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Numerical investigation of the saturation
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A numerical study of the saturation process inside a rectangular open cavity is
presented. Previous experiments and linear stability analysis of the problem completely
described the flow in its onset, as well as in a saturated regime, characterized by
three-dimensional centrifugal modes. The morphology of the modes found in the
experiments matched the ones predicted by linear analysis, but with a shift in
frequencies for the oscillating modes. A three-dimensional incompressible direct
numerical simulation (DNS) is employed for a detailed investigation of the saturation
process inside a cavity with dimensions similar to the one used in the experiments,
to further explain the behaviour of these modes. In this work, periodic boundary
conditions are first imposed to better understand the effect of the saturation process
far from the walls. Then, the effects of spanwise solid wall boundary conditions are
investigated with a DNS reproducing the full dynamics of the experiments. The main
flow structures are identified using the dynamic mode decomposition technique and
compared with previous experimental and linear stability analysis results. The main
reason for the aforementioned shift in frequency is explained in this paper, as it is a
function of the velocity of the main recirculating vortex.
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1. Introduction
The open cavity flow problem has been extensively investigated in the literature,

aiming to predict and understand the relevant flow instabilities emanating inside
cavities. This problem appears in numerous industrial applications, including open
roofs on motor vehicles, landing gear in aeroplanes or dispersion of contaminants
in cities. An understanding of the richness of the physics involved in this problem
is therefore indispensable to designers in their endeavour to reduce noise levels,
vibrations and drag in open cavity configurations.

The majority of the early work focused on the two-dimensional flow/feedback
mechanism that produces self-sustained oscillations in the shear layer, commonly
known as the Rossiter modes (Rossiter 1964; Rockwell 1977; Rockwell & Naudascher
1979). As the incoming flow goes through the leading facing step of the cavity,
recirculation vortices are developed and travel with the flow, impinging the rear
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face of the cavity and generating pressure waves that propagate upstream. These
waves reach the leading edge of the cavity, creating a feedback mechanism that
continually reinforces the shear layer oscillations, resulting in vortex shedding at
the leading edge (Powell 1953). According to Rockwell & Naudascher (1979), this
process can be acoustic or hydrodynamic, depending on the streamwise length
of the cavity. In compressible flow, Rossiter modelled an empirical formula to
predict the discrete locked-on frequencies of the self-sustained modes, based on
the parameters free-stream velocity and cavity length (Powell 1961; Rossiter 1964).
Subsequent studies demonstrated that the feedback phenomenon is instantaneous in
the incompressible regime (Mach number = 0) (Sarohia 1977; Basley et al. 2011;
Yamouni, Sipp & Jacquin 2013).

Further research observed a modulation of the shear layer modes at smaller
frequencies (Rockwell & Knisely 1980; Knisely & Rockwell 1982; Ziada & Rockwell
1982; Koseff & Street 1984; Neary & Stephanoff 1987) as a result of the onset of
centrifugal-type instabilities along the two-dimensional recirculating flow, which
induce spanwise exchanges of fluid (Sipp & Jacquin 2000). These disturbances
emerge from the combination of Görtler and Taylor–Couette instabilities (Faure et al.
2009), generally developing inside cavities with span-to-depth ratios larger than 4
and at relatively low Reynolds numbers (Basley et al. 2014). While the first type of
instability is developed from centrifugal forces in boundary layer flows over curved
surfaces (Floryan 1991), the latter type of instability appears along the recirculating
flow near the cavity walls, in closed-streamline flow regions where the magnitude
of the angular velocity decreases towards the outward direction of the recirculation
(Brès & Colonius 2008). This last criterion, originally provided by Rayleigh for basic
inviscid swirling flows, is commonly employed in several configurations to identify
parts of the flow that are centrifugally unstable (e.g. Barkley, Gomes & Henderson
(2002) in a backward-facing step, Migeon (2002) in lid-driven cavities and Brès &
Colonius (2008) in open cavities).

The development of centrifugal instabilities inside the open cavity causes the
exponential growth of three-dimensional disturbances, which reach a saturated state
when the linear growth dynamics is suppressed by nonlinear effects (Schmid &
Henningson 2001). This allows one to define the flow as saturated when the growth
of the three-dimensional structures stops being exponential. In the saturated regime,
the spanwise cavity flow exhibits a row of coherent counter-rotating vortices along
the span of the cavity, organized with a certain periodic pattern. These Taylor–Görtler
structures pulsate and coil around the main recirculation flow inside the cavity,
and present spanwise wavelengths in the order of the cavity depth (λz ∼ D) (Faure
et al. 2009; Basley et al. 2014; Douay, Pastur & Lusseyran 2016). The first linear
computations of these three-dimensional instabilities were presented in Theofilis &
Colonius (2004), and they were proven to be dominant under certain flow conditions,
as well as independent of the two-dimensional shear layer modes, from the work of
Brès & Colonius (2008). Their linear stability analysis results showed also that the
unstable centrifugal modes oscillate with frequencies one order of magnitude lower
than the 2D shear layer modes, confirming the previously observed low-frequency
modulation of the shear layer oscillations. A thorough discussion on the nature of
the interactions between these two types of modes was recently given by Basley
et al. (2014). Faure et al. (2009) performed an experimental campaign focusing on
the visualization and characterization of these centrifugal modes inside the cavity, as
functions of Reynolds number, aspect ratio and span ratio, and identified thresholds
for their appearance. They also reported for the first time in open cavities a slow
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drift motion of the centrifugal instabilities from the centre of the cavity towards
its spanwise bounding walls (Faure et al. 2007). It was postulated by the authors
that this behaviour was due to the development of secondary spanwise flows in
the inner part of the cavity from the sides towards the centreline, resulting from
Bödewadt (Ekman-like) layers as a consequence of the presence of spanwise walls
(Albensoeder, Kuhlmann & Rath 2001; Guermond et al. 2002; Migeon, Pineau &
Texier 2003; Albensoeder & Kuhlmann 2006). In a recent experimental parametric
study of the centrifugal instabilities in an open cavity flow, Douay et al. (2016)
observed that the reduction of the spanwise length of the cavity strengthens the
sidewall effect, favouring the appearance of stationary perturbations in contrast to
oscillatory ones. These results were in agreement with Faure et al. (2009), who
tracked an increase in the drift velocity of the travelling disturbances with respect to
the span ratio of the cavity.

Similar spanwise dynamics arising in the recirculating flow inside open cavities
were previously observed in different flow configurations. In the flow past a
backward-facing step, its centrifugal instabilities were notably treated in the work
of Barkley et al. (2002). In lid-driven cavities, cells of Taylor–Görtler vortices are
also developed from centrifugal instabilities along its recirculating flow, regardless
of the shear layer oscillations, as described in the works of Ramanan & Homsy
(1994), Kuhlmann, Wanschura & Rath (1997), Albensoeder et al. (2001), Theofilis,
Duck & Owen (2004), Albensoeder & Kuhlmann (2006), de Vicente et al. (2011)
and González et al. (2011), among others.

For a deeper understanding of the physics involved, an extensive parametric study of
the three-dimensional dynamics inside the open cavity, using linear stability analysis,
was presented in Meseguer-Garrido et al. (2014) for the incompressible limit. By
investigating the behaviour of the linear eigenmodes for the significant parameters of
the problem (i.e. length-to-depth aspect ratio of the cavity L/D, Reynolds number
based on the cavity depth ReD, incoming boundary layer momentum thickness θ0/D
and spanwise length of the perturbation L̃z, which can also be considered through
the spanwise wavenumber, β), the authors were able to extract the morphological
structures and characteristic frequencies of the eigenmodes, and present neutral
stability curves and dependence laws between the different parameters. In de Vicente
et al. (2014), the results described by linear analysis were compared with experimental
results for two different set-ups in an L/D = 2 cavity: ReD = 1500 (case A) and
ReD = 2400 (case B). The main coherent structures present in the saturated and
wall-bounded regime were found to match the ones of linear stability analysis, given
the difference in flow conditions. Nonetheless, one of the main results obtained
from the aforementioned experimental campaign was the apparent reduction of the
characteristic frequencies of the most energetic Fourier modes from the theoretical
values predicted by the linear analysis. The authors postulated that this frequency
reduction was a consequence of the presence of the spanwise walls, which had
the effect of slowing down the main centrifugal recirculation, thus reducing the
characteristic Strouhal number of these structures. Other possible sources for this
phenomenon not considered in their work could be the saturated regime of the flow
or the onset of nonlinear interactions between several unstable modes.

In an attempt to further investigate the physics that led to the reduction of the
characteristic Strouhal number of the most energetic mode, a three-dimensional direct
numerical simulation (DNS) of the incompressible open cavity flow was employed in
Vinha et al. (2016). In this study, a dynamic mode decomposition (DMD) algorithm
(Schmid 2010) was applied from the linear to the saturated regime, with the objective
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of understanding the evolution of spanwise instabilities of the flow and the interactions
between different dynamic modes. The case studied in Vinha et al. (2016) corresponds
to the experimental case B of de Vicente et al. (2014) (ReD = 2400), as it presents
a greater variety of linearly unstable modes. However, to simplify the analysis and
reduce the amount of interaction between the different modes, the spanwise length
of the computational domain Lz/D was restricted to 2π/6. By doing this, the authors
guaranteed that only the modes of β that were multiples of 6, which are those
corresponding to the β of maximum amplification of the linear modes (β = 6 and
β = 12), appeared in the DNS solutions. The effect of the presence of spanwise walls
was also neglected by imposing periodic boundary conditions on the simulations. The
reduction of the characteristic Strouhal number of the dominant mode was found
again after applying the DMD to snapshots within the saturated regime, contradicting
the hypothesis deduced in de Vicente et al. (2014). Nonetheless, the nature of this
study and its simplifications have not proved sufficient to determine whether this
effect is due to the saturated regime of the cavity flow or to secondary instabilities
resulting from the occurrence of nonlinear interactions between the different unstable
primary modes evolving from the base state.

This paper extends the previous research of the authors on the spanwise dynamics
of saturation inside an open cavity, and presents a comprehensive numerical
analysis of the entire saturation process. Direct numerical simulations of the
full open cavity geometry are performed for the same inflow conditions as the
abovementioned experimental case B, with a spanwise length of the computational
domain Lz/D in agreement with the experimental one. Thus, the forced selection of
spanwise wavenumber is diminished, allowing a greater variety of modes to interact.
Additionally, two distinct spanwise boundary conditions are imposed in order to
determine the true nature of the reported drop in Strouhal number, namely spanwise
walls bounding the computational domain, but also spanwise periodic boundary
conditions to cancel the effect of the presence of walls, allowing more comprehensive
comparisons. A DMD technique is applied to both cases for the identification of the
relevant dynamic modes within the saturated flow. Both temporal and spatial modal
analyses are performed to capture the frequency and spanwise wavenumber of the
relevant perturbations.

2. Methodology
2.1. Problem description

A schematic representation of the flow configuration is depicted in figure 1. The
parameters that completely define the incoming flow are (i) the Reynolds number
based on the cavity depth (ReD = U∞D/ν, where U∞ is the free-stream velocity,
and ν is the kinematic viscosity) and (ii) the incoming boundary layer momentum
thickness (θ0/D). The geometrical parameters of the cavity are (i) the length-to-depth
aspect ratio (L/D) and (ii) the spanwise length normalized by the cavity depth (Lz/D).
The case studied in the present work corresponds to the experimental case B of de
Vicente et al. (2014), with ReD= 2400 and θ0/D= 0.036, in a cavity with geometrical
parameters L/D= 2 and Lz/D∼ 10.

2.2. Linear stability and experimental analysis
The linear stability theory is concerned with the evolution of disturbances of small
amplitude superimposed over a basic state (q̄). In this case, BiGlobal instability
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FIGURE 1. (Colour online) Schematic description of the three-dimensional rectangular
open cavity and the parameters of the problem (δ0 denotes the boundary layer thickness
at the leading edge of the cavity).

analysis, in which the three-dimensional space comprises an inhomogeneous
two-dimensional domain that is extended periodically in z, was used to analyse
the flow over an open cavity.

The linearization of the incompressible Navier–Stokes (NS) equations around q̄(x̃, ỹ)
results in

q(x̃, ỹ, z̃, t)= q̄(x̃, ỹ)+ εq̂(x̃, ỹ)ei(β z̃−ωt), (2.1)

where β = 2π/L̃z is the spatial wavenumber of the perturbation in the z-direction,
L̃z being its corresponding dimensionless wavelength, while ω stands for the
frequency in the temporal instability analysis framework. In this equation, it should
be noted that the three spatial directions are normalized by the cavity depth, i.e.
(x̃, ỹ, z̃) = (x/D, y/D, z/D). This gives rise to the following complex generalized
eigenvalue problem:

A(q̄)q̂ =ωq̂, (2.2)

where A(q̄) is a linear NS operator.
The associated eigenvalue problem is then solved for the determination of the

complex eigenvalue,

ω= 2π
StDU∞

D
+ iσ , (2.3)

where σ is the amplification/damping rate of the disturbance, and the Strouhal number
(StD) represents the dimensionless frequency based on the cavity depth.

In the range of parameters close to the limit of stability, a detailed linear stability
analysis was performed by Meseguer-Garrido et al. (2014), showing the presence
of three main branches of unstable eigenmodes. These branches can be seen in the
neutral curves for L/D= 2 depicted in figure 2(a). The mode that becomes unstable
at lower Reynolds number, mode I (represented in red in figure 2), is a travelling
disturbance that is more unstable in the proximity of β ' 6 and β ' 12. Mode II
(represented in blue in figure 2), the second to become unstable, is stationary at higher
β and undergoes a bifurcation at β ' 9, resulting in a pair of complex conjugate
eigenvalues (so it is also a travelling mode) for values of β lower than that. The
third mode to become unstable, mode III (represented by empty circles with grey
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FIGURE 2. (Colour online) Neutral stability curves for the L/D = 2 cavity in the ReD
versus β plane (a) (adapted from Meseguer-Garrido et al. (2014)). The StD versus β map
of unstable eigenmodes from linear stability analysis, compared with the most energetic
modes of the experiments of de Vicente et al. (2014), depicted by grey areas, at ReD =

2400 (b).

outline in figure 2a), is also a travelling disturbance with negligible relevance for the
Reynolds number of the study (ReD = 2400).

For this flow configuration, the comparison between previous linear stability and
experimental results from de Vicente et al. (2014) can be seen in figure 2(b) for both
modes I and II in the StD–β plane. The red and blue symbols refer to modes I and
II of the linear stability analysis while the grey areas show the natural frequencies
of the spanwise structures of the real flow in the experiments. This figure shows
the discrepancy in the Strouhal numbers, already discussed in § 1, between the β =
2π eigenmode of mode I and the low-β branch of mode II, and the corresponding
experimental Fourier modes.

The present paper intends then to delve into the possible causes of these
discrepancies in Strouhal number. Throughout this paper, the results derived from
our numerical simulations are confronted with previous linear stability analysis
and experimental results, entirely extracted from the work of de Vicente et al.
(2014). It should be noted that these experimental results were obtained from
high-resolution particle image velocimetry measurements performed in the spanwise
plane y/D=−0.1.

2.3. Direct numerical simulation
The numerical solutions required to construct the data sequences of snapshots for
the DMD were obtained by means of a three-dimensional unsteady DNS solver. The
incompressible laminar Navier–Stokes (NS) equations constitute a system of partial
differential equations which can be written in vector form as

∂U
∂t
+∇ · F(U)= 0, (2.4)

where U represents the vector of conservative variables and F(U) represents the
convective and diffusive 3D fluxes.
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(a)

(b)

y

y

x

z

FIGURE 3. (Colour online) The interpolated multi-domain mesh of the cavity in the
streamwise/normal plane (a) and the spanwise/normal plane (b).

High-order spectral type methods have been extensively used in computational
fluid dynamics due to their accuracy and efficiency in the simulation of fluid flows.
In particular, these methods are suitable for problems where high accuracy is required,
and, hence, are well suited to tracking the evolution of small flow perturbations.

In this context, the discontinuous Galerkin spectral element method (DG-SEM)
(Kopriva 2009) is used in this work to solve (2.4). The original domain is divided
into non-overlapping hexahedral subdomains, Ek, such that Ω =

∑
k Ek. Inside each

subdomain, a polynomial of degree N is used to approximate the unknowns and the
fluxes, U, F. For details on methodology, implementation and numerical validation
of the spectral discontinuous tool employed, the reader is directed to Kopriva (1998),
Jacobs, Kopriva & Mashayek (2005), Kopriva (2009) and Vinha et al. (2016).

The DNS code used for the present work was compiled and executed using 64
nodes in the HPC cluster Magerit, installed in the Supercomputing and Visuali-
zation Center of Madrid (CeSViMa (http://www.cesvima.upm.es/infrastructure/hpc),
Universidad Politécnica de Madrid).

2.3.1. Computational set-up
In a cavity with length-to-depth aspect ratio L/D = 2, two types of spanwise

boundary conditions were investigated: spanwise bounding walls and spanwise
periodicity. For the periodic case, the spanwise length was set to 10 times the
one chosen in Vinha et al. (2016) (i.e. Lz/D = 10 × 2π/6), while for the second
configuration, this parameter was fixed to Lz/D = 10, reproducing the same cavity
domain as in the experiments.

A multi-block structured mesh with a total of 416 hexahedral subdomains was used
for the DNS computations, with nine subdomains in the streamwise direction, eight
in the spanwise direction and eight in the normal direction. Inside each subdomain,
a polynomial of degree (Nx, Ny, Nz) = (12, 12, 12) was defined. The resulting three-
dimensional grid generated for the DNS is shown in figure 3. It should be noted
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L/D θinlet/D δinlet/D θ0/D L/θ0 Reθ0 ReD

DNS 2 0.034 0.25 0.036 55.6 87.3 2400

TABLE 1. Control parameters of the simulated cavity flow, characterizing the inflow
Blasius profile.

that the grid generated near the boundaries was sufficiently refined to compute the
boundary layer with accuracy.

The chosen flow conditions were the same as in the linear analysis, with the
exception of the Mach number (M = 0.2). The control parameters involved in the
present numerical analysis are provided in table 1. A good agreement between
incompressible results from linear analysis and the low-Mach case of Brès & Colonius
(2008) is shown in Meseguer-Garrido et al. (2014), while compressibility effects are
still negligible at this low Mach number. Blasius profiles were imposed in a weak
form at the inlet and outlet sections, while non-slip boundary conditions were applied
at the walls. At the far-field boundaries, constant free-stream conditions were imposed.

The two-dimensional stationary solution was extruded into the whole computational
domain, and then a random noise of 10−8 was introduced to kickstart the linear growth
of the unstable modes. Solution snapshots of the whole flow field were saved within
a period between 1 and 5 non-dimensional time units. The L∞-norm of the spanwise
velocity component of the perturbed flow was also monitored as a function of
non-dimensional time (τ = tU∞/D) at several control points located inside the cavity
in order to determine the different regimes of the spanwise flow. This information
is indispensable to perform the DMD, as is discussed in the following subsection.
Moreover, since the value of this velocity component is zero in the two-dimensional
base flow, the whole effect corresponds to perturbation, giving greater detail about
the underlying spanwise dynamics.

2.4. Dynamic mode decomposition
The DMD is a recent data-based technique that allows the extraction of spatial
modal structures from a set of data snapshots of the flow field. Each identified
dynamic mode is associated with a single and unique frequency, a consequence of
the orthogonalization in time of the decomposition. This technique is based on the
Koopman analysis of a dynamical system (Rowley et al. 2009; Mezic 2013), aiming
to approximate the Koopman modes and eigenvalues of a linear infinite dimensional
operator that describes that system, even if its dynamic behaviour is nonlinear.
Contrary to other decomposition techniques, the DMD does not rank the extracted
coherent structures in terms of energy content. However, their amplitudes provide a
feedback about the individual contribution of a specific mode to the original dataset
(Schmid 2013).

The advantages offered by the DMD in the postprocessing of numerical and
experimental data are ease of implementation, efficient data analysis, inherent low
computational cost and possibility of application to large datasets or to subdomains of
a certain flow region. Some implementations of this tool for cavity problems can be
found in the literature (Seena & Sung 2011; Gómez et al. 2012; Ferrer, de Vicente
& Valero 2014; Vinha et al. 2016). This method has also demonstrated superior
performance over other traditional data-based decomposition techniques for oscillatory
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dominated problems (Schmid 2013) and for fluid flows presenting strong peaks in the
spectrum (Mezic 2013).

Nonetheless, it is important to be aware of its current limitations. According to
Bagheri (2013), there is as of yet no validation between Koopman and DMD modes
for chaotic and noisy high-Reynolds-number flow data. The works of Duke, Soria &
Honnery (2012) and Dawson et al. (2016) showed also that this decomposition can
be sensitive to the presence of noise in the data field. For some complex problems,
the effectiveness of the DMD in approximating the associated flow field still needs to
be demonstrated.

Before initializing the decomposition, flow-field snapshots have to be collected with
a constant sampling frequency, dictated by the Nyquist criterion. In order to avoid
aliasing and possibly a diverged decomposition, the data must be sampled at least at
twice the highest frequency of the dynamic modes to be extracted. A snapshot matrix
can then be constructed containing N snapshots temporally sorted and equally spaced
by a constant sampling time 1t,

V N
1 = (v1, v2, v3, . . . , vN). (2.5)

The matrix V N
1 may be composed of one or all variables of the flow field. If we

consider only one flow variable, the computational cost of the DMD is substantially
reduced. Nevertheless, to describe the whole dynamics of the system more accurately,
as many flow-field variables as possible should be included, given that the basis of the
dynamic modes is common to all of them (Richecoeur et al. 2012). In the previous
work (Vinha et al. 2016) with very similar flow conditions, the authors verified that
performance of the DMD with the three velocity components of the flow, rather
than use of only the spanwise velocity component, did not add relevant features to
the extracted dynamic modes. The results presented and discussed in the following
sections were therefore obtained using only the spanwise velocity component in the
decomposition.

The aim of the DMD is to extract the dynamic characteristics of the linear operator
A that approximates the dynamical process between two consecutive snapshots,

A(v1, v2, . . . , vN−1)= (v2, v3, . . . , vN), (2.6)
AV N−1

1 = V N
2 . (2.7)

For a sufficiently long sequence of snapshots, the original DMD initially performs a
singular value decomposition (SVD) on the snapshot matrix V N−1

1 =UΣW H in order to
find a matrix S that describes the dynamics of the unknown matrix A. This guarantees
higher robustness in the presence of noise and other uncertainties, or in the case of
rank-deficiency data. Projecting then the matrix A onto a basis spanned by the SVD
modes U, and after some algebraic manipulation,

S = UHAU = UHV N
2 WΣ−1. (2.8)

The following step consists of solving the eigenvalue problem S yi = µi yi. The
dynamic modes can finally be recovered using the expression

φi = U yi. (2.9)

From the imaginary part (ωi) and real part (σi) of the eigenvalues of S, we retrieve
the frequency information and growth rates of the dynamic modes respectively. The
eigenvalues of S can be expressed in terms of physical or dynamic information by

λi =
1
1t

logµi. (2.10)
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In order to recover the amplitude information of the DMD modes, the matrix V N−1
1

needs to be decomposed into

V N−1
1 =ΦDC, (2.11)

with Φ = [φ1,φ2, . . . ,φN−1]. The matrix C is a Vandermonde matrix that contains the
identified discrete frequencies µi, and is expressed by

C =


1 µ1 µ2

1 . . . µN−2
1

1 µ2 µ2
2 . . . µN−2

2
...

...

1 µN−1 µ2
N−1 . . . µN−2

N−1

 . (2.12)

The matrix D is the diagonal matrix containing the amplitudes of the respective modes.
In order to avoid an inversion of the matrix C and an ill-conditioned operation, one
has to look for the inverse of the amplitude matrix D, following the expression
(Schmid 2013)

D−1
= CWΣ−1 yi. (2.13)

It should be noted that D is much easier to invert than C. With this approach, it is
possible to recover all of the amplitudes of the dynamic modes.

Our DMD implementation was written in the Fortran programming language. For
the computation of the SVD and eigenvalue problem, the subroutines dgesvd and
dgeev of LAPACK were used respectively.

3. Modal analysis of the spanwise dynamics
3.1. Cavity with periodic boundary conditions

When periodic boundary conditions are imposed on the investigated open cavity flow,
two instability regions for the spanwise velocity component are identified. These
regimes can be seen in figure 4(a), which shows the temporal evolution of the
spanwise velocity component for three control points placed inside the cavity, with
different spanwise locations. The coordinates of these points are indicated above each
curve in figure 4(a). As expected, the aforementioned velocity component exhibits
at these control points a linear growth phase followed by a saturated regime. As is
shown in figure 4(b), the exponential growth slopes at the three DNS control points
match the one predicted by linear stability analysis. In the centre of the computational
domain, differences between DNS and linear growth rates are within 1 %, while in
regions closer to the periodic boundaries, discrepancies can reach 7 %.

The saturated regime is reached when the nonlinear dynamics overcomes the linear
behaviour of the centrifugally growing disturbances. The contribution of high-order
terms to the size of the perturbation starts then to become important when the slope
of the most unstable linearly growing perturbation experiences a significant change of
its linear value. In this context, we accept that the saturated regime starts when the
change of this slope exceeds a certain threshold value α, i.e.∣∣∣dw/dt

∣∣
t+dt −

dw/dt
∣∣

t

∣∣∣> α. (3.1)

The value of α adopted in this paper is α = 0.1× dw/dt
∣∣

t.
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FIGURE 4. (Colour online) The temporal evolution of the absolute value of the spanwise
velocity component at three control points located inside the cavity, from the linear to the
saturated regime (a). Detail of the linear zone in logarithmic scale and comparison with
linear analysis (b).

From figure 4, it can be inferred that saturation does not occur at the same moment
for the three investigated control points due to the fact that a random numerical noise
was artificially imposed for the onset of spanwise perturbations. This motivates
slightly different initial states at these points, resulting in variations in the size of
the perturbation of one order of magnitude. At P1 and P3, saturation of the leading
mode occurs at around 700 time units, while at P2, saturation seems to occur earlier.
After the occurrence of saturation, the spanwise velocity component experiences
an oscillatory behaviour with unstable amplitude at the three control points, with
StD ≈ 0.020.

The DMD technique was applied to each of the identified regimes in order to
investigate the morphology and characteristic frequencies of the relevant modes
appearing in each regime. Convergence of the DMD was assumed when the
residual norm of the decomposition was sufficiently low and when the eigenvalues
corresponding to the most relevant dynamic modes became independent of the
number of snapshots comprising the initial matrix V N

1 . The DNS solution snapshots
were collected with a constant sampling frequency, which was selected taking into
account the temporal evolution of the spanwise instabilities. The following subsections
describe the most relevant results obtained with the DMD.

3.1.1. Linear regime
A modal analysis was conducted by applying the DMD to the linear growth

regime. Recovering the first solution snapshot at τ = 250, this technique took 40
DNS snapshots temporally spaced by a constant 1τ = 5. It should be noted that
only the spanwise velocity component was added to the snapshot matrix for the
decomposition, as previously explained in § 2.4.

The obtained DMD spectrum is compared with the BiGlobal stability analysis
performed by Meseguer-Garrido et al. (2014). In figure 5, the real and imaginary
parts of the eigenmodes are plotted. The eigenvalues from linear stability analysis are
coloured with respect to the wavenumber of the perturbations. We can observe that
both the frequency and the growth rate of all unstable DMD modes are in agreement
with linear stability analysis results. The dominant DMD modes in the decomposition,
matching each branch of the most unstable BiGlobal modes (modes I and II in
figure 2), were selected to evaluate the spatial wavenumbers of those modes. The
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FIGURE 5. (Colour online) Comparison between the obtained DMD spectrum (empty
rhombuses) and the linear stability analysis (filled dots, coloured as a function of the
spanwise wavenumber of the linear eigenspectrum).

DMD modes A, B and C correspond to the stationary branch of linear mode II, the
DMD mode D to the low-β branch of linear mode II and finally the DMD modes E
and F to the linear mode I.

The morphology of the selected unstable DMD modes is represented on the left
of figure 6 by isosurfaces of spanwise velocity. On the right, the averaged results
obtained from a spatial Fourier analysis of each DMD mode are shown. The spatial
fast Fourier transforms (FFTs) were performed on the spanwise velocity component
over several x positions in the y/D = −0.1 plane. The shape of the growing DMD
mode A resembles the leading disturbance from linear stability analysis. The FFT
demonstrates an amplitude peak for β = 11.6, this wavenumber being in accordance
with the BiGlobal analysis for the leading unstable mode. The DMD mode A did
not grow uniformly over the spanwise direction, as instabilities start growing first
at the centre of the cavity and later towards the periodic boundaries. This lack of
homogeneity over the spanwise direction can also be observed in DMD modes B and
E, and was already observed in the experimental work of de Vicente et al. (2014). As
explained before, the random nature of the initial seeding means that the base upon
which the exponential growth starts can be different in each part of the computational
domain. In the same way, slight inequalities in the incoming flow in the experimental
set-up can affect the local morphology of the flow inside the cavity.

Although the DMD is supposed to separate eigenmodes by frequency, in the
present case it retrieved three unstable stationary modes (DMD modes A, B and C)
that represent all of the unstable linear eigenmodes of the high-β branch of mode II
(the stationary branch shown in figure 2b). The extraction of more than one DMD
mode for a certain frequency was documented for the first time in the very recent
work of le Clainche & Vega (2017), when the original DMD formulation of Schmid
(2010) was applied.
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FIGURE 6. (Colour online) Isosurfaces of spanwise velocity (on the left) and spatial FFTs
(on the right) of the selected unstable DMD modes in the linear regime, obtained within
the time interval 250–450. Two contour levels of spanwise velocity are displayed, namely
−0.0015 and 0.0015. Coordinate axes are shown in (a).
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FIGURE 7. (Colour online) Spatial FFT power spectral density performed on the spanwise
velocity component for each DNS snapshot. The PSD is averaged for several streamwise
locations in the y/D=−0.1 plane. (a) Linear regime towards transition to the saturated
regime. (b) Saturated regime.

3.1.2. Transition to the nonlinear regime
In an attempt to characterize how transition from the linear to the nonlinear regime

is produced, a spatial Fourier analysis was conducted. From the beginning of the
periodic DNS until τ = 1200, spatial FFTs were performed on the spanwise velocity
component over several streamwise positions in the y/D = −0.1 plane. The results
obtained are combined in figure 7, where the amplitude of peaks in the Fourier power
spectral density (PSD) is plotted over the DNS time.

The linear growth phase can clearly be observed in figure 7(a). Modes with
wavenumbers in the β range 11.5–12 are the most unstable growing ones and
dominate the spectrum until saturation of these modes occurs. These observations
are consistent with the DMD analysis presented in § 3.1.1 for the linear regime. Just
before the leading modes saturate, at approximately τ ' 650, we can observe that the
slopes of the low-β growing modes suddenly increase. After this moment, τ ' 850,
the flow enters a completely nonlinear regime, with no apparent predominance of a
certain spanwise perturbation over the others.

Figure 7(b) concentrates the FFT data for the saturated regime, allowing us to
track in time the evolution of the amplitude of the PSD of a certain mode. In the
first periods right after saturation, modes with wavenumbers around β ' 9 are clearly
dominating the spectrum. Nonetheless, the figure displays also an increase of the
energy of space scales with wavenumbers in the proximity of β ' 2π, suggesting
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FIGURE 8. (Colour online) The saturated regime inside the open cavity. The temporal
evolution of the absolute value of the spanwise velocity component at eight probes in the
middle of the cavity (0.5L,−0.5D, z) with different spanwise locations.

that these structures turn dominant after a short amount of time. The strong PSD
amplitude oscillations in figure 7(b) are related to the highly complex spanwise
behaviour of the flow and to nonlinear interactions occurring between the different
modes.

3.1.3. Saturated regime
After an initial linear growth phase, saturation of the leading mode occurs, and

perturbations start to fluctuate with a characteristic Strouhal number, as previously
shown in figure 4. This can also be seen in figure 8, showing for a longer DNS
time the evolution of the spanwise velocity component at eight probes. These new
control points are distributed over the two central subdomains of the cavity, sharing
the same axial and normal coordinates but having different spanwise positions.
Their coordinates are shown on the top of each graph in figure 8. The close spanwise
proximity between these points allows us to capture with higher confidence the nature
and characteristics of the dominant perturbations occurring in a central region of the
cavity. This also influences the sampling rate at which flow-field snapshots are taken
from the DNS to perform the dynamic decomposition. All of the aforementioned
control points track a pulsating behaviour for the entire recorded time just after
saturation, with a dominant frequency in the range StD ∈ (0.017, 0.020). These values
are within the Strouhal number range of the most predominant dynamics revealed
by previous experiments, and represented in figure 2 by the middle grey area. This
behaviour was not recovered by linear stability analysis.

In a first attempt to clarify the space–time dynamics of the saturated flow, figure 9
shows space–time diagrams over the spanwise direction in the planes y/D = −0.1
and x/D= 0.5 for two different DNS segments, 1200 6 τ 6 1700 in (a) and 3000 6
τ 6 3500 in (b), τ being the DNS dimensionless time. Contours of spanwise velocity
component are shown in this figure. In the saturated regime, the flow is characterized
by the presence of highly coherent left- and right-travelling waves. The phase velocity
of these structures over the spanwise direction can be estimated from slopes in the
space–time diagram (1m), as depicted in figure 9 by the lines (1), (2), (3) and (4),
and it can provide a rough indication about the Strouhal number of these perturbations
through the expression (Basley 2012)

StD =
wϕ

U∞

β

2π
=1m

β

2π
, (3.2)
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FIGURE 9. (Colour online) Space–time diagrams of the spanwise velocity component,
extracted at y/D = −0.1 and x/D = 0.5, for the DNS time intervals (a) 1200–1700 and
(b) 3000–3500, with periodic boundary conditions. Lines (1) and (3) indicate left-travelling
waves while lines (2) and (4) indicate right-travelling waves.

where wϕ denotes the spanwise phase velocity of the travelling waves. For the
dominant wavenumber of the experiments, β ' 6 and StD ≈ |1m|. The absolute
values of the slopes drawn in figure 9 are as follows: 1m1 = 0.019, 1m2 = 0.022,
1m3 = 0.018 and 1m4 = 0.017. These values are in agreement with the experimental
results described in part II of Basley (2012), and suggest that the leading spanwise
dynamics inside the cavity remains practically unchanged after the occurrence of
saturation.

The DMD was applied to the saturated regime, starting the decomposition at τ =
1222. The results discussed in the present subsection were obtained using 272 DNS
snapshots, temporally spaced from one another by 1 non-dimensional time units (i.e.
approximately 5 oscillation periods were covered), which was found to be enough
for a converged decomposition. In the StD ∈ (0, 0.030) range, the DMD technique
captured nine modes, associated with nine eigenvalues of S with slightly negative
real parts. These modes are plotted in the β–StD plane of figure 10(a), where only
a single frequency corresponds to each DMD mode, represented in this graph by
a set of horizontal blue diamonds. In the y/D = −0.1 plane of each mode, spatial
FFTs were performed on the spanwise velocity component over various x positions.
In figure 10(a), the size of the blue diamonds is proportional to the amplitude of the
averaged PSD in the abovementioned plane. The DMD spectrum is also compared in
this figure with previous linear stability analysis (BiGlobal) and experimental results.

The DMD performed for the present regime was able to capture the experimental
modes, represented in figure 10(a) by the grey regions. For each DMD mode,
the spanwise FFTs do not exhibit a dominant wavenumber, but instead a range
of prevailing wavenumbers, as shown in the experiments. For a comprehensive
comparison, four DMD modes with closer frequency to the experimental modes
described in de Vicente et al. (2014) were selected, in order of increasing frequency,
namely stationary DMD mode A, DMD mode B with StD = 0.0059, DMD mode
C with StD = 0.018 and DMD mode D with StD = 0.025. Figure 10(b) displays the
isosurfaces of spanwise velocity for these modes in the zy and zx planes.

The DMD mode A contains several coherent structures with similar morphological
shapes along the entire spanwise direction, but with different wavenumbers. The
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FIGURE 10. (Colour online) Extracted DMD modes for the saturated regime, starting the
decomposition at τ = 1222 and using 272 DNS snapshots. (a) Extracted DMD modes in
the β–StD plane. Each mode is associated with a single frequency, represented by a set
of horizontal blue diamonds. The size of the diamonds is proportional to the amplitude of
the PSD performed on the spanwise velocity component of each DMD mode. The DMD
results are compared with data from BiGlobal (red dots) and experiments (grey areas) of
de Vicente et al. (2014). (b) Isosurfaces of spanwise velocity of the aforementioned DMD
modes in the zy and zx planes.

spanwise FFTs in the y/D = −0.1 plane returned amplitude peaks within the range
of β ∈ (9, 12), these structures resembling the stationary branch of linear bifurcated
mode II. This mode comprises also low-β structures, as indicated by the FFTs and
isosurfaces of spanwise velocity, fitting the corresponding experimental shading. It
should be noted that the distribution of all of these stationary structures inside the
cavity is not homogeneous.

Low-β perturbations can also be found in DMD mode B, with higher-energy
structures in the range β ∈ (4.8, 7). Along the spanwise direction, these structures
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can mainly be found in two portions of the cavity, namely 2.5 6 z/D 6 4.5 and
7.5 6 z/D 6 10. Even if these characteristic wavenumbers are slightly lower than the
ones predicted by linear stability analysis, but within the range of the experiments,
the associated structures seem to correspond to the oscillatory branch of linear mode
II. Moreover, the increase of Strouhal number with the decrease of associated spatial
wavenumber can also be observed with the DMD.

The DMD mode C is in the Strouhal range of the most energetic mode of the
experiments, oscillating with StD=0.018. Coherent low-β structures can be recognized
in figure 10(b) for this mode, being in agreement with the PSD amplitude peaks
shown above in the range β ∈ (4.8, 6.6). They can be favourably compared with
the low-β structures of travelling linear mode I; however, with lower frequency
but in accordance with the experiments. Similarly to what happens with the other
discussed DMD modes within the saturated regime, and also in agreement with the
experiments, these structures lose their periodicity and homogeneity inside the cavity
over the spanwise direction.

Finally, DMD mode D is characterized by the presence of some coherent high-β
structures, confined to small spanwise subregions of the cavity (see 1.5 6 z/D 6 5
and 7.5 6 z/D 6 10). The highest FFT peak occurs for β = 10.3; nonetheless, other
relevant structures involving wavenumbers in the range β ∈ (3, 12) are also obtained
for this mode. Despite its highly dynamic complexity, this highly inhomogeneous
mode exhibits properties that bear strong similarity to various eigenmodes of linear
mode I.

Similar DMD analyses were also carried out utilizing later time windows within
the saturated regime in the decomposition, and their results resembled the dynamics
already described in the present subsection and did not add new relevant information.
Despite the highly nonlinear and complex nature of the saturated flow inside the
cavity, the DMD technique was able to identify the most relevant modes of the linear
stability analysis and the experiments. The reported drop in StD was also revealed
in the absence of spanwise walls, strongly suggesting that this effect is directly
associated with the saturation process.

3.2. Cavity with spanwise wall boundary conditions
Similar investigation considering the effect of spanwise walls was also carried out.
New computations were performed imposing solid wall boundary conditions at the
spanwise limits of the computational domain, for the same inlet flow conditions as
the periodic case. The evolution of the spanwise velocity component was tracked
at eight control points distributed over the two central subdomains of the cavity.
Figure 11 shows the temporal evolution of spanwise velocity at these probes, from
the beginning of the DNS. The coordinates of these control points are shown at the
top of their corresponding plots. Contrary to what happened in the periodic study, a
linear growth regime could not be recognized for the present case. The numerical
perturbation generated by the growth of the boundary layer due to the presence of
lateral walls overcomes the artificial noise introduced to kickstart the DNS, triggering
a faster growth of the linearly unstable modes.

From the beginning of the DNS, all control points show a wavering growth phase
before spanwise velocity perturbations reach a saturated state at approximately τ =

420. From this moment, the spanwise velocity component fluctuates with a dominant
frequency within the range StD ∈ (0.017, 0.018), inside the StD range of the most
predominant dynamics revealed by the experiments (middle grey zone in figure 2b),
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FIGURE 11. (Colour online) The temporal evolution of the absolute value of the spanwise
velocity component at eight probes in the middle of the cavity with spanwise walls.

0
500 1000

(5)

(6)

(7)

(8)

1500

Non-dimensional time
2000 2500 3000

2

4

6

8

10

FIGURE 12. (Colour online) Space–time diagram of the spanwise velocity component
extracted at y/D=−0.1 and x/D= 0.5 for the DNS time interval 500–3000 with spanwise
bounding walls. Lines (5) and (7) indicate left-travelling waves while lines (6) and (8)
indicate right-travelling waves.

and it is related to low-β travelling modes. These oscillations seem to reach a more
stable regime around τ = 2000 for the majority of the control points. Nonetheless,
their dominant frequency remains more or less unchanged from the saturation point
until the end of the computation.

As in § 3.1.3, a space–time diagram was constructed to track the temporal evolution
of spanwise velocity perturbations in the saturated regime with the presence of walls
in the spanwise confinements of the cavity. Once again, this variable was extracted
at the y/D=−0.1 and x/D= 0.5 planes for the DNS window 5006 τ 6 3000. These
values were selected in order to allow a comprehensive coverage of the two main
regions of velocity fluctuation previously displayed in figure 11. This diagram is
shown in figure 12 in the form of spanwise velocity contours.

Due to the presence of solid walls at z/D = 0 and z/D = 10, a thick horizontal
band appears next to these two boundaries, delimiting a region where no periodic
or stationary structures stand out and implying the formation of Bödewadt layers of
opposite sign near the two end walls. The main differences between the left and right
sides of figure 12 occur in the central region of the cavity, for 3.56 z/D6 6.5. On the
left side, we can observe some horizontal stripes within this central region, revealing
the existence of stationary perturbations. Left- and right-travelling waves also coexist
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in the centre of the cavity, as is suggested by the slopes (5) and (6) drawn in this
figure, with absolute values 1m5= 0.021 and 1m6= 0.017 respectively. As explained
in the previous section, the phase velocity of the travelling waves can be deduced
from these values.

Later in the simulation, the central stationary oscillations tend to vanish as a result
of saturation and onset of nonlinear interactions between the coexisting structures.
This behaviour is evidenced in figure 7. At the beginning of the nonlinear regime,
it can be observed that the β modes 5 and 6 are growing at the expense of their
multiples, (modes) 10 and 12 respectively, strongly suggesting that these latter modes
give energy to the former ones. In the same way, modes 5 and 10 interact with
modes 6 and 12, fomenting the growth of modes with wavenumbers 15 and 18 (not
shown in figure 7). Eventually, when the energy of the β modes 5 and 6 is high
enough and of the same order of magnitude as the energy of the modes 10 and 12,
numerous nonlinear interactions start to occur inside the cavity, giving rise to much
more complex interactions between modes (see figure 7b). Similar nonlinear behaviour
is also observed in the previous work of Vinha et al. (2016). On the right side of the
space–time diagram of figure 12, left- and right-travelling waves clearly dominate the
spectrum inside the cavity. The absolute values of the slopes drawn on the right side
of this figure are 1m7= 0.018 and 1m8= 0.019. For the dominant wavenumber of the
experiments (β' 6), these two slopes approximate the characteristic Strouhal numbers
of the left and right waves (as previously shown by (3.2)).

Two different DNS time frames were selected to perform the DMD analysis.
The first one started at τ = 417 and comprised 228 snapshots while the second
time interval started at τ = 1985 and contained 291 snapshots. In both cases, the
snapshots were equally spaced by a constant 1τ = 1. These values were chosen after
performing a DMD convergence study for the two cases. Furthermore, the spatial
domain of the decompositions was reduced to the six central subdomains of the mesh
(1.25 6 z/D 6 8.75) in order to avoid the perturbations introduced by the presence of
walls into the DMD.

Figure 13 summarizes the most important results obtained by means of the two
DMDs. The plots on the left side were constructed for the DMD started at τ = 417
while the ones on the right side for the DMD initiated at τ = 1985. The modes
extracted inside the StD ∈ (0, 0.030) range are plotted in the β–StD planes of
figure 13(a), where the frequency of each mode is represented by a set of horizontal
diamonds. It should be noted that the corresponding eigenvalues of all of these modes
have a stable behaviour. The size of the plotted diamonds is once again proportional
to the amplitude of the spatial Fourier averaged PSD, performed for both cases on
the spanwise velocity component over various streamwise positions in the plane
y/D=−0.1. The DMD spectrum is again confronted with data from previous linear
stability analysis and experimental measurements.

For the investigated wall-bounded cavity, both DMDs were capable of capturing
modes inside the three grey areas of the experiments, with a sharp abundance of
wavenumbers inside them. For a deeper comparison between the experimental Fourier
and BiGlobal modes, and the extracted DMD modes, four DMD modes with closer
frequency to the experimental ones were chosen. These modes are labelled by circled
letters A–D in figure 13(a), in the order of increasing StD. Figure 13(b) shows the
morphology of the DMD modes associated with those four letters, by means of
isosurfaces of the spanwise velocity component (blue A–D on the left for DMD
started at τ = 417; black A–D on the right for DMD started at τ = 1985).

On the left side of figure 13(b), blue DMD mode A exhibits the most coherent
structures in the centre of the cavity, with wavenumbers of the order of β ' 11. It
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FIGURE 13. (Colour online) Extracted DMD modes for DNS solutions with spanwise wall
boundary conditions. On the left, the decomposition was started at τ = 417 using 228
snapshots. On the right, the decomposition was started at τ = 1985 using 291 snapshots.
The spatial domain of both DMDs was reduced to the six central subdomains of the mesh.
(a) Extracted DMD modes in the β–StD plane. Each mode is associated with a single
frequency, represented by a set of horizontal blue diamonds. The size of the diamonds is
proportional to the amplitude of the PSD performed on the spanwise velocity component
of each DMD mode. The DMD spectrum is compared with data from BiGlobal analysis
(red dots) and experimental measurements (grey areas) of de Vicente et al. (2014). (b)
Isosurfaces of spanwise velocity of the aforementioned DMD modes in the zy and zx
planes.
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should be noted that this value is close to the wavenumber for maximum amplification
according to linear stability analysis (β ' 12), and in agreement with the experiments.
We can also notice that structures of this same mode lose some coherence in the
vicinity of the walls due to the numerical establishment of the boundary layer. The
existence of stationary structures mainly in the centre of the cavity was also observed
on the left side of the space–time diagram of figure 12.

The black DMD mode A on the right side of figure 13(b), belonging to the second
DMD time interval considered for the present analysis, shows a different morphology
compared with the blue DMD mode A. We can visualize now some well-defined
structures within the spanwise range 3 6 z/D 6 5, with wavenumbers around β ' 9,
which is the bifurcation point from the stationary to the oscillatory branch of linear
mode II. Some other structures can be seen more to the right side of the cavity
(6 6 z/D 6 8), indicating that the distribution of structures of this stationary mode
is no longer uniform inside the cavity, but inhomogeneous as in the experiments.

The left and right DMD modes B exhibit low-β structures with wavenumbers that
match the experimental grey area of figure 13(a), and they are confined to several
portions of the cavity, as suggested by the isosurfaces of spanwise velocity. Other
structures with smaller wavenumbers also emerge inside the cavity, possibly as a result
of the growth of the boundary layer in the spanwise boundaries. Nonetheless, for the
corresponding perturbation frequencies (left DMD mode B, StD= 0.0055; right DMD
mode B, StD = 0.0048), the experiments also exhibited highly non-uniform structures
with a pronounced range of wavelengths in the spanwise direction.

A similar situation occurs with the two DMD modes D displayed in figure 13(b),
which are also characterized by a strong plurality of wavenumbers. The blue DMD
mode D on the left is pulsating with StD = 0.0248 while the black DMD mode on
the right with StD = 0.0224. The isosurfaces of spanwise velocity display several
highly inhomogeneous structures with certain coherence near the region of the walls,
resembling some of the dynamics of the matching experimental mode. However, these
features are not relevant in terms of energy in comparison with the ones composing
the other DMD modes distinguished in figure 13 and probably evolve from nonlinear
interactions between the different structures.

The most relevant mode revealed by both decompositions is DMD mode C. The
blue DMD mode on the left oscillates with a characteristic StD = 0.0185 while the
black one on the right with StD = 0.0174. Both DMD modes contain clearly defined
features uniformly distributed along the majority of the spanwise length of the cavity,
with wavenumbers of the order of β ≈ 2π. On the left side, the FFT amplitude peak
occurs for β'5, while the structures on the right side present a dominant wavenumber
of β ' 6. In both cases, these dominant structures consist of highly coherent right-
or left-travelling waves, previously observed in the space–time diagram of figure 12.
The morphological shape of the present DMD modes bears thus strong similarity to
the most energetic one described by the experiments, with identical shift in frequency
in comparison with the linear mode I. It should be noted that a similar mode was
also recovered in § 3.1.3 considering periodic boundary conditions, disclosing that the
abovementioned discrepancy in frequency is not an exclusive effect of the presence of
spanwise walls.

The two DMD analyses of figure 13 recovered the dominant modes of the
experiments; however, a small discrepancy in frequency can be observed between
the blue DMD mode C (on the left side) and the black DMD mode C (on the right
side). Figure 14 compares the streamwise velocity profiles in the y/D=−0.1 plane,
averaged for the following two temporal scenarios: the solid blue line uses the same
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FIGURE 14. (Colour online) Averaged dimensionless streamwise velocity profiles in the
y/D=−0.1 plane considering the same DNS snapshots as in the DMDs of figure 13.

DNS snapshots as in the left DMD of figure 13 while the dashed black line takes the
same DNS solutions as in the right DMD of the same figure. It can be seen that the
streamwise velocity in the region of the main recirculation is lower for the second
case, suggesting that the saturation process has the effect of slowing down the main
vortex inside the cavity, causing the aforementioned drop in StD.

4. Discussion

With and without the presence of solid bounding walls inside the open cavity, the
DMD technique was able to recover high-energy modes from a highly nonlinear
and saturated flow regime, containing features that resemble the dominant structures
obtained in the experimental campaign of de Vicente et al. (2014). The frequency of
those DMD modes also matched the StD range of the experiments, and confirmed the
shift in frequency from the corresponding oscillatory BiGlobal mode I.

Figure 15(a) shows averaged dimensionless streamwise velocity profiles for the
two DNS cases studied in the present paper. These profiles were taken in the
y/D = −0.1 plane and are compared with the two-dimensional base flow (i.e. a
steady Navier–Stokes solution) from linear stability analysis and with the experimental
mean flow averaged in time and in the spanwise direction. Within the saturated
regime, we observe for both DNS cases a strong reduction of the velocity of the
main recirculation, which explains the said drop in Strouhal number. This effect is
consistent with previous observations of Brès & Colonius (2008), which ascertained
that the oscillation frequency of the three-dimensional modes is affected by the time
these perturbations require to advect around the primary vortex. A reduction in the
velocity of the main recirculation inside the cavity implies a longer travelling time
along it, thereby contributing to a decrease in the characteristic Strouhal number of
the leading centrifugal disturbance.
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FIGURE 15. (Colour online) Averaged dimensionless streamwise velocity profiles within
the saturated regime in the y/D = −0.1 plane. The DNS profiles are compared with
the BiGlobal and experimental ones, obtained from the 2D base flow and 3D mean
flow respectively and previously published in the work of de Vicente et al. (2014) (a).
Circulation around the primary vortex of the cavity, calculated out of the 3D mean flow
(for the two DNS cases) and 2D base flow (linear stability analysis) (b).

The circulation around the primary vortex can provide a more precise quantification
of its strength. This quantity was thus estimated for the BiGlobal and DNS cases
compared in figure 15(a), and it is presented in figure 15(b) normalized by its value
calculated out of the base flow of the linear stability analysis. As expected, the
recirculation is reduced from its two-dimensional base flow value due to the saturated
regime of the three-dimensional flow for the two DNS cases. These results confirm
also the strong relationship existing between the velocity of the main recirculation,
or strength of this rotating region, and the oscillation frequency of the centrifugal
perturbations.

A secondary effect arises from the presence of spanwise walls, leading to an
additional decrease in the velocity and circulation of the main recirculation region.
The development of Bödewadt layers near the spanwise end walls of the cavity
motivates this further deceleration. The presence of end-wall corner vortices slowing
down the main centrifugal recirculation inside the cavity was first described in the
literature by Shankar & Deshpande (2000). By comparing streamwise velocity profiles
in lid-driven cavity flows, the authors observed an increasing discrepancy between
the 2D (at the midplane) and 3D profiles with respect to the Reynolds number in
the region of the main recirculation, with a smaller peak for the case of the 3D
curves. This braking phenomenon was also observed in the experiments. Nonetheless,
this effect is not as strong as the one measured inside the experimental cavity. Such
discrepancies can be explained by the development of end-wall effects from the inlet
of the experimental test section, yielding to more developed lateral boundary layers
at the leading edge of the experimental cavity. Nevertheless, the results of figure 15
point out that the main mechanism for the reduction of frequency is the reduction of
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FIGURE 16. (Colour online) The trend of the maximum value of the averaged
dimensionless streamwise velocity (blue squares) and circulation around the main vortex
core (green diamonds) in several DNS time intervals compared with the dominant Strouhal
number (red circles) retrieved by the DMD for the same time intervals: (a) DNS with
spanwise periodic boundary conditions; (b) DNS with spanwise wall boundary conditions.

the velocity and circulation of the main vortex, and that such reduction occurs mainly
due to the saturation process, while the presence of the walls is a second-order effect.

In order to attest this relationship between the recirculation velocity/strength of the
main recirculation and the associated Strouhal number of the leading perturbation, the
behaviour of the peak velocity of the main vortex with time, and of the frequency
of the dominant DMD mode is plotted in figure 16 for both investigated DNS
cases. The circulation out of the mean numerical flow is also shown in this figure,
normalized by its value from the two-dimensional base flow solution. The symbols
representing the parameters velocity and circulation were averaged in different DNS
time intervals, and the DMDs were performed for the corresponding interval. For the
periodic case (figure 16a), the clear trend is that the saturation process reduces the
recirculation velocity inside the cavity, and the frequency of the modes is reduced in
the same fashion. After an initial reduction for all parameters depicted in this figure,
we can observe later in the simulation a slight increase of the streamwise velocity
and circulation, possibly induced by nonlinear interactions occurring inside the cavity,
resulting in a small increment of the Strouhal number. However, for a much longer
DNS duration, the streamwise velocity and circulation values do not change, and for
this reason the oscillation frequency of the leading centrifugal mode does not vary.
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For the case where lateral wall boundary conditions were imposed, figure 16(b)
shows an initial trend in line with the periodic case, confirming that the reduction
of Strouhal number of the leading mode is a consequence mainly of the saturation
mechanism. The presence of high-energy centrifugal modes inside the cavity acts as a
brake on the main recirculation, which in turn leads to a further drop in the oscillation
frequency of these structures. Nonetheless, the effect of the presence of end walls also
contributes to a further decrease in the velocity of the main recirculation, resulting in a
stronger drop of the Strouhal number. As expected, the circulation around the primary
vortex also follows this reduction trend with DNS time.

5. Concluding remarks
This paper demonstrated the capability of the DMD to analyse the spanwise

perturbations occurring in an open cavity flow problem within the completely
saturated regime. This technique was applied to a set of snapshots obtained from
DNS, imposing lateral periodic and solid wall boundary conditions, in order to
investigate the possible cause of the drop of the characteristic Strouhal number of the
most energetic mode of the experiments of de Vicente et al. (2014). Despite the highly
nonlinear regime inside the cavity triggered by saturation of linearly unstable modes,
the DMD was able to retrieve the morphological shapes and oscillation frequencies
of the most relevant modes of the linear stability analysis and the experiments.
Furthermore, similar reduction of Strouhal number was again found in the present
analysis for the dominant dynamic mode, with or without the presence of spanwise
bounding end walls. We found that this behaviour is mainly due to the saturated
regime of the flow, which has the effect of slowing down the main centrifugal
recirculation, thus reducing the characteristic Strouhal number of the modes. The
presence of end-wall vortices near the spanwise confinements of the cavity only
strengthens this effect, and its overall weight is always lower in comparison with
saturation.

The DMD technique was revealed to be a powerful instrument in the analysis of this
particular open cavity flow problem. Moreover, with the reconstruction of the dynamic
modes, the DMD was demonstrated also to be a very useful tool for the visualization
of the characteristics of such a complex flow field. Using this postprocessing tool, we
were able to establish the link that was missing between previous experimental and
linear stability analysis results, and the present DNS data, and find the true nature of
the decrease in Strouhal number.
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