions yj , y′

j are absolutely continuous on
the segments [0, Tj ] and satisfy the standard matching conditions in the internal
vertices v ∈ V \ ∂G:

yj(v) = yk(v), ej , ek ∈ Ev (continuity condition),∑
ej∈Ev

y′
j(v) = 0 (Kirchhoff’s condition).

⎫⎪⎬
⎪⎭ (2.2)

Let L0 and Lk, vk ∈ ∂G, be the boundary-value problem for system (2.1) with
the matching conditions (2.2) and the following conditions in the boundary vertices:

L0 : y(vi) = 0, vi ∈ ∂G, (2.3)
Lk : y′(vk) = 0, y(vi) = 0, vi ∈ ∂G \ {vk}. (2.4)

It is well known that the problems Lk have discrete spectra, which are the countable
sets of eigenvalues Λk = {λks}∞

s=1, k = 0 or vk ∈ ∂G.
Fix a boundary vertex vk ∈ ∂G. Let Ψk = [ψkj ]mj=1, ψkj = ψkj(xj , λ), be the solu-

tion of the system (2.1) satisfying the matching conditions (2.2) and the boundary
conditions

ψkk(0, λ) = 1, ψkj(0, λ) = 0, vj ∈ ∂G \ {vk}.

Define Mk(λ) = ψ′
kk(0, λ). The functions Ψk and Mk are called the Weyl solution

and the Weyl function of (2.1) with respect to the boundary vertex vk, respectively.
The notion of the Weyl function for the tree generalizes the notion of the Weyl
function (m-function) for the classical Sturm–Liouville operator on a finite interval
[3,9]. If the tree G consists of only one edge, then Mk(λ) coincides with the classical
Weyl function.

Consider the following inverse problems.

Inverse problem 2.1. Given the spectra Λ0, Λk, vk ∈ ∂G \ {vr}, construct the
potential q on the tree G.

Inverse problem 2.2. Given the Weyl functions Mk(λ), vk ∈ ∂G\{vr}, construct
the potential q on the tree G.
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Note that if the number of boundary vertices is b, then one needs b spectra or
b−1 Weyl functions to recover the potential. We do not require the data associated
with the root vr.

There is a close relation between inverse problems 2.1 and 2.2. The Weyl functions
can be represented in the form

Mk(λ) = −∆k(λ)
∆0(λ)

, vk ∈ ∂G, (2.5)

where ∆k(λ) are characteristic functions of the boundary-value problems Lk. If
the eigenvalues Λk are known, one can construct characteristic functions as infinite
products by Hadamard’s theorem. Thus, with the system of spectra, one can obtain
the Weyl functions and reduce inverse problem 2.1 to inverse problem 2.2.

Yurko has proved that inverse problems 2.1 and 2.2 are uniquely solvable, and
provided a constructive algorithm for the solution by the method of spectral map-
pings [3]. In the remainder of this section, we shall briefly describe his algorithm.
Let the Weyl functions Mk(λ), vk ∈ ∂G \ {vr} be given. Consider the following
auxiliary problem.

Problem IP(k). Given Mk(λ), construct the potential qk(xk) on the edge ek.

Note that this problem is not equivalent to the inverse problem on the finite
interval, since the Weyl function Mk(λ) contains information from the whole graph.
However, it can be solved uniquely by the method of spectral mappings, and the
potential on the boundary edges can be recovered. Then Yurko used the so-called
µ-procedure to recover the potential on the internal edges. We reformulate these
ideas in a form that is more convenient for us in the future.

Theorem 2.3. Let v be an internal vertex connected to the set of boundary vertices
V ′ ⊂ ∂G \ {vr} and only one other vertex. Suppose the potentials qk on the edges
ek are known for all vk ∈ V ′, as well as a Weyl function Mk(λ) for at least one
vertex from the set V ′. Denote by G′ the graph obtained by removing the vertices
vk ∈ V ′ together with the corresponding edges ek from the graph G. Then the Weyl
function for the graph G′ with respect to the vertex v can be determined from the
given information.

Applying theorem 2.3, one can cut the boundary edges off until the potential is
recovered on the whole graph.

3. Partial inverse problems

In this section the main results of the paper are formulated. We assume that the
potential is known on one edge of the tree and formulate partial inverse problems.
We consider separately the cases of boundary and internal edges. The first appears
to be trivial. For the second we describe the procedure of the constructive solution.
For the convenience of the reader, the proofs of the technical lemmas are provided
in § 4.

Inverse problem 3.1. Let ef be a boundary edge (f �= r). Given the potential qf

on the edge ef and the spectra Λ0, Λk, vk ∈ ∂G \ {vf , vr}, construct the potential
q on the tree G.
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v1
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Figure 1. Splitting of the tree G.

The solution of inverse problem 3.1 is a slight modification of the method de-
scribed in § 2. From Λ0, Λk, vk ∈ ∂G \ {vf , vr}, we easily construct the potentials
qk for vk ∈ ∂G \ {vf , vr}. The potential qf is known, so we can apply theorem 2.3
iteratively and recover the potential on G.

Now let ef be an internal edge. If this edge is removed, the graph splits into two
parts, call them P1 and P2. Let ∂P1 and ∂P2 be the sets of boundary vertices of P1
and P2, respectively. Fix two arbitrary vertices vr1 ∈ ∂P1 and vr2 ∈ ∂P2.

Inverse problem 3.2. Given the potential qf on the internal edge ef and the
spectra Λ0, Λk, vk ∈ ∂G \ {vr1, vr2}, construct the potential q on the tree G.

Solution of inverse problem 3.2. For simplicity, we assume that the ends of the edge
ef have degree 3. The general case requires minor modifications. If one splits each
of the ends of ef into three vertices, the tree splits into five subtrees Gi, i = 1, 5,
such that vr1 ∈ G2, vr2 ∈ G5, and G3 contains the only edge ef (see figure 1). Let
v1 and v4 be arbitrary boundary vertices of the trees G1 and G4 (different from the
ends of ef ), and vr1 = v2, vr2 = v5, ef = [v3, v6].

Step 1. Construct the characteristic functions ∆k(λ) by using the given spectra
Λk, k = 0 and vk ∈ ∂G \ {v2, v5}. Find Mk(λ) by using formula (2.5).

Step 2. Consider trees G1 and G4. Recover the potential q on the edges of G1 and
G4 using the solutions of problem IP(k) for vk ∈ ∂G1 \ {v3} and vk ∈ ∂G4 \ {v6},
and then applying theorem 2.3 iteratively.

Step 3. Introduce the characteristic functions of the boundary-value problems for
the Sturm–Liouville equations (2.1) on the graphs G1–G5 with the standard match-
ing conditions (2.2) in internal vertices and the following conditions in the boundary
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vertices:

graph G1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆DD
1 (λ) : y(vk) = 0, vk ∈ ∂G1,

∆ND
1 (λ) : y′(v1) = 0, y(vk) = 0, vk ∈ ∂G1 \ {v1},

∆DN
1 (λ) : y′(v3) = 0, y(vk) = 0, vk ∈ ∂G1 \ {v3},

∆NN
1 (λ) : y′(v1) = 0, y′(v3) = 0, y(vk) = 0, vk ∈ ∂G1 \ {v1, v3};

graph G2

{
∆D

2 (λ) : y(vk) = 0, vk ∈ ∂G2,

∆N
2 (λ) : y′(v3) = 0, y(vk) = 0, vk ∈ ∂G2 \ {v3};

graph G3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆DD
3 (λ) : y(v3) = 0, y(v6) = 0,

∆ND
3 (λ) : y′(v3) = 0, y(v6) = 0,

∆DN
3 (λ) : y(v3) = 0, y′(v6) = 0,

∆NN
3 (λ) : y′(v3) = 0, y′(v6) = 0;

graph G4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆DD
4 (λ) : y(vk) = 0, vk ∈ ∂G4,

∆ND
4 (λ) : y′(v4) = 0, y(vk) = 0, vk ∈ ∂G4 \ {v4},

∆DN
4 (λ) : y′(v6) = 0, y(vk) = 0, vk ∈ ∂G4 \ {v6},

∆NN
4 (λ) : y′(v4) = 0, y′(v3) = 0, y(vk) = 0, vk ∈ ∂G4 \ {v4, v6};

graph G5

{
∆D

5 (λ) : y(vk) = 0, vk ∈ ∂G5,

∆N
5 (λ) : y′(v6) = 0, y(vk) = 0, vk ∈ ∂G5 \ {v6}.

Lemma 3.3. The following relation holds:

∆0(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆DD
1 (λ) −∆D

2 (λ) 0 0 0 0
0 ∆D

2 (λ) −1 0 0 0
∆DN

1 (λ) ∆N
2 (λ) 0 −1 0 0

0 0 ∆ND
3 (λ) ∆DD

3 (λ) −∆DD
4 (λ) 0

0 0 0 0 ∆DD
4 (λ) −∆D

5 (λ)
0 0 ∆NN

3 (λ) ∆DN
3 (λ) ∆DN

4 (λ) ∆N
5 (λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.1)

If we change ∆DD
1 (λ) to ∆ND

1 (λ) and ∆DN
1 (λ) to ∆NN

1 (λ), then we obtain the deter-
minant equal to ∆1(λ). Similarly, if we change ∆DD

4 (λ) to ∆ND
4 (λ) and ∆DN

4 (λ) to
∆NN

4 (λ), then we obtain ∆4(λ).

Step 4. Note that the functions ∆0(λ), ∆1(λ), ∆4(λ) are known from step 1. Since
we know the potential on the graphs G1, G4 (from step 2) and G3 (given a priori),
we can easily construct the characteristic functions for these graphs. Consider the
relation (3.1) and similar relations for ∆1(λ) and ∆4(λ) as a system of equations
with respect to ∆D

2 (λ), ∆N
2 (λ), ∆D

5 (λ) and ∆N
5 (λ) in the form

a11∆
D
2 ∆D

5 + a12∆
N
2 ∆D

5 + a13∆
D
2 ∆N

5 + a14∆
N
2 ∆N

5 = ∆0,

a21∆
D
2 ∆D

5 + a22∆
N
2 ∆D

5 + a23∆
D
2 ∆N

5 + a24∆
N
2 ∆N

5 = ∆1,

a31∆
D
2 ∆D

5 + a32∆
N
2 ∆D

5 + a33∆
D
2 ∆N

5 + a34∆
N
2 ∆N

5 = ∆4,

⎫⎪⎬
⎪⎭ (3.2)

where aij = aij(λ), i = 1, 3, j = 1, 4, are known coefficients.
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Step 5. Multiply the first equation of (3.2) by ∆1 and subtract the second equa-
tion, multiplied by ∆0. Apply similar transform to the first and the third equations.
Then we obtain the system

b11∆
D
2 ∆D

5 + b12∆
N
2 ∆D

5 + b13∆
D
2 ∆N

5 + b14∆
N
2 ∆N

5 = 0,

b21∆
D
2 ∆D

5 + b22∆
N
2 ∆D

5 + b23∆
D
2 ∆N

5 + b24∆
N
2 ∆N

5 = 0,

where
b1i = a1i∆1 − a2i∆0, b2i = a1i∆4 − a3i∆0, i = 1, 4. (3.3)

Divide both equations by ∆D
2 ∆D

5 to obtain

bi1 + bi2M̃2 + bi3M̃5 + bi4M̃2M̃5 = 0, i = 1, 2, (3.4)

where

M̃2(λ) =
∆N

2 (λ)
∆D

2 (λ)
, M̃5(λ) =

∆N
5 (λ)

∆D
5 (λ)

are (up to the sign) the Weyl functions for the subtrees G2 and G5 associated with
the vertices v3 and v6, respectively.

Step 6. From system (3.4) we easily derive

M̃5 = −bi1 + bi2M̃2

bi3 + bi4M̃2
, i = 1, 2.

Hence,
(b11 + b12M̃2)(b23 + b24M̃2) = (b21 + b22M̃2)(b13 + b14M̃2).

Finally, we obtain the quadratic equation with respect to M̃2(λ),

A(λ)M̃2
2 (λ) + B(λ)M̃2(λ) + C(λ) = 0, (3.5)

with analytic coefficients A(λ), B(λ), C(λ):

A = b12b24 − b22b14,

B = b11b24 + b12b23 − b21b14 − b22b13,

C = b11b23 − b21b13.

⎫⎪⎬
⎪⎭ (3.6)

Step 7. Consider the Sturm–Liouville equation (2.1) on the tree G with the poten-
tial q = 0. Implement steps 1–6 for this case and obtain the quadratic equation

A0(λ)M̃2
20(λ) + B0(λ)M̃20(λ) + C0(λ) = 0, (3.7)

which is analogous to (3.5). Define ρ =
√

λ, Re ρ � 0, Sδ := {ρ : Re ρ � 0, | Im ρ| �
δ}, δ > 0, [1] = 1 + O(ρ−1). Let f(ρ2) be an analytic function and let ε > 0. Define
Zε(f) := {ρ : |f(ρ2)| � ε}.

Lemma 3.4. The following asymptotic relations hold:

A(λ) = A0(λ)[1], B(λ) = B0(λ)[1], C(λ) = C0(λ)[1],

ρ ∈ Sδ ∩ Zε(A0B0C0), |ρ| → ∞.
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Consequently, D(λ) = D0(λ)[1] for ρ ∈ Sδ ∩ Zε(D0), |ρ| → ∞, where D(λ) and
D0(λ) are discriminants of (3.5) and (3.7), respectively.

Lemma 3.5. A0(λ) �≡ 0, D0(λ) �≡ 0.

It follows from lemmas 3.4 and 3.5 that the quadratic equation (3.5) does not
degenerate for ρ ∈ Sδ∩Zε(A0D0), and two roots of (3.5) are asymptotically different
as |ρ| → ∞. One can easily find an asymptotic representation of M̃2(λ) for any
particular graph and choose the correct root of (3.5) on some region of Sδ for
sufficiently large |ρ|. Then the function M̃2(λ) can be constructed for all λ ∈ C

except its singularities by analytic continuation. Similarly one can find M̃5(λ).

Step 8. Consider the tree G2 with the root v2. Solve problem IP(k) by using
Mk(λ), vk ∈ ∂G2 \ {v2, v6}, and by using M̃2(λ) for v3, obtain the potential on the
boundary edges except e2. Then apply the cutting of boundary edges by theorem 2.3
and recover the potential q on G2. The subtree G5 can be treated similarly.

Thus, we have recovered the potential q on the whole graph G. In parallel, we
have proved the following uniqueness theorem.

Theorem 3.6. Let the potential qf on the edge ef (f �= r) be known.

(i) If ef is a boundary edge, the spectra Λ0, Λk, vk ∈ ∂G \ {vf , vr}, uniquely
determine the potential q on the whole graph G.

(ii) If ef is an internal edge, the spectra Λ0, Λk, vk ∈ ∂G \ {vr1, vr2}, uniquely
determine the potential q on the whole graph G.

Using the described methods with some technical modifications, one can solve
partial inverse problems using Weyl functions.

Inverse problem 3.7. Let ef be a boundary edge (f �= r). Given the potential
qf on the edge ef and the Weyl functions Mk(λ), vk ∈ ∂G \ {vf , vr}, construct the
potential q on the tree G.

Inverse problem 3.8. Given the potential qf on the internal edge ef and the
Weyl functions Mk(λ), vk ∈ ∂G \ {vr1, vr2}, construct the potential q on the tree
G.

Thus, if the number of boundary edges is b and the potential is known on one
edge (boundary or internal), b − 2 Weyl functions are required to construct q on
the whole graph.

4. Proofs

4.1. Proof of lemma 3.3

Consider the Sturm–Liouville equation (2.1) on the tree G. Let Cj(xj , λ) and
Sj(xj , λ) be solutions of (2.1) on the edge ej under initial conditions

Cj(0, λ) = S′
j(0, λ) = 1, C ′

j(0, λ) = Sj(0, λ) = 0.
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Any solution y = [yj ]mj=1 of the equation (2.1) on G admits the following represen-
tation:

yj(xj , λ) = M0
j (λ)Cj(xj , λ) + M1

j (λ)Sj(xj , λ), j = 1, m, xj ∈ [0, Tj ]. (4.1)

Let BC be some fixed boundary conditions in the vertices v ∈ ∂G of the form
y(v) = 0 or y′(v) = 0 (for instance, we consider conditions (2.3) for the problem
L and (2.4) for the problem Lk). Denote by L the boundary-value problem for the
Sturm–Liouville equation (2.1) with the standard matching conditions (2.2) and
the boundary conditions BC. If y is a solution of a boundary-value problem L,
substitute (4.1) into (2.2) and BC to obtain a linear algebraic system with respect
to M0

j (λ), M1
j (λ). It is easy to check that the determinant of this system is a

characteristic function ∆(λ) of the boundary-value problem L, i.e. zeros of ∆(λ)
coincide with the eigenvalues of L.

Example 4.1. Consider the problem L0 for the star-type graph for m = 3. Then
boundary conditions (2.3) yield M0

1 (λ) = M0
2 (λ) = M0

3 (λ) = 0. Consequently, from
(2.2) we obtain the system with respect to M0

j (λ), j = 1, 2, 3, with the determinant

∆0(λ) =

∣∣∣∣∣∣
S1(T1, λ) −S2(T2, λ) 0

0 S2(T2, λ) −S3(T3, λ)
S′

1(T1, λ) S′
2(T2, λ) S′

3(T3, λ)

∣∣∣∣∣∣ .

In the general case, the following assertion is valid.

Lemma 4.2. Let w ∈ V and let the degree of w be equal to n. Splitting the vertex
w, we split G into n subtrees Gi, i = 1, n. For each i = 1, n let ∆D

i (λ) and ∆N
i (λ)

be characteristic functions for boundary-value problems for equation (2.1) on tree
Gi with matching conditions (2.2), boundary conditions BC for v ∈ ∂G ∩ ∂Gi, and
the Dirichlet condition y(u) = 0 for ∆D

i (λ) and the Neumann condition y′(u) = 0
for ∆N

i (λ). Then the characteristic function ∆(λ) for G with the conditions (2.2)
and BC admits the following representation:

∆(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∆D
1 (λ) −∆D

2 (λ) 0 · · · 0
0 ∆D

2 (λ) −∆D
3 (λ) · · · 0

...
...

...
. . .

...
0 0 0 · · · −∆D

n (λ)
∆N

1 (λ) ∆N
2 (λ) ∆N

3 (λ) · · · ∆N
n (λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.2)

Indeed, if we write the determinant for ∆(λ) and analyse the participation of
the edges of Gi in this determinant, we can easily see that ∆(λ) = ∆D

i (λ)Di(λ) +
∆N

i (λ)Ei(λ), where the functions Di(λ) and Ei(λ) do not depend on the subtree
Gi. Thus, we can consider the simplest case of the star-type graph, when each Gi

contains only one edge, and then change the multipliers, corresponding to subgraphs
Gi, to ∆D

i (λ) and ∆N
i (λ). Thus, we directly obtain (4.2) from the formula for the

star-type graph.
Lemma 3.3 follows from lemma 4.2 for the graph in figure 1. Alternatively, one

can derive (3.1) from (5.2), replacing characteristic functions for one-edge subtrees
with general characteristic functions.
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4.2. Proof of lemma 3.4

Together with L, consider the boundary-value problem L0 for equation (2.1)
with q ≡ 0, the matching conditions (2.2) and the boundary conditions BC. If some
symbol γ denotes the object related to L, we denote by the symbol γ0 the similar
object related to L0. In particular, ∆0(λ) is the characteristic function of L0. Let
the symbol P (ρ) stand for different polynomials of sin ρTj and cos ρTj , j = 1, m.

Lemma 4.3. The characteristic function ∆(λ) has the asymptotic behaviour

∆(λ) = ∆0(λ) + O(ρ−d) =
P (ρ)
ρd−1 + O(ρ−d), ρ ∈ Sδ, |ρ| → ∞,

where P (ρ) �≡ 0 and d = m− i−n, where m is the number of edges, i is the number
of internal vertices and n is the number of boundary vertices with the Neumann
boundary condition y′(v) = 0.

Proof. The claim of the lemma immediately follows from the standard asymptotic
formulae

Cj(xj , λ) = cos ρxj + O(ρ−1), C ′
j(xj , λ) = −ρ sin ρxj + O(1),

Sj(xj , λ) =
sin ρxj

ρ
+ O(ρ−2), S′

j(x, λ) = cos ρxj ,

ρ ∈ Sδ, |ρ| → ∞,

and the construction of ∆(λ). The relation P (ρ) �≡ 0 follows from the regularity of
the standard matching conditions.

Applying lemma 4.3 to the characteristic functions, defined on step 3 of the algo-
rithm, we derive asymptotic representations for the coefficients c = aij , bij , A, B, C
in the form

c(λ) = c0(λ) + O(ρ−d) =
P (ρ)
ρd−1 + O(ρ−d), ρ ∈ Sδ, |ρ| → ∞,

where d stands for different integers. This relation yields lemma 3.4.

4.3. Proof of lemma 3.5

In this section we consider only the problem L0 with q ≡ 0, so we omit the index
0 for brevity. For simplicity, let Tf = 1. Taking into account that

∆DD
3 =

sin ρ

ρ
, ∆ND

3 = ∆DN
3 = cos ρ, ∆NN

3 = −ρ sin ρ

and doing some algebra with the expressions (3.1), (3.3), (3.6), we derive

A(λ) = −F1(λ)F4(λ)∆0(λ)
sin2 ρ

ρ2 ∆DD
4 (λ)∆D

5 (λ)χ(λ), (4.3)

B(λ) = −F1(λ)F4(λ)
sin ρ

ρ
∆0(λ)

×
{

∆D
5 (λ)Π(λ) + ∆D

5 (λ)
sin ρ

ρ
ξ(λ) − ∆DD

4 (λ)∆N
5 (λ)

sin ρ

ρ
χ(λ)

}
, (4.4)
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v1

G1

G2

v2

G3

v

e2

e1

Figure 2. Illustration of the proof of lemma 4.4, step 2.

C(λ) = F1(λ)F4(λ)∆0(λ)
sin ρ

ρ
∆N

5 (λ)
{

Π(λ) +
sin ρ

ρ
ξ(λ)

}
, (4.5)

where

Fi(λ) = ∆DD
i (λ)∆NN

i (λ) − ∆DN
i (λ)∆ND

i (λ), i = 1, 4,

Π(λ) = 2∆DD
1 (λ)∆DD

2 (λ)∆DD
4 (λ),

and χ(λ) and ξ(λ) are characteristic functions of the graphs G1 ∪ G2 ∪ G3 and
G1 ∪ G2 ∪ G3 ∪ G4, respectively. Here we mean that the copies of the vertex v3
(and v6 in the second graph) are joined into one vertex with the standard matching
conditions (2.2).

Lemma 4.4. Let v1 and v2 be two fixed vertices from ∂G. Denote by ∆DD(λ),
∆DN(λ), ∆ND(λ) and ∆NN(λ) the characteristic functions for equation (2.1) on
the tree G with the matching conditions (2.2), the boundary conditions

∆DD(λ) : y(v1) = y(v2) = 0,

∆DN(λ) : y(v1) = y′(v2) = 0,

∆ND(λ) : y′(v1) = y(v2) = 0,

∆NN(λ) : y′(v1) = y′(v2) = 0,

and with the conditions BC in the vertices v ∈ ∂G \ {v1, v2}. Then

∆DD(λ)∆NN(λ) − ∆DN(λ)∆ND(λ) �≡ 0. (4.6)

Proof. We shall divide the proof into the following steps.

(1) Let the tree G consist of the only edge [v1, v2]. Then one can check the relation
(4.6) by direct calculation.

(2) Let the vertices v1 and v2 be connected by edges with the same vertex v, and
let there also be subtrees Gi, i = 1, n, from the vertex v (see figure 2). Denote by
∆D

i (λ) and ∆N
i (λ) the characteristic functions for Gi with the matching conditions
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G1

v2

e2

G2

G1

G1

e1

v1

v3

v4

~
G2
~

Figure 3. Illustration of the proof of lemma 4.4, step 3.

(2.2), the boundary conditions BC and y(v) = 0 for ∆D
i (λ) and y′(v) = 0 for ∆N

i (λ).
According to lemma 4.2, the relation

∆DD(λ) =
sin ρT1 sin ρT2

ρ2 ∆K(λ) +
1
ρ
(sin ρT1 cos ρT2 + cos ρT1 sin ρT2)∆Π(λ)

holds, where

∆Π(λ) =
n∏

i=1

∆D
i (λ),

∆K(λ) = ∆Π(λ)
n∑

i=1

∆N
i (λ)

∆D
i (λ)

.

Using similar representations for ∆NN(λ), ∆DN(λ) and ∆ND(λ), we derive

∆DD(λ)∆NN(λ) − ∆DN(λ)∆ND(λ) = −(∆Π(λ))2 �≡ 0.

(3) Now let the vertices v1 and v2 be connected by the edges with v3 and v4,
respectively. Let the tree G split by the vertices v3 and v4 into the subtrees Gi, i =
1, n1, connected with v3, the subtrees G̃j , j = 1, n2, connected with v4, the subtree
G0, including both the vertices v3 and v4, and the edges e1, e2 (see figure 3). Denote
by ∆D

i (λ), ∆N
i (λ), i = 1, n1, and by ∆̃D

j (λ), ∆̃N
j (λ), j = 1, n2, the characteristic

functions for the subtrees Gi with the Dirichlet or Neumann boundary condition
in v3 and for the subtrees G̃i with the Dirichlet or Neumann boundary condition
in v4, respectively. Let ∆DD

0 (λ), ∆DN
0 (λ), ∆ND

0 (λ) and ∆NN
0 (λ) be characteristic
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functions for the subtree G0 with the boundary conditions

∆DD
0 (λ) : y(v3) = y(v4) = 0, ∆DN

0 (λ) : y(v3) = y′(v4) = 0,

∆ND
0 (λ) : y′(v3) = y(v4) = 0, ∆NN

0 (λ) : y′(v3) = y′(v4) = 0,

and BC in other boundary vertices. Define the functions

∆Π
1 (λ) =

n1∏
i=1

∆D
i (λ), ∆Π

2 (λ) =
n2∏

j=1

∆̃D
j (λ),

∆K
1 (λ) = ∆Π

1 (λ)
n∑

i=1

∆N
i (λ)

∆D
i (λ)

, ∆K
2 (λ) = ∆Π

2 (λ)
n∑

j=1

∆̃N
j (λ)

∆̃D
j (λ)

.

∆KK(λ) =∆DD
0 (λ)∆K

1 (λ)∆K
2 (λ) + ∆ND

0 (λ)∆Π
1 (λ)∆K

2 (λ)

+ ∆DN
0 (λ)∆K

1 (λ)∆Π
2 (λ) + ∆NN

0 (λ)∆Π
1 (λ)∆Π

2 (λ),

∆ΠK(λ) =∆DD
0 (λ)∆Π

1 (λ)∆K
2 (λ) + ∆DN

0 (λ)∆Π
1 (λ)∆Π

2 (λ),

∆KΠ(λ) =∆DD
0 (λ)∆K

1 (λ)∆Π
2 (λ) + ∆ND

0 (λ)∆Π
1 (λ)∆Π

2 (λ),

∆ΠΠ(λ) =∆DD
0 (λ)∆Π

1 (λ)∆Π
2 (λ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

In view of lemma 4.2, the following relation holds:

∆DD(λ) =
sin ρT1 sin ρT2

ρ2 ∆KK(λ) +
cos ρT1 sin ρT2

ρ
∆ΠK(λ)

+
sin ρT1 cos ρT2

ρ
∆KΠ(λ) + cos ρT1 cos ρT2∆

ΠΠ(λ).

Together with the similar relations for ∆DN(λ), ∆ND(λ) and ∆NN(λ), it yields

∆DD(λ)∆NN(λ) − ∆DN(λ)∆ND(λ) = ∆ΠΠ(λ)∆KK(λ) − ∆ΠK(λ)∆KΠ(λ).

Taking (4.7) into account, we obtain

∆ΠΠ(λ)∆KK(λ) − ∆ΠK(λ)∆KΠ(λ)

= (∆DD
0 (λ)∆NN

0 (λ) − ∆DN
0 (λ)∆ND

0 (λ))(∆Π
1 (λ)∆Π

2 (λ))2.

By virtue of lemma 4.3, ∆Π
i (λ) �≡ 0, i = 1, 2. Therefore, relation (4.6) holds for

the tree G if and only if it holds for the subtree G0. By induction, the claim of the
lemma is valid for any tree G.

By virtue of lemmas 4.3 and 4.4, and (4.3), A(λ) �≡ 0. It follows from (4.3)–(4.5)
that

D(λ) = B2(λ) − 4A(λ)C(λ)

= F 2
1 (λ)F 2

4 (λ)
sin2 ρ

ρ2 ∆0(λ)

×
{

∆D
5 (λ)Π(λ) + ∆D

5 (λ)
sin ρ

ρ
ξ(λ) + ∆DD

4 (λ)∆N
5 (λ)

sin ρ

ρ
χ(λ)

}2

.
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e1

v1 v2

v4 v5

v6

v3

e5e4

e3

e2

Figure 4. Illustration of the example.

Note that the expression in the bracket above is equal to

∆D
5 (λ)Π(λ) +

sin ρ

ρ
∆0(λ).

Similarly to lemma 4.3, the asymptotic formulae

∆D
5 (λ)Π(λ) = C1r

−p exp(r(T − 1))[1],
sin ρ

ρ
∆0(λ) = C2r

−q exp(r(T + 1))[1]

can be obtained, where ρ = ir, r → +∞, T =
∑m

j=1 Tj , C1, C2, p and q are
some constants. Clearly, the second term grows faster than the first one. Therefore,
∆0(λ) �≡ 0 implies D(λ) �≡ 0. The proof of lemma 3.5 is finished.

Using lemma 4.3, one can also check that B(λ) and
√

D(λ) have the same power
of ρ in the denominator, so the roots of (3.5) have different asymptotic behaviour.

5. Example

In this section we provide the solution of inverse problem 3.2 for the example of
the graph in the figure 4. For simplicity, let Tj = 1, j = 1, 5. Let x3 = 0 correspond
to the vertex v3 and let x3 = 1 correspond to v6. For the boundary edges, xj = 0
correspond to the boundary vertices. The matching conditions (2.2) take the form

v3 : y1(1) = y2(1) = y3(0), y′
1(1) + y′

2(1) − y′
3(0) = 0,

v6 : y3(1) = y4(1) = y5(1), y′
3(1) + y′

4(1) + y′
5(1) = 0.

}
(5.1)

For this example, each subtree Gi consists of only one edge ei, i = 1, 5. Let the
spectra Λ0, Λ1, Λ4 and the potential q3 be given. Using the given spectra, one can
easily find the characteristic functions ∆0(λ), ∆1(λ), ∆4(λ) and the Weyl functions
M1(λ), M4(λ). Solving problems IP(1) and IP(4) recover q1 and q3.

Consider the boundary-value problem L. Represent the solution y in the form
(4.1) and substitute it into (2.2) and (2.3). From (2.3), one gets M0

1 (λ) = M0
2 (λ) =
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M0
4 (λ) = M0

5 (λ) = 0. Then matching conditions (5.1) yield the system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

S1 −S2 0 0 0 0
0 S2 −1 0 0 0
S′

1 S′
2 0 −1 0 0

0 0 C3 S3 −S4 0
0 0 0 0 S4 −S5

0 0 C ′
3 S′

3 S′
4 S′

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
1

M1
2

M0
3

M1
3

M1
4

M1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (5.2)

Here we omit arguments (1, λ) and (λ) for brevity. The characteristic function
∆0(λ) equals the determinant of (5.2). Since we know q1, q3 and q4, we can solve
(2.1) and obtain the functions Sj(xj , λ) and Cj(xj , λ) for j = 1, 3, 4. Therefore, the
determinant admits the representation

∆0 = a11S2S5 + a12S
′
2S5 + a13S2S

′
5 + a14S

′
2S

′
5,

where

a11 = S′
1

∣∣∣∣S3 −S4

S′
3 S′

4

∣∣∣∣ + S1

∣∣∣∣C3 −S4

C ′
3 S′

4

∣∣∣∣ , a12 = S1

∣∣∣∣S3 −S4

S′
3 S′

4

∣∣∣∣ ,

a13 = (S′
1S3 + S1C3)S4, a14 = S1S3S4.

If we change S1 to C1 or S4 to C4, then we obtain analogous relations for ∆1(λ)
and ∆4(λ), respectively. Thus, we arrive at system (3.2).

Let q ≡ 0 on G. Then

C0
j (xj , λ) = cos ρxj , S0

j (xj , λ) =
sin ρxj

ρ
,

a0
11 =

sin 3ρ

ρ
, a0

12 = a0
13 =

sin 2ρ sin ρ

ρ2 , a0
14 =

sin3 ρ

ρ3 ,

a0
21 = a0

31 = cos 3ρ, a0
22 = a0

33 =
sin 2ρ cos ρ

ρ
,

a0
23 = a0

32 =
cos 2ρ sin ρ

ρ
, a0

24 = a0
34 =

cos ρ sin2 ρ

ρ2 .

∆0
0 =

−9 sin 5ρ + 13 sin 3ρ + 6 sin ρ

16ρ3 , ∆0
1 = ∆0

4 =
−9 cos 5ρ + 7 cos 3ρ + 2 cos ρ

16ρ2 .

Using (3.3), we obtain

b0
11 = b0

21 =
−3 sin 6ρ − 2 sin 4ρ + 13 sin 2ρ

16ρ3 ,

b0
12 = b0

23 =
−3 cos 6ρ + 6 cos 4ρ + 3 cos 2ρ − 6

16ρ4 ,

b0
13 = b0

22 =
3 cos 6ρ − 10 cos 4ρ + 13 cos 2ρ − 6

32ρ4 ,

b0
14 = b0

24 =
−3 sin 6ρ + 12 sin 4ρ − 15 sin 2ρ

32ρ5 .
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Substitute these formulae into (3.6) to obtain

A0 =
−27 sin 12ρ + 174 sin 10ρ − 420 sin 8ρ + 378 sin 6ρ + 153 sin 4ρ − 468 sin 2ρ

2048ρ9 ,

B0 =
1

2048ρ8 (−27 cos 12ρ + 84 cos 10ρ + 106 cos 8ρ − 764 cos 6ρ

+ 1099 cos 4ρ − 344 cos 2ρ − 154),

C0 =
−27 sin 12ρ + 48 sin 10ρ + 140 sin 8ρ − 336 sin 6ρ − 71 sin 4ρ + 512 sin 2ρ

1024ρ7 .

Calculate the discriminant of equation (3.7) to obtain

D0 = B2
0 − 4A0C0

=
1

8388608ρ16 (6561 cos 24ρ − 52488 cos 22ρ + 128628 cos 20ρ + 83592 cos 18ρ

− 987134 cos 16ρ + 1543976 cos 14ρ + 702372 cos 12ρ

− 4646312 cos 10ρ + 3755087 cos 8ρ + 3053616 cos 6ρ

− 4805144 cos 4ρ − 4176688 cos 2ρ + 5393934).

We used wxMaxima v. 12.04.0 for calculations.
Obviously, A0(λ) �= 0, D0(λ) �= 0, so according to lemma 3.4 the roots of equation

(3.5) in the general case have different asymptotics:

M̃1
2 (λ) =

ρ cos ρ

sin ρ
[1], M̃2

2 (λ) = −1 + 6 cos2 ρ

3 sin ρ cos ρ
[1].

Since M̃2(λ) = S′
2(1, λ)/S2(1, λ), only the root M1

2 (λ) is the required one.
Finally, one can easily find M̃5(λ) and solve classical Sturm–Liouville inverse

problems using Weyl functions on the edges e2 and e5.
Now let us consider the case in which the potential is known a priori on two edges.

If they are e1 and e4, then only two spectra Λ0 and Λ2 are sufficient to recover the
potential on the whole graph. Indeed, one can solve IP(2), then apply theorem 2.3
to the vertex v3, find q3 and then similarly find q5. However, the knowledge of q1
and q2 do not allow us to recover the potential from two spectra by our method.
If we have only Λ0 and Λ4, we cannot recover q3. Similarly, if we know q3 initially,
the knowledge of the potential on one of the boundary edges does not allow us to
reduce the number of given spectra. Thus, if the potential is known on multiple
edges, the number of required spectra depends on the location of these edges.
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