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IDENTITY CRISIS BETWEEN SUPERCOMPACTNESS AND
VǑPENKA’S PRINCIPLE

YAIR HAYUT, MENACHEM MAGIDOR, AND ALEJANDRO POVEDA

Abstract. In this paper we study the notion of C (n)-supercompactness introduced by Bagaria in
[3] and prove the identity crises phenomenon for such class. Specifically, we show that consistently the
least supercompact is strictly below the least C (1)-supercompact but also that the least supercompact is
C (1)-supercompact (and even C (n)-supercompact). Furthermore, we prove that under suitable hypothesis
the ultimate identity crises is also possible. These results solve several questions posed by Bagaria and
Tsaprounis.

§1. Introduction. Reflection principles are one of the most important and
ubiquitous phenomena in mathematics. Broadly speaking, one can formulate
reflection principles by means of the slogan “If a structure enjoys some property, there
is a small substructure satisfying the same property”. In practice small substructure is
modulated by some given regular cardinal.

The dual version of reflection principles are the so called Compactness Principles.
The way of defining a compactness principle is by means of the slogan “If every small
substructure of a given structure enjoys some property then the structure satisfies the
property, as well”. One can easily reformulate a reflection principle as a compactness
and viceversa. Thus, the choice in the formulation of a given problem will depend on
which of them is more illustrative. Mathematical Logic, and specially Set Theory, is
one of the fields where many central questions are formulated in terms of reflection
principles and consequently, its study becomes of special interest. Among many
other examples, we can highlight the investigations on stationary reflection or the
study of the tree property at regular cardinals.

From a platonistic conception, Set Theory is the field devoted to reveal the truths
of the universe of sets. Long time ago Lévy and Montague proved the Reflection
theorem (see e.g. [13]) discovering that reflection is an intrinsic feature of the model-
theoretic architecture of the universe of sets, V. More precisely, for each n ∈ �, they
proved that the class of ordinals α ∈ C (n) such that Vα ≺n V is a proper club class.
Short time after, Lévy noticed that the Reflection theorem is equivalent to Infinity
plus Replacement, modulo the remaining ZF axioms. This accentuates, even more,
the belief that reflection is one of the cornerstones of Set Theory.
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SUPERCOMPACTNESS AND VǑPENKA’S PRINCIPLE 627

The model-theoretic machinery of elementary embeddings has been the respon-
sible of reflection principles to become more and more sophisticated. Many of the
well-known large cardinals notions are formulated as critical points of elementary
embeddings j : V →M between the universe and some transitive substructure
M ⊆ V . The degree of agreement between these two structures depends on the
specific properties of j.

The purpose of the present paper is to contribute to the investigation of the
identity crises phenomenon in the section of the large cardinal hierarchy ranging
between the first supercompact cardinal and Vopenka’s Principle (VP on the sequel).
These cardinals are known as C (n)-cardinals and were introduced by Bagaria in [3]
aiming for a sharp study of the strongest forms of reflection. Morally these families
of large cardinal principles provide natural milestones on the road towards the ultimate
reflection principle. For convenience hereafter we shall denote by M, K, S, S�1

1 and
E the classes of measurable, strongly compact, �1-strongly compact, supercompact
and extendible cardinals, respectively. Similarly, S(n) and E(n) will stand for the
families of C (n)-supercompact and C (n)-extendible cardinals, respectively. Any
undefined notion may be consulted in Tsaprounis excellent Ph.D. dissertation [17].

Several studies on the topic of C (n)-cardinals have been carried out succesfully
by Bagaria and Tsaprounis whose investigations cover a broad spectrum embracing
from the interplay of C (n)-cardinals with forcing to applications to Category theory
and Resurrection Axioms (see [3], [4], [19], [21], [18], [20]). Nonetheless, there is a
natural notion in the setting ofC (n)-cardinals which remains elusive and mysterious:
C (n)-supercompactness.

Definition 1.1 (C (n)-supercompactness [3]). A cardinal κ is �-C (n)-
supercompact for some � > κ, if there is an elementary embedding j : V →M
such that crit(j) = κ, j(κ) > �, M� ⊆M and j(κ) ∈ C (n). A cardinal κ is C (n)-
supercompact if it is �-C (n)-supercompact, for each � > κ.

Our purpose along the paper will answer the next three questions posed by Bagaria
and Tsaprounis.

Question 1. Are the notions of supercompactness and C (1)-supercompactness
equivalent? More generally, given n ≥ 1, is it true that the first supercompact is the
same as the first C (n)-supercompact?

Question 2. Do the classes of C (n)-supercompact cardinals form a strictly
increasing hierarchy?

Question 3. Let n ≥ 1. Is it the first C (n)-supercompact cardinal the first C (n)-
extendible?

Our contribution to settle the aforementioned questions can be summarized by
the following two results:

1A cardinal κ is called�1-strongly compact if for every set X and every κ-complete filter over X, there
is some �1-complete ultrafilter extending it. For a extensive study of such cardinals see [6] and [7].
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Theorem 1.2. (Main Theorem 1) Assume GCH holds and let κ be a supercompact
cardinal. Then there is a generic extension V P where κ is still supercompact but not
C (1)-supercompact. In fact there is no elementary embedding in V P, j : V P →M ,
such that crit(j) = κ,M� ⊆M and j(κ) being a limit cardinal.

Theorem 1.3. (Main Theorem 2) Let n ≥ 1, κ be a C (n)-supercompact cardinal
and � : κ → κ be a S(n)-fast function on κ. Then in the generic extension VM given
by a Magidor product of Prikry forcings κ remains C (n)-supercompact and in fact it
is the first (�1-) strongly compact. In particular, the following holds in VM:

minM < minK�1 = minK = minS = minS(n) < minE.

Both Theorem 1.2 and Theorem 1.3 settle in a negative way the former questions.
Furthermore building on these ideas we shall show how to prove the following
strengthenings:

Theorem 1.4. Assume GCH holds and that there are two supercompact cardinals
with a C (1)-supercompact cardinal above them. Then there is a generic extension of
the universe where the following holds:

minM < minK < minS < minS(1).

Theorem 1.5. (The ultimate identity crises) Let 〈V,∈, κ〉 be a model of (large
enough fragment of ) ZFC� plus C (<�) – EXT. Then in the generic extension VM it
is true that

minM < minK�1 = minK = minS = minS(<�) < minE.

The notions C (<�) – EXT and S(<�) will be introduced at the end of §3.
The structure of the paper is as follows. §2 will be devoted to the proofs of

Theorems 1.2 and 1.4 while §3 will be focused on the proofs of Theorems 1.3 and
1.4. We shall end the paper with §4 and §5 where we respectively describe what
is known up to the moment about C (n)-supercompact cardinals and what are the
possibles futures for the research of this topic. All the notions and notations are quite
standard and can be easily found either in general manuals or in the bibliography
quoted below.

§2. The first C (1)-supercompact can be greater than the first supercompact. The
present section is devoted to the proof of Theorems 1.2 and 1.4. In particular, both
results answer negatively Question 1. Before beginning with the details let us give a
taste of the ideas involved in the proof of these results.

A classical theorem of Solovay asserts that if a cardinal κ is strongly compact then
�� fails, all � ≥ κ [16]. More generally if κ is a supercompact cardinal then ��,cf(�)
fails, for cf(�) < κ < � (see Proposition 2.12). Therefore it is then natural to ask
how much square can hold below a supercompact cardinal. Working in this direction
Apter proved in [1] the consistency of a supercompact cardinal with the existence
of ��-sequences for each cardinal � in a certain stationary subset of κ. On this
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respect it is worth to emphasize that this result is close to be optimal since there is
no club C ⊆ κ where �� holds, for each � ∈ C . Indeed, let us assume aiming for a
contradiction that κ is supercompact and C ⊆ κ is a club with the above property.
Let U be the standard normal measure derived by some elementary embedding
with critical point κ and M be the corresponding ultrapower. By normality of the
measure C ∈ U , hence �κ holds in M, and furthermore it is not hard to show that
(κ+)M = κ+. Altogether one has that �κ holds, yielding a contradiction with the
supercompactness of κ.

Broadly speaking, the main point to kill the C (1)-supercompactness of a
supercompact cardinal κ is to construct a generic extension where any elementary
embedding witnessing the C (1)-supercompactness of κ would yield to the existence
of a ��-sequence above κ. To implement this idea one needs to force many square
sequences below κ and afterwards argue that this is upwards reflected by any C (1)-
supercompact embedding with critical point κ. This is interesting since it points out
that despite the existence of many squares sequences is not an inconvenience for
supercompactness it is for C (1)-supercompactness.

Our forcing construction will be an Easton support iteration guided by some
Laver function on κ of the canonical forcings for adding square sequences. Once
one proves that this forcing is harmless with respect to the supercompactness of
κ it is not hard to prove that there are no witnesses for C (1)-supercompactness
in the generic extension. In particular Theorem 1.2 yields to the next result of
consistency:

Corollary 2.1. Con(ZFC + GCH + ∃κ, � (κ, � ∈ S(1))) implies Con(ZFC +
GCH + minS < minS(1)).

Working on the ideas needed for the proof of Theorem 1.2 we will show in §2.2
how to use them to prove Theorem 1.4. As before, this result will automatically yield
the following consistency result:

Corollary 2.2. Con(ZFC + GCH + ∃κ, � ∈ S∃� ∈ S(1)(� < κ < �)) implies
Con(ZFC + minM < minK < minS < minS(1)).

2.1. The proof of Theorem 1.2. Let us start recalling some basic notions that are
necessary for the proof of Theorem 1.2.

Definition 2.3. (�-sequences). Let � ≤ κ be two cardinals. A �κ,�-sequence
is a sequence of sets �C = 〈Cα : α ∈ Lim ∩ κ+〉2 such that the following properties
hold:

(a) For each α ∈ Lim ∩ κ+ the set Cα is a family of club sets on α with 1 ≤ |Cα | ≤
�.

2Here Lim denotes the class of all limit ordinals.
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(b) For each α ∈ Lim ∩ κ+ with cf(α) < κ the family Cα only contains sets C
with otp(C ) < κ.

(c) For eachα ∈ Lim ∩ κ+, the family 〈C	 : 	 ∈ Lim ∩ α〉 is coherently disposed;
namely,

∀C ∈ Cα ∀	 ∈ Lim(C )C ∩ 	 ∈ C	 .
We shall say that �κ,� holds if there is a �κ,�-sequence. Similarly, we will say that
�κ,<� holds if �κ,
 holds, for each 
 < �. We shall denote by �κ and by �∗

κ the
principles �κ,1 and �κ,κ, respectively.

There is a canonical forcing for adding a ��,�-sequence by approximations but
for the purposes of the current paper it will be enough to present the definition of
the forcing for adding a ��-sequence.

Definition 2.4. Let �be an uncountable cardinal. The canonical poset for forcing
a ��-sequence P�� is the set of conditions p such that

(a) p is a function with dom(p) = (α + 1) ∩ Lim with α ∈ �+ ∩ Lim.
(b) For every 	 ∈ dom(p), p(	) ⊆ 	 is a club subset with otp(p(	)) ≤ �.
(c) If 	 ∈ dom(p)∀� ∈ p(	) ∩ Lim(p(�) = p(	) ∩ �).

endowed with the reverse end-extension order.

Standard arguments show that P�� is a (�+ 1)-strategically closed forcing (see
[10]) and under GCH, since |P�� | = �+, it preserves cofinalities and respects the
GCH pattern.

Many times it is helpful for carrying out lifting arguments that our iteration is
defined in a sparse enough set of cardinals. The standard setting for such kind of
arguments is described by a forcing iteration P, an elementary embedding j : V →
M and a factorization of the form j(P) ∼= P ∗ Q̇. Under these conditions one expects
that Q̇ enjoys of some closure property that helps to find a Q̇-generic filter overMP.
For instance, if Q is closed enough inMP it is usual to build such a generic filter by
means a diagonalization argument.

One of the standard procedures to build such iterations consists in guiding the
iteration with a function � presenting some fast behavior. Despite that we will need to
consider slightly more general fast functions (see the preliminary discussion of §3),
in this part we will only be interested in the case where � is a Laver function. Recall
that if κ is a supercompact cardinal a function � : κ → Vκ is called a Laver function
if for every � > κ there is a �-supercompact elementary embedding j : V →M with
j(�)(κ) > � [14].

Without loss of generality we may and do assume that the domain of � is the club
set of closure points α of � (i.e. � ′′α ⊆ Vα) that are also strong limit cardinals.

Definition 2.5. Let P�κ be the κ-Easton support iteration3 where P�0 is the trivial
forcing and for each ordinal α < κ, if α ∈ dom(�) ∩ Eκ� and �P�α

“α̌+ is a cardinal”

then �P�α
“Q̇α = P�α” and �P�α

“Q̇α is trivial”, otherwise.

3Namely, direct limits are taken at inaccessible cardinals and inverse limits elsewhere.
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The next proposition shows that P�κ forces a ��-sequence for each � ∈ dom (�) ∩
Eκ� and thus �� holds in a stationary subset of κ.

Proposition 2.6. Assume GCH . The iteration P�κ preserves cardinals, the GCH
pattern and yields a generic extension V P�κ where �� holds, for all cardinal � ∈ Eκ� ∩
dom(�).

Proof. The first claim easily follows from the comments after Definition 2.4 so
it is enough to prove the claim about the ��-sequences. Let � ∈ dom(�) ∩ Eκ� be a
cardinal and notice that P�κ factorizes as P��+1 ∗ Ṗ�tail , where Ṗ�tail is some P��+1-name
for a �+-strategically closed iteration. Now notice that P�� is �+-cc, hence P��+1 forces

��, and P�tail preserves (�+)V
P��+1 so �P�κ

“��holds”. �

Proposition 2.7. Forcing with P�κ preserves the supercompactness of κ. Moreover
in V P�κ , κ is the first supercompact.

Proof. The last claim follows immediately from the result of Solovay, [16].
Working in V, let � > κ, 
 = (2�

<κ
)+ and j : V →M be some 
-supercompact

embedding such that j(�)(κ) > 
 and G ⊆ P�κ a generic filter over V. First of all,
since j(�) � κ = �, the forcing j(P�κ) factorizes as

j(P�κ) ∼= P�κ ∗Q ∗ Ptail .

where Q is forced to be the trivial poset because cfM (κ) > �. On the other hand,
�P�κ

“Q ∗ Ptail is 
-strategically closed” since j(�)(κ) > 
. For the ease of notation
we shall denote by P∗

tail the iteration Q ∗ Ptail . The conditions in P�κ have bounded
supports in κ, hence j � P�κ = id , so j′′G ⊆ G ∗H , for any H ⊆ (P∗

tail )G generic
filter over M [G ]. Set j∗ : V [G ] →M [G ∗H ] ⊆ V [G ∗H ] be the corresponding
lifting. Since κ is a Mahlo cardinal and P�κ is a κ-Easton support iteration of
forcings inVκ the iteration P�κ is κ-cc and thusM [G ] remains closed by 
-sequences.
Similarly, since (P∗

tail )G is 
+-strategically closed inM [G ] andM [G ]
 ⊆M [G ], one
may argue that M [G ∗H ] is closed under 
-sequences and that (P∗

tail )G is also

-strategically closed in the modelV [G ].

Working in the generic extension V [G ∗H ], it is straightforward to show that

X ∈ U ←→ X ⊆ (Pκ(�))V [G ] ∧ j′′� ∈ j(X )

defines a �-supercompact measure over Pκ(�)V [G ]. By standard arguments of
counting nice names it can be checked thatU has cardinality less than 
. On the other
hand, (P∗

tail )G is 
+-strategically closed in V [G ] and thus the measure U was not
introduced by the forcing (P∗

tail )G . Altogether this argument shows that U ∈ V [G ];
hence κ is �-supercompact in V [G ]. Provided that � was chosen arbitrarily we have
already proved that κ remains fully supercompact after forcing with P�κ. �

We have all we need to prove Theorem 1.2:

Proof of Theorem 1.2. For the rest of the proof fixG ⊆ P�κ a generic filter over V.
Aiming for a contradiction let us assume that there is a supercompact embedding j :
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V [G ] →M with crit(j) = κ,M� ⊆M and j(κ) being a limit cardinal. Appealing
to the closure properties of M and to the elementarity of j it is not hard to realize that
the cardinal j(κ) has uncountable cofinality inV [G ] and that there is a ��-sequence
in M, for each � ∈ j(dom (�) ∩ Eκ�).

On the other hand, since cf(j(κ)) > �, Ej(κ)
� is a stationary set in V [G ] and thus

also the set j(Eκ� ∩ dom (�)). Let � ∈ j(Eκ� ∩ dom (�)) be some ordinal greater than
κ and notice that, of course, �� holds in M. Nevertheless we shall prove that this
is also the case in V [G ], thus yielding the desired contradiction. Aiming for this,
it will be enough with proving that M and V [G ] agree on the computations of the
successor of �: namely, (�+)V [G ] = (�+)M . Since GCH holds in V [G ], hence also
in M, and M is closed by �-sequences, (��)M = ��, �+ = �� and (�+)M = (��)M .
Combining these expressions the equality �+ = (�+)M follows. Finally this have
proved that �� holds in V [G ] contradicting the supercompactness of κ. �

The same argument as before actually proves something stronger: for each cardinal
� > κ the notion of �-C (1)-supercompactness is incompatible with �
 holding at
each 
 ∈ Eκ≤�.

Proposition 2.8. Assume GCH holds. Let κ be a supercompact cardinal, � > κ
and assume that for each 
 ∈ Eκ≤�, �
 -holds. Then there is no elementary embedding
j : V →M such that crit(j) = κ,M� ⊆M and j(κ) being a limit cardinal.

Remark 2.9. Another similar proof of Theorem 1.4 using Radin forcing appears
in the third author’s Ph.D. dissertation [15, §3.1.1].

We will finish this section with the proof of Corollary 2.1:

Proof of Corollary 2.1. Let V be a model of GCH with twoC (1)-supercompact
cardinals κ < �. The previous theorem shows thatV P is a model where κ is no longer
C (1)-supercompact and in fact it is the first supercompact. Since P is a small forcing,
� is still C (1)-supercompact in V P and greater than κ. Combining both things we
get a model for the theory

“ZFC + GCH + minS < minS(1)”. �

2.2. Proof of Theorem 1.4. The way we have proceed to make the first
supercompact cardinal smaller than the first C (1)-supercompact is very aggressive:
namely, we have forced that scenario paying the prize of making the first
supercompact to be the first (�1-)strongly compact. Therefore it is natural to ask
whether these three notions may be forced to be different. Recall that M, K, S
and S(1) stand for the class of measurable, strongly compact, supercompact and
C (1)-supercompact cardinals, respectively. In the next pages we shall present some
modifications to the arguments of §2.1 that will yield the proof for the consistency
of “minM < minR < minS < minS(1)”.

Assume GCH and let � < κ be two supercompact cardinals with a C (1)-
supercompact cardinal � above κ. By virtue of a result of Apter [2], after a
preparatory iteration Q ⊆ V� of length �, one can assume that � is the first strongly
compact and the first strong cardinal and besides it is indestructible by< �-directed
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closed forcings (i.e. 
-directed closed, all 
 < �) which are also �-strategically closed.
Thereby in V Q the GCH pattern above � is preserved, � is the first strongly compact
but not the first measurable cardinal and κ, � remain supercompact and C (1)-
supercompact, respectively. For the ease of notation henceforth we will assume
thatV = V Q. Analogously to the former section here we will add many �
,�-square
sequences below κ taking care that both the strong compactness of � and the
supercompactness of κ are preserved. The next forcing notion is discussed with full
details in [11, section 9] and it is the main ingredient of our argument:

Definition 2.10. Let 
 be a singular cardinal and let 〈
i : i ∈ cf
〉 be an
increasing and cofinal sequence in 
 with 
0 > cf
. We will denote by S
 the forcing
whose conditions are of the form

p = 〈Cpα,i : lim(α), α ≤ �p, ip(α) ≤ i < cf
〉

witnessing

1. �p is a limit ordinal less than 
+.
2. ip is a function such that ip(α) < cf
 for each limit α < �.
3. If ip(α) ≤ i < � then Cpα,i is a club in α of otp(Cpα,i) < 
i .
4. If ip(α) ≤ i < j < � then Cpα,i ⊆ C

p
α,j .

5. If ip(	) ≤ i < � and α ∈ lim(Cp	,i) then i(α) ≤ i and Cpα,i = Cp	,i ∩ α.
6. If α and 	 are limit ordinals with α < 	 ≤ � then there is some i(α) ≤ i0 such

that for every i0 ≤ i < cf
 then α ∈ lim(Cp	,i).

We will say that p ≤ q iff

(a) �q ≤ �p.
(b) If α ≤ �q then iq(α) = ip(α) and Cqα,i = Cpα,i for each iq(α) ≤ i < cf
.

It is illustrative to think on the conditions of S
 as matrices of clubs which are
promises for a potential �
,cf(
)-sequence. This forcing, besides of adding a �
,cf
 -
sequence, is cf
-directed and < 
-strategically closed. The interested reader may
find a detailed proof of both properties in [11, section 9]. Since 
 is singular, hence
S
 does not add 
-sequences, cardinals and cofinalities up to 
+ are preserved.
Furthermore, as GCH holds above �, for any singular cardinal 
 > � the forcing S

has cardinality 
+ and thus preserves all possibles cofinalities as well as the GCH
pattern above �. Without loss of generality we will make the assumption that all the
cardinals in dom (�) are strong limit above � that are closed under �.

Definition 2.11. Let P�κ be the κ-Easton support iteration where P�0 is the trivial
forcing and for each ordinal 
 < κ, if 
 ∈ dom(�) ∩ Eκ� and �

P�



“
̌+ is a cardinal”

then �
P�



“Q̇
 = S
”and �
P�



“Q̇
 is trivial”, otherwise.

The iterationP�κ is clearly< �-directed closed and �-strategically closed and thus �
remains strongly compact and strong in the generic extension. The next proposition
is the corresponding version of Proposition 2.7 in the current setting:

Proposition 2.12. The following statements are true in V P�κ :

1. � is strongly compact and strong and � is C (1)-supercompact.
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2. There is a stationary set S∗ ⊆ Eκ� such that for every 
 ∈ S∗, �
,� holds. In
particular, there is no strongly compact between � and κ.

3. κ is supercompact but not C (1)-supercompact. In fact, there is no elementary
emebedding j : V P�κ →M with j(κ) being a limit cardinal and M� ⊆M . In
particular, κ is the first supercompact cardinal.

Proof. 1. It follows from Apter’s result.
2. Let any 
 ∈ dom(�) ∩ Eκ� and notice that �

P�

+1

“�
,�holds”. Set 
∗ be the

least cardinal in dom(�) ∩ Eκ� above 
. The iteration restricted to the interval

[
∗, κ) is 
∗-startegically closed, hence (
+)V
P�
+1 is preserved, and thus �P�κ

“�
,�holds”. Finally, the iteration P�κ is κ-cc because κ is Mahlo and thus the
set S∗ := dom(�) ∩ Eκ� remains stationary in the generic extension.

The further claim is a consequence of a well-known argument due to Solovay
that we exhibit only for completeness. Aiming for a contradiction suppose that
there is some � < � < κ being 
+-strongly compact cardinal, some 
 ≥ � in
S∗. Let j : V →M be an elementary embedding with cp(j) = � and D ∈M
such that j′′
+ ⊆ D andM |= |D| < j(�). Let �C = 〈Cα : lim(α), α ∈ 
+〉 be
the �
,�-sequence forced by P�κ and �D = j( �C ). Set 
∗ = sup(j′′
+) and notice
that 
∗ < j(
)+ and cfM (
∗) < j(�). Let D
∗ ∈ D
∗ and define C = {α ∈

+ : j(α) ∈ D
∗} the associated < �-club. Let � > 
 be a limit point of C
with cof(�) = � and |C ∩ �| = 
. By continuity of j in � it is the case that
j(�) ∈ lim(D
∗). Notice that for every α ∈ C ∩ �, the formula ϕ(α, �)

“∃
 ′ ∈ j(
)+ ∃D
′ ∈ �D(
 ′) (cof(
 ′) < j(�)

∧ j(�) ∈ lim(D
′) ∧ j(α) ∈ D
′ ∩ j(�))′′

is true in M as witnessed by 
∗. Thus for each α ∈ C ∩ � there is some C
α
such that cf(
α) < �, � ∈ lim(C
α ) and α ∈ C
α ∩ �. Notice that all of these
C
α ∩ � lie in C� and have cardinality less than 
 (since cf(
α) < � < 
). Thus
C ∩ � can be covered by the union of all clubs in C� with cardinality less than 
.
Since |C� | ≤ cf(
) < 
, this union has cardinality less than 
. Contradiction.

3. The argument is the same as in Proposition 2.7 and Theorem 1.2 noting that
P�κ preserve the GCH pattern above �. �

We can also say something else about the status of � in the generic extension V P�κ :

Proposition 2.13. The cardinal � is the first strong cardinal and the first strongly
compact in V P�κ . In particular, � is greater than the first measurable of V P�κ .

Proof. Let us simply show that � is still the least strong in the generic extension
since the claim about strong compactness can be proved similarly. Let �� < � be
a strong cardinal in V P�κ . The property of being a strong cardinal is Π2 and
any strong cardinal is a C (2)-cardinal. It then follows from this and from (1)
of Proposition 2.12 that �� is strong within V [G ]�. On the other hand notice
that V [G ]� = V� because the iteration is �-distributive, hence �� is strong in V�.
Finally since � was a strong cardinal in V, hence C (2), it is the case that �� is also
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a strong cardinal in V below �. This yields a contradiction with the minimality
of � in V. �

Combining Propositions 2.12 and 2.13 the claim of Theorem 1.4 and Corollary 2.2
easily follows.

§3. Identity crises: the first C (n)-supercompact can be the first strongly compact.
Let L be a large cardinal property and κ be a cardinal such that L(κ). We say
that � : κ → κ is a L-fast function on κ if for every � > κ there is an L-elementary
embedding j : V →M with crit(j) = κ and j(�)(κ) > �. There are many typical
example of such sort of functions among which one must to highlight the Laver
functions (see [14]). Under our convention a Laver function on a supercompact
cardinals is the same as a S-fast function. Another natural example of this sort of
objects is given by Cohen reals where the homogeneity of Add(κ, 1) yields to the
desired fast behaviour (see e.g. Lemma 3.1).

By results of Tsaprounis [21] it is known that any C (n)-extendible cardinal carries
aE(n)-Laver function and moreover that the standard Jensen iteration to force global
GCH preserves C (n)-extendibility. For a general version of Tsaprounis’ theorem see
[8].

Since the discovering of Laver functions fast functions have played a central role
in iteration arguments. Essentially this sort of functions allows us to find arbitrary
segments of j(P) where the iteration is trivial which is a crucial property for lifting
elementary embeddings.

Regrettably, due to the general lack of understanding of C (n)-supercompact
cardinals, nothing is known about the existence S(n)-fast functions. The naive
strategy for proving they exist will lead us to mimic Laver’s construction of a
Laver function even though we will eventually realize that this does not work.
More precisely, there are obstacles to reflect the formula asserting that there is
a counterexample for the existence of a S(n)-fast function since it is Πn+2 while
C (n)-supercompact cardinals are not necessarily C (n+2)-correct.4

An alternative strategy is to discuss whether some forcing notion adding a S(n)-
fast function preservesC (n)-supercompact cardinals. Nevertheless this strategy turns
to be very problematic as we shall argue in §5. Anyway if we are given a C (n)-
supercompact cardinal κ in a generic extension V [�] with � ⊆ κ being a Cohen real
(e.g. as in Tsaprounis’s theorem), we may assume that � is a S(n)-fast function in
V [�] by virtue of the next result:

Lemma 3.1. Let � : κ → κ be a Cohen function over V. Let j : V →M be an
elementary embedding with critical point κ and let � < j(κ). If there is an extension
of j to an elementary embedding j̃ : V [�] →M [�̃] with j̃(�) = �̃ that extends j then
there is another extension of j, j̃′ : V [�] →M [�̃ ′], such that j̃′(�) = �̃ ′ and �̃ ′(κ) = �.
Moreover, if j̃ witness thatκ be a �-C (n)-supercompact cardinal inV [�] then so does j̃′.

Proof. Let p = {〈κ, �〉} ∈ Add(j(κ), 1)M . Since the Cohen forcing is homo-
geneous, one can find a M-generic filter H for the forcing Add(j(κ), 1)M such

4This consequence of Theorem 1.3.
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that p ∈ H ,
⋃
H � κ = �̃ � κ and M [�̃] =M [H ]. By the elementarity of j̃, �̃ �

κ = j̃(�) � κ = �. Let �̃ ′ =
⋃
H . By Silver’s argument, j extends to an elementary

embedding j̃′ : V [�] →M [�̃ ′] =M [�̃]. If j̃ was a �-C (n)-supercompact embedding
then so is j̃′ sinceM [�̃] =M [�̃ ′] and j̃(κ) = j̃′(κ) = j(κ). �

All the issues described so far can be framed within the setting of preservation
of C (n)-supercompactness by forcing. Broadly speaking, the main obstacle for
developing a general theory of preservation for C (n)-supercompact cardinals is
the disagreement between the strong correctness of j(κ) and the little resemblance
between M and the universe. More precisely C (n)-supercompact embeddings may
not be superstrong and thus this opens the door to have target models M that are
not more correct than Σ2-correct (i.e. M ≺2 V ) regardless j(κ) ∈ C (n). At §5 we
will cover this problematic with all details.

3.1. Magidor product. Hereafter assume that n ≥ 1 and that κ is a C (n)-
supercompact cardinal. We moreover assume that κ carries a S(n)-fast function
� : κ → κ with range (�) = 〈κα : α < κ〉, a set of measurable cardinals which does
not contain their limit points: i.e., for every α < κ, sup	<ακ	 < κα . It is not clear to
these authors whether any C (n)-supercompact cardinal carries a S(n)-fast function.
Nonetheless, these may obtained by starting with κ a C (n)-extendible cardinal [21]
or even from the more modest assumption of an a-C (n)-extendible cardinal [15,
§4.1].

Definition 3.2. (Magidor product of Prikry forcings) Let κ be a regular cardinal
and A = 〈κα : α < κ〉 be a subset of measurable cardinals below κ which does not
contain their limit points. Let Uα be a normal measure on κα , each α < κ. The κ-
Magidor product with respect to A,MA,κ, is the set of all sequencesp = 〈〈s(α), Aα〉 :
α < κ〉 such that

(a) For every α < κ, (s(α), Aα) ∈ PUα , where PUα stands for the Prikry forcing
with respect to the normal measure Uα .

(b) {α < κ : s(α) �= ∅} ∈ [κ]<ℵ0 .

Given two conditions p, q ∈ MA,κ, p ≤ q (p is stronger than q) if for every α < κ,
p(α) ≤PUα

q(α). We will also say that p is a direct extension of q, p ≤� q if for every
α < κ, p(α) ≤�PUα q(α).

It is illustrative to think on MA,κ as a particular case of a Magidor iteration of
Prikry forcings as presented in definition 6.1 of [12]. Specifically, provided that A
does not contain their limit points, one can easily check that MA,κ is isomorphic
to the Magidor iteration of Prikry forcings at each κα ∈ A below the condition
〈〈∅, κα〉 : α ∈ κ〉.

On the sequel we shall adopt the notationM instead of the cumbersomeMrange (�),κ
as long as the set A and the cardinal κ are clear from the context. Our main aim
along this section is to prove that M preserves C (n)-supercompactness of κ lifting
the corresponding ground model embeddings to C (n)-supercompact embeddings in
the generic extension. As we shall argue in such generic extension the first C (n)-
supercompact cardinal coincides with the first (�1-)strongly compact cardinal.
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The key point to carry out the lifting arguments is that the generics of M are
not arbitrary objects but are essentially given by sequences of generics for the
corresponding Prikry forcings. It is widely known that Mathias criterion of genericity
(see e.g. [12]) implies that the critical sequence 〈
n : n ∈ �〉 of a �-length iteration
of ultrapowers with respect to some measure over κ defines a Prikry generic C ∈ V
for PU� over M�5 Therefore, combining both things, iterated ultrapowers seem
to provide a standard tool to define generic filters for M and thus it turns to be
necessary to prove a similar version to the Mathias criterion for M. In the next
section we shall prove that M enjoys certain property also satisfied by the Prikry
forcing that constitutes the main ingredient for the proof of Mathias criterion of
genericity. We have called this property Mathias–Prikry property:

Lemma 3.3. Let P be the Prikry forcing with respect to some normal measure U.
Then P enjoys the Mathias–Prikry property; namely, for every condition 〈s, A〉 ∈ P

and every dense open set D ⊆ P there are ns ∈ � and A ∈ U such that for every
m ≥ np and every t ∈ [A]m, 〈s � t,A \ max(t) + 1〉 ∈ D.

Proof. See Lemma 1.13 of [12]. �
Once we prove that M enjoys the Mathias–Prikry property the sketch for the

construction of the generics will be the following. Let j : V →M be a �-C (n)-
supercompact embedding, A� = 〈κα : � < α < j(κ)〉 be a family of M-measurable
cardinals not containing their limit points and U� = 〈Ũα : � < α < j(κ)〉 be a
sequence of measures over κα . Define over M a � · j(κ)-iteration of ultrapowers
〈Mα, jα,	 | α ≤ 	 ≤ � · �〉 where each κα is iterated �-many times. By previous
comments this iteration yields a family of (M-definable) generic filters 〈Hα : � <
α < j(κ)〉 for each Prikry forcing PU�·α which defines—here is where the Mathias–
Prikry property comes into play—a MM�·� -generic filter overM�·�. We will finally
show that the embedding j0,�· ◦ j lifts to a �-C (n)-supercompact embedding in VM

thus proving that κ remains C (n)-supercompact in the generic extension.

3.2. M and the Mathias–Prikry property.

Definition 3.4. A function s ∈
∏
α∈κ κ

<�
α is a stem if s(α) is a strictly increasing

sequence of cardinals and {α < κ : s(α) �= ∅} ∈ [κ]<ℵ0 . Let St be the set of all
stems. For s ∈ St, we let the support of s, supp s , be an increasing enumeration
〈αi : i ≤ n〉 of the nontrivial coordinates of s. The length sequence of a stem s is
len s = 〈len s(α) : α < κ〉.

Notice that a length sequence len s completely determines supp s . Thus, all
the relevant information (i.e. the support and the lengths of the corresponding
sequences) about a stem s is encoded within len s . Let

⊕
α<κ � denote the set

of all κ-sequences of natural numbers which are nonzero only in a finite set. Let
�� ∈ ⊕

α<κ �, we will set �� �=0 = {α ∈ κ : ��(α) �= 0}. If ��, �� ′ ∈ ⊕
α<κ � we will write

�� ≤p �� ′ if for every α < κ, ��(α) ≤ �� ′(α).

5Here U� is the measure over κ� = supnκn generated by the family of sets {An : n ∈ �}, where
An = {κm : m < n}.
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Lemma 3.5. (Finite Diagonal Intersection) Let �� be a length sequence and 〈Bsα |
α < κ, s ∈ St, len s = ��〉, Bsα ∈ Uα with minBsα ≥ max s(α). There is a sequence of
large sets 〈Cα | α < κ〉 such that for every stem s ∈

∏
α∈κ C

<�
α , len s = ��, Bsα ⊇

Cα \ max s(α) for all α.

Proof. Let us show that the theorem holds by induction over the amount of
nonzero coordinates of ��, |���=0|. Suppose that |�� �=0| = 0, then there is only one stem
with this support (namely the 0 function). Thus defining Cα = Bsα , we are done.
Now suppose by induction that for every length sequence �� ′ with |�� ′ �=0| ≤ n, for
every ordinal � and every family of large sets 〈Bsα : α < �, s ∈ St, supp s = �� ′〉 there
is 〈Cα : α < �〉 witnessing the theorem.

Let �� be a length sequence with |���=0| = n + 1 and 〈Bsα : α < κ, s ∈ St, len s = ��〉
be a family of large sets. Say that max(���=0) = �. Notice that there are at most κ�-
many stems with such support and thus for every � < α the setCα =

⋂
s∈St,len s=�� B

s
α

is an element of Uα . Let us work now with the truncated family 〈Bsα : α < �, s ∈
St, len s = ��〉. All the stems with length sequence len s = �� are built by some s ′ ∈ St
with len s ′ = �� � n and some �� ∈ κ ��(�)

� . Namely, s = s ′ � ��.6 For each possible
extension ��, one has a family B�� = 〈Bs′α (��) : α < �, s ′ ∈ St, len s ′ = �� � n〉 of large
sets. By the discreteness of the measurables, there is a large set A� ∈ U� such that
the families B�� are the same for every �� ∈ A��(�)

� . Let 〈Bs′α : α < �, s ′ ∈ St, len s ′ =
�� � n〉 be this common value and apply the induction hypothesis to obtain a family
〈Cα : α < �〉 witnessing the theorem. For the coordinate � defineC� = A� ∩�{Bs� :
s ∈ St, len s = ��} where �{Bs� : s ∈ St, len s = ��} is defined as:

{	 ∈ κ� : (s ∈ St ∧ len s = �� ∧ max(s(�)) < 	) → 	 ∈ Bs� }.
It is routine to check that the family 〈Cα : α < κ〉 witnesses the theorem for the
support ��. �

Lemma 3.6. (Röwbottom Lemma) Let f : St → 2 be a function. There is a
sequence of large sets 〈Cα | α < κ〉 and a function g :

⊕
α<κ � → 2 such that for

every stem s ∈
∏
α∈κ C

<�
α , f(s) = g(supp s).

Proof. Fix α ∈ κ an let Stα = {s ∈ St : max(supp s) = α}. We are going to
define by induction over n ∈ � a sequence of functions fn � α : Stα → 2 and a
sequence of Uα-large sets 〈Aα,n : n ∈ �〉. Let f0 = f and Aα,0 = κα \ {0} and let
us show how to proceed on larger n’s. Denote by Stα,n the set of all stems such that
α = max(supp s) and s(α) ∈ A<�α,n . For each s ∈ Stα,n, consider F nα,s�α : κ<�α → 2
defined by �� �→ fn(sα�� ). Here sα�� stands for the stem s∗ which coincides with s in all
the coordinates except in α where it is ��. By Röwbottom theorem one can find a
homogeneous set Hs�α,α ⊆ Aα,n for this function. Define Aα,n+1 =

⋂
{Hs�α,α : s ∈

Stα,n} and notice that this is aUα-large set because this intersection runs for less than
κα-many sets. For each s ∈ Stα,n, with s(α) ∈ A<�α,n+1, define fn+1(sα

〈0〉s(α) ) = fn(s).

6This denotes the stem s which is equal to s ′ on all coordinates except in �, in which is equal to the
sequence ��.
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Here 〈0〉s(α) stands for the sequence of length len s(α) of 0’s.7 This finishes the
induction over n.

Repeating the above argument for each α < κ, one gets a sequence of large
sets 〈Aα,n : α < κ, n ∈ �〉 and a sequence of functions 〈fn : n ∈ �〉. Let Cα =⋂
n∈� Aα,n and St�α =

⋂
n∈� Stα,n and notice that

∀α ∈ κ ∀s ∈ St�α ∀n ∈ � (fn+1(sα〈0〉s(α) ) = fn(s)). (1)

For every m ∈ �, we will prove by induction that for every stem s ∈
∏
α∈κ(Cα ∪

{0})<� , fm(s)=fm+n(r), where n=|{α : s(α) �=〈0〉s(α)}| and r is such that
r(α)=〈0〉s(α) if α∈supp s and r(α)=∅, otherwise. The induction runs over these
n’s.

Let m ∈ � be fixed. Let us prove for the sake of clarity the first two inductive
steps. If s is a stem such that |{α : s(α) �= 〈0〉s(α)}| = 0 then the claim is true since
r = s . On the other hand, if {α : s(α) �= 〈0〉s(α)} = {	}, then s ∈ St�	 and thus

fm(s) = fm+1(s	
〈0〉s(	) ) by the Equation (1). Notice that s	

〈0〉s(	) = r, and we are done.

Suppose that the claim is true for stems s such that |{α : s(α) �= 〈0〉s(α)}| =
n. Let s ∈

∏
α∈κ(Cα ∪ {0})<� with |{α : s(α) �= 〈0〉s(α)}| = n + 1 such that

s ∈ St�α , for some ordinal α. By Equation 1, fm(s) = fm+1(sα
〈0〉s(α) ). Now

s∗ = sα
〈0〉s(α) is such that |{	 : s(	) �= 〈0〉s∗(	)}| = n so by induction we know that

fm+1(sα
〈0〉s(α) ) = fm+n+1(r), where r(	) = 〈0〉s(	) for every 	 ∈ supp s . This shows

that fm(s) = fm+n+1(r). In particular, for each s ∈
∏
α∈κ C

<�
α , f(s) = fn(r),

where n = |supp s |. Thus defining g(supp s) = f|supp s|(r), we are done. �
Both lemmas yields the proof of the Mathias–Prikry Property for M.

Lemma 3.7. (Mathias–Prikry Property) Let D be a dense open subset of M and
p ∈ M. There is a direct extension p� ≤� p and some �� which is a length sequence of
a stem, such that for all q ≤ p� with stem sq and �� ≤p len sq then q ∈ D.

Proof. Let s ∈ St be the stem of p. Let fs : St → 2 be the function that sends a
stem t to 1 if the concatenation of both stems s � t is an stem and there is a sequence
of large sets 〈Bs�t : α < κ〉 such that the resulting condition is in D. Otherwise,
define this value as 0. Applying Lemma 3.6, there is a sequence of large sets 〈Cα :
α < κ〉 and a function g :

⊕
α<κ � → 2 such that for every t ∈

∏
α∈κ C

<�
α , fs(t) =

g(supp t). Since D is dense open it is clear that there is t∗ ∈
∏
α∈κ C

<�
α such that

fs(t∗) = 1. Thus if len t∗ = �� we have that fs(t) = 1, for every t ∈
∏
C<�α with

len t = ��. By definition, for every stem t with length sequence ��, there is a sequence
of large sets 〈Bs�tα | α < κ〉 such that the corresponding forcing condition lies in D.
Apply Lemma 3.5 to 〈Bs�tα | α < κ, len t = ��〉 and let 〈C ′

α : α < κ〉 be the family
of large sets witnessing it. For each α < κ, define C ∗

α = C
′
α ∩ Cα . Let p� be the

condition in M with stem s and large sets 〈C ∗
α : α < κ〉. If q ≤ p� and �� ≤p len sq ,

then q is stronger than some condition with stem s � t with t ∈
∏
α∈κ (C ∗

α )<� and

7By convention, 〈0〉0 = ∅.
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large sets 〈Bs�tα : α < κ〉. By the above argument, this condition is in D and thus q
also. �

3.3. Preserving C (n)-supercompactness. Let � > κ and j : V →M be a �-C (n)-
supercompact embedding such that j(�)(κ) > �. Recall that the existence of such
embeddings are guaranteed by Lemma 3.1.

Lemma 3.8. Let G ⊆ M a V-generic filter. Then there is an elementary embedding
j� : V [G ] →M�[G ×H ] witnessing the �-C (n)-supercompactness of κ in V [G ].

Proof. Recall that M = Mrange (�),κ so by elementarity j(M) = MMrange (j(�)),j(κ).
It is obvious that the forcing j(M) factorizes as M× j(M)/M where j(M)/M is
the M-version for the Magidor product M(range (j(�))\range �),j(κ). Since we have taken
j in such a way that j(�)(κ) > �, then range (j(�)) \ range �) can be written as an
increasing sequence of measurable cardinals 〈κα : α < j(κ)〉 such that κ0 > � and
that for every α < j(κ), sup	<ακ	 < κα . For ease of notation set � = j(κ) and
M∗ = j(M)/M. Working in M we shall build an iteration of ultrapowers 〈Mα, jα,	 |
α ≤ 	 ≤ � · �〉 and we will show that 〈Cα | α < �〉 generates aM�·�-generic for the
Magidor product j��(M∗), where Cα = 〈�nα | n < �〉 is the αth-critical sequence of
the iteration. LetM0 =M , j00 = id and �U = 〈Uα : α ∈ �〉. For limit α, letMα be
the direct limit of the system 〈M	, j	,� | 	 ≤ � < α〉 while for successor cases we set

M�·α+n+1 = Ult(M�·α+n, j�·α+n( �U )α),

each n ∈ �. Let j�·α+n,�·α+n+1 be the corresponding ultrapower map and define
j	,�·α+n+1, for 	 < � · α + n + 1, in the only possible way: namely,

�nα = critj�·α+n,�·α+n+1 = j�·α+n(κα).

Notice that�0
0 > � and moreoverκα = �0

α > α for everyα < �, by discreteness of the
measurables. By standard computations of iterated ultrapowers one can show that
j̄(�) = �. For the ease of notation, on the sequel we will write j̄ = j�·�, M� =M�·�.
Consider,

H = {p ∈ j̄(M∗) : ∀α ∈ �∀q ∈ Hα (p(α) ‖ q)},

where Hα = {〈s, A〉 ∈ PUα : s � Cα, Cα \ max(s) ⊆ A }; i.e. the Prikry generic
defined by the critical sequence Cα . We claim that H is a generic filter for the
Magidor product j̄(M�) overM�. �

Claim 3.9. The filter H isM� generic for j̄(M∗).

Proof of claim. Let D ∈M be a dense open subset of j̄(M∗). Then there
is some function f :

∏
n<n∗ κ

<�
αn → P(M∗) such that for all �� ∈ domf, f(��) is a

dense open subset of M∗ and there are sequences ��n ∈ C<�αn for n < n� such that
D = j̄(f)( ��0, ... , ��n�–1). We do assume that for every n < n� the sequences ��n are
an initial segments of the corresponding Cαn .

Let M ′ = {j̄(g)( ��0, ... , ��n�–1) | g ∈M}, where we only take the g’s that have
the right domain, namely that 〈 ��n | n < n�–1〉 ∈ j̄(dom g). Working in M ′, let us
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apply Lemma 3.7 for D and a condition with stem �� = 〈 ��n | n < n�–1〉� 〈∅〉8 and
let p� and �� be the obtained direct extension and support. It is sufficient to show
that p� belongs to the filter H. Indeed, in such case H will meet D� = {q ≤ p� :
len (q) ≤p ��} which is a subset of D. Let g :

∏
κ<�α →M be a function representing

the sequence of large sets in p� where g(s) is of the form 〈Bsα | α < �〉 and s goes
over stems with length sequence lenp�. Say �B = 〈Bsα | α < �, len s = lenp�〉. Using
Lemma 3.5, we have a sequence of large sets �A = 〈Aα | α < �〉 such that for every
s ∈

∏
A<�α ,Aα \ max(s(α)) ⊆ Bsα , for every α < �. Clearly, the condition p∗∗ with

stem �� � 〈∅〉 and large sets j̄( �A) is stronger than p∗. Let us verify that p∗∗ enters
the generic and thus p∗ also.

Let α < �. If α is no one of the αn’s then p∗∗(α) = 〈∅, j̄( �A)α〉. Let us show that
Cα ⊆ j̄( �A)α and from this we will conclude that it compatible with all the conditions
of Hα . By definition j( �A)α ∈ j( �U )α . Since α is a fixed point of j�α,�� then
j( �A)j�α,��(α) ∈ j( �U )j�α,��(α) and hence j�α( �A)α ∈ j�α( �U )α . Thus by the definition

of the iteration and since critj�α,�α+1 > α, �0
α ∈ j�α+1( �A)α . The critical point of

j�α+1,�� is �1
α an hence �0

α and α are fixed by this embedding. This shows that
�0
α ∈ j( �A)α . Using the same argument one can show that �nα ∈ j( �A)α , for all n ∈ �.
Now let us suppose that α = αn for some n < n�. We claim that Cαn \ ��n ⊆

j̄( �A)αn . Indeed, notice that j̄( �A)αn \ max ��n ⊆ j( �B) ��
αn ∈ j( �U )αn . Thus j̄( �A)αn \

max ��n ∈ j( �U )αn . On the other hand max ��n = max(j̄′′�αn+k+1,�� ��n) where k =

| ��n|. Hence j̄�αn+k+1( �A)αn \ max ��n ∈ j�αn+k+1( �U )αn . By definition of the iteration,
�k+1
αn ∈ j�αn+k+2( �A)αn and hence �k+1

αn ∈ j̄( �A)αn since critj�αn+k+2,�� > �
k+1
αn > αn.

Repeating this argument, we conclude that Cαn \ ��n ⊆ j̄( �A)αn . From this it is
obvious thatp∗∗(αn) = 〈 ��n, j̄( �A)αn 〉 ‖ q, for each q ∈ Hαn . This completes the proof
of genericity of H. �

Set j� = j̄ ◦ j. The proof of next claim leads us to the end of the lemma.

Claim 3.10. The embedding j� : V →M� lifts to an elementary embedding j� :
V [G ] →M�[G ×H ] which is a witness for �-C (n)-supercompactness of κ in V [G ].

Proof of claim. Provide that j� lifts, it is clear that this embedding will lie
in V [G ] since H is definable within M. Let us first show that j� lifts. Let p ∈ G
and notice that j(p) = p � q9 where q ∈ M∗ has trivial stem. To be more precise,
q = 〈〈(s(α), Bα〉 : α ∈ �〉 such that s(α) = ∅ and Bα ∈ Uα . Applying the second
elementary embedding, we have that p is not moved (since crit(j̄) > κ) whereas
j̄(q) = 〈〈∅, j̄( �B)α〉 : α ∈ �〉.10 For each α < �, one can argue as in the proof
of genericity for H that Cα ⊆ j̄( �B)α and thus 〈∅, j̄( �B)α〉 ‖ q, for all q ∈ Hα . In
particular, j̄(q) ∈ H and hence j�(p) ∈ G ×H .

To finish the claim it remains to show that N =M�[G ×H ] is closed under
�-sequences since j�(κ) = j(κ) ∈ C (n) because M is mild. Since N is a model of
choice, it is sufficient to show that every �-sequence of ordinals from V [G ] belongs

8This means the stem s such that s(αn) = ��n and s(	) = ∅, otherwise.
9This stands for the concatenation (in the right interpretation) of both conditions.
10Here �B stands for the sequence of large sets of q, 〈Aα : α < �〉.
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to N. Note that the forcing M introduces new �-sequences. First, since j is a �-
supercompact embedding, M is closed under �-sequences from V. Let � ∈ V be
an M-name for a �-sequence of ordinals. By the κ-chain condition of M, we may
assume that |�| = � and that � ⊆ M× ON. Therefore � ∈M , and in M [G ] we
can interpret it. Let us finally show that M [G ] and M�[G ×H ] contain the same
�-sequences of ordinals.

Let 〈�α : α < �〉 be a sequence of ordinals. InM�, for every α there is a function
fα such that j̄(fα)( ��α0 , ... , ��αnα–1) = �α , where ��αi is a finite sequence of elements
of C�i , some �i < �. Since the critical point of j̄ is above � and the sequence of
functions 〈fα | α < �〉 ∈M [G ] we conclude that j̄(〈fα | α < �〉) = 〈j̄(fα) | α <
�〉 ∈M�[G ]. Thus, it is sufficient to show that the sequence �R = 〈〈 ��αi | i < nα〉 |
α < �〉 ∈M�[G ][H ].

Let us define by induction on � < � a sequence of functions p� such that
j̄(p�)(H ) = �. Intuitively, p� is a procedure for extracting �, given the information
of H. Let us assume that p	 is defined for all 	 < �. Since the critical point of j�,� is
above �, we know that � is represented inM� by

� = j0,�(g)(�0, ... , �n–1),

for some elements of the sequences in H, �0, ... , �n–1. Those elements are all below
the �-th member of H in the increasing enumeration and in particular, do not move
under j�,�. Let h : �→ � be the increasing enumeration of H. Let 	0, ... , 	n–1 be
their indices, so h(	i) = �i . We conclude that:

� = j̄(g)(h(p	0 (H )), ... , h(p	n–1 (H ))),

so we can define p� .
Finally, let us show that the sequence �R is inM�[G ][H ]. Indeed, one can obtain

�R from H by just knowing the indices of each ��αi . This sequence of indices is
equivalent to a sequence of ordinals below � of length �, �� = 〈�α | α < �〉. Letting
the condition, �p = 〈p�α | α < �〉 ∈M and applying the components of j̄( �p) to H
we obtain ��. Finally, applying h on the components of ��, we obtain �R, as wanted. �

This immediately yields the proof Theorem 1.3.

Proof of Theorem 1.3. By results of [13], it is known that if one changes the
cofinality of some inaccessible cardinal � to � but preserves its successor then
��,� holds in the generic extension. Consequently, M adds unboundely many ��,�-
sequences below κ and thus there is no (�1-)strongly compact cardinal below it.
Combining this with Lemma 3.8 we are done. �

To conclude this section we would like to point out that the ideas used in the
proof of claim 3.9 can be straightforwardly adapted to proof the following version
of Mathias criterion for the Magidor product of Prikry forcings:

Theorem 3.11. (Mathias criterion) Suppose that M is an inner model of ZFC
and 〈Uα : α < κ〉 is a sequence of normal measures over the cardinals 〈κα : α < κ〉,
respectively. A sequence �C ∈

∏
α∈κ

κακα defines a generic filter for M if it satisfies the
following condition:

∀α ∈ κ ∀A ∈ Uα | �C (α) \ A| < ℵ0.
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Moreover, the generic is given by

G( �C ) = {p ∈ M : ∀α ∈ κ (p(α) = 〈s(α), Aα〉 ∧ s(α)

� �C (α) ∧ �C (α) \ max s(α) + 1 ⊆ Aα)}

3.4. Some consequences of Theorem 1.3. In this section we shall analyse some of
the consequences of Theorem 1.3. For each n ≥ 1 let us respectively denote by Γn
and by Γ∗

n the first order formulas

“ minM < minK�1 = minK = minS = minS(n)”

“ minM < minK�1 = minK = minS = minS(n) < minE”.

Corollary 3.12. For every n ≥ 1,

Con(ZFC + ∃κ (κC (n)-extendible)) → Con(ZFC + Γn).

In particular, for every n ≥ 3

Con(ZFC + ∃κ (κC (n)-extendible)) → Con(ZFC + Γ�n).

Proof. The first claim follows automatically from Theorem 1.3. For the second
claim it will suffice to show that the existence of a C (n)-extendible cardinal entails
the existence of an extendible cardinal above. Indeed, let κ be a C (n)-extendible and
notice that for every α < κ the formula ϕ(α)

“∃	 (	 > α ∧ 	 extendible )”

is true and Σ4, hence, Vκ |= “∀α ϕ(α)”. Since C (n)-extendible cardinals are C (5)-
correct (see e.g. [3]), the formula “∀α ϕ(α)” is already true and thus there is a proper
class of extendible cardinals in the universe. �

Remark 3.13. New results due to the third author have pointed out that any
C (n)-extendible cardinal is a limit of C (n)-supercompact. In particular, the second
claim of the corollary is already true for any n ≥ 1.

At the light of Theorem 1.3 the identity crises for C (n)-supercompact cardinals
turns to be a plausible scenario. One may even ask if this result may be strengthened
or, more particularly, if the ultimate identity crises for C (n)-supercompact cardinals
is consistent; namely, provided it exists, if the first C (n)-supercompact cardinal, for
each n ≥ 1, can be the first (�1)-strongly compact cardinal. On this respect, the
natural large cardinal hypothesis to start with is the existence of a C (<�)-extendible
cardinal: namely, a cardinal κ which is C (n)-extendible, for each n ≥ 1. Notice
however that, by Tarski’s theorem of undefinability of truth, the existence of such
cardinals cannot be expressed by a first order formula but via a countable schema
of first order formulae. Let k be a constant symbol and consider the language of set
theory augmented with it, L = {∈, k}.

Definition 3.14. We will denote by C (<�) – EXT the countable schema of first
order formulae asserting that for each (meta-theoretic) n ∈ � the L-formula “k
is C (n)-extendible” holds. If M = 〈M,∈, x〉 is a L-structure, we agree that the
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interpretation of the constant symbol k is x. We will write M |= C (<�) – EXT if for
every (meta-theoretic) n ∈ � the formula “M |= k is C (n)-extendible” is true. We
will also denote by ZFC� the version of all ZFC axioms where we allow a constant
symbol k to be used in any instance of axioms of replacement and separation.

Definition 3.15. C (<�)-extendible cardinal Let κ be a cardinal and M =
〈M,∈, κ〉 be a L-structure. We will say that κ is M-C (<�)-extendible if M |= C (<�) –
EXT. If M = 〈V,∈, κ〉 we will simply say that κ is C (<�)-extendible.

In a analogous way, we can define the schema C (<�) – SUP for the intended
notion of C (<�)-supercompactness. Let C(<�) and S(<�) denote the class of C (<�)-
extendible and C (<�)-supercompact cardinals, respectively.

By results of Bagaria [3], the schemaC (<�) – EXT implies that Vopěnka Principle
holds. Recall that given κ < � the cardinal κ is called �-superhuge if there is an
elementary embedding j : V →M such that crit(j) = κ, j(κ) > � andMj(κ) ⊆M .
If κ is �-superhuge for each � > κ, the cardinal κ is called superhuge. If we are given
a cardinal 
, we will say that 
 is a target of κ (κ → (
)) when there is some ordinal
� > κ and some �-superhuge embedding j : V →M such that j(κ) = 
. It is known
that if κ is superhuge then the collection of all of its targets is a proper class.

In [9] the authors introduced an strengthening of the classical notion of
superhugness. A cardinal κ is stationarily superhuge if its collection of targets forms
a stationary proper class.11 Since for every n ∈ � the class C (n) is a club class it
is obvious that any model with an stationarily superhuge cardinal κ satisfies the
schema C (<�) – EXT as witnessed by κ. As pointed out in theorem 6b of the
aforementioned paper, the consistency strenght of a stationarily superhuge cardinal
is below the consistency of a 2-huge cardinal. Therefore the consistency strength of
the schema C (<�) – EXT is bounded below by VP and above by the existence of a
2-huge cardinal.

Let κ be a C (<�)-extendible cardinal. By Tsaprounis’ result [21], for each n ≥ 1
there is a E(n)-fast function �n : κ → κ in V. Notice that Vκ ≺ V and thus one can
define those functions uniformly in Vκ+1, so the function � = sup�n is a member of
V. Arguing as in Theorem 1.3 the ultimate identity crises theorem follows:

Theorem 3.16. Let 〈V,∈, κ〉 be a model of (a large enough fragment of) ZFC� plus
C (<�) – EXT. Then in the generic extension VM the chain of relations

minM < minK�1 = minK = minS = minS(<�) < minE

holds.

This immediately yields the following corollary:

Corollary 3.17.

Con(ZFC + ∃κ (κ is 2-huge)) → Con(ZFC + Ξ)

11Again, this notion is not first order expressible.
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where Ξ is the scheme

minM < minK�1 = minK = minS = minS(<�) < minE.

§4. A summary of what is known. In the present section we shall briefly summarize
all the known consistency relations between the classes of supercompact, C (n)-
supercompact and C (n)-extendible cardinals. Similarly to the classical Magidor’s-
like analysis of supercompact cardinals in this setting there are also two critical
scenarios: the first one corresponding to the identity crises phenomenon discussed
in previous sections and the second one where the expected hierarchic relations
between large cardinals hold.

As pointed out earlier, the case of C (n)-extendible cardinals is paradigmatic in
the sense that they are not affected by the identity crises pathology. In other words,
the class of C (n)-extendibles is ordered hierarchically and thus its configuration
fits within the second paradigm of the universe described so far. Nonetheless the
situation with respect to C (n)-supercompact cardinals may be completely different
by virtue of Theorems 1.3 and 1.5. Specifically, we have shown that an extreme
identity crises for these classes of cardinals is possible by making the first C (<�)-
supercompact cardinal the first (�1-)strongly compact cardinal.

Recent investigations of the third author have brought to light that the antagonistic
scenario is also possible under the assumption of a new axiom suggested by H.
Woodin [15].

Axiom 1. (Woodin’s Extender Embedding Axiom (WEEA)) Let j : V →M be
an elementary embedding with critical point κ such that j(κ) is a limit cardinal and
such that M is closed under �-sequences. Then κ is j(κ)-superstrong. Thus, the rest of
the line should be erase Vj(κ) ⊆M .

The point for EEA is that under this axiom the configuration of the different
classes S(n) coincide with the standard ordering pattern of the large cardinal
hierarchy:

Theorem 4.1. (see [15]) Assume WEEA. Then the following clauses hold:

1. For each n ≥ 1, the class of C (n)-supercompact cardinal is included in C (n+2).12

2. For each n ≥ 1, “minS < minS(n) < minE(n) < minS(n+1)” holds.

It is worth to emphasize that the inequality “minS(n) < minE(n)” is proved
without need of WEEA, though. Altogether, it seems that WEEA is the right axiom
one has to consider to force the universe to have the expected configuration in
the section of the large cardinal hierarchy ranging between the first supercompact
cardinal and VP . Therefore it turns out that a central issue for the study of such
cardinals is to clarify the status of WEEA modulo large cardinals: namely if it is
already consistent. On this respect the present paper has implicitly made some steps
towards solving this issue. More precisely, at the light of theorem 4.1, WEEA can
not coexists with the identity crises phenomenon and thus it must fails in the model
discussed in the previous section.

12This is optimal as being C (n)-supercompact is a Πn+2 property.
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§5. Open Questions and concluding remarks. We would like to conclude the
present paper exposing certain questions of combinatorial flavour that remain open.
Broadly speaking we are interested to answer, with the most possible generality, the
following question:

Question 4. What can be said about the combinatorics of V under the existence
of C (n)-supercompact cardinals?

Unlike supercompact cardinals it does not seem evident how to develop a theory
that studies the consequences of C (n)-supercompact cardinals on the combinatorics
of V. In the context of supercompact cardinal this project has been carried out
successfully, mainly by means of the method of forcing, yielding to a rich and
vast theory. There are many paradigmatic examples on this respect but one of the
most important is Laver’s theorem of indestructibility of supercompact cardinals
by κ-directed closed forcing [14]. Speaking in general, Laver’s result shows that
supercompactness is a robust notion with respect to a wide family of (set) forcings
where one can find Add(κ, �) among many others. In particular, Laver’s theorem
shows that supercompactness is consistent with any prescribed behaviour of the
power set function on κ.13 The moral here is that one can get relevant information
about the combinatorics of V from the robustness of supercompactness.

Nevertheless, this does not seem to be the case for the class of C (n)-supercompact
cardinals. For instance, as commented in former sections, it is not evident whether
these cardinals carry S(n)-fast functions and thus one can not naively adapt Laver’s
indestructibility arguments to this new setting. In fact Theorem 4.1 indicates that
under EEA anyC (n)-supercompact cardinal is aC (n+2)-cardinal hence no indestruc-
tibility result is available for such cardinals [5]. This suggest the following question:

Question 5. Letκ be aC (n)-supercompact cardinal. What kind of forcings preserve
theC (n)-supercompactnes of κ? For instance, is it possible to add many Cohen susbsets
to κ while preserving its C (n)-supercompactness?

In the next lines we will give an outline of the main difficulties one faces up with
discussing the interplay of forcing with C (n)-supercompact cardinals. Speaking in
general, for any given forcing there are two standard ways to proceed on this respect:
either analysing under which hypothesis the corresponding embeddings may be lifted
or how can one define extenders witnessing the C (n)-supercompactness of κ in the
generic extension. In the next lines we shall try to argue that any of both strategies
seem non trivial to implement.

LetPbe a forcing notion,G ⊆ P a generic filter, � > κ be an arbitrary cardinal and
j : V →M be an elementary embedding witnessing the �-C (n)-supercompactness
of κ. The strategies previously commented may be phrased in the following terms:

♦ Lifting strategy: Lift j to j∗ witnessing the �-C (n)-supercompactness of κ in
V [G ].

♦Extender strategy: Use j to define inV [G ] an extender E such that jE : V [G ] →
M witnesses the �-C (n)-supercompactness of κ (see section 5 of [3] for details).

13There are also similar results with partial square principles as pointed out in previous sections.
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Notice that regardless of the strategy the cardinal j(κ) remains in the class (C (n))V [G ]

since the forcing P is mild.

5.1. Lifting strategy. If P is a κ-Easton support iteration of forcings within Vκ
it is not hard to show that j lifts to j∗ : V [G ] →M [G ∗H ], where H ⊆ j(P)/P
is generic over M [G ]. Furthermore, with a bit of care, one may make sure that
M [G ∗H ]� ⊆M [G ∗H ].14

Thereby the main issue here is how to ensure that j∗ is definable in V [G ] or, in
other words, that theM [G ]-generic filter H lies inV [G ]. There are specific situations
where one can argue on this direction; for instance, using a diagonalization argument
as in Proposition 8.1 of [10] or appealing to the distributiviness of the tail forcing
j(P)/P as in Lemma 3.5 in [17]. Nonetheless both arguments rely in the fact that
whilst j(κ) is very large in M it is small in V. It is clear that this is never the case for
C (n)-supercompact cardinals.

Consequently the Lifting strategy amounts to building definable generics forj(P)/P
which suggests that one has to be able to handmade generics for j(P)/P. Notice that
this is precisely the procedure we have followed in the proof of Theorem 1.3.

5.2. Extender strategy. This strategy is used for instance in Proposition 2.7 or
Lemma 6.4 of [12]. Assume P is a forcing κ-iteration of forcings within Vκ with
a close enough tail forcing j(P)/P. Lift j to j� : V [G ] →M [G ∗H ] as before and
afterwards define E to be the potential extender derived from j∗. More precisely, set
E = 〈Ea : a ∈ [�]<�〉 as

(�) X ∈ Ea ←→ ∃p ∈ G ∃q ≤ j(p) \ κ, p � q �j(P) ȧ ∈ j(Ẋ )

where ȧ, Ẋ are P-names and � is some ordinal. Here the closedness of the tail is used
to argue that E ∈ V [G ].

As it is shown in [12] if P is a suitable Prikry-type iteration and the order relation
appearing in (�) is ≤� then Ea is a κ-complete normal measure, each a ∈ [�]<� .
The main issue here thus is not related with the definability of the extender nor with
its combinatorial properties but with jE(κ). Notice that we have to make sure that
jE(κ) is aC (n)-cardinal inV [G ] and thus it is natural to ask whether jE(κ) = j(κ).
Nonetheless this technical point seems very hard to fulfil due to the generic definition
of E. In summary, the Extender strategy amounts to finding extenders E such that
jE(κ) = j(κ).

Acknowledgments. The present paper has been prepared during a research stay of
the third author in the Einstein Institute of Mathematics at the Hebrew University
of Jerusalem. The third author wants to express his gratitude to professor S. Shelah
for his kindness for inviting him and to professors J. Bagaria, W. H. Woodin and
M. Gitik for many illuminating discussions on the matter. In the same way, the
third author extends his gratitude to the Einstein Institute of Mathematics for his
warmly hospitality during his stay. The authors also thank the anonymous referee
for helpful comments on prelimminary versions of this paper.

14For instance guiding P with some fast function as we did in the proof of Proposition 2.7.

https://doi.org/10.1017/jsl.2020.32 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.32


648 YAIR HAYUT, MENACHEM MAGIDOR, AND ALEJANDRO POVEDA

The third author has been supported by MECD (Spanish Government) Grant
no FPU15/00026, MEC project number MTM2017-86777-P and SGR (Catalan
Government) project number 2017SGR-270.

REFERENCES

[1] A. W. Apter, Diamond, square, and level by level equivalence. Archive for Mathematical Logic, vol.
44 (2005), no. 3, pp. 387–395.

[2] ———, The least strongly compact can be the least strong and indestructible. Annals of Pure and
Applied Logic, vol. 144 (2006), no. 1, pp. 33–42.

[3] J. Bagaria, C (n)-cardinals. Archive for Mathematical Logic, vol. 51 (2012), no. 3, pp. 213–240.
[4] J. Bagaria, C. Casacuberta, A. R. D. Mathias, and J. Rosickỳ, Definable orthogonality classes
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