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Reynolds-number-independent instability
of the boundary layer over a flat surface:

optimal perturbations

By P A O L O L U C H I N I
Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Via La Masa 34,

20158 Milano, Italy

(Received 26 June 1997 and in revised form 4 October 1999)

The dependence on initial conditions of the three-dimensional algebraic spatial in-
stability of the Blasius boundary layer is examined by a recently developed method
of receptivity analysis based on the upstream integration of adjoint equations. This
method allows us to determine optimal perturbations, i.e. initial perturbations that
maximize the energy growth, even in the wavenumber range where the problem is
not amenable to a mode analysis, and thus to complement a previous paper in which
the small-wavenumber regime was described.

1. Introduction
Ellingsen & Palm (1975) and Landahl (1980) identified a new disturbance amplifica-

tion mechanism, according to which a low-amplitude longitudinal vortex superposed
on an otherwise two-dimensional boundary layer can lift up low-velocity fluid from
the wall and push down high-velocity fluid towards the wall. The structure of the
boundary layer being elongated, with a typical size in the streamwise direction R1/2

times greater than its thickness, the accumulated longitudinal-velocity disturbance
can be O(R1/2) times greater than the crossflow disturbance from which it originated
(where R denotes the longitudinal Reynolds number). A phenomenon driven by the
same mechanism was explained a decade earlier by Crow (1966), who studied linearly
growing perturbations induced in a boundary layer by a spanwise oscillation of the
outer stream; at the time, however, the process could not be seen as one of energy
amplification because the energy of the outer stream is infinite.

The combination of this basically inviscid amplification mechanism with the damp-
ing effect of viscosity produces the phenomenon that was eventually named ‘transient
growth’ (e.g. Hultgren & Gustavsson 1981; Gustavsson 1991; Lundbladh & Johans-
son 1991; Butler & Farrell 1992; Reddy & Henningson 1993; Henningson, Lundbladh
& Johansson 1993; Trefethen, et al. 1993; Bagget, Driscoll & Trefethen 1995). This
mechanism is believed to be at the origin of the Klebanoff modes (Klebanoff, Tid-
strom & Sargent 1962) giving rise to the so-called bypass transition (Morkovin 1968,
1984, Morkovin & Reshotko 1990). Gebhardt & Grossmann (1994), and Bagget &
Trefethen (1997) have additionally shown, in the context of low-dimensional model
equations, that the same algebraic growth mechanism is also capable of amplifying the
quasi-steady beat produced by the quadratic self-interaction of high-frequency distur-
bances. Boberg & Brosa (1988) and, more recently, Hamilton, Kim & Waleffe (1995)
have proposed a similar linear amplification mechanism as being responsible for the
transfer of energy from the mean flow to vortical structures in developed turbulence.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

72
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007259


290 P. Luchini

The receptivity of a boundary layer to small-amplitude streamwise vortices con-
vected downstream by the impinging current, on the other hand, was studied by
Luchini (1996). He showed that, in the limit of small spanwise wavenumber, viscous
damping in a spatially growing boundary layer is insufficient to terminate the al-
gebraic growth induced by such disturbances. In this limit a similarity solution of
the linearized boundary layer equations (an extension to three dimensions of the
two-dimensional solution studied by Libby & Fox in 1964) describes the spatially
growing perturbation caused by a spanwise-periodic steady longitudinal vortex.

The assumption of small spanwise wavenumber, however, impeded us in determin-
ing the wavenumber for which amplification is a maximum, because the approximation
used, being a first-order perturbation expansion in wavenumber, can only provide
an amplification that increases linearly with wavenumber itself. The approximation
fails for wavenumbers of the order of the reciprocal of the boundary layer thickness,
and all that could be said is that the maximum should be expected to fall in a
neighbourhood of this value.

The present paper constitutes a continuation of Luchini (1996, subsequently referred
to as L96), and sets out to determine the maximum available amplification and the
corresponding wavenumber and perturbation velocity profile. A rigorous definition of
the maximum is achieved through the concept of optimal perturbation, as introduced
by Boberg & Brosa (1988) and Butler & Farrell (1992).

It should be mentioned that after the first submission of this paper a number
of related approaches have been presented at conferences and/or in journals. Most
notably Andersson, Berggren & Henningson (1998a, b, c; 1999a, b, c, d) have calculated
the optimal perturbations of a flat-plate boundary layer by an adjoint-based opti-
mization technique similar to the one presented herein. Similarities and differences
between their work and ours will be discussed in the conclusion.

2. The definition and iterative determination of optimal perturbations
We shall take as our starting mathematical model the linearized three-dimensional

boundary-layer equations:

δux + δvy + iαδw = 0, (1a)

−iωδu+ u0δux + v0δuy + u0,xδu+ u0,yδv = δuyy − α2δu, (1b)

−iωδv + u0δvx + v0δvy + v0,xδu+ v0,yδv + δpy = δvyy − α2δv, (1c)

−iωδw + u0δwx + v0δwy + iαδp = δwyy − α2δw, (1d)

which for steady perturbations become the same as equations (8) of L96. The
relevant boundary conditions are: δu = δv = δw = 0 at the wall, where y = 0, and
δu = δw = δp = 0 for y → ∞. Coordinates are made dimensionless with a reference
length L in the x-direction and d = R−1/2L in the y- and z-directions; U∞ is the
reference velocity for the u-component and R−1/2U∞ is the reference velocity for the v-
and w-components. The Reynolds number is defined as R = U∞L/ν. The unperturbed
velocity components u0(x, y) and v0(x, y) are obtained from Blasius’ similarity solution
for the two-dimensional boundary layer over a flat plate. The disturbance is assumed
to be sinusoidally varying in the z-direction and in time as eiαz−iωt. For the justification
and discussion of the range of applicability of (1) the reader is referred to L96. In
the unsteady case it need only be added that the frequency ω, made dimensionless
with respect to L/U∞, must not be exceedingly large compared to unity in order to
preserve the validity of the boundary layer approximation. However, to simplify the
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exposition we may anticipate the result that the maximum amplification is found for
ω = 0, as is generally true of algebraic instabilities based on the lift-up mechanism
of Landahl (1980). In fact, the gradual accumulation of small induced longitudinal-
velocity disturbances, necessary to produce a sizeable streak, is generally hampered
by oscillations of changing sign that tend to cancel each other.

If the linearized boundary layer is viewed in black-box fashion as an amplifier
of velocity perturbations applied at its input, it makes sense to ask what maximum
ratio of output to input energy this amplifier can provide and which shape of the
oncoming perturbation the maximum corresponds to. This question was answered for
the temporal stability of pipe flow by Boberg & Brosa (1988), and for plane parallel
flows (including boundary layers treated as parallel flows) by Butler & Farrell (1992),
who introduced the term ‘optimal perturbation’ to denote the input velocity profile
giving rise to maximum amplification of the disturbance energy. They were thus able to
observe that the optimal perturbations can be totally different from the eigenfunctions
of the linear stability problem, and the maximum gain can be positive even when
all the eigenvalues have negative real parts. They found optimal perturbations in
the general appearance of longitudinal vortices and induced disturbances in the
general appearance of longitudinal streaks, thus confirming the lift-up amplification
mechanism initially proposed by Ellingsen & Palm (1975) and Landahl (1980).

From a mathematical viewpoint, the optimization of a fluid dynamics perturbation
is no different from any other linear optimization problem. In terms of the input–
output operator U acting on a yet unspecified state vector f of the system (or of its
matrix representation in discretized form), the maximum gain is the operator’s norm,
namely†

gopt = max
f

|U · f|2
|f|2 = max

f

f∗ · U+ · U · f
f∗ · f , (2)

and is also the largest singular value of this operator or matrix, whereas the optimal
perturbation is given by the corresponding singular vector, i.e. the corresponding
eigenvector of U+ ·U = UT∗ ·U. Equation (2) represents the Rayleigh quotient generated
by the positive-definite Hermitian operator U+ · U (which turns out to be just a real
symmetric operator for steady disturbances, because in this case (1) can be recast
into a form with all real coefficients by taking iδw as a new variable). As is known
from matrix algebra, the maximum and minimum of g occur in correspondence with
eigenfunctions of this operator, i.e. functions such that

U+ · U · f = gf. (3)

Moreover, since all singular values are real and positive, a simple direct-iteration
algorithm of the form

fn+1 = U+ · U · fn (4)

always converges to the optimal perturbation, the one corresponding to maximum
gain in perturbation energy. As can be seen from (3), once fn+1 has become, for n
large enough, proportional to fn, the proportionality ratio between them gives the
singular value g itself.

In what follows we shall need a slight generalization of the above classical result,
to a situation in which the input and output energies are expressed by two, arbitrary

† The following notational conventions are adopted: a ∗ superscript denotes complex conjugate,
a + superscript denotes adjoint (conjugate transposed), and a dot product stands for bare index
contraction without any complex conjugation implied.
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and possibly different, positive-definite quadratic forms Ein = f∗ · Qin · f and Eout =
f∗ · Qout · f, so that the gain to be maximized is given by

g = (f∗ · U+ · Qout · U · f)/(f∗ · Qin · f). (5)

In such a case, on giving an arbitrary variation δf to f and imposing that the
ensuing δg should vanish, we find the extremality condition that

U+ · Qout · U · f = gQin · f. (6)

The corresponding direct-iteration algorithm, analogous to (4), becomes

fn+1 = Q−1
in · U+ · Qout · U · fn. (7)

3. Numerical determination of the optimal disturbances by the method of
adjoint equations

As observed in the previous section, it is a mathematically straightforward task
to determine the optimal perturbation and maximum gain whenever a numerical
approximation of the operator U can be assigned in matrix form. For instance,
Butler & Farrell (1992), in order to study the temporal instability of a parallel flow,
projected the perturbation over the set of eigenfunctions of the time-independent
perturbation equations and calculated a matrix representation of the input–output
transfer operator with respect to this basis.

However, when an evolving base flow is considered, as in the present problem of
the spatial instability of a boundary layer, the concept of local eigenfunctions loses
meaning in general. (There are particular cases where it can be recovered in a suitable
asymptotic sense, though. For instance, in the limit of small spanwise wavenumber as
in L96, or in the limit of large longitudinal wavenumber as in the classical theory of
Tollmien–Schlichting waves.) If local eigenfunctions are excluded, the only remaining
possibility seems to be that of calculating a numerical approximation of the transfer
operator U by expanding the initial condition in a set of more or less arbitrary base
functions, and performing repeated numerical solutions of (1) in each of which the
initial condition is given as one of the base functions. This represents an amount of
computational work which, although not unaffordable, is much larger than the work
involved in the non-evolving case, where an analytical solution was available.

A much more effective and flexible technique is known in the general mathematical
theory of optimal control: the simultaneous use of direct and adjoint equations. The
system of differential equations adjoint to (1) was numerically solved for a different
but related purpose (the calculation of the receptivity of Görtler vortices) by Luchini
& Bottaro (1996, 1998, subsequently referred to as LB). They found that a backward-
in-time integration of the adjoint system requires very nearly the same computer time
as a forward integration of the direct system.

The availability of a quick numerical integration of the adjoint system makes the
iterative algorithm of (4) or (7) an appealing alternative to the explicit determination
of a matrix representation of the operator U. In fact, the product U · fn, representing
the output of an individual numerical simulation performed with initial condition fn,
is computationally much faster to obtain than a discrete approximation of U itself.
Once U · fn is calculated and multiplied by Qout , the final multiplication by U+ to give
U+ · (Qout ·U ·fn) can then be obtained through the algorithm of LB in about the same
computational time again, for this product represents the output of a backward (i.e.
marching upstream) numerical integration of the adjoint differential problem with
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initial condition Qout · U · fn. Therefore, a single iteration of (7) costs just as much
as two numerical integrations of the original system of equations (1); provided the
maximization converges in less than N/2 iterations, where N is the number of degrees
of freedom in the numerical discretization of the input condition, the algorithm is
faster than calculating a matrix representation of U.

To summarize, the algorithm we have adopted for determining the optimal initial
conditions is composed of four steps, each corresponding to one of the four operators
in (7):

Step U: forward numerical integration of the parabolic system of differential
equations (1) from the input cross-section xin = 0− (immediately upstream of the
sharp leading edge where the boundary layer is formed) to the output cross-section
xout = 1 (the distance from the leading edge to the output cross-section having been
assumed as the reference length L).

Step Qout : multiplication of the output disturbance profile just obtained by the
energy matrix Qout to give the initial condition for the next step.

Step U+: backward numerical integration of the backward-parabolic adjoint
system of differential equations from xout to xin , to give the receptivity to initial
disturbances.

Step Qin: multiplication of the initial receptivity by Q−1
in to give the next approxi-

mation of the optimal disturbance, which is then normalized to prevent floating-point
overflow and fed back to step U.

The loop is initiated with an arbitrary disturbance profile, and repeated until
calculated variations in the profile itself become negligible. As will be discussed in
greater detail later, convergence turned out to be extremely fast.

4. Properties of the boundary-layer model
As the boundary-layer equations (1) are the same as generally adopted, with the

addition of a centrifugal-force term, to model Görtler vortices, the algorithm for
the integration of the direct and adjoint equations could be obtained from the one
described in LB by simply setting the centrifugal force (i.e. the wall’s curvature) equal
to zero. Therefore, the details of the numerical implementation of the U and U+ steps
of (7) can be found in LB, and we just briefly recall the main properties of (1) here.

Unlike the Navier–Stokes equations they are meant to approximate, the boundary-
layer equations are parabolic rather than elliptic, and require two rather than three
initial conditions at x = xin and none at x = xout . In addition, the coefficients of these
equations are singular at x = 0, the edge of the plate, where the v0-component of the
base flow is infinite for x → 0+ (from the right), and is identically zero for x → 0−
(from the left). As all this implies, the boundary-layer equations are not uniformly
valid in a neighbourhood of x = 0, and jump conditions are needed to connect the
velocity disturbances at x = 0+ with those at x = 0−.

The description of the leading-edge region adopted by LB (and previously, for a
different purpose, by Ting 1965) is based on the following ideas:

(i) Given that the useful size of the perturbation (along both the z- and y-
directions) is the final boundary layer thickness d, we can estimate that the longitudinal
pressure gradient will be non-negligible over a distance of the order of d before and
after the leading edge. Everything that happens at distances large compared to d
both upstream and downstream of the leading edge, on the other hand, is correctly
described by the boundary-layer equations. In particular, although inviscid behaviour
continues to dominate over a downstream (and upstream) distance much larger than
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d, this behaviour is correctly described by the boundary-layer model, because it occurs
under negligible pressure gradient, and need not be calculated separately.

(ii) In the leading-edge region of length d, viscous effects are limited to a thin layer
of thickness (dν/U∞)1/2; the inviscid layer above this dominates the flow.

(iii) The vertical displacement of streamlines across this region, calculated from
the outer displacement induced by the unperturbed Blasius boundary layer, is of the
order of (dν/U∞)1/2 again, and therefore infinitesimal of order R−1/4 with respect to
the thickness d of the inviscid layer itself. Thus the upstream and downstream ends
of a streamline are asymptotically located at the same vertical coordinate, and the
overall evolution of the perturbation along any one streamline can be treated as a
jump discontinuity with respect to the long boundary-layer scale L, to within an
O(R−1/4) error.

(iv) The relationship between physical quantities before and after the discontinuity
can be obtained from integrated conservation laws, just as for a shock discontinuity,
and from the consideration that, despite an important pressure gradient prevailing
in the leading edge region, the total integrated pressure difference must be zero, for
in both the upstream and downstream boundary layers pressure is constant in y and
equal to the external pressure.

The conclusion drawn from these four considerations in LB is that the longitudinal
velocity perturbation δu and the modified longitudinal vorticity perturbation δξ,
defined by

δξ = (u0δw)y − iα(u0δv + v0δu) , (8)

remain continuous across the leading-edge layer.
Therefore, the values of δu and δξ coming from upstream of the leading edge

(at x = 0−) can be used as initial conditions for the boundary layer equations at
x = 0+. Since upstream of the leading edge u0 = 1 and v0 = 0, the above two
quantities can be identified with the longitudinal velocity (or normal vorticity) and
longitudinal vorticity perturbations transported by the free stream. Notice that, as
v0 is discontinuous, continuity of δu and δξ implies that either δv or δw must be
discontinuous as well. Generally both are.

It follows that the state vector of the perturbation, in § 2 generically denoted f,
must be seen as composed of the two functions δu(y) and δξ(y). It also follows that
the natural variables for the backward calculation are the streak receptivity ū(x, y)
and the roll receptivity ξ̄(x, y), defined in LB by the property that the scalar product

s =

∫ ∞
0

(
ūδu+ ξ̄δξ

)
dy (9)

is constant with x, and therefore takes equal values in the input and output cross-
sections. It goes without saying that the boundary-layer equations, and with them
their adjoints, do not contain the Reynolds number other than in the scaling of
the dependent and independent variables, and only represent the leading term of an
expansion of the solution of the Navier–Stokes equations in inverse powers of the
Reynolds number.

5. The large-Reynolds-number limit of the input and output energies
The intensity of fluid dynamic instabilities is generally measured by the average

change they induce in the kinetic energy of the fluid. In a spatially evolving problem
like the present one, the appropriate quantity to represent this change is the integral
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of the kinetic energy density over the boundary-layer thickness, i.e.

E(d) =
ρ

4

∫ ∞
0

(|δu(d)|2 + |δv(d)|2 + |δw(d)|2) dy(d), (10)

a (d) superscript denoting dimensional quantities, and the cross-products with the
base flow having disappeared as an effect of the averaging. When (10) is non-
dimensionalized in boundary-layer scaling, it becomes

E =

∫ ∞
0

[|δu|2 + R−1(|δv|2 + |δw|2)] dy (11)

and thus contains terms of two different orders in R−1.
The origin of the boundary-layer approximation being in the inner–outer matched

asymptotic expansions in inverse powers of the Reynolds number, it is inconsistent to
keep both terms of (11) unless the next term of the inner and outer expansion (both
of the base flow and of the perturbation) is taken into account in the flow equations
at the same time. Therefore, the term R−1(|δv|2 + |δw|2) cannot be retained in the
leading boundary-layer approximation of the energy whenever |δu|2 is non-zero.

In particular, the optimal-perturbation problem (2) consists of maximizing

g =
Eout

Ein

=

{∫ ∞
0

[|δu|2 + R−1(|δv|2 + |δw|2)]dy
}
x=xout{∫ ∞

0

[|δu|2 + R−1(|δv|2 + |δw|2)]dy
}
x=xin

(12)

amongst all input perturbations. In doing so we can usefully distinguish between two
different types of initial conditions: conditions such that δuin = 0 and conditions such
that the initial δu is different from zero. In fact, in the first case g can be written as

g = R

{∫ ∞
0

[|δu|2 + R−1(|δv|2 + |δw|2)] dy

}
x=xout{∫ ∞

0

[|δv|2 + |δw|2] dy

}
x=xin

(13)

and is O(R), whereas in the second case g is O(1). Clearly, for large enough Reynolds
number the gain obtained by initial conditions with δu = 0 will always exceed the
gain obtained by initial conditions with δu 6= 0, and thus the leading approximation
of the optimal condition in the boundary-layer limit of R → ∞ must be sought
amongst the perturbations that have δuin = 0.

At the same time, provided δuout is non-zero (and indeed, we want it to be
maximum), we are not allowed to retain O(R−1) terms in (13) without at the same
time considering higher-order corrections to the boundary-layer equations. Therefore
the expression for g simplifies to

g = R

[∫ ∞
0

|δu|2dy
]
x=xout{∫ ∞

0

[|δv|2 + |δw|2]dy
}
x=xin

. (14)

In this form, the expression for g does not contain the Reynolds number other than
in the role of a scaling parameter, just as for the boundary-layer equations themselves.
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The maximum of (14) constrained over initial conditions such that δuin = 0 represents
the R → ∞ limit of the unconstrained maximum of (12) over all possible initial
conditions.

We have thus determined the Qin and Qout operators appropriate to the boundary
layer model. According to (14), Qout is a diagonal matrix with unit elements with
respect to δu and zero elements with respect to δξ, so as to produce the integral
of |δu|2 from the product f∗ · Qout · f. Therefore, in step Qout of the optimization
algorithm we simply set ξ̄out = 0 and ūout = δu∗out .

On the other side, at the input cross-section, equations (1) require two initial
conditions, for the longitudinal velocity perturbation δu and the modified longitudinal
vorticity perturbation δξ. Once δuin is fixed at zero, the solution will be a functional
of δξin only, and the input energy matrix must be expressed in terms of this quantity.

Upstream of the leading edge, where u0 = 1 and δu = 0 uniformly in x, the
continuity equation (2a) implies that δw = −δvy/(iα). Therefore, the input energy can
be expressed as

Ein =

∫ ∞
0

(|δv|2 + α−2|δvy|2) dy =
1

α2

∫ ∞
0

δv∗(α2δv − δvyy ) dy (15)

and the streamwise vorticity of (8) as

iαδξ = α2δv − δvyy . (16)

If now the symbol D is introduced according to D = α2 − ∂2/∂y2 (i.e. the opposite of
the Fourier-transformed two-dimensional Laplace operator), we can compactly write
(15)–(16) as Ein = α−2δv∗ ·D · δv and iαδξ = D · δv. As D is self-adjoint, the expression
for the energy as a functional of δξ can be seen to be simply given by

Ein = δξ∗ · D−1 · D · D−1 · δξ = δξ∗ · D−1 · δξ . (17)

Thus the operation of Qin consists in applying D−1 to δξin , and the inverse Q−1
in (all

that we actually need in the optimization algorithm) consists in applying precisely D
to ξ̄in .

We have thus arrived at the definition of the last step in our algorithm, step Qin:
once the receptivity ξ̄in at the leading edge is provided by the backward-marching
adjoint computation (i.e. f̄∗in = U+ · f̄∗out , or equivalently f̄in = UT · f̄out ), the new
approximation of the initial perturbation (to be used as an initial condition in
resuming the loop) is given by δuin = 0 and δξin = D · ξ̄∗in . In practice, given (16), we
may even more easily set δvin = iαξ̄∗in .

6. Results
As any dependence on the Reynolds number is implicit in the boundary-layer

scaling of (1) and (14), the only dimensionless parameters left are the spanwise
wavenumber α and the frequency ω of the impinging perturbation. We have, thus,
performed a number of computations for different values of α and ω, seeking for each
the most amplified initial perturbation and the corresponding induced disturbance
at the outlet. We may recall that our inlet (xin = 0−) is the free stream immediately
upstream of the leading edge, whereas our outlet (xout = 1) is an arbitrary location on
the flat plate whose abscissa was chosen as the reference length L (it does not matter
whether the plate actually ends at x(d) = L or not, for the boundary-layer equations
are parabolic and no upstream influence is felt of whatever happens after xout ).

The main results of these computations are contained in figures 1–3. Figure 1
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0.003R

0.0003R
0 0.2 0.4 0.6 0.8 1.0

Max: 0.0022R
for αd = 0.45

αd

g

Figure 1. Maximum kinetic-energy gain as a function of wavenumber, for zero frequency.

0.003R

0.0003R
0 2 4 6 8 10

ωL/U¢

g

Figure 2. Maximum kinetic-energy gain as a function of frequency, for the optimal wavenumber
αd = 0.45.

displays the curve of maximum amplification as a function of wavenumber α, for
zero frequency. A maximally amplified wavenumber α(d)

max = 0.45 d−1 (or 0.77 δ∗−1,
in terms of the displacement thickness δ∗ = 1.702 d) emerges, with a corresponding
kinetic-energy gain gmax = 0.0022R = (0.028Rδ∗)

2. Figure 2 displays the curve of
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Figure 3. Crossflow velocity profiles of the optimal perturbation (αd = 0.45, ω = 0).

maximum amplification as a function of ω, for α = 0.45. It clearly shows that the
maximum occurs for zero frequency, and that perturbations with a dimensionless
frequency ω = ω(d)L/U∞ of order unity or less will be preferentially amplified. The
δv and δw profiles that constitute an optimal initial perturbation at the wavenumber
of maximum amplification are plotted in figure 3. As a side effect of the iteration
conditions detailed at the end of the previous section, the initial δv profile plotted in
figure 3 also represents the optimal roll receptivity ξ̄.

It must be remarked that, if the plot of figure 2 were continued to higher and higher
frequencies, it would eventually enter the instability region of classical Tollmien–
Schlichting (T–S) waves, and amplification should be expected to rise again (provided
the boundary-layer equations (1) were abandoned in favour of a model that also
includes the longitudinal pressure gradient, which at high frequency is no longer
negligible). In order to estimate where in the spectrum T–S waves and algebraic
instabilities are located with respect to each other it can be reckoned, for instance, that
the classical neutral threshold of two-dimensional, parallel T–S waves, Rd = L/d ≈ 300
and ω(d)d/U∞ ≈ 0.07, corresponds to ω(d)L/U∞ ≈ 21, i.e. beyond the end of the plot
in figure 2. If it is considered that a substantial amplification of T–S waves requires
a further increase in Reynolds number, the algebraic instability and the classical
exponential instability can be seen to be quite well separated in frequency.

Figure 4 reports the optimal perturbations for a range of values of α; as may be
seen, there is considerable change in the thickness of the various perturbation profiles.
In contrast to this behaviour, the final δu profiles, that is the longitudinal-velocity
perturbations produced at the outlet when the optimal perturbation is assigned as
an initial condition, change very little with α (figure 5). Indeed, they always remain
very close to the shape of the small-α similarity solution calculated in L96 (compare
figure 2 therein), even when they correspond to a wavenumber which is not small.

Even more interestingly, the final δu profile corresponding to the small-α limit, and
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Figure 4. Crossflow velocity profiles of the optimal perturbation (αd = 0.1–1, ω = 0). The arrow
points in the direction of increasing α.

with it all the other profiles plotted in figure 5, are remarkably close to the results
of Westin et al.’s (1994) experiments, as pointed out to the author by one of the
experimenters (P. H. Alfredsson 1996, personal communication). Some of that paper’s
data (see also Westin 1997) can be seen in figure 6, normalized to unit maximum
value and with the optimal-perturbation result superposed. They represent profiles
of r.m.s. velocity perturbation measured in a carefully generated flat-plate boundary
layer at various longitudinal stations and free-stream velocities corresponding to
the Reynolds number Rδ∗ displayed in the legend. It should be remarked that the
experiments were conducted with grid-generated turbulence as excitation, and they
agree with the optimization result even if the perturbation applied in the experiment
was in no way optimized. (The background turbulence level of 1.5% is the reason why
the experimentally produced r.m.s. profiles do not tend to zero for y →∞ whereas the
optimal curve does. Of course, a disturbance exhibiting a non-zero value at infinity
cannot be optimal for its energy is infinite.) It may thus be expected that a δu profile
similar to this could be found under quite general experimental conditions, even when
they are not intentionally tailored to be optimal. Some considerations supporting this
expectation are given in Appendix A.

One may also wonder, seeing that the optimal perturbation is characterized by
δuin = 0, whether an initial δu is amplified at all. This question will be addressed in
Appendix B.

From the computational point of view, we can report that the convergence of the
simple iterative algorithm of § 3 proved very fast for the present problem, giving an
accuracy much beyond the truncation errors involved in discretizing the equations
after just three or four iterations. The use of more sophisticated iteration strategies
was therefore unnecessary.

Indeed, the near universality of the output velocity profile and the quick convergence
of the numerical iteration have a common origin in the structure of the singular-value
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Figure 5. Profile of the final longitudinal velocity oscillation induced by an optimal perturbation
(αd = 0.1–1, ω = 0).

spectrum of the input–output transfer operator; more specifically, both depend on
the amount of separation between the first and the other singular values. In fact,
the evolution operator U may always be written in the form of a singular-vector
decomposition as

U =
∑
n

√
gnfout,nf

∗
in,n · Qin , (18)

where the input vectors fin,n (eigenvectors of Q−1
in · U+ · Qout · U) are orthonormal

with respect to the quadratic form Qin (i.e. f∗in,m · Qin · fin,n = δm,n), and the output

vectors fout,n = g
−1/2
n U · fin,n are orthonormal with respect to the quadratic form

Qout (i.e., f∗out,m · Qout · fout,n = δm,n). If the singular values are numbered in order of
decreasing magnitude, fin,1 coincides with the optimal perturbation and fout,1 with the
corresponding output velocity profile.

From (18) one may read that the operation of U (encompassing the complete
process represented by (1)) is tantamount to expanding the initial condition in the
orthonormal basis fin,n, replacing fin,n by fout,n for each n, and multiplying each
coefficient by

√
gn. If g1 is much larger than all the other gn, it should be clear then

that a randomly chosen initial disturbance, having a more or less balanced expansion
in the input singular vectors, will tend to produce an output consisting almost entirely
of the first singular vector, exactly the same as emerges from an optimal perturbation.
In fact, whereas the energies of the eigenvectors of a linear problem are only additive
when the problem is self-adjoint, the energies of the singular vectors are always
additive; therefore it can be stated in full generality, that if the initial perturbation
has a non-negligible fraction of its energy in fin,1 (namely, a fraction greater than
g2/g1), the output perturbation will have most of its energy concentrated in fout,1.

In order to obtain the ratio between the first and the second singular value, all that
was required was to compute the second eigenvalue of (7). This computation was

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

72
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007259


Instability of the boundary layer over a flat surface 301

0.8

0 1 2 3 4

y/δ*

0.6

0.4

0.2

δ
u/

δ
u M

A
X

1.0

R = 350
R = 525
R = 715
R = 400
R = 890

Figure 6. Comparison between the δu profile produced by an optimal perturbation and experimental
data (from figure 9 of Westin et al. 1994, with the authors’ permission). Here R is the Reynolds
number based on displacement thickness δ∗.

performed by an orthogonalization technique which only required a slight addition
to the original program, namely projecting the current vector fin in the hyperplane
normal to fin,1 before each iteration. The results, shown in figure 7, consistently yield
a second singular value almost three orders of magnitude smaller than the first.

7. Conclusions
For a long time the appearance of streamwise streaks as an instability has only been

tied to the presence of centrifugal forces in curved flows. Despite the experimental evi-
dence indicating the frequent occurrence of streamwise streaks in pre-transitional flow
past straight walls, a theoretical explanation of the linear amplification mechanism
of such streaks was missing; therefore their presence (leading to the so-called ‘by-
pass transition’) was typically ascribed to an unspecified ‘direct nonlinear mechanism’
triggered by large values of free-stream disturbances.

Whereas it is true that only in the presence of centrifugal forces do streamwise
streaks receive exponential amplification, the scientific community has now realized
that the transient amplification allowed by the non-selfadjoint character of the equa-
tions of fluid dynamics can produce important energy gains, of the right order of
magnitude to explain the linear growth of initially small disturbances up to the point
where they can excite nonlinear interactions and eventually cause transition. Pertur-
bations produced in this way are driven by the lift-up phenomenon, that is by the
continued accumulation over time (or downstream distance) of longitudinal-velocity
differences arising from slow convection in the transverse plane. This mechanism
tends to give these perturbations their characteristic aspect of elongated streaks, with
a relatively fast oscillation in the spanwise direction and a much slower (in the
ideal case, absent) oscillation in the longitudinal direction and in time. They are,
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Figure 7. First and second singular values of the evolution operator as functions of wavenumber.

therefore, very different from the classical Tollmien–Schlichting waves, which in their
first-destabilization range are characterized by a fast oscillation in the longitudinal
direction and in time, and a slow (in the ideal case, absent) oscillation in the span-
wise direction. Rather, algebraic instabilities of the boundary layer tend to have an
appearance quite similar to Görtler vortices, with which they share the basic mathe-
matical model. The only difference is that on a curved plate centrifugal forces create
a feedback from the streamwise streaks onto the crossflow vortices, thus making the
amplification of Görtler instabilities exponential.

Although the existence of algebraic growth in a boundary layer and its qualitative
dependence on the Reynolds number could certainly be inferred from previous
theories and computations of the algebraic growth in a parallel flow, this paper
has given the first quantitative determination of the maximum amplification factor
achievable through this mechanism, and of the corresponding spanwise wavenumber.
The maximum amplification factor, 0.0022R, translates into an energy amplification of
220–2200 (amplitude amplification of 15–50) in the 105–106 Reynolds-number range
where bypass transition is likely to be observed, thus potentially explaining the growth
of external disturbances in the 1–5% range to levels where they can trigger transition.
The typical spanwise wavenumber of 0.45d−1 is about half of the typical wavenumber
of Görtler vortices, evidently because the larger amplification of the latter can more
easily withstand the viscous damping associated with a faster spanwise oscillation.
It remains, anyway, near enough to the typical wavenumber of Görtler vortices to
corroborate a common explanation of both through the lift-up effect. In addition, just
as for Görtler vortices, the frequency of maximum amplification is zero. Of course,
in both cases this is not to be understood in the sense that only steady Görtler
vortices and streaks are to be expected in practice, but in the sense that observed
frequencies will be in the range where the amplification is not too different from its
value at zero, according to figure 2. From a theoretical viewpoint, however, the fact
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that the amplification range is centred at zero frequency makes the (easier) steady
case particularly interesting to study.

A separate consideration is required by the fact that the velocity profile assumed
by the streak appears to be almost insensitive both to the wavenumber and frequency
(within a reasonable range) and to the shape of the initial perturbation. Indeed, it
was observed by G. I. Taylor as early as 1939 that the experimentally measured r.m.s.
perturbation profiles of transitional flows tended to assume the typical shape with a
single maximum that would be expected from a small modulation in boundary-layer
thickness, rather than the very different shape with two maxima which is characteristic
of Tollmien–Schlichting waves.† This is also borne out by the present comparison of
the theoretical streak profile with the experimental results of Westin et al. (1994). In
fact, a concordance between the theoretical and experimental velocity profiles was not
even to be expected, if it was considered that the experiments were performed with
homogeneous grid turbulence and not with optimal perturbations as initial conditions.
A mathematical, objective, explanation for this concordance has been given at the
end of the previous section through the spectral properties of the evolution matrix,
thus making it clear that the shape of the streak always tends to be attracted towards
the shape of the optimal perturbation, even when the initial perturbation is relatively
far from optimal. A more physical, but also more debatable, conjecture of loose
coupling between the different equations of the model is given in Appendix A. One
point in favour of this conjecture is that it can also explain why the universal shape
that the streak tends to assume is very near to a simple thickness modulation, just as
empirically observed by G. I. Taylor and later experimenters.

Finally it should be mentioned that, while this paper was being revised, a number
of related approaches have been presented at conferences and/or in journals.

In particular, Andersson et al. (1998a, b, c, 1999a, b, c, d) have calculated the optimal
perturbations of a flat-plate boundary layer by a similar backtracking optimization
technique, the main difference being that their energy ratio is defined as in (12)
rather than in the Reynolds-independent form of (14), whereas their mathematical
model is still constituted by the boundary-layer equations. They thus obtained steady
amplification spectra in which dependence on the Reynolds number is accounted for
in the definition of energy but not in the model equations. Their data confirm that
the result of optimizing (12) does indeed converge to the result of optimizing (14)
for R → ∞, and moreover that the Reynolds-independent limit is for all practical
purposes attained in the interesting range of R ≈ 105–106; however, they cannot be
relied upon to give the true Reynolds-number dependence below this range, because
the deviation of the optimal gain from its asymptotic value is O(1/R), and not all
O(1/R) effects are taken into account. It is also of some concern that the leading-edge
region is given hardly any consideration by Andersson et al., who claim continuity
of their optimization results when x tends to zero from the right, but then in the
computation set v0 = 0 for x = 0, disregarding the fact that the limit of the normal
velocity of Blasius flow when x tends to zero from the right is infinity. Therefore,
although the gain figures presented are to graphical accuracy the same, here they
can be interpreted as the ratio of final energy to energy of free-stream perturbations
measured just upstream of the leading edge whereas in Andersson et al. they cannot.

† On p. 305 of Taylor (1939) we read: “[From recent measurements in the non turbulent layer
near a flat plate in the Cambridge tunnel] it will be seen that the fluctuations are confined entirely
to the boundary layer,

√
ū2 falling to the general level of turbulence in the tunnel immediately

outside the layer. This fact combined with the comparative slowness of the fluctuations makes it
appear probable that they are simply fluctuations in boundary layer thickness.”
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In addition, higher singular values and the universality of the output streak profile are
only discussed in the present paper; frequency dependence was added during the first
revision to corroborate the former assumption that maximum gain is obtained for zero
frequency and determine the useful frequency range of near-optimal amplification. On
the other hand, only the papers by Andersson et al. present an empirical correlation
of algebraic growth for transition-prediction purposes.

Cossu, Costa & Chomaz (1998) optimized the energy growth of steady Görtler vor-
tices, including the flat-plate boundary layer as the particular case of zero curvature,
by first determining a matrix representation of the input–output transfer operator
U. Their results are not directly comparable with ours because they adopted still
another definition of the energy density, the sum of the square moduli of all three
dimensionless velocity components, disregarding the fact that in a boundary layer the
longitudinal and transverse velocity components are made dimensionless with respect
to different reference values.

Tumin (1998) reconsidered the previous calculation by Crow (1966) of the linear
growth induced in the δu-component of velocity by a spanwise oscillation of small
α of the free stream, and extended it to unsteady perturbations. The effect studied
in 1966 by Crow himself, of a growing streak being induced by a weak and slow
spanwise modulation of the direction of the outer stream, is a cunning limiting case
of (1) in which the problem can be solved analytically. Indeed, when the spanwise
wavelength and normal thickness of the perturbation are both large compared to
the boundary layer thickness, δξ becomes independent of x and δu linear in x. For
infinite thickness Crow’s problem is obtained, but at the price of an infinite driving
energy. If the energy of the driving vortex is not an issue, the amplitude of the streak
grows linearly from zero. On the other hand, if the energy of the vortex is included
in the budget, the ratio of output to input energy increases with the vortex becoming
of shorter wavelength and moving closer and closer to the wall, where Crow’s limit is
lost, and the maximum is eventually attained for the optimal perturbation computed
here. Interestingly, the output velocity profile only changes by a hardly visible amount
in the process.

This work was supported by the Italian Ministry of University and Research and
by the ERCOFTAC Leonhard Euler Research Centre at the Ecole Politéchnique
Fédérale de Lausanne (EPFL), Switzerland. A. Bottaro and P. A. Monkewitz of
EPFL and P. H. Alfredsson of the Royal Institute of Technology (KTH), Sweden, are
thanked for useful comments and discussion. P. H. Alfredsson and K. J. A. Westin
of KTH are thanked for making their experimental data available for comparison,
and for pointing out the reference to G. I. Taylor (1939). An oral presentation of
the contents of this paper was given at the 3rd EUROMECH Fluid Mechanics
Conference, Göttingen, 15–18 Sept. 1997.

Appendix A. A conjecture explaining why the final velocity profile is so
repeatable

As shown at the end of §6, the optimal output velocity profile of figure 5 not
only tends to emerge from the optimal initial perturbation, but also from a generic
initial perturbation not orthogonal to it. Incidentally, this also explains why the first
(and second) mode of the small-α similarity solution calculated in L96 fall very near
to each other and to the optimal profile itself. (Indeed, it is the similarity profile
that was observed to agree with experimental data by P. H. Alfredsson; the optimal
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Figure 8. Comparison between the δu profile produced by an optimal perturbation and the
Stewartson mode.

perturbation profile was not yet available at that time.) While all of this is fortunate,
it may also be a hint of an even more elementary mechanism at work. This Appendix
aims at presenting a candidate for the role of such mechanism.

We see a revealing clue in still another velocity profile that looks very much like
all of the above: the first mode in the sequence described by Libby & Fox (1964) (see
also § 2 of L96) of similarity solutions to the two-dimensional linearized boundary-
layer equations (i.e. (1) with α = 0 and δw = 0). This mode, plotted in figure 8
together with the present optimization result, has an analytical expression (due to
Stewartson 1957) simply given by δu = yu0,y , Blasius’ solution being denoted by u0. It
should be noted that this is the same perturbation profile that would follow from an
infinitesimal modulation of boundary-layer thickness. In fact, if the Blasius velocity
profile is written as u = u0[y/h(x)] and the boundary-layer thickness h is given a
small variation δh, the velocity increment δu = u − u0 turns out to be proportional
to the same Stewartson mode: δu = −(δh/h)yu0,y . (Indeed, this is more or less how
Stewartson discovered his exact solution of the steady, two-dimensional perturbation
equations.)

We thus propose the following conjecture to explain the strong resemblance between
the δu profile obtained from an optimal perturbation and the one generated by quite
different initial perturbations (such as those presumably present in the experiments):
the Stewartson mode of the Libby & Fox sequence is a strong enough attractor to bring
near to itself the velocity profile under most (reasonably smooth) initial conditions.

How such an attraction can take place may be seen in its simplest form in the
case of the small-α three-dimensional modes studied in L96. According to equations
(L96.7) (by which we mean equations (7) of L96), the three-dimensional modes consist
of driven solutions of the Libby and Fox equations (L96.10), where the driving is
provided by free eigensolutions of a separate equation for δw (L96.9). Since the
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Libby & Fox modes form a complete set, orthogonal with respect to a suitable
weight function, it is always possible to represent the solution of (L96.7a, b) as a
superposition of modes, namely

δu =

∞∑
k=1

ak(x)N ′k(y/x
1/2) (A 1)

(in the symbolism of L96), where the coefficient ak obeys the ordinary differential
equation:

dak
dx

+ rkx
−1ak =

∫ ∞
0

Hk(η)F ′0
2(η)

∫ η

0

iαδw(x, x1/2η1) dη1dη. (A 2)

In the case where δw represents the jth eigensolution of (L96.9), proportional to
x−sj , the relative amplitude of the different coefficients ak will depend both on the
affinity between the wall-normal profile of the spanwise velocity perturbation δw and
the shape of the kth mode (as expressed by the integral on the right-hand side of
(A 2)), and on the proximity of exponents sj − 1 and rk (i.e. the degree of resonance
with the left-hand side). In practice, for the first two modes s1 − 1 (i.e. −0.213) and
s2 − 1 (i.e. 0.694) are closer to r1 = 1 than to any other Libby & Fox eigenvalue,
and the component a1 prevails. Thus the fact that the first two modes exhibit the
same general appearance as the Stewartson mode can be explained. In addition the
resonance is even stronger for the second than for the first mode, and therefore, as
visible in figure 2 of L96, the second mode has a higher amplitude than the first.

The same mechanism may be expected to operate even when, for α not being
small, the spanwise perturbation δw is not independent of δu but is coupled to it by
pressure. Equations (1a, b) can still be formally solved and transformed into (A 2),
and as long as the variation of δw with x is slow enough the resonance mechanism
will make the Stewartson mode prevail in the modal expansion of δu and leave its
imprint in the final shape of the velocity profile.

As every z-dependent perturbation that turns into the Stewartson disturbance
profile produces only a z-dependent modulation of the boundary-layer thickness h, we
conclude that the initial linear effect of an infinitesimal longitudinal vortex on the
Blasius boundary layer may be expected to almost always produce a simple thickness
modulation.

Appendix B. Are streak-only perturbations never amplified?
As was recalled in § 4 and explained in more detail in LB, the three-dimensional

boundary layer equations require two initial conditions, one for δu and one for δξ
of (8), at x = xin , and none at x = xout . The qualitative conclusion that δξ (roll)
perturbations are amplified much more than δu (streak) ones comes quite simply from
their different scaling: a δξ of order unity in boundary-layer variables is actually a
small perturbation of order R−1/2, and produces a δu of order unity at the outlet
cross-section with an O(R) gain in energy; on the other hand a δu of order unity
produces an output δu of order unity again (actually a reduced one).

There are two independent deductions one can draw from this observation: one is
that the maximally amplified perturbation is a δξ-only perturbation, as was shown in
§ 5 and calculated in § 6; the other is that a δu-only perturbation is not amplified at
all. However, these two statements are not quite on the same footing. In fact, whereas
a maximum is relatively insensitive to structural perturbations of the problem, and
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therefore the conclusion that a δξ perturbation is maximally amplified is relatively
robust, a zero can be altered by even a slight modification of the model, and therefore
care is needed with the second claim. In particular, it is quite clear that even a small
coupling from the initial δu into the initial δξ can make the former amplified, provided
only that the coupling is larger than R−1/2. Since the approximation of replacing the
leading-edge region by a leap discontinuity is only valid to O(R−1/4), such a coupling
cannot be excluded.

Damped perturbations of course do exist for a linear problem with both large and
small singular values, at whatever order of approximation. All that the above means
is that the damped perturbation, at a higher order of approximation, will not be a
δu-only perturbation but the combination of a δu-profile with a suitable, O(R−1/4),
δξ-profile. Since a δu perturbation is equivalent to a normal vorticity perturbation,
another way to see the same effect is that the damped vorticity perturbation, instead
of being exactly normal to the wall, will be rotated by an O(R−1/4) angle. By the same
token, the maximally amplified perturbation may also be rotated by an O(R−1/4) angle
from its leading-order exactly longitudinal direction, but with only an imperceptible
change in the corresponding amplification. All this does not modify the fact that a
randomly oriented initial perturbation has an overwhelming probability of containing
an O(1) fraction of the maximally amplified component.

A substantial amplification of δu perturbations was indeed obtained by Goldstein,
Leib & Cowley (1992), who studied the effect of δu-only perturbations of zero
frequency on a flat plate with a rounded leading edge. A crucial, though perhaps
underemphasized, starting assumption of their paper is that their plate has a non-zero
thickness of the same order of magnitude as the spanwise wavelength of the oncoming
perturbation, which is to say of order d. This changes the normal displacement induced
in the inviscid stream from O(dν/U∞)1/2 to O(d), and consequently makes the coupling
of δu with δξ perturbations O(1) rather than O(R−1/4). Indeed, in the limit of a very
blunt edge which can locally be described as a flat plate normal to the stream, quite
clearly vorticity perturbations oriented normal to the free stream become parallel to
the surface and vice versa.

It is thus not inconsistent with the present findings that Goldstein et al. calculated
a sizeable amplification of δu-only perturbations (without even trying to optimize
them), nor that they had to actually solve the inviscid-region equations (in terms
of Lighthill’s drift function) in order to do so. However, it does indicate that the
optimal perturbations calculated in the present paper might only apply for very thin
plates, and that for thick plates the optimal may have to be determined by using the
Lighthill drift technique in order to connect the initial perturbation at x = 0+ with
the free-stream perturbation prevailing at x = 0−.
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