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SUMMARY
We propose a new class of modular-robotic structures, intended to produce forces which scale with
the number of modules. We adopt the concept of a spherical catom and extend it by a new connection
type which is relatively strong but static. We examine analytically and numerically the mechanical
properties of two collective-actuator designs. The simulations are based on the discrete element
method (DEM), with friction and elastic deformations taken into account. One of the actuators is
shown to generate forces proportional to its volume. This property seems necessary for building
modular structures of useful strength and dimensions.

KEYWORDS: Modular robots; Self-reconfiguration; Programmable matter; Actuators; Mechanical
strength.

1. Introduction
One of the potential benefits of self-reconfigurable modular robots is their versatility. Such robots
can dynamically adjust their physical configuration, which makes them superior to fixed-morphology
robots in complex or unpredictable situations. The functionality of individual modules is usually
very limited, and it is through collective work of many modules that the system obtains its desired
capabilities, e.g., to change shape, lift objects or move.1, 2 The number of modules can potentially
be increased and their size reduced. Extremely fine modular-robotic structures can be even seen as a
realization of the programmable matter concept.3

The research on large-ensemble modular robots is still at an early stage. This is because of the
high difficulty of the problem. Setting thousands or even millions of densely-packed microrobots
to do collective work is far more complex than miniaturization and increasing the number of
modules. A strong interplay exists between module design, reconfiguration control, power supply
and communication. The present work partially concerns the first two problems.

Many module designs have been proposed as constituents of three-dimensional robotic systems.
The 3D units4, 5 form a cubic lattice and reconfigure by rotating and transporting their neighbors to
adjacent locations. The crystalline atoms6 are also based on a cubic grid, but reconfigure by extending
into adjacent grid positions. These two designs have moving parts and special attachment mechanisms,
which might be difficult to miniaturize. The M-Blocks7 have a magnetic attachment mechanism,
without moving parts, and reconfigure by rotating about their edges. However, their cubic geometry
is inconvenient for doing collective work in dense modular packings. The stochastic assembly system8

is in turn mechanically passive and relies on its ambient fluid medium for reconfiguration. One of
the most interesting module designs is the catom.9, 10 It is a cylindrical or spherical module without
moving parts, which moves by rolling and uses electric or magnetic forces for attachment and
actuation. Spherical catoms are well suited for doing collective work in dense, three-dimensional
systems, and we shall use them in our investigations.

As regards the problem of reconfiguration planning for dense modular structures, the research has
usually been carried out in an abstract way with respect to lattice-based systems.1, 6, 11–14 In these

* Corresponding author. E-mail: jleng@ippt.pan.pl

https://doi.org/10.1017/S026357471500082X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471500082X


788 Modular-robotic structures for scalable collective actuation

(a) (b)

Fig. 1. Active/weak (a) and fixed/strong (b) connections.

works, a complicated reconfiguration problem is solved under purely geometric constraints, like
avoiding the overlap of modules and preserving the connectivity of the entire structure, while ignoring
by necessity the mechanics of reconfiguration. Conversely, the stiffness of chain-style reconfigurable
robots has been also analyzed, but only for already formed configurations.15 It is, however, crucial
whether a planned reconfiguration can be really executed by the actuation mechanisms of modules—
in particular, whether the structure will not break or collapse under gravity. We therefore change
the usual emphasis and investigate modular structures from the mechanical perspective: use simple
reconfiguration scenarios, but analyze stresses and forces more thoroughly.

Our analysis is inspired by the idea of collective actuation.9 We likewise consider structures made
of spherical catoms, in which, however, there is an additional type of connection, strongly binding
chosen modules together. An initial analysis of two such structures, serving as linear actuators, has
already been presented.16 Under the assumptions of no friction and a high stiffness of modules, it was
shown that the forces produced by these actuators scale with their volumes. However, the inclusion
of friction and elastic deformations is necessary to obtain more realistic predictions. In the present
work, such more detailed investigations are performed in two ways, analytically and numerically.
We analyze one of our previous designs and a new type of structure. Our previous design proves
capable of being modified so that its force-volume scalability is preserved in the presence of elastic
deformations and friction.

2. Active Microstructures

2.1. Two types of connections
In their original version,17–20 catoms are held together and actuated by controllable electric or magnetic
fields at their contacting surfaces. The resulting forces of attraction bind neighbor modules together,
and resulting torques produce rolling motion. Magnetic fields are generated by electromagnets and
electric fields by electrodes, placed beneath module surfaces. Electromagnets can potentially produce
large forces, but require a constant power supply to maintain them, which is impractical for power-
limited systems. By contrast, electrodes only require power for switching, but have rather limited
force capabilities.

An electrostatically actuated spherical catom of radius r = 65 μm is expected to be able to exert
a torque τ = 16 pNm on its neighbor, which allows it to hold, against gravity, six other modules
(0.69 μg each) aligned horizontally.10 The maximum force of cohesion between two such modules is
several μN, which is enough to hold about 1000 modules aligned vertically (a 13 cm-high column).
A densely-packed arrangement of modules, with four cohesive bonds per module, can be twice as
high (∼26 cm), and this is approximately the limit height of any suspended structure. The strength
of electrostatic connections cannot be significantly increased, mostly because the voltage between
electrodes is limited by air ionization.

Because of the above limitations, we postulate that an additional type of connection is needed
between catoms. This new connection type will be called fixed or strong, and the electrostatic one
will be called active or weak (cf. Fig. 1). Fixed connections are assumed to be much stronger than
the active ones, but they are only intended to bind catoms together and need not produce mechanical
work or be able to switch on and off very quickly.

Physical realization of fixed connections, capable of being miniaturized, may be difficult, especially
if they are required to be simultaneously strong, reversible, energy-efficient and able to form within
seconds. The existing large-scale connection mechanisms, like mechanical latches, seem impractical

https://doi.org/10.1017/S026357471500082X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471500082X


Modular-robotic structures for scalable collective actuation 789

when length scales go down, mainly due to manufacturing problems and extreme precision necessary
for docking. Other approaches, suitable for application at the microscale, need to be developed.
There exist several physical phenomena which could be used for realizing fixed connections, some
of which have already been explored. For example, one can use phase transformations to form
reversible soldered connections.21 However, energy related issues (heating the solder until melting
and then its efficient cooling), the time needed to set the connection (several minutes), as well as the
relatively small number of reconnection cycles before failure (several hundred), may not result in fixed
connections of the required kind. Another possibility might be to use reversible chemical reactions
for bonding–debonding,22 to glue modules together. In that case, it would be necessary to locally
control some physical/chemical properties of the environment, which might be difficult to realize in
practice. Van der Waals forces, through the use of a “molecular velcro”, could also be employed.23

The problems are obtaining a sufficient strength of the connection and controlling its formation and
release, without the need for mechanical breaking. It may turn out that strong electropermanent
magnets are the best choice for connections, both active and fixed. Electropermanent magnets only
require power for switching, just like electrodes, but their connection strength can be several times
greater.24 The condition is that strong, variable magnetic fields within the system will not disrupt the
electronics of the modules.

For the purposes of this study, we shall not further attempt to specify the physics of the fixed
connections. We shall only assume that fixed connections of the required kind can be created.

2.2. Elementary actuation mechanisms
The two types of connections allow the construction of mechanisms which have a higher structural
integrity and can produce much larger forces than structures bound by active connections alone. We
call them active microstructures. To facilitate further description, we shall also divide the modules
forming active microstructures into two types: active and fixed (by a slight abuse of terminology),
depending on the kind of connections they have in the microstructure. Active modules are by definition
those which have no strong connections with other modules. They can only have weak connections,
and in our analyses they use them to roll over other modules and actuate the microstructures. Fixed
modules, on the other hand, have at least one strong connection. In all microstructures discussed
in this paper, fixed modules are bound by strong connections into larger groups, further called fixed
structures, walls, layers or frames. A fixed structure acts as one element and its modules move together
for a given period of time. Fixed structures are used to support active microstructures and define their
global directions of motion, like animal bones or machine parts. They collect interactions from the
active modules, which move between them, and aggregate them into global forces—provided that
fixed connections withstand the resulting stresses.

Remark. By convention, modules serving different functions in the microstructure, in particular,
modules belonging to different fixed structures, are further denoted by different colors in the figures.

Remark. In general, fixed connections can be formed and released. This has two consequences. First,
active modules can become fixed by establishing strong connections, and conversely. Therefore, the
division of modules into active and fixed is temporal. Second, fixed structures can evolve by attaching
or detaching strongly connected modules. In this paper, however, we do not consider reconfiguration
of fixed connections—all fixed connections are established at the beginning and persist through
each of the presented analyses. Therefore, active modules remain active and fixed modules remain
fixed. Furthermore, fixed structures do not change shape and only move relative to one another.
Active modules, on the other hand, reconfigure as discussed in Section 3.3, by rolling over fixed
structures and reattaching from one module to the next. In effect, the topology of fixed connections
in a microstructure is constant, whereas the topology of active connections changes.

Individual active modules and their immediate neighbors in the microstructure can be arranged in
many different ways. The simplest arrangements are those in which there are no weak connections
between active modules—only between active and fixed ones—and whose motion is entirely planar.
Such local arrangements can be classified into five geometric types, shown in Fig. 2. We call them
elementary actuation mechanisms or actuation primitives.

In the mechanism M-I, an active module rolls over one fixed structure and pushes another fixed
structure. In M-II, an active module pushes another active module, which is attached to the same
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(a) M-I (b) M-II (c) M-III

(d) M-IV (e) M-V

Fig. 2. Elementary actuation mechanisms of active microstructures. Red modules are active—circular arrows
indicate their rotation directions. Blue and gray modules are fixed and belong to two different (blue and gray,
respectively) fixed structures. White circles between red and blue/gray modules denote active connections,
and solid links between two blue or two gray modules denote fixed connections. If neither an active nor a
fixed connection is indicated between two contacting modules, then frictional sliding is assumed between their
surfaces. Block arrows denote directions of linear motion.

fixed structure and revolves in the same direction. In M-III, an active module pushes another active
module, which is attached to the same fixed structure but revolves in the opposite direction. In M-IV,
an active module pushes another active module, attached to a different fixed structure. Finally, in
M-V, an active module rolls simultaneously, but in opposite directions, over two fixed structures. The
mechanisms M-I and M-III are further used to construct two actuator microstructures.

2.3. Examples of linear-actuator microstructures
One can design active microstructures of different shapes, functions and principles of operation. We
shall only analyze two microstructures which perform linear motion: the square linear actuator and
the pump actuator with counter-rotating modules.

2.3.1. Square linear actuator. The square linear actuator is one of a family of similar structures
which can extend or retract in one direction, as shown in Fig. 3. It is a square column with a cubic
arrangement of modules, 2Nx + 1 modules wide and Nz + 2 modules high, built of Nx concentric
layers of fixed modules and a line of fixed modules at the center. Two horizontal planes of fixed
modules are placed at the top and bottom of the actuator, joining even and odd layers (blue and gray
in Fig. 3), respectively, into two fixed frames. There are no weak or strong connections between
consecutive layers, whence they can freely slide past each other. In every layer, there is a regular
array of windows—places where fixed modules are missing. The windows in adjacent layers are
“in counterphase,” that is they are so arranged that the windows of one layer face a full column of
modules of the adjacent layer, and conversely. Every window is filled with an active module (red
and yellow in Fig. 3), weakly attached to the modules of the next layer towards the center of the
actuator. When they roll, the active modules push the layer, to which they are attached, and the
layer, in whose windows they are located, in opposite directions—as shown in Fig. 4. This type of
propulsion was classified as the actuation mechanism M-I in Section 2.2. Since the active modules of
adjacent layers roll in opposite directions, one frame moves upwards, and the other one downwards,
cf. Fig. 3(b).

The principle of operation of the square actuator is analogous to that of a functional subunit of a
muscle cell—the sarcomere.25 A sarcomere is filled with longitudinal filaments of two kinds, made of
proteins actin and myosin, respectively, which slide past one another. Heads of the myosin molecules
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(a) Initial configuration (b) Intermediate configuration

Fig. 3. Nz × Nx = 8 × 4 single-window square linear actuator, with a front section removed to improve visibility
(DEM simulation). Red modules roll downwards and the yellow ones upwards, pushing the gray and blue frames
in opposite directions. The modules in pale colors in (b) have deactivated—they stopped pushing the structure.
See also Fig. 4.

(a) (b) (c) (d) (e)

Fig. 4. Five stages of extension of a single-window square linear actuator—cross-section of two layers. The
module A2 in (e) has deactivated—it stopped pushing the structure.

reach out from the myosin filaments, bind to the neighbor actin filaments and pull them, causing
contraction of the sarcomere. The produced force is proportional to the volume of the sarcomere,
since the heads are distributed along the length of myosin filaments, and the filaments work in parallel.
The square actuator is similar—the active modules correspond to the myosin heads, and the layers of
fixed modules correspond to the actin and myosin filaments.

Remark. Figures 3 and 4 present a single-window square linear actuator, i.e., its windows have
dimensions 1 × 1 modules. In Section 4, we also analyze a double-window version, with 1 × 2
windows, shown in Fig. 14.

2.3.2. Pump actuator with counter-rotating modules. Pump actuators are active microstructures in
which active modules are arranged in columns and push one another, as shown in Fig. 5. A pump has
counter-rotating active modules if consecutive modules in a column are weakly bound to opposite
walls and rotate in opposite directions, as shown in Fig. 6. This arrangement corresponds to the
actuation mechanism M-III of Section 2.2. Actuation forces are propagated upwards in a column
of Nz active modules, and the top module transfers the resultant force to an upper fixed structure,
like the top blue “table” in Fig. 5. The lower part of the pump is a fixed structure (gray modules
in Fig. 5) with vertical gaps, into which columns of active modules (yellow and red in Fig. 5) are
fitted.
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(a) Initial configuration (b) Intermediate configura-
tion

Fig. 5. Pump actuator with counter-rotating modules, having 4 × 3 columns of active modules (DEM simulation).
Red and yellow active modules in each column roll upwards over opposite gray walls, as shown in detail in
Fig. 6.

(a) Initial stage (b) Intermediate stage

Fig. 6. One-column pump actuator with counter-rotating modules, capped by a T-shaped external measuring
device instead of a piston made of fixed modules. As it is shown in the bottom view, each active module is
weakly attached to two fixed modules, to improve the stability of the column.

The operation of the pump actuator is loosely analogous to the flow of a liquid in a pipe, compressed
at one end by a piston and open at the other. Fluid pressure builds up towards the piston, just like
actuation forces accumulate from the lower to the higher modules in a column, towards the upper
fixed structure.

In the rest of the paper, we shall only consider a single column of counter-rotating modules,
bounded from above by a horizontal wall or an equivalent measuring device—as shown in Fig. 6.
This very simplified setting seems representative of the entire class of structures.
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3. Modeling and Analysis Methods

3.1. Analytical formulas
Analytical formulas for the overall forces produced by the actuators, as functions of the actuator’s
extension �H , can be derived using the assumptions that the modules are rigid and the motion is
quasi-static. Below, they are described in general terms, and the details are provided in the Appendix.

3.1.1. Square linear actuator. The overall force of the square linear actuator is approximately equal to
the sum of forces produced by all its active modules, each of which works according to the actuation
primitive M-I of Section 2.2. As the actuator extends, its extreme active modules reach the ends of
their paths and stop pushing the structure—they deactivate, like the module A2 in Fig. 4(e). In the
course of extension, more and more active modules deactivate, until finally none are pushing the
structure when it is fully extended.

At any stage of motion, the active modules which have not yet deactivated can be divided into two
groups. The first one consists of those active modules, which have not yet reached the level of the
last fixed module in the line along which they are rolling. This group includes module A0 in Fig. 4,
and module A2 in Fig. 4(a)–(b), because they lie lower than the top fixed module C4. The second
group contains those active modules, which have already reached or passed the level of the last fixed
module. The module A2 in Fig. 4(c) enters group 2, and in Fig. 4(d), it deactivates and exits group 2.

The positions of all modules of the same group with respect to their neighbors in the microstructure
are the same. Therefore, forces produced by the modules of the same group are also equal, and the
overall force of the square linear actuator becomes

Fsq(�H ) = n1(�H )fI(h1(�H )) + n2(�H )fI(h2(�H )), (1)

where n1(�H ) and n2(�H ) are the numbers of modules in groups 1 and 2, respectively, when the
actuator is extended by �H , fI(h) is the force produced by a single actuation primitive M-I as a
function of its local displacement h (cf. Fig. 21(a)), while h1(�H ) and h2(�H ) are the values of h

for groups 1 and 2, respectively, at �H . fI is given by Eq. (16) in Appendix A.1 with k = 1.
The values of h1 and h2 are

h1(�H ) = (�H + h0) mod 2r − h0, (2)

h2(�H ) = �H mod 2r, (3)

where r is the module radius, x mod y = x − �x/y�y, �·� is the floor function and h0 = (3 −√
4
√

3 − 3)r is the vertical distance between the positions of the module B3 in Figs. 4(b)
and (c).

The numbers of modules in groups 1 and 2 are

n1(�H ) = nx

(⌈
Nz − 1

p

⌉
−

⌊
�H/2r + p − 1

p

⌋)
, (4)

n2(�H ) = nx

⌊
(�H/2r + p − √

3) mod p

p + 1 − √
3

⌋
, (5)

where nx = 2Nx(Nx + 1) is the number of active modules which deactivate simultaneously, �·� is
the ceiling function and p is the vertical distance, in module diameters, between consecutive active
modules: p = 2 for the actuator with single windows, and p = 3 for the version with double windows.

3.1.2. Pump actuator with counter-rotating modules. In the case of the pump actuator with counter-
rotating modules, the computation of the overall force involves a recursive procedure, as opposed to a
summation of forces of individual active modules. This is because, in general, the forces transferred
from the lower to the higher active modules in the column follow a complex path, and the contributions
of individual modules do not directly sum.
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The vertical force exerted on the measuring device by a single column of Nz active modules, cf.
Fig. 6, is

Fpump(�H ) = fIII(h(�H )), (6)

where fIII(h) is computed using the procedure described in Appendix A.2, with n = Nz and k = √
3/2.

�H is the vertical displacement of the measuring device from its initial position, and h is the local
displacement of the top active module, cf. Fig. 22, given by

h(�H ) = (�H + r) mod 2r − r. (7)

If the pump contained many parallel columns of active modules, as in Fig. 5, the total force would be
the sum of forces produced by the individual columns.

3.2. Numerical modeling
We simulate active microstructures using Yade,26 open-source DEM software. Modules are modeled
as elastic balls of radius r , Young’s modulus E, Poisson’s ratio ν and Coulomb friction coefficient
μ. There are three structural aspects of active microstructures which are specially handled: strong
connections, weak connections and the actuation mechanism of modules.

Strong connections are modeled as cohesion, using a built-in functionality of Yade. The cohesive
interaction at a fixed connection constrains all six degrees of freedom. It imposes a normal force,
two shear forces, a twisting moment and two bending moments on the point of contact. The elastic
stiffness coefficients of the connection are computed from the E, ν and r of the connected modules,
using standard formulas of DEM.27 Two cohesion parameters, one for the normal and one for the
tangential direction, determine the strength of the connection in tension and shearing, respectively. A
connection breaks if either one of these limiting values is exceeded by the forces acting at the contact
point (by default, bending and twisting moments cannot break the connection). As a result, strongly
connected modules cannot freely move with respect to each other.

Weak connections are also modeled as cohesion, but with only normal and shear forces at a contact
point, and without the bending and twisting moments. This connection, like the strong one, prevents
the separation and sliding of modules but, unlike the strong one, allows the modules to freely twist
and roll about their contact point. It thus lets active modules move and actuate the microstructure.
As in the case of the strong connection, two cohesion parameters determine the strength of the weak
connection in tension and shearing.

The actuation mechanism is modeled as a torque applied to an active module. This simple approach
is sufficient for making force measurements. The torques acting on all active modules have the same
magnitude and are kept constant during each simulation. The directions of the torques are always so
chosen as to make active modules roll along selected lines of fixed modules.

Remark. In the simulations, it is assumed that the strength of the microstructures is limited by the
torques applied to active modules, and accordingly that both the fixed and the weak connections are
able to withstand the stresses. Therefore, the cohesion parameters are set high enough to prevent
contact breaking.

3.3. Reconnection control
When an active module rolls along a line of fixed modules, it periodically comes into contact with
a new fixed module. At this point, it must break the weak connection with its previous neighbor
and establish a weak connection with its new neighbor. Within the modeling scheme described in
Section 3.2, this requires that cohesion be established at the new contact point, and be switched off
at the old contact point. To facilitate this, a modification was made to the laws of cohesion in Yade.
It consisted in assigning three parameters to each module, and establishing conditions for deciding
whether contacting modules cohere or not.

The first parameter, module type, is an indicator, whether a module is active or fixed.
The second parameter, material, is a standard quantity in Yade. Different modules can be defined as

made of different materials with identical physical properties. Unlike in the standard code, however,
it has been made possible to define the strength of cohesion for each pair of materials independently.
In particular, materials which do not cohere are assigned a zero strength of cohesion. Materials are
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used to define entire groups of modules which can attach to one another, either by fixed or active
connections.

The third parameter, index, is a positive integer. An active module can attach only to those among
its neighbor modules, which have the highest index. By contrast, fixed modules make attachments
regardless of indexes—only on the basis of material pairs. Indexes can be assigned in ascending
sequences to lines of fixed modules, to let active modules travel along them.

The modified cohesion law can be summarized as follows. Modules are divided into active and
fixed. A fixed module can attach to its neighbor, if their materials cohere. An active module can attach
to its neighbor, if their materials cohere and if that neighbor has the highest index among all neighbors
of the active module. Finally, two adjacent modules establish cohesion, if the first one can attach to
the second and conversely—the conditions must be satisfied both ways. The proposed cohesion law
allows simple reconnection control, which is only based on local information.

An example assignment of materials and indexes to a fragment of a pump actuator is shown in
Fig. 6. Capital letters with subscripts denote materials with indexes. The material pairs that cohere
are AC, BD, which correspond to active connections, and CC, DD, which correspond to fixed
connections. The modules with materials A and B are marked as active, and those with C and D as
fixed. All fixed modules form strong connections with their neighbors of the same material group,
regardless of indexes. At the beginning, as shown in Fig. 6(a), A0 has three neighbors, B0, C0 and D0.
Since their highest index is 0, and only the pair AC coheres, a weak connection is formed between
A0 and C0. Similarly, B0 has four neighbors, A0, A1, C1 and D1. Their highest index is 1, and only
the pair BD coheres—therefore, a weak connection is formed between B0 and D1. At a later stage,
shown in Fig. 6(b), A0 has reattached from C0 to C1, since the latter has a higher index. Similarly, B0

has reattached from D1 to D2. A1 and B1 behave analogously, as well as the modules of the square
linear actuator shown in Fig. 4.

4. Numerical Results
The actuators are placed between upper and lower bounding walls, and are analyzed in terms of the
overall force they exert on the walls as they extend (elongate). The force is measured at equilibrium
(the so-called quasi-static force) and it does not account for inertia or any other rate-dependent
effects. The effects of contact friction and elastic deformations are accounted for in modeling. In all
simulations, the values of the module radius and actuation torque are r = 65 μm and τ = 16 pNm,
respectively. Gravity is neglected.

4.1. DEM force measurement procedures
In the presented simplified DEM model, Newton’s laws of motion are directly integrated over time
(explicit time integration scheme). During the analysis, the interaction forces are in general not in
equilibrium. A special procedure is therefore necessary to capture only the static (equilibrium) forces
at a given elongation of an actuator.

The basic version of the procedure consists of three steps that are cyclically repeated until a desired
final elongation is attained, cf. Fig. 7. In the first step, A–B, the upper bounding wall is moved a
bit upwards in order to allow the actuator to elongate. Next, B–C, the wall stops and the actuator
moves against it, until a balance of forces is attained (force oscillations are reduced by the numerical
dissipation applied). The third step, C–D, is a short time interval over which the reaction force at the
upper wall is sampled and averaged.

The above procedure determines the force that is exerted by the actuator as it elongates. This force
is referred to as the lifting force. However, as presented in Appendix A.1.2, another situation can
be considered, in which the actuator is trying to extend, but it is being compressed by the bounding
walls. In this situation, the force applied to the walls is referred to as the yield force, and it is greater
than or equal to the lifting force. In some cases, the yield force can even be infinite, which means that
the structure is wedged by friction.

In order to capture the yield force, the basic procedure is extended by additional three steps, cf.
Fig. 7. In step four, D–E, the upper bounding wall is moved downwards in order to compress the
structure. Then, in steps five and six, similarly to steps two and three, the wall stops to allow the
system to balance the forces, E–F, and the averaged reaction force is then measured, F–G.
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Fig. 7. Loading programs for measuring the overall lifting force (solid), and overall lifting and yield forces
(dashed).
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Fig. 8. Force-elongation plot for the 8 × 2 single-window square linear actuator. The lifting force (blue) and
the yield force (purple) for μ = 0.2. The analytical curves (solid) are compared with the numerical solutions
for E = 200 MPa (dashed) and E = 50 MPa (dotted). The reference frictionless overall force (solid, black) is
drawn in between. Ḣ is the elongation velocity.

4.2. Square linear actuator—single-window version
A sample plot of the lifting and yield forces as functions of elongation, for the frictional and frictionless
case, is presented in Fig. 8. The decrease of forces in subsequent cycles (every 2r of �H ) is related
to the fact that subsequent layers of active modules deactivate, cf. modules in pale colors in Fig. 3(b).

In the frictionless case, the lifting and yield forces are equal and well match the analytical results.
In the frictional case, the two forces are different, and there is a significant discrepancy between the
numerical and analytical results around �H equal to the multiples of 2r . The region of discrepancy
broadens with a decreasing elastic modulus, which indicates elastic deflections of the structure as a
possible cause of the observed effect.

The effect of friction on the overall forces is presented in Fig. 9 for two different friction coefficients
(only the first two elongation cycles are presented to improve clarity). A deviation from analytical
results can be observed at �H close to the multiples of 2r and it is noticeably higher for larger
friction coefficients. A yield force discrepancy is also visible for elongations at which reconnection
occurs (r and 3r), best seen in Fig. 11, and this is an artefact of the simplified reconnection scheme
applied, cf. Section 3.3. Namely, once an active module reattaches from one fixed module to another,
it cannot reattach backwards. Therefore, when the structure is being compressed during yield force
measurements, it gets blocked in the vicinity of reconnection points.

One of the most important properties of active microstructures is how efficiently they transform
microactuation into macroscopic work. We quantify it using the measure of mechanical energy
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Fig. 9. Force-elongation plot for the 8 × 2 single-window square linear actuator: the lifting force (blue) and
yield force (purple) for μ = 0.2 (dotted, dark) and μ = 0.4 (dashed, pale) are compared with the analytical
results (solid lines). The reference frictionless overall force (black) is drawn in between. The dotted and dashed
lines are DEM results for E = 100 MPa. Ḣ is the elongation velocity.
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Fig. 10. Decrease of the mechanical energy conversion efficiency η with an increasing friction coefficient, for
the 8 × 2 single-window square linear actuator and different Young’s moduli. Analytical results (black triangles)
and results for the 12 × 2 double-window actuator (green triangles) are shown for comparison.

conversion efficiency η,

η = Wout/Win, (8)

where Win = τ�ϕ is the mechanical work of the microactuation of one active module over a cycle,
and

Wout =
∫ �H

0
F (h)dh (9)

is the corresponding mechanical work done by the structure per active module, where F = F/nactive is
the lifting force per active module. For the square linear actuator, we put �ϕ = 2π/3 and �H = 2r ,
which are the total revolution of an active module and the total elongation of the actuator, respectively,
in the course of one elongation cycle.

Figure 10 shows that η decreases with an increasing friction coefficient and decreasing Young’s
modulus, which quantifies the tendency observed in Fig. 9. The decrease of η with a decreasing
Young’s modulus is also presented in Fig. 12(a) (solid lines). The reduction of efficiency is significant;
however, it does not seem to be prohibitive for the analyzed Young’s modulus range, especially for
lower friction coefficients.
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Fig. 11. Lifting and yield forces per active module for a single-window square linear actuator of dimensions
Nz × Nx from 4 × 1 to 32 × 1, and E = 100 MPa. Ḣ is the elongation velocity.

(a) (b)

Fig. 12. Comparison of mechanical energy conversion efficiencies of the single-window (solid) and double-
window (dashed) square linear actuators for two friction coefficients: μ = 0.1 (blue) and μ = 0.5 (purple). The
compared single- and double-window versions have dimensions 2N act

z × Nx and 3N act
z × Nx, respectively, so

that they have the same width 2Nx + 1 and the same number N act
z of active modules along their height. The

results in (a) are for Nx = 2, N act
z = 4 and varying elastic stiffness of modules E, and in (b) for E = 100 MPa,

Nx = 1 and varying N act
z (varying height of the actuators).

More disadvantageous is the decrease of the lifting force with an increasing height of the structure,
cf. Fig. 11, also expressed in terms of the efficiency parameter η in Fig. 12(b) (solid lines). The energy
loss is prohibitively high for higher structures, e.g., the efficiency drops below 50% for the actuator
made of 64 modules in the vertical direction and μ = 0.1.

The efficiency drop due to frictional dissipation depends on the normal contact forces, which in
the considered case are well reflected by the vertical stresses σzz in the modules. The values of σzz

in two adjacent walls of an 8 × 6 actuator are presented in Fig. 13 for the initial (�H = 0) and
an intermediate (�H = r) state. In fixed modules, as expected, σzz increases in the direction of
elongation. In the initial state, Fig. 13(a), the active modules are also subjected to substantial loading,
which is an unwanted side-effect of the dense packing of modules. They are compressed between the
upper and lower wall modules, as the windows in the walls become shorter due to elastic deformation.
Higher contact stresses cause higher frictional dissipation and energy losses. In the intermediate state,
Fig. 13(b), the active modules lie out of the plane of the windows, and their σzz stresses are low.

4.3. Square linear actuator—double-window version
In order to prevent the decrease of the lifting force observed for the single-window square linear
actuator, an improved double-window design is proposed, cf. Fig. 14. The idea is a direct consequence
of the conclusions from the analysis of the σzz stresses. The windows in the walls are now twice
higher in order to compensate for the compression of the structure. The vertical stresses σzz in the
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(a) ΔH/2r = 0 (b) ΔH/2r = 0.5

Fig. 13. σzz for a chosen fragment of the 8 × 6 single-window square linear actuator. Dots indicate active
modules.

(a) Initial configuration (b) Intermediate configuration

Fig. 14. 9 × 4 double-window square linear actuator (DEM simulation). The red modules have empty space
above them, and the yellow ones have empty space below them, so they can freely fit in the windows.

(a) ΔH/2r = 0 (b) ΔH/2r = 0.5

Fig. 15. σzz for a chosen fragment of the 12 × 6 double-window square linear actuator. Dots indicate active
modules.

double-window actuator, cf. Fig. 15, show that the active modules are now able to freely fit in the
windows even at the most demanding elongation phases (when �H is equal to the multiples of 2r).

Figure 16 demonstrates the advantages of the new design, in that the force drops are no longer
observed. The numerical results for the double-window version match analytical results very well,
and therefore the latter are not shown in Fig. 16. A comparison of the two analyzed designs in terms of
their efficiencies is presented in Fig. 12. For the double-window actuator, η is almost independent of
both the elastic stiffness, cf. Fig. 12(a), and the height of the actuator, cf. Fig. 12(b). Since η quantifies
the contribution of an average active module to the overall work done by the actuator, Fig. 12(b)
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Fig. 16. Comparison of the lifting (blue) and yield (purple) forces of the 8 × 2 single-window (solid lines)
and 12 × 2 double-window (dashed lines) square linear actuators, for E = 100 MPa and μ = 0.1. Ḣ is the
elongation velocity.
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Fig. 17. Lifting force of the Nz = 10 pump actuator with μ = 0.04. Comparison of analytical results (black)
and numerical results for three different Young’s moduli.

implies that the strength of the actuator is proportional to the number of its active modules. And since
active modules form a constant fraction of all modules in larger actuators, this finally means that
the actuator’s strength is proportional to the total number of its modules, and so to its volume. The
actuator is therefore scalable.

4.4. Pump actuator
A typical force-elongation plot for one elongation cycle of a pump actuator is presented in Fig. 17.
The characteristic sawtooth shape of the graph is caused by a series of subsequent reconnections of
active modules when they are climbing the walls. The number of teeth is related to the height of the
actuator (number of active modules), as can be observed in Fig. 18.

A significant dependence of the results on the elastic stiffness of modules can be observed, cf.
Fig. 17. Nevertheless, the discrepancy between numerical results for elastic modules and analytical
predictions for rigid modules has been checked to have a negligible effect on the efficiency η (see
Eq. (8) and the definition below) for a wide range of Young’s moduli E = 1–100 MPa and friction
coefficients μ = 0–0.08. For that reason, the efficiency of pump actuators is further examined on the
basis of analytical results only.

Force-elongation plots for different actuator heights and different friction coefficients, cf. Fig. 18,
show single force peaks per elongation cycle. This is inconvenient for potential practical applications,
because it is the lowest, not the highest, lifting force in a cycle that determines the lifting capabilities
of an actuator. Moreover, in the case of pump actuators, large output forces cause large frictional
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(a) (b)

Fig. 18. Analytical lifting force of a pump actuator per active module, for four different actuator heights and (a)
μ = 0 and (b) μ = 0.04.

(a) (b)

Fig. 19. Analytical energy conversion efficiency of the pump actuator (a) as a function of the actuator’s height
Nz for four different friction coefficients μ, and (b) as a function of the friction coefficient μ for four different
actuator heights Nz.

dissipation. This is clearly visible in Fig. 18, where the force peaks in the frictional case are greatly
reduced as compared with the frictionless case, especially for higher actuators.

The influence of friction and the actuator’s height can be analyzed in terms of the efficiency η,
defined in the same way as in Eq. (8) but with �ϕ = 4 arcsin(

√
3/3). As can be seen in Fig. 19,

even small values of the friction coefficient μ cause a significant decrease of the efficiency of pump
actuators. This effect is not entirely intuitive because active modules in the mechanism M-III have
compatible directions of rotation. It turns out, however, that the sliding path between neighbor active
modules is relatively long, see Appendix A.2.2. This, together with high normal contact forces (forces
increase with height, cf. Fig. 20), results in the observed large energy losses.

One can conclude that building tall pump actuators is not practical. However, pump actuators of
moderate height can possibly be utilized as building blocks of hybrid pump-linear microstructures.

5. Conclusions and Further Work
We suggested and exploited heterogeneity of inter-module connections, i.e., fixed and strong versus
mobile and weak ones. This allowed to improve the strength of modular structures with electrostatic
actuation mechanisms, which are fast and practical at the microscale yet too weak to work alone.
The fixed connections were assumed to be much stronger, but also more difficult to establish or
release, than the active ones. This assumption was incorporated into the proposed designs of modular
actuators.

The analysis of the proposed actuators has shown that, when neglecting friction and elastic
deformations, the actuators are scalable, i.e., the overall forces they generate are proportional to the
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(a) ΔH/2r = 0 (b) ΔH/2r = 0.5

Fig. 20. σzz stress for a cross-section of an Nz = 10 pump actuator at (a) initial and (b) intermediate stage of
motion.

number of their constituent modules. This was demonstrated earlier16 for the single-window square
linear actuator and is shown in Fig. 19(a) for the pump actuator. However, in the presence of friction
and elastic deformations, a special treatment is necessary to preserve the scalability, and only the
proposed double-window version of the square linear actuator proved to be scalable, see Fig. 12(b).

We only analyzed the functionality of actuators whose initial microstructures were already formed.
In particular, we investigated reconfiguration of active modules in the simple sense of their motion
along predefined straight paths within a structure, and did not discuss reconfiguration of fixed modules
at all. The formation of the initial microstructure from other modular arrangements, possibly under
load, is a prerequisite for the presented analysis and a very important subject in itself. This topic was
not addressed in the present work and requires further investigation.

Acknowledgment
This work was partially supported by the project “Micromechanics of Programmable Matter” (contract
no. 2011/03/D/ST8/04089 with the National Science Centre in Poland).

A. Appendix
Below we discuss the vertical forces produced by the actuation mechanisms M-I and M-III. We only
consider quasi-static conditions—very slow motion, with no inertia and no gravity. For the sake of
generality, all formulas are obtained using an unspecified planar distance 2kr between the center of an
active module and the fixed modules, to which it is attached. In particular, k = 1 for the mechanism
M-I used in the square linear actuator, and k = √

3/2 for the mechanism M-III used in the pump
actuator.

A.1. Actuation mechanism M-I
The geometry of the actuation mechanism M-I, cf. Fig. 2, is presented in Fig. 21. We assume that
the module B is fixed and that the horizontal distance between B and C is constant and equal to 2kr .
The range of α is I I

α = [− arcsin(1/2k), arccos(k/(k + 1)))—from the first attachment of A to B to
the alignment of B, A and C.

A.1.1. Vertical force fI. The vertical force fI, exerted by A on C, is given by

fI = N sin β + T cos β, (10)

where N � 0 is the compressive normal force between A and C, and T is the tangential force. When
the structure is moving, T is equal to the force of friction between A and C. Assuming Coulomb

https://doi.org/10.1017/S026357471500082X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471500082X


Modular-robotic structures for scalable collective actuation 803

(a) (b)

Fig. 21. Mechanism M-I: (a) geometry and forces, and (b) coordinates of the centers of modules and auxiliary
variables—with all dimensions divided by 2kr and ξ = (2r + h)/2kr .

friction, it is given by

T = εμN, (11)

where μ � 0 is the friction coefficient, and ε = ±1 accounts for the direction of sliding between A
and C. When A and C move up, the surface of A slides leftwards past the surface of C. The direction
of T is then as indicated in Fig. 21, and consequently ε = 1. When A and C move downwards, against
τ , the situation is reversed and ε = −1. Eqs. (10) and (11) together give

fI = N(sin β + εμ cos β). (12)

The equilibrium of forces acting on A, cf. Fig. 21, reads[
N ′

T ′

]
=

[
cos(β − α) − sin(β − α)

sin(β − α) cos(β − α)

][
N

T

]
, (13)

with the standard trigonometric identities:[
sin(β − α)

cos(β − α)

]
=

[
cos α − sin α

sin α cos α

][
sin β

cos β

]
. (14)

From the equilibrium of torques acting on A, which has the form τ = rT + krT ′, and Eqs. (11), (13),
one obtains a relation between N and τ :

τ/r = N[εμ(1 + k cos(β − α)) + k sin(β − α)]. (15)

Finally, by combining Eqs. (12) and (15) to eliminate N , one obtains the required relation between
fI and τ :

fI = τ (sin β + εμ cos β)/r

εμ(1 + k cos(β − α)) + k sin(β − α)
. (16)

The force fI in Eq. (16) is expressed in terms of the sines and cosines of α and β. They in turn can
be expressed as functions of the vertical displacement h, cf. Fig. 21, as[

cos α

sin α

]
= a + b = a

x

[
1
ξ

]
+ b

x

[
ξ

−1

]
, (17)

[
cos β

sin β

]
= k

[
1 − cos α

ξ − sin α

]
, (18)

where ξ = (2r + h)/2kr , x =
√

1 + ξ 2, a = ||a|| = (x2 + 1 − k−2)/2x and b = ||b|| = √
1 − a2.
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A.1.2. Lifting force, yield force and wedging. There are two special cases of fI. The first one, f +
I ,

corresponds to the upwards motion of the structure, and is obtained from Eq. (16) by setting ε = 1.
The second one, f −

I , corresponds to the downwards motion (against the torque τ ) with ε = −1. The
former is referred to as the lifting force and the latter as the yield force, cf. Section 4.1. f +

I ≤ f −
I , since

when the structure is moving upwards, friction acts against τ , and when it is moving downwards,
friction acts against fI. The two values coincide when μ = 0.

It can be seen that when ε = 1 (the case of the lifting force f +
I ), Eq. (16) always gives positive

and finite values of fI for α ∈ I I
α , and that fI becomes infinite only when B, A and C are aligned

(α = β). On the other hand, when ε = −1, there are values of α ∈ I I
α for which Eq. (16) returns

negative values of fI. Since, physically, fI > 0 for τ > 0, therefore at these configurations the system
is wedged by friction and in reality f −

I = ∞. The intervals of α, in which the system is wedged,
can best be determined by analyzing Eq. (12) and Eq. (15) separately, as they give two independent
conditions for wedging.

The first condition is obtained from Eq. (12). Since physically, when τ > 0, both fI > 0 and N > 0,
therefore sin β − μ cos β > 0 must hold when the structure is moving downwards, compressed by
fI. Conversely, when sin β − μ cos β � 0, the structure cannot move. This gives the first condition
for wedging:

sin β

cos β
= tan β ≤ μ. (19)

This condition defines two intervals of α, placed symmetrically with respect to α = 0, which may or
may not intersect with I I

α—depending on the value of μ.
The second condition results from Eq. (15). Since τ/r > 0 and N > 0, the condition −μ(1 +

k cos(β − α)) + k sin(β − α) > 0 must hold when the structure is moving downwards. Conversely,
the system is wedged by friction when this condition does not hold, which gives

k sin(β − α)

1 + k cos(β − α)
≤ μ. (20)

Since the left-hand side of inequality (20), as a function of α, is monotonically decreasing and always
has one zero α0 in I I

α , this condition defines one wedging interval of the form α ≥ α0.
The system is wedged when either condition (19), or (20), or both, are satisfied. For the usual

friction coefficients, satisfying μ < 1, the intervals defined by inequality (19) fall outside I I
α . The

only wedging interval is α ≥ α0 from inequality (20), where α0 is defined by

k sin(β0 − α0)

1 + k cos(β0 − α0)
= μ, (21)

and cos β0 = k(1 − cos α0) by Eq. (18).

A.2. Actuation mechanism M-III
Below we present a procedure for computing the vertical force, fIII, exerted by a column of n active
modules, A1 through An, working according to the mechanism M-III of Section 2.2, on a bounding
wall, perpendicular to the column. The geometry of the mechanism with n = 3 active modules is
presented in Fig. 22. To shorten the formulas, the following abbreviations are used:

si = sin αi , ci = cos αi ,
s̄i = sin βi , c̄i = cos βi ,
s ′
i = sin(βi − αi), c′

i = cos(βi − αi),
s ′′
i = sin(βi−1 + αi), c′′

i = cos(βi−1 + αi).

(22)

The range of αi is I III
α = [− arcsin(1/2k), arcsin(1/2k)), which spans the angles between the

attachments of Ai to consecutive wall modules.
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Fig. 22. Geometry and forces of a pump actuator with n = 3 counter-rotating active modules, working according
to the actuation mechanism M-III.

A.2.1. Vertical force fIII. When the structure is moving, the tangential forces between adjacent active
modules result from Coulomb friction

Ti = εiμiNi, (23)

where μi � 0 is the friction coefficient between Ai and Ai+1, and εi = ±1 is defined by Eq. (30) and
accounts for the direction of sliding between Ai and Ai+1, as discussed later.

The equilibrium of forces for the active module Ai , cf. Fig. 22, reads

[
N ′

i

T ′
i

]
=

[
c′
i −s ′

i

s ′
i c′

i

] [
Ni

Ti

]
+

[
c′′
i s ′′

i−s ′′
i c′′

i

] [
Ni−1

−Ti−1

]
, (24)

where Ni � 0 is the compressive normal force between Ai and Ai+1, and Ti is the corresponding
tangential force, whose positive direction is shown in Fig. 22. N ′

i and T ′
i are the normal and tangential

forces, respectively, between Ai and the fixed modules, to which it is attached. From the equilibrium
of torques acting on Ai , which has the form τi − krT ′

i − rTi + rTi−1 = 0, and Eqs. (23), (24), one
receives

Ni = τi/r + Ni−1[ks ′′
i + εi−1μi−1(kc′′

i + 1)]

ks ′
i + εiμi(kc′

i + 1)
. (25)

It is a recursive relation, defining Ni in terms of τi , Ni−1 and the respective angles. Since A1 has no
predecessor, therefore N0 = 0 is the initial value for Eq. (25), and since An pushes the bounding wall,
its normal force equals the overall vertical force exerted by the column

fIII = Nn, (26)

where Nn is computed by setting βn = π/2.
The sines and cosines of all angles, cf. Eqs. (22), used in Eq. (25), depend on the vertical

displacement h ∈ [−r, r) of the bounding wall. They are also computed recursively, as is shown
below.

It can be inferred from Fig. 22 that sn = h/2kr , cn = √
1 − s2

n . The remaining si and ci are
computed recursively downwards, for i = n − 1, . . . , 1. From Fig. 23, one has

[
ci−1

si−1

]
= a + b = a

x

[
x1

x2

]
+ b

x

[
x2

−x1

]
, (27)
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Fig. 23. Coordinates of the centers of modules and auxiliary variables of the actuation mechanism M-III, with
all dimensions divided by 2kr .

where x1 = 2 − ci , x2 = wi + si , x =
√

x2
1 + x2

2 , a = ||a|| = (x2 + 1 − k−2)/2x, b = ||b|| =√
1 − a2 and wi is a function of si discussed below. Since x1, x2, a, b and x are functions of si

and ci , Eq. (27) defines si−1 and ci−1 in terms of si and ci , as required.
The parameter wi in Eq. (27) may take one of two values. It equals 1/k in the situation shown in

Fig. 23, when Ai and Ai−1 are attached to fixed modules which are at different levels. It equals 0 in
the case, when Ai and Ai−1 are attached to fixed modules which are at the same level. The value of
wi can be decided on the basis of si :

wi =
{

1/k if si < smin,

0 otherwise,
(28)

where smin is a fixed parameter, which depends only on k. In order to determine smin one can
observe that, by definition, si = smin when Ai−1 is at a reattachment point, i.e., when wi = 0 and
si−1 = −1/2k. One can now consider a situation symmetric to the one described, in which it is Ai

that is located at a reattachment point. In this case, smin = −si−1 and si−1 can be computed using

Eq. (27) by setting wi = 0, si = 1/2k and ci =
√

1 − s2
i .

Finally, the sines and cosines of βi−1 are (Fig. 23)[
s̄i−1

c̄i−1

]
= k

[
wi + si − si−1

2 − ci − ci−1

]
, (29)

and the trigonometric functions of angle combinations are given by the standard expansions:

s ′
i = s̄ici − c̄isi , c′

i = c̄ici + s̄i si ,

s ′′
i = s̄i−1ci + c̄i−1si , c′′

i = c̄i−1ci − s̄i−1si .

Remark. The conditions for wedging of the pump actuator are very complex, because the angles
between adjacent modules vary within the column. Nevertheless, one can numerically determine
such a value μ̄, which depends on k, that for μi < μ̄, i = 1, 2, . . . , n, there is certainly no wedging
regardless of h and the direction of motion of the structure. For k = √

3/2, as is used in the pump
actuator, μ̄ � 0.316.

A.2.2. Direction of sliding between modules. The direction of sliding εi between the adjacent active
modules Ai and Ai+1 changes with αi , and results in a change of sign of the respective frictional
force Ti , cf. Eq. (23). It can be defined as

εi = sign vi, (30)

i.e., εi is the sign of the velocity of sliding between Ai and Ai+1. In the upwards motion, by convention,
vi > 0 if the surface of Ai slides past Ai+1 along the direction of motion of Ai , and vi ≤ 0 otherwise.
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Fig. 24. Normalized sliding velocity v̄i between the active modules Ai and Ai+1 in the actuation mechanism
M-III over a single cycle, αi ∈ I III

α .

In the downwards motion, the sign is reversed. More precisely, vi can be expressed in terms of the
angular velocities as

vi = 2r(α̇i − α̇i+1 − β̇i). (31)

By taking the time derivative of Eq. (29), with i + 1 instead of i, solving the obtained two simultaneous
equations for β̇i and α̇i+1, and substituting the results into Eq. (31), one receives

vi = 2rα̇i

s ′′
i+1 − s ′

i + k sin(αi + αi+1)

s ′′
i+1

. (32)

As an example, Fig. 24 presents a normalized sliding velocity, v̄i(αi) = vi/rα̇i , for αi ∈ I III
α and

k = √
3/2. This can be further employed to calculate the integral

dIII = 1

2π

∫
I III
α

|v̄i(αi)|dαi � 0.23, (33)

which is the sliding path length in a single cycle, related to the circumference of the module. The
value of 0.23 is lower than in the case of the mechanism M-I (dI � 0.33); however, it is still relatively
high and can be a problem for the M-III mechanism. Specifically, due to the build-up of the normal
contact forces with height, the total frictional dissipation will be much higher in the pump actuator
than in the square linear actuator of corresponding dimensions.
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Yade Project, 1st ed., online), http://yade-dem.org/doc/formulation.html,” 2010.

https://doi.org/10.1017/S026357471500082X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471500082X

