
TPLP 21 (1): 4–50, 2021. c© The Author(s), 2020. Published by Cambridge University Press

doi:10.1017/S1471068420000101 First published online 30 June 2020

4

Restricted Chase Termination for Existential Rules:
A Hierarchical Approach and Experimentation

ARASH KARIMI
Department of Computing Science, University of Alberta, Edmonton, Canada

(e-mail: akarimi@ualberta.ca)

HENG ZHANG
College of Intelligence and Computing, Tianjin University, Tianjin, China

(e-mail: h.zhang@hotmail.com)

JIA-HUAI YOU
Department of Computing Science, University of Alberta, Edmonton, Canada

(e-mail: jyou@ualberta.ca)

submitted 19 February 2019; revised 19 May 2020; accepted 27 May 2020

Abstract

The chase procedure for existential rules is an indispensable tool for several database applica-
tions, where its termination guarantees the decidability of these tasks. Most previous studies
have focused on the skolem chase variant and its termination analysis. It is known that the
restricted chase variant is a more powerful tool in termination analysis provided a database is
given. But all-instance termination presents a challenge since the critical database and similar
techniques do not work. In this paper, we develop a novel technique to characterize the activeness
of all possible cycles of a certain length for the restricted chase, which leads to the formulation
of a framework of parameterized classes of the finite restricted chase, called k-safe(Φ) rule sets.
This approach applies to any class of finite skolem chase identified with a condition of acyclicity.
More generally, we show that the approach can be applied to the hierarchy of bounded rule sets
previously only defined for the skolem chase. Experiments on a collection of ontologies from the
web show the applicability of the proposed methods on real-world ontologies.

KEYWORDS: existential rules, ontological reasoning, termination analysis, complexity of
reasoning

1 Introduction

The advent of emerging applications of knowledge representation and ontological rea-

soning has been the motivation of recent studies on rule-based languages, known as

tuple-generating dependencies (TGDs) (Beeri and Vardi 1984), existential rules (Baget

et al . 2011), or Datalog± (Cali et al . 2010), which have been considered as a powerful

modeling language for applications in data exchange, data integration, ontological query-

ing, and so on. A major advantage of this approach is that the formal semantics based

on first-order logic facilitates reasoning in an application, where answering conjunctive

queries over a database extended with a set of existential rules is a primary task, but

unfortunately an undecidable one in general (Beeri and Vardi 1981). The chase procedure

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101
https://orcid.org/0000-0001-7618-094X
mailto:akarimi@ualberta.ca
mailto:h.zhang@hotmail.com
mailto:jyou@ualberta.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068420000101&domain=pdf
https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 5

is a bottom-up algorithm that extends a given database by applying specified rules. If

such a procedure terminates, given an input database I, a finite rule set R, and a con-

junctive query, we can answer the query against R and I by simply evaluating it on the

result of the chase. In applications such as in data exchange scenarios, we need the result

that the chase terminates for all databases. Thus, determining if the chase of a rule set

terminates is crucial in these applications.

Existential rules in this context are implications of the form ∀x∀y(φ(x,y)→∃zψ(x, z)),
where φ and ψ are conjunctions of atoms.

For example, that every student has a classmate who is also a student can be ex-

pressed by

Student(x)→ ∃z Classmate(x, z), Student(z)

where universal quantifiers are omitted.

We can remove existential quantifiers by skolemization where existential variables are

replaced by skolem terms. For the above example, the resulting skolemized rule is

Student(x)→ Classmate(x, fz(x)), Student(fz(x))

where fz is a skolem function. Given a database, say I = {Student(a)}, the atom in it

triggers the application of the rule, which will first add in I the atoms Classmate(a, fz(a)),

Student(fz(a)); repeated applications will further add Classmate(fz(a), fz(fz(a))),

Student(fz(fz(a))), and so on. In this example, the chase produces an infinite set.

Note that a set of skolemized rules is a Horn logic program.

Four main variants of the chase procedure have been considered in the literature,

which are called oblivious (Fagin et al . 2005), skolem (Marnette 2009) (semi-oblivious),1

restricted (a.k.a. standard) (Fagin et al . 2005), and the core chase (Deutsch et al . 2008).

What is common to all these chase variants is the property that, for any database

instance I, a finite rule set R and a Boolean conjunctive query (BCQ) q, q is entailed by

R and I if and only if it is entailed by the result of the chase on R and I. However, these

chase variants behave differently concerning termination. The oblivious chase is weaker

than the skolem chase, in the sense that whenever the oblivious chase terminates, so does

the skolem chase, but the reverse does not hold in general. In turn, the skolem chase is

weaker than the restricted chase, which is itself weaker than the core chase.

The core chase is defined based on the restricted chase combined with the notion of

cores of relational structures (Hell and Nešetřil 1992). This variant of chase is theoretically

interesting as it captures all universal models of a given rule set and instance.2 Given a

rule set R and an instance I, whenever there is a universal model of R and I, the core

chase produces such a model.

As the cost of each step of the core chase is DP-complete, this chase variant is a bit

more complicated than the other main chase variants and to the best of our knowledge,

there are no known efficient algorithms to compute the core when the instances under

evaluation are of nontrivial sizes. As the core chase is computationally costly in practice

1 The chase using skolemized rules can be expressed equivalently by introducing fresh nulls. The chase
under these two different notations are considered equivalent due to a one-to-one correspondence
between generated skolem terms and introduced fresh nulls.

2 Given an instance I and a rule set R, an instance J is a model of R and I if J satisfies all rules in
R and there is a homomorphism from I to J . Moreover, a model U is universal for R and I if it has
homomorphism into every model of R and I. Models of R and I are not unique, but universal models
of R and I are unique up to homomorphism.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

6 A. Karimi et al.

(cf. (Benedikt et al . 2017) for more details), our focus in this paper is on the skolem

and the restricted versions of the chase, which have been the most investigated in the

literature.

Despite the existence of many notions of acyclicity in the literature (cf. (Cuenca Grau

et al. 2013) for a survey), there are natural examples from real-world ontologies that

are nonterminating under the skolem chase but terminating under the restricted chase.

However, finding a suitable characterization to ensure restricted chase termination is a

challenging task, and in the last decade, to the best of our knowledge, only a few condi-

tions have been discovered. In Carral et al . (2017), the classes of restricted joint acyclicity

(RJA), restricted model-faithful acyclicity (RMFA), and restricted model-summarizing

acyclicity (RMSA) are introduced for the restricted chase which generalize the cor-

responding classes under the skolem chase, namely (by removing the letter R in the

above names) joint-acyclicity (JA) (Krötzsch and Rudolph 2011), model-faithful acyclic-

ity (MFA), and model-summarizing acyclicity (MSA) (Cuenca Grau et al . 2013), respec-

tively. Intuitively, the classes for the restricted chase introduce a blocking criterion to

check if the head of each rule is already entailed by the derivations when constructing

the arena for checking the corresponding acyclicity conditions for JA, MFA, and MSA,

respectively. Here, we extend their work in two different directions. First, we provide a

highly general theoretical framework to identify strict superclasses of all existing classes of

finite skolem chase that we are aware of, and second, we show a general critical database

technique, which works uniformly for all bounded finite chase classes.

With the curiosity on the intended applications of some of the practical ontologies that

we collected from the web (which will be used in our experimentation to be reported

later in this paper) and the question why the restricted chase may help identify classes

of terminating rule sets, we analyze some of them to get an understanding. Here, let

us introduce a case study of policy analysis for access control, which is abstracted from

a practical ontology from the considered collection. This example shows how the user

may utilize the approach we have developed in this paper to model and reason with a

particular access policy.

Consider a scenario involving several research groups in a given lab located in a de-

partment. Each one of these groups may have some personnel working in labs. Also, each

person may possess keys which are access cards to the labs of that department. The set

of rules R = {r1, r2, r3, r4, r5} below is intended to model the access policy to the labs:

any member of any research lab must be able to enter his or her lab that is assigned to

the research group (r1); for each person x who has a key to a room y, there is a lab u

such that x can enter u and the key y opens the door of that lab (r2); and if a person

can enter a lab, he or she must have a matching key that opens the lab (r3).

An employee of the department is responsible for granting the keys to labs (r4). Once

an employee grants a key to a person, the grantee is assumed to be in the possession of

the key (r5).

r1 : MemOf(x, y)→ Enters(x, y)

r2 : HasKey(x, y)→ ∃u Enters(x, u),KeyOpens(y, u)

r3 : Enters(x, y)→ ∃v HasKey(x, v),KeyOpens(v, y)

r4 : HasKey(x, y)→ ∃w Grants(w, x, y),Emp(w)

r5 : Grants(t, x, y)→ HasKey(x, y)

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 7

The intended meanings of the predicates are: MemOf(x, y) represents that x is a member

of (lab) y; Enters(x, y) says that (person) x enters (lab) y; HasKey(x, y) affirms that

(person) x has a key card to (room) y; KeyOpens(y, u) means that the key to (room)

y opens (lab) u; Furthermore, by Grants(w, x, y), we declare that (employee) w grants

(person) x access to (room) y; finally, Emp(w) confirms that w is an employee of the

department.

The rules in R can be applied cyclically. For example, an application of r4 triggers

an application of r5 which triggers r4 again. But even under the skolem chase vari-

ant, these two rules do not produce an infinite derivation sequence. Let us consider

the path π1 = (r4, r5) and skolem chase derivations of these rules from the database,

I0 = {HasKey
(
a, b

)}. Recall that the skolem chase considers the skolemized version of

the rules, which we denote by sk(r) for a given rule r.

I0 = {HasKey
(
a, b

)} 〈sk(r4),{x/a,y/b}〉−−−−−−−−−−−−→
I1 = I0 ∪

{
Grants

(
fw(a, b), a, b

)
,Emp

(
fw(a, b)

)} 〈sk(r5),{t/fw(a,b),x/a,y/b}〉−−−−−−−−−−−−−−−−−−→
I2 = I1

where
〈sk(r),τ〉−−−−−−→ denotes that rule sk(r) is applied using substitution τ .

The sequence of derivations for the path π2 = (r5, r4) can be obtained similarly. From

these derivations, we can observe that any path of rules that only consist of r4 and r5 is

terminating under the skolem chase.

However, the cyclic applications of r2 and r3 lead to an infinite skolem chase. To

illustrate, let us construct a skolem chase sequence starting from the application of r2 on

a singleton database {HasKey(a, b)} as follows (where the existential variable u in r2 is

skolemized to fu(x, y) and v in r3 is skolemized to fv(x, y)):

I0 = {HasKey
(
a, b

)} 〈sk(r2),{x/a,y/b}〉−−−−−−−−−−−−−→
I1 = I0 ∪ {

Enters
(
a, fu(a, b)

)
,KeyOpens

(
b, fu(a, b)

)} 〈sk(r3),{x/a,y/fu(a,b)}〉−−−−−−−−−−−−−−−−−→
I2 = I1 ∪ {

HasKey
(
a, fv(a, fu(a, b))

)
,KeyOpens

(
fv(a, fu(a, b)), fu(a, b)

)}
〈sk(r2),{x/a,y/fv(a,fu(a,b))}〉−−−−−−−−−−−−−−−−−−−−−→
I3 = I2 ∪ {

Enters
(
a, fu(a, fv(a, fu(a, b)))

)
,KeyOpens

(
fv(a, fu(a, b)), fu(a, fv(a, fu(a, b)))

)}
. . .

On the other hand, in each valid derivation of a restricted chase sequence, we must

ensure that each rule ri that is used in the derivation is not already satisfied by the

current conclusion set, which is the set of all derivations generated so far right before

application of ri.

Though the skolem chase leads to an infinite sequence, the restricted chase does ter-

minate. Utilizing fresh nulls, denoted by ni, for the representation of unknowns,3 we

have the following sequence of restricted chase derivations for this rule set, where θ is a

substitution which maps n3 to n1 and other symbols to themselves. From this derivation

sequence, it can be seen that I3 is not a new instance, and therefore, (r2, r3, r2) does not

produce a restricted chase sequence.

3 For the clarity of illustration, we use fresh nulls instead of skolem terms – there is a one-to-one
correspondence between these two kinds of representations of unknown elements.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

8 A. Karimi et al.

I0 = {HasKey
(
a, b

)} 〈r2,{x/a,y/b}〉−−−−−−−−−→

I1 = I0 ∪
{
Enters

(
a, n1

)
,KeyOpens

(
b, n1

)} 〈r3,{x/a,y/n1}〉−−−−−−−−−−→

I2 = I1 ∪
{
HasKey

(
a, n2

)
,KeyOpens

(
n2, n1

)} 〈r2,{x/a,y/n2}〉−−−−−−−−−−→

I3 = I2 ∪
{
Enters

(
a, n3

)
,KeyOpens

(
n2, n3

)} θ={n3/n1}
=======⇒ θ(I3) ⊆ I2

From the above sequence of derivations, it can be seen that when we attempt to apply

r2 on I2, its head can be instantiated to Enters(a,) and KeyOpens(n2,), where we place

an underline to mean that the existential variable v in r3 can be instantiated to form

atoms that are already in I2, which halts the derivation under the restricted chase.

In this paper, we will show that we can run such tests on cyclic rule applications of a

fixed nesting depth, which we call k-cycles (k > 0), with the underlying databases, which

we call restricted critical databases, to define a hierarchy of classes of the finite restricted

chase.

In addition, we show how to extend δ-bounded ontologies, which were introduced in

the context of the skolem chase variant (Zhang et al . 2015), uniformly to δ-bounded rule

sets under the restricted chase variant, where δ is a bound function for the maximum

depth of chase terms in a chase sequence. Furthermore, as a concrete case of δ, we

consider functions constructed from an exponential tower of the length κ (called expκ
in this paper), for some given integer κ, and then we obtain the membership as well as

reasoning complexities with these rule sets.

The main contributions of this paper are as follows:

1. In termination analysis for skolem chase, a major advance is the so-called critical

database technique (Marnette 2009), which says that the termination of skolem

chase w.r.t. all databases can be faithfully simulated by termination of skolem

case w.r.t. a single database called the critical database. We show that while the

traditional critical database technique does not work for the restricted chase, a kind

of “critical databases” exist by which any finite restricted chase sequence can be

faithfully simulated. This is shown by Theorem 1 for rules whose body contains no

repeated variables (called simple rules) and generalized by Theorem 2 for arbitrary

rules.

2. As the above results provide sufficient conditions to identify classes of the finite

restricted chase, we define a hierarchy of such classes, which can be instantiated

to a concrete class of finite chase, given an acyclicity condition. This is achieved

by Theorem 5 based on which various acyclicity conditions under the skolem chase

can be generalized to introduce classes of finite chase beyond finite skolem chase.

3. We show that the hierarchy of δ-bounded rule sets under the skolem chase (Zhang

et al. 2015) can be generalized by introducing δ-bounded sets under the restricted

chase.

4. Our experimental results on a large set of ontologies collected from the web show

practical applications of our approach to real-world ontologies. In particular, in

contrast with the current main focus of the field on acyclicity conditions for ter-

mination analysis, our experiments show that many ontologies in the real world

involve cycles of various kinds but indeed fall into the finite chase.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 9

The paper is organized as follows. The next section provides the preliminaries of the

paper, including notations, some basic definitions, and a motivating example. Section 3

describes previous work on chase termination, which allows us to compare with the work

of this paper during its development. Then Section 4 sets up the foundation of this work,

namely on how to simulate restricted chase for any database by restricted chase with

restricted critical databases. We then define in Section 5 a hierarchy of classes of the

finite restricted chase, called k-safe(Φ) rule sets for a given cycle function Φ, by testing

cycles of increasing nesting depths. In Section 6, we apply a similar idea to δ-bounded

rule languages of Zhang et al . (2015) and study membership checking and reasoning

complexities. We implemented membership checking and a reasoning engine for k-safe(Φ)

rule sets and conducted experiments. These are reported in Section 7. We then provide

a further discussion on related work in Section 8. Finally, Section 9 concludes the paper

with future directions.

This paper is a substantial revision and extension of a preliminary report of the work

that appeared in Karimi et al . (2018).

2 Preliminaries

We assume the disjoint countably infinite sets of constants C, (labelled) nulls N, function

symbols F, variables V, and predicates P. A schema is a finite set R of relation (or

predicate) symbols. Each predicate or function symbol Q is assigned a positive integer

as its arity which is denoted by arity(Q). Terms are elements in C ∪ N ∪ V. An atom

is an expression of the form Q(t), where t ∈ (C ∪ V ∪ N)arity(Q) and Q is a predicate

symbol from R. A general instance (or simply an instance) I is a set of atoms over the

schema R; term(I) denotes the set of terms occurring in I. A database is a finite instance

I where terms are constants from C. A substitution is a function h : C∪V∪N→ C∪V∪N
such that (i) for all c ∈ C, h(c) = c; (ii) for all n ∈ N, h(n) ∈ C ∪ N, and (iii) for

all v ∈ V, h(v) ∈ C ∪ N ∪ V. Let S1 and S2 be sets of atoms over the same schema.

A substitution h : S1 → S2 is called a homomorphism from S1 to S2 if h(S1) ⊆ S2

where h naturally extends to atoms and sets of atoms. In this paper, when we define a

homomorphism h : S1 → S2, if S1 and S2 are clear from the context, we may just define

such a homomorphism as a mapping from terms to terms.

A rule (also called a tuple-generating dependency) is a first-order sentence r of the form:

∀x∀y (φ(x,y)→ ∃z ψ(x, z)), where x and y are sets of universally quantified variables

(in writing, we often omit the universal quantifier) and φ and ψ are conjunctions of atoms

constructed from relation symbols from R, variables from x∪y and x∪ z, and constants

from C. The formula φ (resp. ψ) is called the body of r, denoted body(r) (resp. the head

of r, denoted head(r)). In this paper, a rule set is a finite set of rules. These rules are

also called non-disjunctive rules as compared to studies on disjunctive rules (see, e.g.,

(Bourhis et al . 2016; Carral et al . 2017)).

We implicitly assume all rules are standardized apart so that no variables are shared

by more than one rule, even if, for convenience, we reuse variable names in examples of

the paper. A rule is simple if variables do not repeat locally inside the body of the rule.

A simple rule set is a finite set of simple rules.

Given a rule r = φ(x,y) → ∃zψ(x, z), a skolem function symbol fz is introduced for

each variable z ∈ z, where arity(fz) = |x|. This leads to the consideration of complex

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

10 A. Karimi et al.

terms, called skolem terms, built from skolem functions and constants. However, in this

paper, we will regard skolem terms as a special class of nulls (i.e., skolem terms will be

seen as a way of naming nulls).

Ground terms in this context are constants from C or skolem terms, and atoms in a

general instance may contain skolem terms as well. A ground instance in this context is

a general instance involving no variables. The functional transformation of r, denoted

sk(r), is the formula obtained from r by replacing each occurrence of z ∈ z with fz(x).

The skolemized version of a rule set R, denoted sk(R), is the set of rules sk(r) for all

r ∈ R.
Given a rule r = φ(x,y)→ ∃zψ(x, z), we use varu(r), varfr(r), varex(r), and var(r),

respectively, to refer to the set of universal (x ∪ y), frontier (x), existential (z), and all

variables appearing in r. Given a rule set R, the schema of R is denoted by sch(R). Given

a ground instance I and a rule r, an extension h′ of a homomorphism h from body(r) to I,

denoted h′ ⊇ h, is a homomorphism from body(r)∪head(r) to I, that assigns, in addition

to the mapping h, ground terms to existential variables of r. A position is an expression

of the form P [i], where P is an n-ary predicate and i (1 ≤ i ≤ n) is an integer. We are

interested only in positions associated with frontier variables – for each x ∈ varfr(r),

posB(x) (resp. posH(x)) denotes the set of positions of body(r) (resp. head(r)) in which

x occurs.

We further define that a path (r1, r2, . . .) (based on R) is a nonempty (finite or infinite)

sequence of rules from R; a cycle (r1, . . . , rn) (n ≥ 2) is a finite path whose first and last

elements coincide (i.e., r1 = rn); a k-cycle (k ≥ 1) is a cycle in which at least one rule

has k+ 1 occurrences and all other rules have k+ 1 or less occurrences. Given a path π,

Rule(π) denotes the set of distinct rules appearing in π.

For a set or a sequence W , the cardinality |W | is defined as usual. The size of an atom

p(x) is |x| and given a rule set R, with ||R||, we denote the sum of the sizes of atoms in R.

2.1 Skolem and restricted chase variants

The chase procedure is a construction that accepts as input a database I and a rule set

R and adds atoms to I. In this paper, our main focus is on the skolem and the restricted

chase variants.

We first define triggers, active triggers, and their applications. The skolem chase is

based on triggers, while the restricted chase applies only active triggers.

Definition 1

Let R be a rule set, I an instance, and r ∈ R. A pair (r, h) is called a trigger for R on I (or

simply a trigger on I, as R is always clear from the context) if h is a homomorphism from

body(r) to I. If in addition there is no extension h′ ⊇ h, where h′ : body(r)∪head(r)→ I,

then (r, h) is called an active trigger on I.

An application of a trigger (r, h) on I returns I ′ = I∪h(sk(head(r))). We write a trigger

application by I〈r, h〉I ′, or alternatively by I
〈r,h〉−−−→ I ′. We call atoms in h(body(r)) the

triggering atoms w.r.t. r and h, or simply triggering atoms when r and h are clear from

the context.

Intuitively, a trigger (r, h) is active if given h, the implication in r cannot be satisfied

by any extension h′ ⊇ h that maps existentially quantified variables to terms in I.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 11

Definition 2

Given a database I and a rule set R, we define the skolem chase based on a breadth-

first fixpoint construction as follows: we let chase0sk(I, R) = I and, for all i > 0, let

chaseisk(I, R) be the union of chasei−1
sk (I, R) and h(head(sk(r))) for all rules r ∈ R and all

homomorphisms h such that (r, h) is a trigger on chasei−1
sk (I, R). Then, we let chasesk(I, R)

be the union of chaseisk(I, R), for all i ≥ 0.

Sometimes we need to refer to a skolem chase sequence, which is a sequence of instances

that starts from a database I0 and continues by applying triggers for the rules in a given

path on the instance constructed so far. The term skolem chase sequence in this case is

independent of whether such a sequence can be extended to an infinite sequence or not.

We can also distinguish the two cases where the chase is terminating or not.

A finite sequence of rule applications from a path (r1, . . . , rn) produces a finite sequence

of instances I0, I1, . . . , In such that (i) Ii−1〈ri, hi〉Ii, where (ri, hi) is a trigger on Ii−1

for all 1 ≤ i ≤ n, (ii) there is no trigger (r, h) on In such that (r, h) /∈ {(ri, hi)}0≤i≤n−1,

and (iii) for each 1 ≤ i < j ≤ n, assuming that Ii−1〈ri, hi〉Ii and Ij−1〈rj , hj〉Ij , ri = rj
implies hi �= hj (i.e., homomorphism hi is different from hj). The result of the chase

sequence is In.

An infinite sequence I0, I1, . . . of instances is said to be a nonterminating skolem chase

sequence if (i) for all i ≥ 1, there exists a trigger (ri, hi) on Ii−1 such that Ii−1〈ri, hi〉Ii,
(ii) for each i, j ≥ 1 such that i �= j, assuming that Ii−1〈ri, hi〉Ii and Ij−1〈rj , hj〉Ij ,
ri = rj implies hi �= hj .

4 In this case, the result of the chase sequence is
⋃

i≥0 Ii.

From Marnette (2009), we know that if some skolem chase sequence of a rule set R

and a database I0 terminates, then all instances returned by any skolem chase sequence

of I0 and R are terminating and are the same.

On the other hand, the restricted chase is known to be order-sensitive. For this reason,

it is defined only on sequences of rule applications.

Similar to a skolem chase sequence, the main idea of a restricted chase sequence (based

on a given rule set R) is starting from a given database and applying triggers for the

rules in a path based on R on the instance constructed so far. However, unlike the skolem

chase sequence, only active triggers are applied. Similar to the case of the skolem chase,

we distinguish the two cases where the chase is terminating or not.

Definition 3

Let R be a rule set and I0 a database.

• A finite sequence I0, I1, . . . , In of instances is called a terminating restricted chase

sequence (based on R) if (i) for each 1 ≤ i ≤ n there exists an active trigger (ri, hi)

on Ii−1 such that Ii−1〈ri, hi〉Ii; and (ii) there exists no active trigger on In. The

result of the chase sequence is In.

• An infinite sequence I0, I1, . . . is called a nonterminating (or infinite) restricted chase

sequence (based on R) if

4 In the literature, in addition to (i) and (ii), another condition known as the fairness condition for the
skolem chase is imposed: for each i ≥ 0, and each trigger (ri, hi) on Ii−1, there exists some j ≥ i
such that Ij−1〈ri, hi〉Ij . This last condition guarantees that all the triggers are eventually applied. We
remove this requirement, as for the case of the skolem chase, this condition is immaterial, cf. Gogacz
et al. (2019).

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

12 A. Karimi et al.

(i) for each i ≥ 0, there exists an active trigger (ri, hi) on Ii−1 such that Ii−1〈ri, hi〉Ii;
and

(ii) it satisfies the fairness condition: for all i ≥ 1 and all active triggers (ri, hi) on

Ii−1, where ri ∈ R, there exists j ≥ i such that either Ij−1〈ri, hi〉Ij or the trigger

(ri, hi) is not active on Ij−1.

The result of the chase sequence is
⋃

i≥0 Ii.

Example 1

Let us consider instance I = {P (a, b), P (b, c), P (c, a), Q(a, b)} and rule r:

r : P (x, y), P (y, z), P (z, x)→ ∃uQ(x, u)

Homomorphism h1 = {x/a, y/b, z/c} maps body(r) to I. The pair (r, h1) is a trigger on I

and I〈r, h1〉I ∪{Q(a, fu(a))} where fu is a skolem function constructed from u. However,

(r, h1) is not active for I. On the other hand, homomorphism h2 = {x/c, y/a, z/b} maps

body(r) to I and (r, h2) is an active trigger on I since there is no extension h′2 of h2 such

that h′2(head(r)) ⊆ I. So, we have I〈r, h2〉I ∪ {Q(c, fu(c))}. Therefore, (r, h1) can be

applied for the skolem chase but not for the restricted chase, while (r, h2) can be applied

for both chase variants.

Note that the fairness condition essentially says that any active trigger is eventually

either applied or becoming inactive. Furthermore, an infinite restricted chase sequence I
cannot be called nonterminating if the fairness condition is not satisfied for I. Recently,
in Gogacz et al . (2019), it has been shown that for rules with single heads (i.e., where the

head of a rule consists of a single atom), the fairness condition can be safely neglected.

A rule set R is said to be (all-instance) terminating under the restricted chase, or

simply restricted chase terminating if it has no infinite restricted chase sequence w.r.t. all

databases; otherwise, R is nonterminating under the restricted chase; this is the case

where there exists at least one nonterminating restricted chase sequence w.r.t. some

database.

The classes of rule sets whose chase terminates on all paths (all possible derivation

sequences of chase steps) independent of the given databases (thus all instances) are

denoted by CT�
∀∀, where � ∈ {sk, res} (sk for the skolem chase and res for the restricted

chase).

Since a chase sequence is generated by a sequence of rule applications, sometimes it

is convenient to talk about a chase sequence in terms of a sequence of rules that are

applied. On the other hand, each path can be assigned a chase sequence (which is not

unique).

For convenience, given a finite path π = (r1, . . . , rn) based on R and database I0, we

say that π leads to a weakly restricted chase sequence (of R and I0) if there are active

triggers (ri, hi) on Ii−1 (1 ≤ i ≤ n) such that Ii−1〈ri, hi〉Ii. Note that the condition

is independent of whether there exists an active trigger on In or not; so, we do not

qualify the sequence I0, I1, . . . , In as terminating or nonterminating. Furthermore, the

condition only requires the existence of active triggers and does not mention whether

the fairness condition is satisfied or not in case the sequence can be expanded to an

infinite one. By abuse of terminology, we will drop the word weakly in the rest of this

paper when no confusion arises; this is not a technical concern related to deciding on the

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 13

Fig. 1. Data transmission scenario.

finite restricted chase in our approach since our approach is based on certain types of

terminating restricted chase sequences.

Finally, a conjunctive query (CQ) q is a formula of the form q(x) := ∃yΦ(x,y), where

x and y are tuples of variables and Φ(x,y) is a conjunction of atoms with variables in

x ∪ y. A BCQ is a CQ of the form q(). It is well known that, for all BCQs q and for all

databases I, I∪R |= q (under the semantics of first-order logic) if and only if q is entailed

by the result of the chase on R and I for either the semi-oblivious or the restricted chase

variant (Fagin et al . 2005).

2.2 A concrete example

To illustrate the practical relevance of the restricted chase and also use it as a running

example, let us consider modeling a secure communication protocol where two different

signal types can be transmitted: type A for inter-zone communication and type B for

intra-zone communication. Let us consider a scenario where a transmitter from one zone

requests to establish secure communication with a receiver from another zone in this net-

work. There is an unknown number of trusted servers. Before a successful communication

between two users can occur, following a handshake protocol, the transmitter must send

a type A signal to a trusted server in the same zone and receive an acknowledgment back.

Then, that trusted server sends a type B signal to a trusted server in the receiver zone.

Figure 1 illustrates the above data transmission scenario where there are just two cells

in each of which there are several users (solid dark circles) and base stations (under blue

boxes). If a transmitter t in cell 1 requests to transmit a data message to a receiver r in

cell 2, then t must establish a handshake protocol to some base station (e.g., b1) in the

same cell (sending and receiving to/from b1). After a handshake protocol is established,

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

14 A. Karimi et al.

b1 sends a data message to some base station in cell 2 (b2 in the figure) to complete the

required communication before t sends a data message to r.

Below, we use existential rules to model the required communication protocol (the

modeling here does not include the actual process of transmitting signals). Let us assume

by default that every server is trusted.

Example 2

Consider the rule set R1 = {r1, r2} below and its skolemization, where TypeA(x, y)

denotes a request to send a type A signal from x to y and TypeB(x, y) a request to send

a type B signal from x to y.

r1 : TypeB(x, y)→ ∃uTypeA(x, u),TypeA(u, x)

r2 : TypeB(x, y),TypeA(x, z),TypeA(z, x)→ ∃vTypeB(z, v)

sk(r1) : TypeB(x, y)→ TypeA(x, fu(x)),TypeA(fu(x), x)

sk(r2) : TypeB(x, y),TypeA(x, z),TypeA(z, x)→ TypeB(z, fv(z))

where fu and fv are skolem functions constructed from u and v, respectively.

With database I0 = {TypeB(t, r)}, after applying sk(r1) and sk(r2) under the re-

stricted chase, we get

I0 = {TypeB(t, r)} 〈sk(r1),{x/t,y/r}〉−−−−−−−−−−−−→
I1 = I0 ∪ {TypeA(t, fu(t)),TypeA(fu(t), t)} 〈sk(r2),{x/t,y/r,z/fu(t)}〉−−−−−−−−−−−−−−−−−→
I2 = I1 ∪ {TypeB(fu(t), fv(fu(t)))}

That is, path π1 = (sk(r1), sk(r2)) leads to a restricted chase sequence. But this is not

the case for the path π2 = (sk(r1), sk(r2), sk(r1)), since the trigger for applying the

last rule on the path is not active – with TypeB(fu(t), fv(fu(t))) as the triggering atom

for the body of rule sk(r1), its head can be satisfied by already derived atoms in I2,

namely, TypeA(fu(t), t) and TypeA(t, fu(t)) (i.e., the existential variable u in sk(r1) can

be instantiated to t so that the rule head is satisfied by I2).

To illustrate more subtleties, let us consider a slightly enriched rule set R2 = {r3, r4}.
The difference from R1 is that here we use a predicate TrustedServer(a) to explicitly

specify that a is a trusted server.

r3 : TypeB(x, y)→ ∃uTrustedServer(u),TypeA(x, u),TypeA(u, x)

r4 : TypeB(x, y),TypeA(x, z),TypeA(z, x)→ ∃vTrustedServer(v),TypeB(z, v)

sk(r3) : TypeB(x, y)→ TrustedServer(fu(x)),TypeA(x, fu(x)),TypeA(fu(x), x)

sk(r4) : TypeB(x, y),TypeA(x, z),TypeA(z, x)→TrustedServer(fv(z)),TypeB(z, fv(z))

With the same input database I0, we can verify that any nonempty prefix of the 2-cycle

σ = (sk(r3), sk(r4), sk(r3), sk(r4), sk(r3)) leads to a restricted chase sequence except σ

itself. Let us provide some details.

I0 = {TypeB(t, r)} 〈sk(r3),{x/t,y/r}〉−−−−−−−−−−−−→
I1 = I0 ∪ {TypeA(t, fu(t)),TypeA(fu(t), t)} 〈sk(r4),{x/t,y/r,z/fu(t)}〉−−−−−−−−−−−−−−−−−→
I2 = I1 ∪ {TypeB(fu(t), fv(fu(t)))}

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 15

Fig. 2. Skolem chase on R2.

Fig. 3. Restricted chase on R2.

Observe that at this stage, since t is not known as a trusted server (i.e., we do not

have TrustedServer(t) in the given database), unlike the case of R1, we are not able

to instantiate the existential variable u to t to have the rule head satisfied. Thus, the

restricted chase continues

I3 = I2 ∪ {TrustedServer(f2u(t)),TypeA(fu(t), f
2
u(t)),

TypeA(f2u(t), fu(t))}
〈sk(r4),{x/fu(t),y/fv(fu(t)),z/f2

u(t)}〉−−−−−−−−−−−−−−−−−−−−−−−−−→
I4 = I3 ∪ {TrustedServer(fv(f2u(t)),TypeB(f2u(t)), fv(f2u(t)))}

Now, the pair (sk(r3), {x/f2u(t), y/fv(f2u(t))}) is a trigger on I4. However, since the exis-

tential variable u in r3 can be instantiated to the skolem term fu(t) so that the head of

r3 is satisfied, the trigger is not active on I4 and thus the chase terminates.

Figures 2 and 3 illustrate the skolem and the restricted chase on the rule set R2, where

an arrow over a relation symbol indicates a newly derived atom, or an existing atom

used to satisfy the rule head so that the restricted chase terminates. In contrast, while

R2 is nonterminating under the skolem chase, it can be shown that it is all-instance

terminating under the restricted chase.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

16 A. Karimi et al.

3 Previous development and related work

Since our technical development is often related to, or compared with, the state of the

art, let us introduce some key classes of the finite chase here and comment on the latest

developments related to our work. Note that all acyclicity conditions that are given below

ensure the termination of the skolem chase, and therefore, of the restricted chase, except

for RMFA and RJA which ensure the termination of the restricted chase and allow to

identify more terminating rule sets.

Weak acyclic (WA) (Fagin et al . 2005), roughly speaking, tracks the propagation of

terms in different positions. A rule set is WA if there is no position in which skolem

terms including skolem functions can be propagated cyclically, possibly through other

positions.

JA (Krötzsch and Rudolph 2011) generalizes WA as follows. Let R be a rule set.

For each variable y ∈ varex(R), let Move(y) be the smallest set of positions such that

(i) posH(y) ⊆Move(y); and (ii) for each rule r ∈ R that varex(r) �= ∅ and for all variables

x ∈ varu(r), if posB(x) ⊆Move(y), then posH(x) ⊆Move(y). The JA dependency graph

JA(R) of R is defined as: the set of vertices of JA(R) is varex(R), and there is an edge

from y1 to y2 whenever the rule that contains y2 also contains a variable x ∈ varu(R)
such that posH(x) �= ∅ and posB(x) ⊆Move(y1). R ∈ JA if JA(R) does not have a cycle.

A rule set R belongs to the acyclic graph of rule dependencies (aGRD) class of acyclic

rules if there is no cyclic dependency relation between any two (not necessarily different)

rules of R, possibly through other dependent rules of R. To define the rule dependency

graph (Baget 2004; Baget et al . 2011) of a rule set R, we introduce the rule dependency

relation ≺⊆ R × R as follows. Consider two rules r1, r2 ∈ R such that r1 = body(r1)→
∃z1 head(r1) and r2 = body(r2) → ∃z2 head(r2). Let sk(r1) = body(r1) → sk(head(r1))

and sk(r2) = body(r2) → sk(head(r2)). Then, r1 ≺ r2 if and only if there exists an

instance I, substitutions θ1 (resp. θ2), for all variables in sk(r1) (resp. sk(r2)) such that

θ1(body(r1)) ⊆ I, θ2(body(r2)) ⊆ I ∪ θ1(sk(head(r1))), and θ2(body(r2)) � I. R has an

aGRD if ≺ on R is acyclic. In this case, R is called aGRD.

Note that the original definition of aGRD in Baget (2004) considers fresh nulls as

opposed to skolem terms, which based on Grau et al . (2013) does not change the resulting

relation ≺.5
MFA (Cuenca Grau et al . 2013) is a semantic acyclicity class of the skolem chase which

generalizes all the skolem acyclicity classes mentioned above. A rule set R is MFA if in

the skolem chase of R w.r.t. the critical database of R (i.e., the database which contains

all possible ground atoms based on predicates of R and the single constant symbol ∗
without any occurrence in R), there is no cyclic skolem term (a term with at least two

occurrences of some skolem function).

Also, RMFA (Carral et al . 2017) generalizes MFA as follows. Let R be a non-disjunctive

rule set. For each rule r ∈ R and each homomorphism h such that h is a homomorphism

on body(r), Ch,r is defined as the union of h(body(r)), where each occurrence of a constant

is renamed so that no constant occurs more than once, and Ft for each skolem term t

in h(body(r)), where Ft is the set of ground atoms involved in the derivation of atoms

containing t. Let RMFA(R) be the least set of ground atoms such that it contains the

5 We will have more remarks on rule dependency and the important role it plays in our approach, after
Definition 4.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 17

critical database of R and let r ∈ R be a rule and h a homomorphism from body(r) to

RMFA(R). Let v ∈ varex(r) be some existential variable of r. If ∃v.h(head(r)) is not

logically entailed by the exhaustive application of non-generating (Datalog) rules on the

set of atoms Ch,r, then h(sk(head(r))) ⊆ RMFA(R). We define R∈RMFA if RMFA(R)

contains no cyclic skolem terms.

In Carral et al . (2017), a notion known as restricted model-faithful cyclicity (RMFC)

has been introduced which provides a sufficient condition for deciding nontermination of

the restricted chase of a given rule set for all databases. Intuitively, RMFC is based on

detecting cyclic functional terms in the result of the exhaustive application of unblockable

rules on the grounded version of body(r) ∪ sk(head(r)) for some generating rule r, such

that in the mapping used for the grounding, each variable x is replaced by some fresh

constant cx.

To characterize a sufficient condition of termination of a given rule set for arbitrary

databases, for any chase variant, it would be useful to have a special database that can

serve as a witness for proving termination. Let us refer to it as a critical database I∗.
Having such a critical database in place guarantees that given a rule set R, if there is

some database that witnesses the existence of an infinite chase derivation of R, then I∗ is

already such a witness database. If we know that such a critical database exists for some

chase variant, then we can focus on sufficient conditions to decide the chase termination

of a rule set w.r.t. I∗.
From Marnette (2009), it is known that such a critical database exists for the oblivious

and skolem chase variants. The construction of such a critical database for those chase

variants is also easy: let R be a rule set. Let C denote the set of constants appearing in R

and let ∗ be a special constant with no occurrence in R. A database is a (skolem) critical

database if each relation in it is a full relation on the domain C ∪{∗}. With this measure

in place, it is then easy to show why all the known classes of terminating rule sets under

skolem and oblivious chase variants (such as the aforementioned acyclicity conditions)

work well. The reason is that they rely on this critical database.

However, for the restricted chase, no critical database exists. Note that for the ter-

minating conditions of RJA and RMFA (Carral et al . 2017) that are the only known

concrete criteria for the termination of restricted chase rules, the introduced “critical

databases” are ad hoc in that they do not provide a principled way to construct such

a database that may lead to more general classes of terminating rule sets under the

restricted chase. In fact, due to the nature of the problem, which is not recursively enu-

merable (Grahne and Onet 2018), as also pointed out in Gogacz et al . (2019), finding

such a critical database even for subsets of rules with syntactic (or semantic) restrictions

is very challenging. More recently, termination of linear rules under the restricted chase

has been considered in Leclère et al . (2019), where the body and the head of rules are

composed of singleton atoms (called single-body and single-head rules). As part of this

work, the existence of such a critical database is proved by simply showing a database

consisting of a single atom.

Also, for single-head guarded and sticky rules, the same problem has been considered

in Gogacz et al . (2019), where the authors characterize nontermination of restricted

chase sequences constructed from the aforementioned rule sets using sophisticated objects

known as chaseable sets which are infinite in size. For this purpose, they show that the

existence of an infinite chaseable set characterizes the existence of an infinite restricted

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

18 A. Karimi et al.

chase derivation. In particular, for guarded rule sets, the latter can be strengthened with

the fact that we can focus on acyclic databases to show the decidability of restricted

chase termination for guarded TGDs.

Furthermore, for sticky TGDs, this is shown via the existence of a finitary caterpillar

which is an infinite path-like restricted chase derivation of some database the existence

of which can be checked via a deterministic Büchi automaton. Their work is focused

only on single-head rules and, to the best of our knowledge, no characterization exists

for multi-head rules. This is unlike the skolem chase for which the notion of δ-bounded

ontologies have been defined uniformly using the (skolem) critical database technique

(Zhang et al . 2015).

The decision problem of termination of the oblivious and the skolem chase variants

have been considered for linear and guarded rules in Calautti et al . (2015), and this

problem is shown to be PSpace-complete and 2ExpTime-complete, respectively, for

linear and guarded rules. More recently, the same problem has been considered for sticky

rules in Calautti and Pieris (2019), and it has been shown to be PSpace-complete. This

shows that for these rules, sufficient and necessary conditions can be established to decide

termination.

It is worth mentioning that similar to our work, in Baget et al . (2014a), a tool was

introduced to extend different (skolem) acyclicity conditions ensuring chase termination.

However, unlike our approach, their extension never extends a skolem chase terminating

rule set to a terminating one under the restricted chase.

Also related to this work, the notion of k-bounded rules was introduced in Delivorias

et al. (2018) for oblivious, skolem, and restricted chase variants. The k-boundedness

problem they considered in that work checks whether, independently from any database,

there is a fixed upper bound of size k on the number of breadth-first chase steps for a

given rule set, where k is an integer. For arbitrary values of k, this problem is already

known to be undecidable for Datalog rules (TGDs without existential variables, also

known as range-restricted TGD (Abiteboul et al . 1995)), as established in Hillebrand

et al. (1995) and Marcinkowski (1999).

The breadth-first chase procedure in Delivorias et al . (2018) refers to chase sequences

in which rule applications are prioritized. Their prioritization is in a way that those rule

applications which correspond to a particular breadth-first level occur before those that

correspond to a higher breadth-first level. Under the assumption that k is excluded from

the input, and only the rule set is given as the input, they prove an ExpTime upper

bound for checking k-boundedness for the oblivious and the skolem chase variants and

2ExpTime upper bound for the restricted chase.6

Notice that as discussed in Delivorias et al . (2018), TGDs with k-boundedness property

are union of conjunctive queries-rewritable (or UCQ-rewritable, also known to belong to

finite unification sets of TGDs (or fus) (Baget et al . 2011)). It is worth mentioning

that this latter work has a different scope from ours in that, unlike k-bounded TGDs of

Delivorias et al . (2018), the k-safe(ΦΔ) rule sets that result from the current paper, where

Δ is some skolem acyclicity condition, already generalize Datalog rule sets (for any value

6 Note, however, that if k is part of the input, that is, when the problem is given a rule set R and
a unary-encoded integer k, whether R is k-bounded for the considered chase, the complexity of the
problem is in 2ExpTime and 3ExpTime for the aforementioned chase variants, respectively.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 19

of k ≥ 0), and therefore, are not UCQ-rewritable. Besides, there is no characterization

of any critical database for the restricted chase variant in Delivorias et al . (2018) which

is a key issue and the focus of the current paper.

4 Finite restricted chase by activeness

In this section, we tackle the question of what kinds of tests we can do to provide sufficient

conditions to identify classes of the finite restricted chase. With this goal in mind, we

present the notion of the restricted critical database for a given path and show that any

“chained” restricted chase sequence for a given path w.r.t. an arbitrary database can

be simulated using the restricted critical database for simple rules and using an updated

restricted critical database via renaming for arbitrary rules.

4.1 Restricted critical databases and chained property

A primary tool for termination analysis of the skolem chase is the technique of critical

database (Marnette 2009). Recall that, given a rule set R, if C denotes the set of constants

which occur in R, the critical database (or skolem critical database) of R, denoted IR,

is a database defined in a way that each relation in IR is a full relation on the domain

C ∪ {∗}, in which ∗ is a special constant with no occurrence in R. The critical database

can be used to faithfully simulate termination behavior of the skolem chase – a rule set is

all-instance terminating if and only if it is terminating w.r.t. the skolem critical database.

However, this technique does not apply to the restricted chase.

Example 3

Given a rule set R = {E(x1, x2)→ ∃z E(x2, z)} and its critical database IR = {E(∗, ∗)},
where ∗ is a fresh constant, the skolem chase does not terminate w.r.t. IR, which is a

faithful simulation of the termination behavior of R under the skolem chase. But the

restricted chase of R and IR terminates in zero step, as no active triggers exist. However,

the restricted chase of R and database {E(a, b)} does not terminate.

The above example is not at all a surprise, as the complexity of membership checking

in the class of rule sets that have a finite restricted chase, namely whether a rule set

is in CTres
∀∀, is coRE-hard (Grahne and Onet 2018), which implies that in general there

exists no effectively computable (finite) set of databases which can be used to simulate

termination behavior w.r.t. all input databases, as otherwise the membership checking

for CTres
∀∀ would be recursively enumerable, a contradiction to the coRE-hardness result

of Grahne and Onet (2018).

To check for termination, one natural consideration is the notion of cycles based on a

given rule set. Firstly, a chase that terminates w.r.t. a database I on all k-cycles implies

chase terminating w.r.t. I on all k′-cycles, for all k′ > k. This is because a chase that goes

through a k′-cycle must go through at least one k-cycle. Secondly, since a nonterminating

chase must apply at least one rule infinitely many times, if the termination is guaranteed

for all k-cycles for a fixed k, then an infinite chase becomes impossible. Thus, testing all

k-cycles can serve as a means to decide classes of the finite chase. Furthermore, cycles are

recursively enumerable with increasing lengths and levels of nesting. We can test (k+1)-

cycles for a possible decision of the finite restricted chase when such a test failed for

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

20 A. Karimi et al.

k-cycles. We therefore may find larger classes of terminating rule sets with an increased

computational cost. We have demonstrated this approach in Example 2, where the rule

set R2 is terminating on all 2-cycles but not on some 1-cycles. However, a challenging

question is which databases to check against. In the following, we tackle this question.

Given a path, our goal is to simulate a sequence of restricted chase steps with an

arbitrary database by a sequence of restricted chase steps with a fixed database. On the

one hand, since in general we can only expect sufficient conditions for termination, such

a simulation should at least capture all infinite derivations by a rule set with an arbitrary

database. On the other hand, we only need to consider the type of paths that potentially

lead to cyclic applications of the chase. In the following, we will address this question first.

Example 4

Consider the singleton rule set R with rule r : T (x, y), P (x, y) → ∃z T (y, z) and its

skolemization sk(r) : T (x, y), P (x, y) → T (y, fz(y)). With I0 = {T (a, b), P (a, b)}, we
have: chasesk(I0, R) = I0∪{T (b, fz(b))}. After one application of r, no more triggers exist

and thus the skolem chase of R and I0 terminates (so does the restricted chase of R

and I0). This is because the existential variable z in the rule head is instantiated to the

skolem term fz(b), which is passed to variable y in the body atom P (x, y). As the skolem

term fz(b) is fresh, no trigger to P (x, y) may be available right after the application of r.

Note that r in Example 4 depends on itself based on the classic notion of unification.

To rule out similar false dependencies, we consider a dependency relation under which

the cycle (r, r) in the above example is not identified as a dangerous one. Toward this

goal, let us recall the notion of rule dependencies (Baget 2004)7 and contrast it with its

strengthened version for this section.

Definition 4

Let r and r′ be two arbitrary rules. Recall that sk(r) and sk(r′) denote their

skolemizations.

(i) Given an instance I, we say that r′ depends on r w.r.t. I if there is a homomorphism

h : varu(r)→ term(I) and a homomorphism g : varu(r
′)→ term(I)∪term(h(head

(sk(r)))), such that g(body(r′)) �⊆ I.
(ii) We say that r′ depends on r if there is an instance I such that r′ depends on r

w.r.t. I.

If the condition in (ii) is not satisfied, we then say that r′ does not depend on r, or

there is no dependency from r′ to r. Similarly, if the condition in (i) is not satisfied, we

then say that r′ does not depend on r w.r.t. I, or there is no dependency from r′ to r
w.r.t. I.

The definition in (ii) is adopted directly from Baget (2004), which is what a general

notion of rule dependency is expected, independent of any instance: r′ depends on r if

there is a way to apply r to derive some new atoms that are used as part of a trigger to r′.
That g is not a homomorphism from body(r′) to I requires at least one new atom derived

by r, given I. Since instance I can be arbitrary while satisfying the stated condition, no

dependency from r′ to r means that no matter what the initial database is and what

7 which was provided earlier for the definition of aGRD in Section 3.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 21

the sequence of derivations is, up to the point of applying r, such an I that satisfies the

stated condition does not exist.

By employing an extended notion of unification, the notion of piece-unification allows

removal of a large number of k-cycles as irrelevant. We will discuss the details in Section 7

when we present our experimentation.

The technical focus of rule dependency in this section is the definition in (i), which is

strengthened from (ii) by fixing instance I. This is needed because our simulations of the

restricted chase are generated from some particular, fixed databases.

Next, we extend the relation of rule dependency to a (nonreflexive) transitive closure.

This is necessary since a termination analysis often involves sequences of derivations

where rule dependencies yield a transitive relation. Given a path π = (r1, . . . , rn), we are

interested in a chain of dependencies among rules in π such that the derivation with rn
ultimately depends on a derivation with r1, possibly via some derivations from rules in

between. As a chase sequence may involve independent derivations from other rules in

between, in the following, we define the notion of projection to reflect this.

Terminology: Given a tuple V = (v1, . . . , vn) (n ≥ 2), a projection of V preserving end

points, denoted V ′ = (v′1, . . . , v
′
m), is a projection of V (as defined in usual way), with

the additional requirement that the end points are preserved (i.e., v′1 = v1 and v′m = vn).

By abuse of terminology, V ′ above will simply be called a projection of V .

Definition 5

Let R be a rule set, π = (r1, . . . , rn) (n ≥ 2) a path, and I0 a database. Suppose I :

I0, I1, . . . , In is a sequence of instances andH = (h1, . . . , hn) is a tuple of homomorphisms

such that Ii−1〈ri, hi〉Ii (1 ≤ i ≤ n). I is called chained for π if there exists a projection

I ′ : I0, I ′1, . . . , I ′m of I, along with the corresponding projections H ′ = (h′1, . . . , h
′
m) of

H and π′ = (r′1, . . . , r
′
m) of π, such that for all 1 ≤ i < m, r′i+1 depends on r′i w.r.t. I,

where I = I0 if i = 1 and I = I ′i \ h′i(head(sk(r′i))), otherwise. If I is chained for π, we

also say that I has the chained property; for easy reference, we sometime also associate

the chained property with the corresponding H and say H is chained, or H is a chained

tuple of homomorphisms, w.r.t. I0.

Note that in the definition above, by I = I ′i \h′i(head(sk(r′i))), the triggering atoms to

r′i+1 must include at least one new head atom derived from r′i.
We now address the issue of which databases to check against for termination analysis

of the restricted chase. For this purpose, let us define a mapping ei : V ∪ C→ 〈V, i〉 ∪ C,

where constants in C are mapped to themselves and each variable v ∈ V is mapped

to 〈v, i〉.
Definition 6

Given a path π = (r1, r2, . . . , rn) of a simple rule set, we define: Iπ = {ei(body(ri)) : 1 ≤
i < n+ 1}, which is called a restricted critical database of π.

A pair 〈x, i〉 in Iπ is intended to name a fresh constant to replace variable x in the body

of a rule ri. The atoms in Iπ that are built from these pairs and the constants already

appearing in the body of a rule are independent of any given database. The goal is to

use these atoms to simulate triggering atoms when necessary, in a derivation sequence

from a given database. Let us call these pairs indexed constants and atoms with indexed

constants indexed atoms. Let us use the shorthand vi for 〈v, i〉.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

22 A. Karimi et al.

Note that due to the structure of Iπ, a trigger for each rule in π is automatically

available and therefore, without the notion of chained property, a path can rather trivially

lead to a restricted chase sequence. To see this, we can construct a restricted chase

sequence I0, I1, . . . , In based on R as follows. For each 1 ≤ i ≤ n, we construct a trigger

(ri, hi), where for each variable v ∈ var(body(ri)), hi : v → 〈v, i〉. Since indexed constants

are fresh, such a trigger is active.

Example 5

Consider the rule set R of Example 4 and a path π = (r, r). For this rule set, we have

Iπ = {T (x1, y1), P (x1, y1), T (x2, y2), P (x2, y2)}. We see that there does not exist any

chained tuple of homomorphisms for π w.r.t. Iπ. In fact, the claim holds for any instance

I since there is no rule dependency from r to r (cf. Definition 4).

In a restricted critical database that we have seen so far, each body variable is bound

to a distinct constant indexed in the order in which rules are applied. Later on, we will

motivate and introduce the notion of updated restricted critical databases, where distinct

indexed constants may be collapsed into the same indexed constant.

4.2 Activeness for simple rules

We are ready to define the notion of activeness and show its role in termination analysis

for simple rules.

Definition 7

(Activeness) Let R be a rule set and I0 a database. A path π = (r1 . . . , rn) based on R is

said to be active w.r.t. I0, if there exists a chained restricted chase sequence I : I0, . . . , In
for π.

The activeness of a path π requires two conditions to hold. First, π must lead to a

restricted chase sequence and second, the sequence must have the chained property. In

other words, if π is not active w.r.t. I0, then either some rule in π does not apply due to

lack of an active trigger, or the last rule in π does not depend on the first in π transitively

in all possible derivations from I0 using rules in π in that order.

Our goal is to simulate a given chained restricted chase sequence w.r.t. an arbitrary

database by a chained restricted chase sequence w.r.t. some fixed databases, while pre-

serving rule dependencies. Such a simulation is called tight or dependency-preserving. For

presentation purposes, we will present the results in two stages, first for simple rules for

which the restricted critical database Iπ for a path π is sufficient. Then, in the next

subsection, we present the result for arbitrary rules using updated restricted critical

databases.

Theorem 1

Let R be a rule set with simple rules and π = (r1, . . . , rn) a path based on R. Then, π is ac-

tive w.r.t. some database if and only if π is active w.r.t. the restricted critical database Iπ.

Proof

(⇐) Immediate since Iπ is such a database.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 23

(⇒) Let I be a database w.r.t. which π is active, that is, there exists a chained tuple of

homomorphisms H = (h1, . . . , hn) for π such that (ri, hi) (0 < i ≤ n) is an active trigger

on Ii−1 and Ii−1〈ri, hi〉Ii. So, there exists a sequence

A : I = I0, I1, . . . , In (1)

satisfying the condition: for all 1 ≤ i ≤ n, there is a homomorphism hi : varu(ri) →
term(Ii−1), where ri ∈ R, such that

hi(body(ri)) ⊆ Ii−1, (2)

∀h′i ⊇ hi : h′i(head(ri)) � Ii−1, and (3)

Ii = Ii−1 ∪ h′i(head(ri)). (4)

We will construct a chained restricted chase sequence of R w.r.t. Iπ based on a simulation

of derivations in A. Let us denote this sequence by

B : Iπ = I∗0 , I
∗
1 , . . . , I

∗
n. (5)

Then, we need to have properties (2), (3), and (4) for B with hi and Ii−1 replaced by

some homomorphism gi and instance I∗i−1, respectively, for all 1 ≤ i ≤ n.
To show the existence of such a sequence B, we show how to construct a tuple of

homomorphisms G = (g1, g2, . . . , gn) inductively, such that I∗i−1〈ri, gi〉I∗i , for all 1≤ i≤n.
This ensures that B is a skolem chase sequence. We will then show that all the triggers

are active, and along the way, show that G is a chained sequence. We then conclude that

B is, in fact, a chained restricted chase sequence.

Note that instances Ii contain constants from the given database I and instances I∗i
contain indexed constants. Both may contain some constants appearing in rules in π.

We construct gi along with the construction of a many-to-one function h that maps

indexed constants appearing in gi to constants appearing in hi. This provides a relation

between gi and hi. For any atom a ∈ body(ri), we call atom hi(a) an image of gi(a).

The function h is many-to-one because distinct indexed constants in gi may need to be

related to a constant in hi in simulation (in generating sequence A, distinct variables

may be bound to the same constant; but in generating sequence B, distinct variables can
only be bound to distinct indexed constants).

For i = 1, we let g1(body(r1)) ⊆ Iπ with the index in indexed constants being 1. Such

g1 uniquely exists. As (r1, g1) is clearly a trigger, we have I∗0 〈r1, g1〉I∗1 under the skolem

chase. For function h, clearly we can let h be such that h(g1(a)) = h1(a) for each atom

a ∈ body(r1).
For any 1 < i ≤ n, we construct gi as follows. Let a ∈ body(ri). If hi(a) ∈ I, that is,

the triggering atom hi(a) is from database I, then we let gi map a to the corresponding

indexed atom in Iπ with index i. If hi(a) �∈ I, that is, hi(a) is a derived atom, we

then let gi(a) be any atom whose image is hi(a).
8 Then, we can extend function h by

h(gi(a)) = hi(a). Note that this is always possible for simple rules since body(ri) has no

repeated variables. By construction, that (ri, hi) is a trigger on Ii−1 implies that (ri, gi)

is a trigger on I∗i−1.

8 Recall that h is in general many-to-one. So, we may have multiple atoms whose image is hi(a). Since
the rules are assumed to be simple, choosing any of these atoms can lead to the construction of a
desired tuple of homomorphisms G as well as the function h.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

24 A. Karimi et al.

We now show that all triggers (ri, gi) (1 ≤ i ≤ n) are active, that is,

∀g′i ⊇ gi : g′i(head(ri)) � I∗i−1, 1 ≤ i ≤ n (6)

To relate homomorphisms gi with B to hi with A, from above, we have h(gi(x)) = hi(x),

for all x ∈ varu(ri). Then, it follows
h(I∗i−1) ⊆ Ii−1, 1 ≤ i ≤ n (7)

which can be shown by induction: for the base case, we have h(I∗0) ⊆ I0 by definition,

and for the induction step, for each k ≥ 1, that h(I∗k−1) ⊆ Ik−1 implies h(I∗k) ⊆ Ik is by

the construction of homomorphism gk in B.
To prove (3), for the sake of contradiction, assume that it does not hold, that is, ∃g′i ⊇ gi

s.t. g′i(head(ri)) ⊆ I∗i−1. This together with (7) implies h(g′i(head(ri))) ⊆ h(I∗i−1) ⊆ Ii−1.

Now let h′i(x) = h(g′i(x)). It follows h
′
i(head(ri)) ⊆ Ii−1, a contradiction to (3). Therefore,

all triggers applied in B are active and π thus leads to a restricted chase sequence of R

and Iπ.

Finally, B is chained because the depends-on relation in A is preserved for B. For
the path π = (r1, . . . , rn), assume that rj depends on ri w.r.t. Ii−1 (1 ≤ i < j ≤ n).

As A is a restricted chase sequence, we have homomorphisms hi : body(ri) → Ii−1

and hj : body(rj) → Ij−1. That rj depends on ri w.r.t. Ii−1 ensures that hj is not a

homomorphism from body(rj) to Ij−1 \ hi(head(sk(ri))). We have already shown the

existence of homomorphisms gi : body(ri) → I∗i−1 and gj : body(rj) → I∗j−1. Since hj is

not a homomorphism from body(rj) to Ij−1 \hi(head(sk(ri))), it follows by construction

that gj is not a homomorphism from body(rj) to I
∗
j−1 \ gi(head(sk(ri))). We, therefore,

conclude that rj depends on ri w.r.t. I
∗
i−1 (1 ≤ i < j ≤ n). We are done.

4.3 Activeness for arbitrary rules

For non-simple rules, a tight simulation using the restricted critical database Iπ for a

given path π is not always possible. The following example demonstrates that not all

active paths can be simulated.

Example 6

Consider the following rule set R = {r1, r2, r3}, where
r1 : P (x, y)→ Q(x, y)

r2 : R(x, y)→ T (x, y)

r3 : Q(x, y), T (x, y)→ ∃z P (z, x), R(z, x)
R is not all-instance terminating since for database I = {P (a, b), R(a, b)}, there is a

nonterminating restricted chase sequence starting from I (assuming that the existential

variable z is skolemized to fz(x)):

I0 = I I1 = I0 ∪ {Q(a, b)}
I2 = I1 ∪ {T (a, b)} I3 = I2 ∪ {P (fz(a), a), R(fz(a), a)}
......

where the corresponding active triggers (r1, h1), (r2, h2), (r3, h3) can be easily identified.

However, as illustrated below, a tight simulation for any path π = (r1, r2, . . .) is not

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 25

possible for the restricted critical database Iπ. For example, given π1 = (r1, r2, r3), with

restricted critical database Iπ1 = {P (x1, y1), R(x2, y2), Q(x3, y3), T (x3, y3)}, it is easy to

verify that π1 is not active w.r.t. Iπ1 . To see why this is the case, consider the following

derivation which is obtained after having applied the triggers (r1, g1) and (r2, g2) to

produce

I∗0 = Iπ1 , I∗1 = I∗0 ∪ {Q(x1, y1)}, I∗2 = I∗1 ∪ {T (x2, y2)}
The reason that π1 is not active w.r.t. Iπ1 is that multiple occurrences of constants a

and b in the triggering atoms on I2, that is, Q(a, b) and T (a, b), are originated from the

given database from different sources (atoms). For termination analysis, we must provide

a simulation of any restricted chase sequence. Below, we discuss two possible solutions

using the above example.

• Solution 1: Trigger (r3, {x/x3, y/y3}) on I∗2 is already available since Q(x3, y3),

T (x3, y3) ∈ I∗2 , which can be applied to continue the chase.

• Solution 2: Let rn be a renaming function that renames indexed constants x2 and y2

appearing in Iπ1 to x1 and y1, respectively, that is, rn(Iπ1) = {P (x1, y1), R(x1, y1),
Q(x3, y3), T (x3, y3)}, so that (r3, {x/x1, y/y1}) is a trigger on rn(I∗2).

Solution 1 is rather weak since it allows the simulation of a chained sequence to be

“broken” without preserving rule dependency, whereas Solution 2 leads to a tight simu-

lation, that is, a simulation that preserves the dependency relation of the sequence being

simulated. In this paper, we formalize and develop results for Solution 2.

Given a path π and critical database Iπ, let ΠIπ be the set of indexed constants

appearing in Iπ. We define a renaming function for Iπ to be a mapping from ΠIπ to

ΠIπ . For technical clarity, we eliminate symmetric renaming functions by imposing a

restriction: an indexed constant with index i can only be renamed to an indexed constant

with index j, where 1 ≤ j < i. In other words, an indexed constant with index i in Iπ

can only be renamed to one which appears in a rule in π earlier than ri.

Theorem 2

Let R be a rule set and π = (r1, . . . , rn) a path based on R. Then, π is active w.r.t. some

database if and only if there exists a renaming function rn∗ for Iπ such that π is active

w.r.t. rn∗(Iπ), where rn∗ is composed of at most n renaming functions.

Proof

(⇐) Immediate since rn∗(Iπ) is such a database.

(⇒) The proof follows the same structure as for Theorem 1 except for the case where

the tight simulation of a chase step fails to provide a trigger due to repeated variables in

a rule body.

As in the proof of Theorem 1, we assume that path π = (r1, . . . , rn) is active w.r.t. some

database I, so that there is a chained restricted chase sequence

A : I = I0, I1, . . . , In (8)

generated by active triggers (r1, h1), . . . , (rn, hn). We show that there exist a renaming

function rn∗ for Iπ and a chained restricted chase sequence w.r.t. rn∗(Iπ)

B : rn∗(Iπ) = rn∗(I∗0), rn
∗(I∗1), . . . , rn

∗(I∗n). (9)

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

26 A. Karimi et al.

generated by active triggers (r1, rn
∗ ◦ g1), . . . , (rn, rn∗ ◦ gn)). We prove the existence of

B by constructing gi’s (and its renamed counterparts) along with the construction of a

many-to-one function h that relates indexed constants in gi (and its renamed counter-

parts) to constants in hi. We apply the same argument repeatedly to show the existence

of a composed renaming function rn∗. Let us start by constructing the first renaming

function, rn1.

The construction of g1 is the same as in the proof of Theorem 1 – we let g1(body(r1)) ⊆
Iπ with the index in indexed constants being 1 and let h(g1(body(r1))) = h1(body(r1)).

For the inductive case (1 < i ≤ n), we construct gi as follows. Let a ∈ body(ri). If

hi(a) ∈ I, that is, the triggering atom hi(a) is from database I, then we let gi map a

to a corresponding indexed atom in Iπ with index i. If hi(a) �∈ I, that is, hi(a) is a

derived atom, we then consider all body atoms of ri including a that form a connected

component in that any two of which share at least one variable. There are in general

one or more such connected components in body(ri). For simplicity and w.l.o.g., let us

assume that body(ri) consists of only one such connected component. If body(ri) for some

1 ≤ i ≤ n consists of more than one connected component, then we can apply the same

techniques used below to construct a sequence of renaming functions – as long as the

required properties for the construction of these functions are met for each component

(cf. Case (ii) below), the same argument is applicable.

Now let us attempt to construct a mapping gi by letting gi(body(ri)) be the set of

atoms whose images are precisely those in hi(body(ri)). There are two cases.

Case (i) gi is a homomorphism from body(ri) to I∗i−1. In this case, function h can be

extended by h(gi(body(ri))) = hi(body(ri)). By construction, (ri, gi) is a trigger on I∗i−1,

and the proof that (ri, gi) is active remains the same as for Theorem 1.

Case (ii) Otherwise gi fails to be a homomorphism from body(ri) to I∗i−1. Assume gi
is the first such failure in the construction of sequence B so far. Note that the failure is

because gi constructed this way must be a one-to-many mapping - gi must map a variable

to distinct indexed constants because multiple occurrences of a variable in body(ri) are

instantiated to a common constant by hi but to simulate that, gi must map the same

variable to distinct indexed constants.

The failure can be remedied by a renaming function for Iπ, denoted rn1, by which some

different indexed constants are renamed to the same one so that (ri, rn1 ◦ gi) is a trigger

on rn1(I
∗
i−1). Clearly, such a renaming function exists. We require that rn1 be minimal in

that the number of indexed constants that are renamed to different ones is minimized.9

It is easy to see that the existence of a renaming function for Iπ implies the existence of

such a minimal renaming function for Iπ. We now want to show that the sequence

rn1(I
π) = rn1(I

∗
0), rn1(I

∗
1), . . . , rn1(I

∗
i−1), rn1(I

∗
i) (10)

is a chained restricted chase sequence generated by triggers (r1, rn1◦g1), . . . , (ri, rn1◦gi).
The function h that relates indexed constants to constants in hj (1 ≤ j ≤ i) is updated

correspondingly as h(rn1 ◦ gj(body(rj))) = hj(body(rj)).

That (ri, rn1 ◦ gi) is a trigger on rn1(I
∗
i−1) is by the construction of rn1. For each

rn1 ◦gj (1 ≤ j < i), since for rn1 ◦gj the only update of gj is that some different indexed

9 In other words, that an indexed constant is renamed to a different one only when it is necessary.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 27

constants are replaced by the same one; that gj is a homomorphism from body(rj) to

I∗j−1 implies that rn1 ◦ gj is a homomorphism from body(rj) to rn1(I
∗
j−1). We now show

that triggers (rj , rn1 ◦ gj) (1 ≤ j ≤ n) are all active.

The intuition behind this part of the proof is that in case (i) when we use distinct

indexed constants for distinct variables, we do not introduce any possibility of “recycled”

atoms (i.e., atoms which can also be used in later derivations). Therefore, the activeness

of (rj , hj) implies activeness of (rj , gj). On the other hand, although the above statement

may not hold for case (ii), a renaming function that is minimal ensures that we do not

introduce more than what is needed, that is, rn1 ◦ gj requires no more mappings to the

same constants than hj . This again ensures that the activeness of trigger (rj , hj) implies

activeness of trigger (rj , rn1 ◦ gj).
More formally, the activeness of (rj , rn1 ◦ gj) (1 ≤ j ≤ n) means that the following

conditions hold for each 1 ≤ j ≤ n
∀g′j ⊇ rn1 ◦ gj : g′j(head(rj)) � rn1(I

∗
j−1), 1 ≤ j ≤ i (11)

We let h(rn1 ◦ gj(x)) = hj(x), for all x ∈ varu(rj). Then, by induction we show that

h(rn1(I
∗
j−1)) ⊆ Ij−1, 1 ≤ j ≤ i (12)

For the base case, we have h(rn1(I
∗
0)) ⊆ I0, which holds due to the minimality of rn1.

For the induction step, for each k ≥ 1, let us assume h(rn1(I
∗
k−1)) ⊆ Ik−1. Then we need

to show h(rn1(I
∗
k)) ⊆ Ik. The latter can be done by the construction of rn1 ◦ gk in (10).

We then proceed to prove (11). For this purpose, assume that it does not hold,

that is, ∃g′j ⊇ rn1 ◦ gj s.t. g′j(head(rj)) ⊆ rn1(I
∗
j−1). This together with (12) implies

h(g′j(head(rj))) ⊆ h(rn1(I∗j−1)) ⊆ Ij−1. Now let h′j(x) = h(g′j(x)). It follows h
′
j(head(rj))

⊆ Ij−1, which is a contradiction to our assumption that (rj , hj) for 1 ≤ j ≤ i active.

This shows that all triggers applied in (10) are active.

We then apply the same argument to continue the construction of sequence B of (9):

rn1(I
π) = rn1(I

∗
0), rn1(I

∗
1), . . . , rn1(I

∗
i−1), rn1(I

∗
i), . . . (13)

generated by active triggers (rj , rn1 ◦ gj) (1 ≤ j ≤ i) from the updated restricted

critical database rn1(I
π). If case (i) applies for the simulation of a chase step in A, then

let us use the identity renaming function (which is minimal by definition). Thus, the

simulation of each chase step results in a minimal renaming function. It follows that

rn∗ = rnn ◦ · · · ◦ rn1 and, as the chained property immediately holds by construction,

sequence B is indeed a chained restricted chase sequence. We then conclude that π is

active w.r.t. the updated restricted critical database rn∗(Iπ). We are done.

In the sequel, given a path π, Iπ, and rn∗(Iπ) for all renaming functions rn∗ are all

called a restricted critical database. For clarity, we may qualify the latter as an updated

restricted critical database.

The development of this section leads to the following conclusion, which can be con-

sidered the foundation of our approach to defining classes of the finite restricted chase in

the paper.

Theorem 3

Let R be a rule set. For any k > 0, if no k-cycle σ is active w.r.t. rn∗(Iσ), for all renaming

functions rn∗ for Iσ, then R is all-instance terminating under the restricted chase.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

28 A. Karimi et al.

Proof

Assume that R is not all-instance terminating under restricted chase. Then for some

database I0 there is a nonterminating restricted chase sequence I : I0, . . . , Ij , Since

I0 is finite, there can only be a finite number of independent applications of any rule.

It follows that I must contain one chained restricted chase sequence for some k-cycle σ.

W.l.o.g., assume that σ appears immediately after an initial, finite segment of I, say
I0, . . . , Ii. It follows that the nonterminating sequence I without this initial finite segment

I ′ : Ii, . . . , Ij , ... is a nonterminating chained restricted chase sequence.

By the contraposition of the only if statement of Theorem 2, the assumption that σ is

not active w.r.t. rn∗(Iσ) for all renaming function rn∗ for Iσ, implies that σ is not active

w.r.t. any database, that is, a chained restricted chase sequence for σ does not exist, for

any database, which results in a contradiction.

As we have seen up to this point that renaming enables a tight simulation for termi-

nation analysis based on testing k-cycles. A question is whether renaming is a necessary

condition in general for our termination analysis. The question is raised due to the fol-

lowing observation.

Example 7

Consider Example 6 again. We have seen that path π1 = (r1, r2, r3) requires renaming in

order to obtain a tight simulation. Now consider π2 = (r3, r2, r1), which is a permutation

of π1. It can be shown that unlike π1 which is not active w.r.t. restricted critical database

Iπ1 , π2 is active w.r.t. restricted critical database Iπ2 . According to Theorem 3, as long

as there is one k-cycle that is active, we do not conclude that the given rule set is all-

instance terminating. For this example, since the 1-cycle σ = (r3, r2, r1, r3) is active

w.r.t. the restricted critical database Iσ, there is no conclusion that R is all-instance

terminating. This may suggest that if we test all k-cycles, the mechanism of renaming

may be redundant. However, the next example shows that this is not the case in general.

Example 8

Consider the following rule set R′ = {r1, r2, r3} modified from rule set R of Example 6,

where

r1 : P (x, y, z),K(z)→ Q(x, y, z)

r2 : R(x, y, z)→ T (x, y, z)

r3 : Q(x, y, z), T (x, y, z)→ ∃v P (v, x, z), R(v, x, z)
R′ is not all-instance terminating which can be verified using the database

I0 = {P (a, b, c),K(c), R(a, b, c)}
We have the following chase sequence starting from database I0 (assuming that fv is

used to skolemize the existential variable v) by applying the rules in the path (r1, r2, r3)

repeatedly.

I1 = I0 ∪ {Q(a, b, c)}, I2 = I1 ∪ {T (a, b, c)},
I3 = I2 ∪ {P (fv(a, c), a, c), R(fv(a, c), a, c)}, I4 = I3 ∪ {Q(fv(a, c), a, c)},
......

The question is: by testing all 1-cycles, can we capture this nonterminating behavior

without using renaming? As we show below, the answer is negative.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 29

Similar to the rule set of Example 6, a tight simulation is not possible for any path of

the form π = (r1, r2, . . .) w.r.t. the restricted critical database Iπ. However, unlike the

rule set of Example 6, no permutation π′ of π may lead to a tight simulation for π′ w.r.t.
the restricted critical database Iπ

′
. For example, consider the path π2 = (r3, r2, r1) which

is a permutation of π1 = (r1, r2, r3). The restricted critical database of π2 is as follows:

Iπ2 = {Q(x1, y1, z1), T (x1, y1, z1), R(x2, y2, z2), P (x3, y3, z3),K(z3)}
and we derive the following restricted chase sequence:

I∗0 = Iπ2 , I∗1 = I∗0 ∪ {P (fv(x1, z1), x1, z1), R(fv(x1, z1), x1, z1)}, (14)

I∗2 = I∗1 ∪ {T (fv(x1, z1), x1, z1)}, I∗3 = I∗2 ∪ {Q(x3, y3, z3)}
It is easy to check that after derivation of I∗2 , no trigger for r1 exists that uses atoms

derived in I∗2 . Therefore, to derive I∗3 , we have no choice but to pick homomorphism

h = {x/x3, y/y3, z/z3} to construct trigger (r1, h) to derive Q(x3, y3, z3). Therefore, the

restricted chase terminates since there is no trigger from I∗3 . A similar argument applies

to other permutations of π1. If we conclude that R′ is all-instance terminating based on

testing all 1-cycles without renaming, we would get a wrong conclusion.

On the other hand, given a (finite) path π, if it leads to a chained restricted chase

sequence, starting from the updated restricted critical database rn∗(Iπ) for some

renaming function rn∗, then there is a tight simulation so that π is shown to be active.

For example, for π2 = (r3, r2, r1) above, we can find an updated restricted critical

database of π2 as follows:

rn∗(Iπ2) = {Q(x1, y1, z1), T (x1, y1, z1), R(x2, y2, z2), P (x1, y1, z1),K(z1)}
where indexed constants with index 3 are renamed to those with index 1, so that π2 is

active w.r.t. rn∗(Iπ2).

5 K -safe(Φ) rule sets

We now apply the results of the previous section to define classes of the finite restricted

chase. The idea is to introduce a parameter of cycle function to generalize various acyclic-

ity notions in the literature, and we will test a path only when it fails to satisfy the given

acyclicity condition.

Definition 8

Let R be a rule set and Σ the set of all finite cycles based on R. A cycle function is a

mapping ΦR : Σ→ {T, F}, where T and F denote true and false, respectively.

Let Φ be the binary function from rule sets and cycles such that Φ(R, σ) = ΦR(σ),

where R is a rule set and σ is a cycle. By overloading, the function Φ is also called a

cycle function.

We now address the question of how to obtain a cycle function for an arbitrary rule-

based acyclicity condition of finite skolem chase, for example, JA (Krötzsch and Rudolph

2011), aGRD (Baget 2004), MFA (Cuenca Grau et al . 2013), etc.

Definition 9

Let Δ denote an arbitrary acyclicity condition of finite skolem chase (for convenience,

let us also use Δ to denote the class of rule sets that satisfy the acyclicity condition

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

30 A. Karimi et al.

expressed by Δ). We define a cycle function ΦΔ as follows: for each rule set R and each

cycle σ based on R, if the acyclicity condition Δ holds for rules in Rule(σ),10 then ΦΔ

maps (R, σ) to T ; otherwise ΦΔ maps (R, σ) to F .

That is, ΦΔ maps (R, σ) to T whenever the acyclicity condition Δ for the rule set

Rule(σ) is satisfied and to F otherwise. Since any nonterminating restricted chase se-

quence must involve a cycle of rules, any sufficient condition for acyclicity by definition

already guarantees restricted chase termination.

In the sequel, we will use RS(Δ) to denote the class of rule sets that satisfy the acyclic-

ity condition Δ. Also, because of Definition 9, we will feel free to write ΦΔ(R,Rule(σ))

for ΦΔ(R, σ).

Example 9

Consider the rule set R1 from Example 2 and assume Δ = aGRD in Definition 9. Recall

that a rule set R belongs to aGRD if there is no cyclic dependency relation between any

two (not necessarily different) rules from R, possibly through other dependent rules of

R. Clearly, the corresponding cycle function ΦΔ maps both cycles σ1 = (r1, r2, r1) and

σ2 = (r2, r1, r2) to T .

We are ready to present our hierarchical approach to defining classes of the finite

restricted chase. In the following, we may just write Φ for ΦΔ as a parameter for cycle

functions, or as some fixed cycle function, in particular in a context in which an explicit

reference to the underlying acyclicity condition Δ is unimportant.

Definition 10

(k-safe(Φ) rule sets) Let R be a rule set and σ a k-cycle (k ≥ 1). We call σ safe if for

all databases I, σ is not active w.r.t. I. Furthermore, R is said to be in k-safe(Φ), or to

belong to k-safe(Φ) (under cycle function Φ), if for every k-cycle σ which is mapped to

F under ΦR, σ is safe.

For notational convenience, for k = 0, we may write 0-safe(ΦΔ) for RS(Δ). For ex-

ample, it can be verified that the rule set R1 in Example 2 is in k-safe(ΦΔ) for any

k ≥ 1 and any cycle function ΦΔ based on some skolem acyclicity condition Δ in the

literature such as WA (Fagin et al . 2005), JA (Krötzsch and Rudolph 2011), and MFA

(Cuenca Grau et al . 2013). It is also not difficult to see that the rule set R2 in the same

example belongs to 2-safe(ΦaGRD) as well as 2-safe(ΦWA) (but note that they do not

belong to 1-safe(ΦaGRD) or 1-safe(ΦWA)). However, we stress that R2 does not belong

to any known class of acyclicity, including RMFA and RJA. That is, rule sets like R2

are recognized as a finite chase only under the hierarchical framework proposed in this

paper.

By Theorem 2, k-safe(Φ) can be equivalently defined in terms of restricted critical

databases.

Proposition 4

For any cycle function Φ, a rule set R is in k-safe(Φ) if and only if every k-cycle σ which

is mapped to F under φR is not active w.r.t. rn∗(Iσ), for all renaming functions rn∗.

10 Recall that Rule(C) is the set of distinct rules in C.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 31

We are now in a position to show the following theorem.

Theorem 5

Let ΦΔ be a cycle function. For all k ≥ 1, (k − 1)-safe(ΦΔ) ⊆ k-safe(ΦΔ) ⊆ CTres
∀∀.

Proof

For the first subset relation, let us first consider the base case where k = 1. Since

any nonterminating skolem chase goes through at least one 1-cycle based on R, if none

of the 1-cycles on R violates the corresponding acyclicity condition, that is, ΦΔ maps

any 1-cycle σ to T , then R trivially belongs to RS(Δ). Thus, RS(Δ) = 0-safe(ΦΔ) ⊆
1-safe(ΦΔ). Then, for all renaming functions rn∗, if there is no chained restricted chase

sequence of R and rn∗(Iσ) for a k-cycle σ, then there is no chained restricted chase

sequence of R and rn∗(Iσ
′
) for any (k+1)-cycle σ′, since the latter goes through at least

one k-cycle. This shows the first subset relation.

To show the second subset relation, let R ∈ k-safe(ΦΔ), for any fixed k ≥ 1. For all k-

cycle σ, if (R, σ) is mapped to T by ΦΔ for every k-cycle σ, then by definition R ∈ CTsk
∀∀ ⊂

CTres
∀∀. If for some k-cycle σ such that (R, σ) is mapped to F by ΦΔ, then by Proposition 4,

R ∈ k-safe(ΦΔ) implies that σ is not active w.r.t. rn∗(Iσ) for all renaming functions rn∗

for Iσ. It then follows from inactiveness (Definition 7) and Proposition 4 that there are no

chained restricted chase sequences of R and rn∗(Iσ). Thus, by Theorem 3, R is restricted

chase terminating w.r.t. rn∗(Iσ). By the first subset relation, for all k′ > k, all k′-cycles
are terminating. Therefore, we have k-safe(ΦΔ) ⊆ CTres

∀∀.

Finally, we present Algorithm 1 to determine whether a rule set belongs to the class

k-safe(ΦΔ). The procedure returns true if it is and false otherwise.

Algorithm 1 k-safe Algorithm

Input: A set of rules R; An integer k ≥ 0; A cycle function Φ

Output: Boolean value IsAcyclic;

1: procedure k-safe(R,Φ)

2: bool IsAcyclic← true;

3: for each k-cycle σ based on R do

4: if Φ(R,Rule(σ)) = F then

5: Find the restricted critical database Iσ;

6: for each renaming function rn∗ do

7: if σ is active w.r.t. rn∗(Iσ) then
8: return ¬IsAcyclic;
9: return IsAcyclic;

Proposition 6

Given a rule set R, a cycle function ΦΔ and an integer k ≥ 1, R belongs to k-safe(ΦΔ)

if and only if Algorithm k-safe returns true.11

11 The algorithm can be improved by considering only minimal renaming functions, which however would
not lower the complexity upper bound. For this reason, we do not pursue the improvement at this
level of abstraction.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

32 A. Karimi et al.

Proof

(⇒) Based on Definition 10, if R is in k-safe(ΦΔ), then for all k-cycles σ either

Φ(R,Rule(σ)) = T , or for all renaming functions rn∗ for Iσ, σ is not active w.r.t. re-

stricted critical database rn∗(Iσ). Therefore, Algorithm 1 returns T .

(⇐) By Proposition 4, for all k-cycles σ and for all renaming functions rn∗ for Iσ, if σ is

not active w.r.t. restricted critical database rn∗(Iσ), then the given rule set belongs to

k-safe(ΦΔ), and by Theorem 5, is all-instance terminating.

Theorem 7

Let R be a given rule set and k ≥ 0 be a unary-encoded integer. Assuming that checking

Δ can be done in PTime, the complexity of checking membership in k-safe(Φ) is in

PSpace.

Proof

Given a rule set R and an acyclicity condition Δ, let us first guess a k-cycle σ =

(σ1, . . . , σ(k+1)×|R|−1) based on R, and then check whether Rule(σ) /∈ Δ. The guess-

ing part can be done using a nondeterministic algorithm. Furthermore, based on our

assumption, the checking part can be done in PTime.

For the guessed k-cycle σ, we then proceed by guessing a renaming function rn∗ and

a restricted chase sequence I : rn∗(Iσ), . . . , I(k+1)×|R|−1 constructed from σ using a

tuple of chained homomorphisms H = (h1, . . . , h(k+1)×|R|−1), and verifying whether I is

chained by checking whether σ is active w.r.t. rn∗(Iσ), which gives us the complement

of the desired membership checking problem.

An iterative procedure is required to construct I. In each step i > 0 of this pro-

cedure, we need to remember each instance Ii−1 in the constructed sequence, guess

a homomorphism hi, and proceed to derive I(k+1)×|R|−1. For this purpose, we need

NSpace(((k + 1) × |R| − 1) × β) memory space to remember intermediate instances,

where β is the maximum number of head atoms of rules in σ. In addition, guessing

each homomorphism hi can be done using an NP algorithm and having access to an

NP-oracle, verifying if hi can be extended a homomorphism h′i and leads to a chained

tuple of homomorphisms is NP-complete (Rutenburg 1986). All these tasks can be main-

tained within the same NSpace(((k + 1) × |R| − 1) × β) complexity bound, giving us

a coNSpace(((k + 1) × |R| − 1) × β) upper bound for the complexity of membership

checking.

As a corollary to Savitch’s theorem (Savitch 1970), we have PSpace=NPSPace.

Also, based on Immerman–Szelepcsényi theorem (Immerman 1988), nondeterministic

space complexity classes are closed under complementation. Therefore, based on the

above analysis, the complexity upper bound for the membership checking problem is in

PSpace.

Remark 1

Based on Theorem 7, it can be seen that for Δ ∈ {WA, JA, SWA},12 the complexity

of checking k-safe(ΦΔ) is in PSpace. This shows that our conditions, when considering

12 SWA denotes the super-weak acyclicity condition of skolem chase terminating rule sets (Marnette
2009).

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 33

skolem acyclicity criteria for which membership checking can be done in PTime, are easier

to check than even the easiest known condition of the restricted chase in the literature

(i.e., RJA) for which the complexity of membership checking is ExpTime-complete.

In addition, for semantic conditions of terminating skolem chase, such as MSA

(respectively, MFA), checking Δ cannot be done in PTime and a worst-case complex-

ity of ExpTime-complete (respectively, 2ExpTime-complete) can be computed (Grau

et al . 2013). It follows that for the membership checking problem of k-safe(ΦΔ), where Δ

is MSA (respectively, MFA), an ExpTime-complete (respectively, 2ExpTime-complete)

complexity can be computed. The hardness proof can be established from the member-

ship checking problem of the corresponding class with terminating skolem chase since

this problem cannot be easier than that in general.

6 Extension of bounded rule sets

In Zhang et al . (2015), a family of existential rule languages with finite skolem chase based

on the notion of δ-boundedness is introduced and the data and combined complexities

of reasoning with those languages for k-exponentially bounded functions are obtained.

Utilizing a parameter called bound function, our aim in this section is to show how to

extend bounded rule sets from the skolem to restricted chase. In particular, we show

that for any class Δ of terminating rule sets under the skolem chase, there exists a more

general class of terminating rule sets under the restricted chase that extends Δ. We

show how to construct such an extension and we analyze the membership and reasoning

complexities for extended classes. First, let us introduce some terminologies.

A bound function is a function from positive integers to positive integers. A rule set R is

called δ-bounded under the skolem chase for some bound function δ, if for all databases I,

ht(chasesk(I, R)) ≤ δ(||R||), where ||R|| is the number of symbols occurring in R. Given

an instance I, ht(I) denotes the height (maximum nesting depth) of terms that have at

least one occurrence in I, if it exists, and ∞ otherwise. In this paper, when we mention

δ as a bound function, we assume that δ is computable.

Let us denote by δ-Bsk the class of δ-bounded rule sets under the skolem chase. For

the restricted case, the definition is similar.

Definition 11

Given a bound function δ, a rule set R is called δ-bounded under the restricted chase,13

denoted δ-Bres, if for all databases I and for any restricted chase sequence I of R and I,

ht(I) ≤ δ(||R||).

Example 10

For the rule set R1 of Example 2, it can be seen that the height of skolem terms in

any restricted chase sequence is no more than 3. Therefore, R1 is δ-bounded under the

restricted chase variant for some bound function δ for which δ(||R1||) = 3. It is worth

noting that R1 does not belong to δ-bounded rule sets for any computable bound function

δ under the skolem chase.

13 Note that by definition, the fairness condition is a requirement for a nonterminating restricted chase
sequence.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

34 A. Karimi et al.

Before diving into more details, let us first demonstrate the relationship between

δ-bounded rule sets and k-safe(ΦΔ) rule sets as given in Proposition 8 below.

Proposition 8

Let R be a k-safe(Φ) rule set in which k is a unary encoded integer computable in

O(P (n)), for some function P (n). Then R is δ-bounded under the restricted chase for

some function δ that is computable in O(P (2× log ||R||)).14

Proof

Let R be k-safe(Φ). Based on Definition 10, for each k-cycle σ which is mapped to F

under Φ, σ is safe (i.e., for all databases I, σ is not active w.r.t. I). Each rule application

in a chained sequence can increase the depth of a skolem term at most by one. Henceforth,

the longest possible chained sequence provides an upper bound for the term depth. We

show this upper bound is k × (k + 2).

This is because the length of the longest such sequence for a k-cycle is upper bounded

by k × (k + 1), and therefore, any sequence of length k × (k + 2) must contain at least

one k-cycle. Since no k-cycle is active w.r.t. any database, the depth of any skolem term

generated by the longest chained sequence is less than k× (k+2). Thus R is k× (k+2)-

bounded, which gives a quadratic bound in k. Since k is computable in O(P (n)) and it

is unary represented, then k2 is computable in O(P (2× log ||R||)), where log ||R|| is the
size of binary representation of ||R||. Based on the above argument, we conclude that

such a bound function always exists, and O(P (2 × log ||R||)) is an upper bound for the

cost of computing the bound function.

In what follows, we present our results on the membership of δ-bounded rule sets under

the restricted chase variant. Before we proceed, let us define what we mean by member-

ship in the context of this chase version. The problem of membership for the skolem chase

is to check if all skolem chase sequences halt (terminate) before the maximum height of

skolem terms in each sequence reaches δ(||R||) for all databases. As described in Zhang

et al. (2015), checking membership for δ-bounded rules under the skolem chase can be

precisely characterized using only one chase sequence and utilizing the Marnette’s critical

database technique (Marnette 2009), on a single database which is constructed from the

given rule set only once.

On the other hand, one cannot determine the membership in the δ-bounded rules

under the restricted chase using a single chase sequence. For this purpose, all possible re-

stricted chase sequences need to be considered. Furthermore, restricted critical databases

introduced in Definition 6 can help us determine whether a possible chase sequence con-

structed from a given rule set witnesses the nonterminating status of the rule set under

the restricted chase.

In what follows, we propose a procedure for membership checking of δ-bounded rule

sets under the restricted chase. Given a rule set R and a bound function δ, the procedure

MembCheck(R, δ) is defined as follows:

• Check whether R is δ-bounded under the skolem chase using the (skolem) critical

database constructed from R, denoted IR. If true, returns T .

14 Here n denotes the size of representation for the parameter of k. We say that k can be computed
in DTime(P (n)) if: There is a deterministic Turing machine M such that, given an integer l > 0,
M outputs k(l) in P (log l) stages. Note that log l is the size of binary representation of l.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 35

• Otherwise, for some i > 0, the height of chaseisk(I
R, R) is δ(||R||) + 1; for each

skolem chase sequence generated by a path π = (r1, . . . , rn) that reaches the

height of δ(||R||) + 1, we check whether π is active w.r.t. the restricted critical

database rn∗(Iπ) for all renaming functions rn∗. If the answer is no for all such

paths π, then the procedure returns T , otherwise it returns F (false).

A T answer means that R is δ-bounded under the restricted chase and an F answer

means that it is unknown whether R is δ-bounded under the restricted chase or not. The

reason for the latter case is that when the skolem chase reaches the height of δ(||R||)+ 1

by a path π = (r1, . . . , rn), although we can check activeness of π w.r.t. restricted critical

databases, we may not be able to determine whether such a path leads to at least one

fair sequence.

Proposition 9

Given a bound function δ and an arbitrary rule set R, MembCheck(R, δ) is sound, that

is, if it returns T , then R is δ-bounded under the restricted chase. Furthermore, if R

consists of rules with single-head, then MembCheck(R, δ) is sound and complete.

Note that the completeness problem is as follows: MembCheck(R, δ) is complete if for

any given rule set R and bound function δ, if MembCheck(R, δ) = F , then R is not

δ-bounded under the restricted chase.

Proof

Let δ be a bound function. By Marnette (2009), it suffices to use the skolem criti-

cal database IR to capture all skolem chase sequences w.r.t. any database I, so that

ht(chasesk(I, R)) ≤ δ(||R||) only if ht(chasesk(IR, R)) ≤ δ(||R||). Consequently, if R is δ-

bounded under the skolem chase w.r.t. IR, it is δ-bounded under the skolem chase w.r.t

any database I, and by the relationship between the skolem and restricted chase, R is

δ-bounded under the restricted chase w.r.t any database I.

Otherwise, for each path π that leads to some skolem chase sequence that reaches the

height of δ(||R||) + 1, π being not active w.r.t. rn∗(Iπ) for all renaming function rn∗ for

Iπ implies, by Theorem 2, that π is not active w.r.t. any database. When all chained

sequences of path π fail to reach the height of δ(||R||) + 1, no restricted chase sequence

of π can reach that height because an unchained sequence does not expand skolem terms

cumulatively throughout. It follows that the largest height by any database is bounded by

δ(||R||). This gives the desired conclusion for the soundness of MembCheck for arbitrary

rules.15

For any single-head rule set R, from Gogacz et al . (2019), we know that the fair-

ness condition can be safely neglected, that is, the existence of a (possibly unfair) in-

finite restricted chase sequence implies the existence of a fair one. Therefore, R is not

δ-bounded.

15 If there exists such a path π that is active and leads to a restricted chase sequence, which by default
must be fair, then we can decide that R is not δ-bounded under the restricted chase (again, the fairness
condition must be satisfied). In this case, the procedure is complete by returning F . On the other hand,
if all such paths π lead only to unfair restricted chase sequences (i.e., infinite chase sequences generated
by active triggers in Definition 3 without requiring the fairness condition), then no restricted chase
sequence has reached beyond the bound and in this case, that our procedure returns F shows its
incompleteness. But in general, the problem of whether such a π leads only to unfair chase sequences
may be undecidable.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

36 A. Karimi et al.

Proposition 10

Let R be a rule set and δ a bound function computable in DTime(P (n))16 for some

function P (n). Then, it is in

coNTime(Cδ + ||R||||R||O(δ(||R||))
)

to check if MembCheck(R, δ) returns T , where Cδ = P (log ||R||)O(1).

Proof

For the skolem chase with skolem critical database, from Proposition 6 of Zhang

et al. (2015) we know that using the critical database technique of Marnette (2009),

the maximum number of atoms generated in a skolem chase sequence is bounded by

||R||||R||O(δ(||R||))
, which is also an upper bound for the number of atoms generated in a

restricted chase sequence.

From Marnette (2009), we know that in the case of the skolem chase if any sequence

terminates on a rule set R and a database I, then the instances returned by all sequences

are isomorphically equivalent. So, for δ-boundedness for the skolem chase, it suffices to

consider only one sequence. But for the case of the restricted chase, we need to consider

all such sequences.

Given a rule set R and a bound function δ, the procedure MembCheck(R, δ) first

checks whether R is δ-bounded under the skolem chase.

For the complexity of this check, we need to consider the size of each skolem chase

sequence to produce the height of O(δ) that is upper bounded by ||R||||R||O(δ(||R||))
,

which can be computed in DTime(||R||||R||O(δ(||R||))
). In addition, an upper bound for

the chase of size ||R||||R||O(δ(||R||))
can be computed in DTime

(
(||R||+ P (log ||R||))O(1)

)
.

Therefore, according to Zhang et al . (2015), the overall complexity of this check is

DTime

(
(P (log ||R||))O(1) + ||R||||R||O(δ(||R||)))

.

If the above condition is not satisfied (i.e., some R is not δ-bounded under the skolem

chase), for some i ≥ 1, the height of chasesk(I
R, R) is δ(||R||) + 1. So, for each skolem

chase sequence that is generated by a path π = (r1, . . . , rn) which reaches the height of

δ(||R||) + 1, for all renaming functions rn∗ for Iπ, we check whether π is active w.r.t.

rn∗(Iπ). A no answer to the above check yields a T output from MembCheck(R, δ).

Based on the above argument, to proceed, using a nondeterministic algorithm

we first guess a sequence of triggers
⋃N

i=1(ri, hi), where N is upper bounded by

||R||||R||O(δ(||R||)+1)

= ||R||||R||O(δ(||R||))
that can lead to the construction of a skolem chase

sequence I, and a renaming function rn∗.
Then we need to verify if I is active w.r.t. rn∗(Iπ), where π is the path constructed

from the guessed ri’s. For the latter, for each projection π′ of π, first, to verify the chained

property, we determine if each rule in π′ depends on some previous rule in the path. The

complexity of this latter verification task is quadratic in the size of the guessed chase

sequence.

Furthermore, given path π, the maximum number of chained restricted chase sequences

is bounded by ||R||O(δ(||R||)), and since the length of the guessed sequence is bounded

by O(||R||||R||O(δ(||R||))
), verifying if I is active w.r.t. rn∗(Iπ) is at most polynomial in

16 The class of complexity languages decidable in time P (n) using a deterministic Turing machine. NTime

is defined similarly but using a nondeterministic Turing machine.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 37

||R||||R||O(δ(||R||))
which can be implemented in NTime(||R||||R||O(δ(||R||))

). Similar to the

proof of Theorem 7, the construction of renaming functions can take at most polynomial

in the size of π which can be done in NTime(||R||||R||O(δ(||R||))
). So, clearly, all the above

tasks can be maintained in NTime

(
(P (log ||R||))O(1) + ||R||||R||O(δ(||R||)))

.

The membership is complement to the above problem, and therefore, belongs to

coNTime(Cδ + ||R||||R||O(δ(||R||)
) as desired.

Next, we investigate membership and reasoning complexities of bounded rule sets under

what is called exponential tower functions, which are defined as follows:

expκ(n) =

{
n κ = 0

2expκ−1(n) κ > 0

Since the complexity of checking δ-bounded property of Proposition 10 is dominated by

the second term inside coNTime, if δ(n) = expκ(n), then its overall complexity increases

by two exponentials. We thus have

Corollary 11

Given a rule set R checking ifMembCheck(R, expκ) returns T is in coN(κ+2)-ExpTime.

Example 11

Based on the observation made in Example 10, the rule set R1 in Example 2 is exp0-

bounded under the restricted chase; however, it does not belong to expκ-bounded ontolo-

gies under the skolem chase for any computable κ.

Data and Combined Complexity: Now, let us investigate the reasoning complexities.

The problem under consideration is BCQ answering which is defined as follows. Given

rule set R, a database I and a Boolean query q, decide if I ∪ R |= q. The complexity of

this problem is also known as combined complexity since the input size is the combined

size of all I, R, and q. In the BCQ answering problem if R and q are fixed and only I

changes, then it is called data complexity. Focusing on expκ-bounded rule sets under the

restricted chase variant, we have the following results on reasoning complexities.

Theorem 12

The problem of Boolean conjunctive answering for expκ-bounded rule sets under the

restricted chase variant is in (κ + 2)-ExpTime-complete for combined complexity and

PTime-complete for data complexity.

Proof

Let R be an expκ-bounded rule set under the restricted chase variant and I be a database.

Then, let us guess a restricted chase sequence I nondeterministically. With an argument

similar to that of the proof of Proposition 10 in which δ(n) = expκ(n), we know that the

number of atoms of I is bounded by ||R||||R||expκ(||R||)
= O(expκ+2(||R||)).

The membership follows since the entailment of a BCQ q can be shown by finding

such a sequence I : I = I0, . . . , In based on R such that In satisfies q according to the

following fact from Fagin et al . (2003): Let J and K be two finite instances returned by

the restricted chase of an expκ-bounded rule set R and a database I. Then K and J are

homomorphically equivalent. Based on the above fact and the homomorphic equivalence

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

38 A. Karimi et al.

classes, in the rest of this proof, we let chaseres(I,R) denote one representative of the

equivalence class for all results of the restricted chase of R and I. In addition, based on

Fagin et al . (2003), it is known that chaseres(I,R) |= R, and also there is a homomor-

phism from I to chaseres(I,R). Furthermore, I∪R |= q if and only if chaseres(I,R) |= q.

Let k and n denote the number of relation symbols and the maximal arity of rela-

tion symbols appearing in R, respectively. Let further l and m represent the number

of function symbols, and the maximal arity of function symbols appearing in sk(R),

respectively. In addition, let c denote the number of constants appearing in I, and

Q(t) be a fact in chaseres(I,R). It is easy to verify that the number of symbols in

each constituent t ∈ t is upper bounded by
∑expκ(||R||)

i=0 mi = mO(expκ(||R||)). Also, it
is clear that each symbol is either a constant or a function symbol. Therefore, the

number of facts in chaseres(I,R) is upper bounded by (c + l)m
O(expκ(||R||))×n × k. Since

k, n, l,m ≤ ||R||, and c = |dom(I)|, the following upper bound is derived for the number

of facts in chaseres(I,R): (|dom(I)|+||R||)||R||O(expκ(||R||))×||R||O(1)

, which can be computed

in DTime

(
(|dom(I)|+ ||R||)||R||O(expκ(||R||)))

.

To compute the reasoning complexity involving a BCQ q, it is now sufficient to evaluate

q on chaseres(I,R) directly.17 To continue the analysis, we only need the number of

existential variables occurring in q, which we denote by v. Then we need to check whether

there is a substitution h which maps every existential variable in q to a ground term of

height less than expκ(||R||), such that h(q) ⊆ chaseres(I,R). From the previous analysis,

it is clear that (|dom(I)|+ ||R||)||R||O(expκ(||R||))×v substitutions need to be checked. Since

v ≤ ||q||, the evaluation of checking whether h(q) ⊆ chaseres(I,R) can be done in

DTime

(
(|dom(I)|+ ||R||)||R||(expκ(||R||)×||q||O(1))

Hence, a (κ+ 2)-ExpTime upper bound can be computed for the combined complexity,

as desired.

We can use a construction similar to that of Zhang et al . (2015) for the hardness

proof. We briefly sketch it here. Let us consider a deterministic Turing machineM which

terminates in expκ+2(n) number of steps on any input of length n. Let us assume that the

query and data schema is a singleton set {Accept} and ∅, respectively, where Accept is a

nullary relation symbol. We need to show that for each input x that is a binary string of

length n, there is an expκ-bounded rule set under the restricted chase variant such that

M terminates on x if and only if ∅ ∪ R |= Accept. To construct the rule set R, we need

to define a linear order of length expκ+2(n) on integers which are represented in binary

strings from 0 to expκ+2(n). Once a linear order is defined, we can construct a set of

existential rules to encode the Turing machine M and the input x. Once we have such a

construction, we can establish the lower bound on the combined complexity of reasoning

with existential rules under the restricted chase. This lower bound combined with the

upper bound derived above provides the exact bound for the combined complexity of

expκ-bounded rule sets under the restricted chase.

Furthermore, the data complexity of query answering with expκ-bounded rule sets

under restricted chase is PTime-complete. The PTime upper bound for the data com-

plexity can be derived from the above analysis, and the hardness follows from the PTime-

completeness of data complexity of Datalog, cf. Dantsin et al . (2001).

17 Without loss of generality, we assume that q is in prenex normal form.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 39

7 Experimentation

To evaluate the performance of our proposed methods for termination analysis, we im-

plemented our algorithms in Java on top of the Graal rule engine (Baget et al . 2015).

Our goal was twofold: (1) to understand the relevance of our theoretical approach with

real-world applications and (2) to understand the computational feasibility – even though

the problem of checking semantic acyclicity conditions, such as checking activeness of all

k-cycles w.r.t. restricted critical databases have a high theoretical worst-case complex-

ity, it may still be a valuable addition to the tools of termination analysis in real-world

scenarios.

We looked into a random collection of 700 ontologies from The Manchester OWL Cor-

pus (MOWLCorp) (Matentzoglu and Parsia 2014), which is a large corpus of ontologies on

the web. This corpus is a recent gathering of ontologies through sophisticated web crawls

and filtration techniques. After standard transformation into rules (see Cuenca Grau

et al. (2013) for details),18 based on the number of existential variables occurring in

transformed ontologies, we picked ontologies from two categories of up to 5 and 5–200

existential variables with equal probability (350 from each). We ran all tests on a Mac-

intosh laptop with 1.7 GHz Intel Core i7 processor, 8GB of RAM, and a 512GB SSD,

running macOS Catalina.

7.1 Implementation setup

Here, we provide the details on our implementation to identify k-safe(ΦΔ) rule sets.

For a given k ≥ 0 and a class Δ (which also denotes the corresponding acyclicity condi-

tion) of finite skolem chase, to start, the candidate pool of ontologies which is considered

for k-safe(ΦΔ) is the collection of all ontologies. The ontologies that fail our tests for

k-safe(ΦΔ) will be removed. Then at the end of this process, we obtain a set of termi-

nating ontologies.

For each given ontology, we transform it to a rule set R. In our experiments, we

consider extending four classes of finite skolem chase, Ψ = {WA, JA, aGRD,MFA}. For
each k-cycle σ based on R, first using the technique of piece-unification, we may eliminate

R from the candidate pool. If not removed, we then check whether Rule(σ) satisfies the

acyclicity condition Δ ∈ Ψ. If not, we run experiments to check whether σ is active w.r.t.

its restricted critical databases.

Let us first introduce the technique based on piece-unification.

Definition 12

(Piece-unification (Baget et al . 2009)) Given a pair of rules (r1, r2), a piece-unifier of

body(r2) and head(r1) is a unifying substitution θ of var(B)∪var(H) where B ⊆ body(r2)
and H ⊆ head(r1) which satisfies the following conditions:

(a) θ(B) = θ(H), and

(b) variables in varex(H) are unified only with those occurring in B but not in

body(r2) \B.

18 Due to limitations of this transformation, our collection does not include ontologies with nominals,
number restrictions, or denial constraints.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

40 A. Karimi et al.

Condition (a) gives a sufficient condition for rule dependency, but it may be an over-

estimate, which is constrained by condition (b). Note that in Example 4, condition

(a) holds for B = {T (x, y)} and H = {T (y, z)} where θ = {x/y, y/z}, and condition

(b) does not, since varex(H) = {z} and z unifies with y which occurs in both B and

body(r) \B = {P (x, y)}. Therefore, no piece-unifier of body(r) and head(r) exists.

Piece-unification is known to provide a necessary condition for rule dependencies in

that for any two rules r and r′, if body(r) and head(r′) are not piece-unifiable, then no

trigger (r, h) exists that relies on some atom derived from head(r′) (cf. Property 18 of

Baget et al . (2011)). Below, given a substitution θ, dom(θ) denotes the domain of θ,

which is the set of substituted variables in θ, and codom(θ) denotes the co-domain of θ,

which is the set of substitutes in θ. For technical reasons, if θ is a piece-unifier of body(r)

and head(r′), then dom(θ) refers to the subset of substituted variables which also appear

in body(r) and codom(θ) refers to the subset of substitutes which appear in body(r) as

well.

If the set of all sequences of piece-unifiers that can be constructed from a path π is

non-empty, then for each sequence of piece-unifiers that can be formed in π, we need to

check whether this sequence leads to a restricted chase sequence or not.

To show whether each sequence of piece-unifiers leads to a sequence of rules which are

transitively dependent, checking if they only satisfy conditions (a) and (b) above is not

sufficient. Indeed, as shown in Baget et al . (2011), given two rules r1 and r2, r2 depends on

r1 if and only if there is a piece-unifier θ of body(r2) with head(r1) such that θ satisfies the

following conditions: (i) atom-erasing and (ii) productive (a.k.a. useful, cf. (Baget et al .

2014b)). The former condition checks that θ(body(r2)) is not included in θ(body(r1)).

In addition, the productivity condition for θ means that θ(head(r2)) is not included in

θ(body(r1))∪θ(head(r1))∪θ(body(r2)). Note that the above two conditions can naturally

be extended to sequences of piece-unifiers. Therefore, in order to show that each path

π does not lead to a chained sequence, it suffices to show that each sequence of piece-

unifiers constructed from π (if any) does not satisfy either atom-erasing or productive

condition.

The goal of this part is to present how we can eliminate the irrelevant k-cycles in our

analysis. For this purpose, we utilize the notion of piece-unification as follows, for a given

k > 0.

• For each k-cycle σ, if the set of sequences of piece-unifiers is ∅, then σ will be removed

from consideration of further checks since σ trivially leads to a terminating skolem

chase before all the rules in σ are applied (and therefore, a terminating restricted

chase).

• For each k-cycle σ, if none of the sequences of piece-unifiers that can be constructed

from σ satisfy both conditions of atom-erasing and productive, then σ is removed

from our analysis.

We call each k-cycle which has not been removed during the above-mentioned steps,

relevant.19

19 Note that the notion of compatible unifiers is introduced in Baget et al . (2014a) in which piece-
unification has been relaxed to take into account arbitrary long sequences of rule applications. This is
similar to our goal. In fact, compatible unifiers provide a tighter notion which can help in removing
more irrelevant k-cycles.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 41

In our experiments, we performed the following steps:

1. Transforming ontologies in the considered corpus into the normal form using stan-

dard normalization techniques (cf. (Carral et al . 2014)). This will ensure that con-

cepts do not occur nested in other concepts and also each functional symbol in-

troduced during normalization depends on as few variables in the rule as possible.

It takes an input ontology path that can be parsed by the OWL API (which is

in OWL/XML, OWL Functional Syntax, OBO, RDF/RDFS or Turtle format) (cf.

(Horridge and Bechhofer 2011)) and produces a normalized ontology; Note that

we filter out the following axioms of input ontology: those that are not logical ax-

ioms and those containing datatypes, datatype properties, or built-in atoms as the

conventional normalization methods are unable to handle them;

2. Rewriting axioms to get first-order logic rules and writing them in the dlgp format

(for “Datalog+” (Baget et al . 2015));

3. Forming all relevant k-cycles Σ constructed from each transformed rule set and for

each σ ∈ Σ, where σ = (r1, . . . , rn), we check if Rule(σ) ∈ Δ, for each Δ from {WA,

JA, aGRD, MFA};
4. For each Δ from {WA, JA, aGRD, MFA} and for each relevant k-cycle σ such that

Rule(σ) /∈ Δ, we check the activeness of σ w.r.t. Iσ, that is, we check if there exists

a chained tuple of homomorphisms H = (h1, . . . , hn) for σ at each step (1 ≤ i ≤ n).
We implemented a chained homomorphism checker to accomplish this task;

• During the above check, whenever a relevant k-cycle σ is determined to be

active w.r.t. Iσ, the rule set R is removed from the candidate pool;

• If every k-cycle σ is not active w.r.t. Iσ, we check the reason for the failure,

say for rule ri (1 ≤ i ≤ n). If the failure is due to lack of a trigger which

is caused by mapping multiple occurrences of a body variable of ri to dis-

tinct indexed constants, then we know, by Theorem 2, that for some minimal

renaming function rn for Iσ, a trigger exists so that there is a chained re-

stricted chase sequence from rn(Iσ) up to (and including) ri. However, we

examined all the cases of failure and did not find any failure was caused this

way. Therefore, there is no need to continue experiments using the updated

restricted critical database as laid out in Theorem 2. This is to say that the

phenomenon illustrated in Example 8 did not show up in our collection of

practical ontologies.

5. Ontologies in the remaining candidate pool are decided to be terminating.

7.2 Experimental results

For each ontology, we allowed 2.5 hours to complete all of these tasks. In case of running

out of time or memory, we report no terminating result. For the first experiment, we

considered k-safe(ΦΔ) rule sets for four different cycle functions ΦΔ based on WA, JA,

aGRD, and MFA conditions, respectively, for different values of k.

We consider WA since its acyclicity condition is the easiest to check. We consider

three popular syntactic acyclicity conditions WA, JA, and aGRD because the main cost of

checking k-safe(ΦΔ) is then on the extension provided in this paper. Additionally, we con-

sider MFA, a well-known semantic condition for checking the skolem chase termination,

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

42 A. Karimi et al.

Table 1. Membership among 700 ontologies in the collected corpora

k k-safe(ΦaGRD) k-safe(ΦWA) k-safe(ΦJA) k-safe(ΦMFA)

k = 0 163 248 299 483

k = 1 171 258 310 495

k = 2 177 264 316 501

k = 3 182 269 321 506

k = 4 187 274 326 511

k = 5 190 277 329 514

k = 6 192 279 331 516

which is based on forbidding cyclic functional terms in the chase. Note that all other

(syntactic) conditions considered in this paper are subsets of MFA. Besides, it is known

that WA ⊂ JA and aGRD is not comparable to either WA or JA. We are interested to

know whether the high worst-case complexity of our extension prohibits applications in

the real world.20

In Table 1, the results of these experiments are summarized where the values of columns

2–5 denote numbers of ontologies with properties provided in their first row.

Consider the case k = 0. This is the case where we identify rule sets that are skolem

chase terminating under three acyclicity conditions aGRD, WA, and JA as well as under

the MFA condition. First, it is not surprising to observe that among 700 ontologies, the

first three syntactic conditions identify only a small subset of terminating ontologies.

However, when considering the MFA condition, we are able to capture many more rule

sets as terminating in this collection. Second, for our collection of practical ontologies, the

gap between the terminating classes under aGRD and WA conditions is indeed nontrivial.

Interestingly, this appears to be the first time that these three syntactic classes of ter-

minating rule sets are compared for practical ontologies. This shows that the theoretical

advance from aGRD to WA may have significant practical implications.

As can be seen in Table 1, in all of the considered classes, by increasing k, the number

of terminating ontologies increases. This is consistent with Theorem 5. Our experiments

stopped at k = 6 as we did not find more terminating rule sets by testing k = 7.

We considered some optimizations in our implementation. Before proceeding further,

let us define some notions. Given a rule set R, consider the graph of rule dependencies

GR of R in which the set of nodes is R, and there is an edge from some node ri to a node

ri if rj depends on ri. If there is a path from some rule ri to a rule rj , then ri is called

to be reachable from rj . If each node in GR is reachable from each other node, then GR is

connected. A component of GR is a maximal connected subgraph of GR (i.e., a connected

subgraph of GR with node set X for which no larger set Y containing X is connected).

For each rule set R, we find the maximal connected subgraphs of GR defined as above.

Given an acyclicity condition Δ, for each maximal connected subgraph S of GR, we check
whether S ∈ Δ returns true. If that is the case, then we do not need to check any path

based on any non-empty subset of S for activeness. The reason is that if S ∈ Δ, then any

20 For both MFA and RMFA, the complexity of membership checking is already higher than that of
Algorithm 1 (assuming checking Δ is in PTime, cf. Remark 1 in Section 5).

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 43

subset S ′ of S also satisfies Δ. Therefore, any cycle σ based on S ′ is safe. This helped us

remove irrelevant subsets of rules in 83 (11.8%) of ontologies in our collection.

Given an acyclicity condition Δ, by ΦΔ let us denote the cycle function constructed

from Δ. Then a notable subclass of 1-safe(ΦΔ) rules is called Δ≺ introduced in Grau

et al. (2013) which is defined as the set of rules R in which each simple cycle in the

graph of rule dependencies GR of R belongs to Δ. In our collection, it can be seen that

only one ontology is WA≺ (and therefore, JA≺), which belongs to 1-safe(ΦWA) but not

in 1-safe(ΦaGRD) in Table 1.

When k grows from 0, an interesting observation is that for each pair of acyclicity

conditions Δ1 and Δ2 such that Δ1 ⊂ Δ2, the rate of increase in the number of

terminating rules under ΦΔ2
is faster than that of terminating rules under ΦΔ1

when

k grows from k = 0 to k = 1. Then, for all k > 1 the increase of terminating rules from

(k − 1)-safe(ΦΔ) to k-safe(ΦΔ) is the same for each of the four acyclicity conditions.

Let us see what happens for k = 1. Let R be a rule set and Δ1 and Δ2 be any pair of

acyclicity conditions where Δ1 ⊂ Δ2. Then there may be some active k-cycles σ based

on R such that Rule(σ) ∈ Δ2 \Δ1. If for all such cycles based on R the above condition

holds, then R is in 1-safe(ΦΔ2
) but not in 1-safe(ΦΔ1

). Hence, for different columns, we

see some differences between the numbers added to the first row of Table 1 in a way that

for any pair of acyclicity conditions Δ1 and Δ2 such that Δ1 ⊂ Δ2, more rules are added

as terminating to k-safe(ΦΔ2
) compared to k-safe(ΦΔ1

), when k increases from 0 to 1.

When k > 1, we observe an interesting phenomenon – the same number of terminating

rule sets, in fact, the same rule sets, are added. Consider any pair of acyclicity conditions

Δ1 and Δ2 such that Δ1 ⊂ Δ2. For any rule set R, assume it is determined to be

terminating by Δ2. In general, more k-cycles based on R need to be checked for the

analysis of Algorithm 1 in the case of Δ1 than Δ2, due to the weaker acyclicity condition

in Δ1. For each such k-cycle σ, since Rule(σ) ∈ Δ2, it cannot be active w.r.t. rn∗(Iσ)
for any renaming function rn∗ (otherwise it would contract Theorem 2). Therefore, it

must pass the activeness checking of Line 7 in Algorithm 1. Consequently, just like how

R is determined to be terminating by Δ2, R is determined to be terminating by Δ1.

Conversely, since the set of k-cycles tested for Δ1 is a superset of those tested for Δ2, a

rule set R which is determined to be terminating by Δ1 must also be determined to be

terminating by Δ2. This explains why the number of increases of terminating rule sets

for different acyclicity conditions is a constant.

This observation leads to a choice of strategy for testing of k-safe(ΦΔ) for an expensive

acyclicity condition Δ. After failing the check of 1-safe(ΦΔ), we can check k-safe(ΦΔ′)

for k > 1, where Δ′ is a weaker but easy-to-check acyclicity condition, with the under-

standing that the same terminating rule sets will be discovered.

Also, it is clear that if Δ1 ⊂ Δ2 then for all k ≥ 0, k-safe(ΦΔ1
) ⊂ k-safe(ΦΔ2

). In

Table 1, since WA ⊂ JA ⊂ MFA, the same inclusion relation holds for k-safe(ΦΔ) rules

constructed from each acyclicity condition Δ for all integers k ≥ 0.

In order to compare our results with those of Carral et al . (2017), we checked the

set of terminating ontologies under our conditions for membership in RMFA introduced

therein. As a result, it was observed that all the tested rule sets, except for 2 of them,

already belong to RMFA. In fact, those 2 rule sets belong to 6-safe(ΦMFA).

Additionally, we checked the tested corpora for membership in RMFC (cf. (Carral

et al. 2017)). It was observed that 165 (23.6%) of the ontologies belong to RMFC (i.e.,

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

44 A. Karimi et al.

Table 2. Average time analysis for membership testing of terminating ontologies

Average time analysis for k = 6

Classes Avg. time (s) T.W.A.T. (#) Terminating (%)

6-safe(ΦaGRD) 4139 125 27.4
6-safe(ΦWA) 3556 164 39.8
6-safe(ΦJA) 3231 183 47.2
6-safe(ΦMFA) 4923 282 73.7

for each rule set R in this category, there is a database I0 for which the restricted chase of

R and I0 is infinite). Based on the above results, we find that the termination status of 19

(2.71%) ontologies in the collection is open (i.e., they do not belong to 6-safe(ΦMFA) or

RMFC or RMFA). We conducted our tests for membership in RMFA and RMFC using

VLog (Carral et al . 2019).

For the second experiment, we performed time analysis for the tested ontologies for

different cycle functions by fixing k to 6. The results are reported in Table 2, where the

average running time, as well as the number of ontologies terminating within the average

running time (abbreviated as T.W.A.T.) for that particular cycle function, are reported.

It can be seen that in all tested conditions, more than half of the terminating ontologies

can be determined within the average time. Note that the average times of the table are

in seconds.

From our experiments, we can see that there is no one-number-fits-all k for which any

ontology belongs to k-safe(ΦΔ). However, as observed in our experiments, for real-world

ontologies, this number can be indeed small.

TGD generator: For adequately evaluating our approach and also for scalability test-

ing, we implemented a TGD generator on top of Benedikt et al . (2017). Our goal was to

check the performance of implemented classes on large instances with large sets of chase

atoms. Our generator can generate custom TGDs while controlling their complexity. It

supports an arbitrary number of body atoms. Also, a parameterized total number of

predicates and arity of atoms is defined. Furthermore, a parameter is used to control the

maximum number of repeated relations in the formula. Each TGD is generated by creat-

ing conjunctions and then selecting the subset of atoms that form the head of each TGD.

In our experiments, we generated 500 linear source-to-target TGDs and 200 linear

target TGDs. The reason that we picked linear rules was to control one parameter at a

time and also to take the complexities of membership checking under control by focusing

on the head atoms to have a better analysis on the restricted chase, as checking activeness

of paths is the key here.

For the generated scenarios, we precomputed restricted critical databases for the source

instance generated by our TGD generator and then, to manage the structure of our TGDs,

we tested two different forms of TGD heads: (1) those that have three relations joined

in a chain (i.e., the last variable of an atom is joined with the first variable of the next

atom which we refer to as chained TGDs) and (2) those in which three relations of the

head do not share variables (which we refer to as discrete TGDs).

In all experiments, each atom has arity four and each TGD can have up to three

repeated relations. The 3 head predicates and the body predicate have been chosen

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 45

Table 3. Statistical results of chained TGD generator for k-safe(ΦWA) membership

Statistics of chained TGD generator for membership in k-safe(ΦWA)

k Avg. time (s) Terminating (%) Timeout failure (%) Memory failure (%)

k = 0 54 81 4 0
k = 1 135 83.3 6 0.2
k = 2 474 86.2 7 0.3

Table 4. Statistical results of discrete TGD generator for k-safe(ΦWA) membership

Statistics of discrete TGD generator for membership in k-safe(ΦWA)

k Avg. time (s) Terminating (%) Timeout failure (%) Memory failure (%)

k = 0 43 89 2 0
k = 1 94 92 4 0.11
k = 2 341 92 4.2 0.16

randomly out of a space of 20 predicates. After the generation of each TGD, we check

its membership in k-safe(ΦWA) for k = {0, 1, 2}; keep only those TGDs for which this

test returns true and discard the rest. Results of different properties in the tested TGDs

have been recorded in Tables 3 and 4.

The results of Tables 3 and 4 demonstrate that the average running times of member-

ship checking in k-safe(ΦWA) for chained TGD generator is more than that of discrete

TGD generator. The reason could be in the activeness checking module which takes

more time in the rules in which (derived) atoms share variables. In addition, in both

TGD generators, there are far lesser memory failures than timeout failures.

We performed the same check as detailed in the previous subsection regarding the

need for utilizing updated restricted critical databases for rules outputted from our TGD

generator, and similar to ontologies in the considered corpora in that section, we did not

find any ontology for which we need to run experiments to check activeness with updated

restricted critical databases.

8 Discussion

In this section, we introduce some more recent papers in this area and then show how

to leverage them to extend our proposed k-safe(Φ) classes uniformly. In Krötzsch et al .

(2019), it is shown that there are examples of TGDs for which the data complexity of the

restricted chase can reach nonelementary upper bounds. Note, however, that as shown in

Zhang et al . (2015), given any κ > 0, for any expκ-bounded rule set R under the skolem

chase variant, the Boolean query answering problem is PTime-complete for the data

complexity. Therefore, the restricted chase can realize queries which are out of the reach

for the skolem chase variant.

Let us define the notion of a strategy as a plan of choosing paths based on a given

rule set. Utilizing this notion allows us to focus on a concrete plan for path selection

in the course of our termination analysis for the restricted chase to extend the set of

terminating rules under the restricted chase. Exploiting the above terminology, CTres
∀∀

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

46 A. Karimi et al.

can be alternatively defined to be the set of rules with terminating restricted chase for

all strategies and all instances.

On the other hand, from Onet (2013) it is known that CTres
∀∀ ⊂ CTres

∀∃, where CTres
∀∃

denotes the class of rule sets R such that for all instances I there exists at least one

restricted chase sequence of I and R that is finite. Similarly, we can define CTres
∀∃ to be

the set of rules with terminating restricted chase for some strategy and all instances.

Recently, a chase variant known as theDatalog-first chase has been introduced in Carral

et al. (2017) and subsequently in Krötzsch et al . (2019), which extends all-path restricted

chase by focusing on a particular class of strategies that priorities the application of non-

generating (Datalog) rules in any considered restricted chase sequence. Let CTdlf
∀∀ denote

the set of rules with a terminating Datalog-first chase for all strategies (paths) and all

instances.21 Then we have CTres
∀∀ ⊂ CTdlf

∀∀ ⊆ CTres
∀∃. Note that although the first inclusion

is strict, at the time of writing this paper it is not known whether the second inclusion

above is also strict or not.

Based on what was discussed above, we can extend the set of δ-bounded rules under

the restricted chase variant as well as k-safe(Φ) rules for a given bound function δ,

integer k, and cycle function Φ by considering the Datalog-first chase. For this purpose,

we only need to focus on cycles in which applications of Datalog rules are prioritized.

Given a bound function δ, let us call any rule set R that is δ-bounded under the above

condition δ-bounded under the Datalog-first chase. We can define k-safe(Φ) rules under

the Datalog-first chase similarly.22

Example 12

Let R = {r1, r2} (adopted from Gogacz et al . (2019)), where

r1 : Q(x, y, y)→ ∃uQ(x, u, y), Q(u, y, y)

r2 : Q(x, y, z)→ Q(z, z, z)

Note that in this rule set, the fairness condition requires application of r2 in any (fair)

sequence of the restricted chase and after r2 is applied, the next application of r1 is

not active and therefore, any (fair) restricted chase sequence terminates. The following

derivation starting from {Q(a, b, b)} demonstrates such a sequence in which fresh nulls

zi are used to instantiate the existential variable u:

I0 =
{
Q(a, b, b)

} 〈r1,{x/a,y/b}〉−−−−−−−−−→
I1 = I0 ∪

{
Q(a, z1, b), Q(z1, b, b)

} 〈r1,{x/z1,y/b}〉−−−−−−−−−−→
I2 = I1 ∪

{
Q(z1, z2, b), Q(z2, b, b)

} 〈r1,{x/z2,y/b}〉−−−−−−−−−−→
I3 = I2 ∪

{
Q(z2, z3, b), Q(z3, b, b)} 〈r1,{x/z3,y/b}〉−−−−−−−−−−→

. . .

Ij−1 = Ij−2 ∪
{
Q(zj−2, zj−1, b), Q(zj−1, b, b)} 〈r2,{x/a,y/b,z/b}〉−−−−−−−−−−−−→

Ij = Ij−1 ∪
{
Q(b, b, b)}

21 Note that by strategy in the Datalog-first chase we mean a plan for choosing the application order of
Datalog rules which must always occur before the application of generating rules (i.e., non-full TGDs).

22 In this case, R is said to be in k-safe(Φ) under the Datalog-first chase, or to belong to k-safe(Φ)
under the Datalog-first chase (given a cycle function Φ and an integer k), if for every k-cycle σ which
prioritizes Datalog rules (except the last rule of the cycle), and is mapped to F under ΦR, σ is safe.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 47

Note that in the above sequence of derivations, the following step: Ij〈r1, {x/zj−1,

y/b}〉Ij+1 does not exist, and any valid restricted chase sequence terminates. However,

the fairness condition needs the existence of some j to apply some active trigger involving

r2 (i.e., 〈r2, {x/a, y/b}〉 in this example). But due to the nondeterministic nature of this

process, j can be chosen anywhere in the sequence.

As discussed above, the rule set R in this example is not δ-bounded under the restricted

chase for any computable bound function δ. However, starting from any database I, no

(fair) infinite restricted chase sequence can be constructed from R and I.

On the other hand, it is not hard to see that R belongs to 1-safe(ΦWA) under the

Datalog-first chase. The reason is that this chase variant requires the application of r2
before r1 in any valid chase sequence. Therefore, all 1-cycles in which the application of

Datalog rules are prioritized (i.e., (r2, r1, r2)) are safe. The following sequence of deriva-

tions shows why this is the case.

I ′0 =
{
Q(a, b, c)

} 〈r2,{x/a,y/b,z/c}〉−−−−−−−−−−−−→
I ′1 = I ′0 ∪

{
Q(b, b, b)

} 〈r1,{x/b,y/b}〉−−−−−−−−−→
I ′2 = I ′1 ∪

{
Q(b, z1, b), Q(z1, b, b)

} θ={z1/b}
======⇒ θ(I ′2) ⊆ I ′1

Notice that as recently shown in Gogacz et al . (2019), if the given rule set is single head

(i.e., all rules in it are single head), then the fairness for the restricted chase termination

is irrelevant. However, unlike the skolem chase variant for which there is a straightforward

termination-preserving translation from any rule set to a single-head rule set (cf. (Baget

et al. 2011)), no such termination-preserving translation exists for the restricted chase.

Clearly, given an integer k and a cycle function Φ, any rule set that is k-safe(Φ) under

the restricted chase is also k-safe(Φ) under the Datalog-first chase. Example 12 shows

that this inclusion relation is indeed strict. The same argument holds for δ-bounded rules

under the restricted versus the Datalog-first chase using the same example to demonstrate

that the inclusion is strict.

9 Conclusion and future work

In this work, we introduced a general framework to extend classes of chase terminat-

ing rule sets. We formulated a technique to characterize finite restricted chase which

can be applied to extend any class of finite skolem chase identified by a condition of

acyclicity. The main strength of our work, which is also the main distinction from almost

all previous work on chase termination, is its generality. Then, we showed how to ap-

ply our techniques to extend δ-bounded rule sets. Our theoretical results for complexity

analyses showed that in general this extension indeed increases the complexities of mem-

bership checking and the complexity of combined reasoning tasks for δ-bounded rule sets

under the restricted chase compared to the skolem chase. However, by implementation

and experimentation, we showed the relevance of our work in real-world ontologies. Our

experimental results discovered a growing number of practical ontologies with finite re-

stricted chase by increasing computational cost as well as changing the underlying cycle

function. They also showed the evidence that existential rules provide a suitable modeling

language for ontological reasoning.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

48 A. Karimi et al.

We will next investigate conditions for subclasses with a reduction of cost for member-

ship testing. One idea is to find syntactic conditions under which triggers to a rule are

necessarily active. Note that the current implementation of our system is relatively slow,

particularly for nonlinear rules. It often requires long chase times to check membership

in k-safe(Φ) even for small values of k. In order to tackle this problem, we can consider

two options which can also be combined toward a more efficient implementation. The

first option is considering k-safe(Φ) under a particular path selection strategy such as the

Datalog-first approach. This way, we can filter out a subset of paths in our membership

analysis. Alternatively, we can conduct our implementations in MapReduce model.

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc.

Baget, J.-F. 2004. Improving the forward chaining algorithm for conceptual graphs rules. In
Proceedings of the Ninth International Conference on Principles of Knowledge Representation
and Reasoning. AAAI Press, 407–414.

Baget, J.-F., Garreau, F., Mugnier, M.-L. and Rocher, S. 2014a. Extending acyclicity
notions for existential rules. In Proceedings of the 21st European Conference on Artificial
Intelligence. IOS Press, 39–44.

Baget, J.-F., Garreau, F., Mugnier, M.-L. and Rocher, S. 2014b. Revisiting chase termi-
nation for existential rules and their extension to nonmonotonic negation. In Proceedings of
the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014).

Baget, J.-F., Gutierrez, A., Leclere, M., Mugnier, M.-L., Rocher, S. and Sipieter,

C. 2015. Datalog+, RuleML and OWL 2: Formats and translations for existential rules. In
Proceedings of the RuleML 2015 Challenge (Challenge+ DC@ RuleML). CEUR Workshop
Proceedings, vol. 1417. CEUR-WS.org.

Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S. and Sipieter, C. 2015. Graal: A
toolkit for query answering with existential rules. In Proceedings of the International Sympo-
sium on Rules and Rule Markup Languages for the Semantic Web. LNCS, vol. 9202. Springer,
328–344.

Baget, J.-F., Leclère, M., Mugnier, M.-L. and Salvat, E. 2009. Extending decidable
cases for rules with existential variables. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence, 677–682.

Baget, J.-F., Leclère, M., Mugnier, M.-L. and Salvat, E. 2011. On rules with existential
variables: Walking the decidability line. Artificial Intelligence 175, 9, 1620–1654.

Beeri, C. and Vardi, M. Y. 1981. The implication problem for data dependencies. In Proceed-
ings of the 8th International Colloquium on Automata, Languages, and Programming. LNCS,
vol. 115. Springer, 73–85.

Beeri, C. and Vardi, M. Y. 1984. A proof procedure for data dependencies. Journal of the
ACM 31, 4, 718–741.

Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti, P., Santoro, D. and

Tsamoura, E. 2017. Benchmarking the chase. In Proceedings of the 36th ACM Symposium
on Principles of Database Systems. ACM, 37–52.

Bourhis, P., Manna, M., Morak, M. and Pieris, A. 2016. Guarded-based disjunctive tuple-
generating dependencies. ACM Transactions on Database Systems 41, 4, 27:1–27:45.

Calautti, M., Gottlob, G. and Pieris, A. 2015. Chase termination for guarded existential
rules. In Proceedings of the 34th ACM Symposium on Principles of Database Systems. ACM,
91–103.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

Theory and Practice of Logic Programming 49

Calautti, M. and Pieris, A. 2019. Oblivious chase termination: The sticky case. In Proceedings
of the Twenty-Second International Conference on Database Theory. LIPIcs, vol. 127. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 17:1–17:18.

Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B. and Pieris, A. 2010. Datalog+/-:
A family of logical knowledge representation and query languages for new applications. In
Proceedings of the Twenty-Fifth Annual IEEE Symposium on Logic in Computer Science.
IEEE, 228–242.

Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M. and Urbani, J. 2019.
Vlog: A rule engine for knowledge graphs. In Proceedings of the16th International Semantic
Web Conference. LNCS, vol. 11779. Springer, 19–35.

Carral, D., Dragoste, I. and Krötzsch, M. 2017. Restricted chase (non) termination for
existential rules with disjunctions. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. ijcai.org, 922–928.

Carral, D., Feier, C., Grau, B. C., Hitzler, P. and Horrocks, I. 2014. EL-ifying on-
tologies. In Proceedings of the7th International Joint Conference on Automated Reasoning.
LNCS, vol. 8562. Springer, 464–479.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B. and

Wang, Z. 2013. Acyclicity notions for existential rules and their application to query answer-
ing in ontologies. Journal of Artificial Intelligence Research 47, 741–808.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Delivorias, S., Leclère, M., Mugnier, M.-L. and Ulliana, F. 2018. On the k-boundedness
for existential rules. In Proceedings of the 2nd International Joint Conference on Rules and
Reasoning. LNCS, vol. 11092. Springer, 48–64.

Deutsch, A., Nash, A. and Remmel, J. 2008. The chase revisited. In Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Database Systems. ACM, 149–158.

Fagin, R., Kolaitis, P. G., Miller, R. J. and Popa, L. 2003. Data exchange: Semantics
and query answering. In Proceedings of the 9th International Conference on Database Theory.
LNCS, vol. 2572. Springer, 207–224.

Fagin, R., Kolaitis, P. G., Miller, R. J. and Popa, L. 2005. Data exchange: Semantics and
query answering. Theoretical Computer Science 336, 1, 89–124.

Gogacz, T., Marcinkowski, J. and Pieris, A. 2019. All-instances restricted chase termina-
tion: The guarded case. arXiv preprint arXiv:1901.03897.

Grahne, G. and Onet, A. 2018. Anatomy of the chase. Fundamenta Informaticae 157, 3,
221–270.

Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B. and Wang,

Z. 2013. Acyclicity notions for existential rules and their application to query answering in
ontologies. Journal of Artificial Intelligence Research 47, 741–808.

Hell, P. and Nešetřil, J. 1992. The core of a graph. Discrete Mathematics 109, 1-3, 117–126.

Hillebrand, G. G., Kanellakis, P. C., Mairson, H. G. and Vardi, M. Y. 1995. Unde-
cidable boundedness problems for datalog programs. Journal of Logic Programming 25, 2,
163–190.

Horridge, M. and Bechhofer, S. 2011. The OWL API: A java API for OWL ontologies.
Semantic Web 2, 1, 11–21.

Immerman, N. 1988. Nondeterministic space is closed under complementation. SIAM Journal
on Computing 17, 5, 935–938.

Karimi, A., Zhang, H. and You, J.-H. 2018. Restricted chase termination: A hierarchical
approach and experimentation. In Proceedings of the 2nd International Joint Conference on
Rules and Reasoning. LNCS, vol. 11092. Springer, 98–114.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://arxiv.org/abs/1901.03897
https://doi.org/10.1017/S1471068420000101

50 A. Karimi et al.

Krötzsch, M., Marx, M. and Rudolph, S. 2019. The power of the terminating chase. In
Proceedings of the Twenty-Second International Conference on Database Theory. LIPIcs, vol.
127. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:17.

Krötzsch, M. and Rudolph, S. 2011. Extending decidable existential rules by joining acyclic-
ity and guardedness. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence. IJCAI/AAAI, 963–968.

Leclère, M., Mugnier, M.-L., Thomazo, M. and Ulliana, F. 2019. A single approach to
decide chase termination on linear existential rules. In Proceedings of Twenty-Second Interna-
tional Conference on Database Theory. LIPIcs, vol. 127. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 18:1–18:19.

Marcinkowski, J. 1999. Achilles, turtle, and undecidable boundedness problems for small
datalog programs. SIAM Journal on Computing 29, 1, 231–257.

Marnette, B. 2009. Generalized schema-mappings: from termination to tractability. In Pro-
ceedings of the Twenty-Eighth ACM Symposium on Principles of Database Systems. ACM,
13–22.

Matentzoglu, N. and Parsia, B. 2014. The Manchester OWL Corpus (MOWLCorp), original
serialisation.

Onet, A. 2013. The chase procedure and its applications in data exchange. In Data Exchange,
Integration, and Streams. Dagstuhl Follow-Ups, vol. 5. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 1–37.

Rutenburg, V. 1986. Complexity of generalized graph coloring. In Proceedings of the Inter-
national Symposium on Mathematical Foundations of Computer Science. LNCS, vol. 233.
Springer, 573–581.

Savitch, W. J. 1970. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and System Sciences 4, 2, 177–192.

Zhang, H., Zhang, Y. and You, J.-H. 2015. Existential rule languages with finite chase:
Complexity and expressiveness. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI Press, 1678–1685.

https://doi.org/10.1017/S1471068420000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000101

	Introduction
	Preliminaries
	Skolem and restricted chase variants
	A concrete example

	Previous development and related work
	Finite restricted chase by activeness
	Restricted critical databases and chained property
	Activeness for simple rules
	Activeness for arbitrary rules

	K-safe() rule sets
	Extension of bounded rule sets
	Experimentation
	Implementation setup
	Experimental results

	Discussion
	Conclusion and future work
	References

