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A dominant trend in models with binary outcomes is to control for unmodeled duration dependence by

including temporal dependence variables. A second, distinct trend is to interpret both the short- and long-

term effects of explanatory variables in autoregressive models. While the first trend is nearly ubiquitous in

models with binary outcomes, the second trend has yet to be applied consistently beyond models with

continuous outcomes. While scholars use temporal splines and cubic polynomials to model the underlying

hazard rate, they have neglected the fact that this causes the explanatory variables to have a long-term

effect (LTE) by modifying the future values of the temporal dependence variables. In this article, I propose a

simple technique that estimates a wide range of probabilistic LTEs in models with temporal dependence

variables. These effects can range from simple LTEs for a one-time change in an explanatory variable to

more complex scenarios where effects change in magnitude with time and compound across repeated

events. I then replicate Clare’s (2010, Ideological fractionalization and the international conflict behavior of

parliamentary democracies. International Studies Quarterly 54:965–87) examination of the influence of gov-

ernment fractionalization on conflict behavior to show that failing to interpret the results within the context of

temporal dependence underestimates the total impact of fractionalization by neglecting LTEs.

1 Introduction

In their 1998 seminal piece, Beck, Katz, and Tucker (1998, 1261) stress that “[binary time-series
cross-sectional] (BTSCS) data are grouped duration data.” As such, one can borrow techniques
from event history analysis to appropriately model temporal dependence in binary models (see also
Carter and Signorino 2010). While they disagree over the appropriate methodological approaches,
they agree on the necessity of incorporating temporal dependence variables in models where the
underlying probability of the event varies as a function of time. Scholars of international relations
(IR) have largely followed these prescriptions due to concerns that a significant portion of interstate
behavior is related to potentially unobservable conditions that correlate with time. It has become
nearly ubiquitous that logit or probit models in IR include variables derived from a simple counter
of the time since the occurrence of the event, such as dummy variables, cubic polynomials,
and cubic splines (see the review in Carter and Signorino 2010, 272). Scholars have used these
techniques to answer a wide range of questions in political science; in examining the role of pol-
icy diffusion in anti-smoking policies (Shipan and Volden 2008) and death penalty reform
(Mooney and Lee 2000); in studies of the effects of oil wealth on regime stability (Smith 2004)
and the incidence of party switching in Brazil’s Chamber of Deputies (Desposato 2006); compliance
with international law (Simmons 2000); and international conflict (Oneal and Russett 1999), among
others. Indeed, the techniques described in this article apply to any temporally dependent discrete
outcome.
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Much effort has been made in the past few years to provide a complete interpretation of effects in
models with lagged dependent variables in ordinary least squares (OLS) models. Among these
projects include suggestions to use autoregressive distributed lag (ADL) models to test the
common constraints of lagged and concurrent variables, provide long-term effects (LTEs) (de
Boef and Keele 2008), and demonstrate long-run equilibria through dynamic simulations
(Williams and Whitten 2012). I suggest that a similar shift in interpretive methods is warranted
in models with temporal dependence variables. While temporal dependence fixes have greatly
improved the specification of models with categorical outcomes, their deployment has presented
a unique problem with respect to the correct interpretation of these models. Put simply,
incorporating temporal dependence variables allows the past to influence current values, while at
the same time allowing current values to influence the future. While the former point is used to
justify the inclusion of splines and cubic polynomials, the latter point has been largely neglected.
This is unfortunate, since it means that scholars neglect that explanatory variables may also have an
LTE on the outcome of interest. These effects can range from simple LTEs for a one-time change in
an explanatory variable to more complex situations where effects change in magnitude with time
and compound across repeated events.

Fortunately, calculating LTEs only involves two simple steps. First, calculate the probability of
the event occurring at time t. This is the quantity that scholars are most interested in when using
logit or probit, but this quantity has another, vastly underappreciated meaning: the probability of
an LTE. Second, the LTE is the change in the probability of the outcome at future periods, given
that the time variable has been reset to 0 on account of the event occurring at time t. The presen-
tation of probabilistic LTEs uses information that scholars already have at their disposal (such as
the baseline probability) and thus requires little additional effort beyond the techniques used to
present quantities of interest (and uncertainty). By incorporating the insight of time series models
(e.g., de Boef and Keele 2008) and a renewed focus on generating meaningful quantities of interest
(King, Tomz, and Wittenberg 2000), these techniques offer a wider range of hypothesis tests re-
garding long-run dynamics in BTSCS models. I also contribute to the burgeoning debate on the
usefulness of temporal dependence variables in testing theories (e.g., Beck, Katz, and Tucker 1998;
Carter and Signorino 2010).

I replicate Clare’s (2010) piece on the influence of government fractionalization on conflict
behavior to demonstrate the inferential consequences of modeling temporal dependence in this
manner. Shifts in the explanatory variables change the probability of experiencing an LTE,
either shifting the probability down (in the case of negative coefficients) or up (for positive coef-
ficients). The sign and the magnitude of the LTE depend on the strength of the duration depend-
ence and its functional form (i.e., positive, negative, or non-monotonic). By neglecting these
probabilistic LTEs, Clare (2010) underestimates the lasting impact of government fractionalization
as well as all of the other explanatory variables.

I first situate this piece within the literature advocating the use of temporal dependence variables.
I then show how to calculate a wide range of substantively interesting LTEs. LTEs are quantities of
interest that are applicable in a number of research situations, as I show in the case of non-
proportional hazards and with alternatives to the Beck, Katz, and Tucker approach to modeling
duration dependence. In the section that follows, I discuss a series of Monte Carlo experiments that
demonstrate the performance of different techniques (ranging from temporal dummies to cubic
polynomials and splines) of modeling temporal dependence under varying conditions. I use the
insight from these experiments to offer guidelines about the proper use and interpretation of
various estimation techniques. Next, I illustrate these concepts in a replication of a project that
examines the influence of ideological fractionalization within a government coalition on the prob-
ability of dispute initiation (Clare 2010). In the final section, I discuss the applicability of these
methods to a general class of models with limited dependent variables.

2 Temporal Dependence

As Beck, Katz, and Tucker (1998, 1261) illustrate, BTSCS data “are grouped duration data.” This
breakthrough lays the foundation for using event history analysis to control for the possibility that
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observations will be temporally dependent. BTSCS models estimate a binary dependent variable, y,
based on a vector of independent variables, xi;t, where observations are indexed by unit i and time
period t. If one wants to control for possible temporal dependence, one can explicitly model the
hazard rate (h(t)) with the following logistic formula (Beck, Katz, and Tucker 1998, 1268):

Prðyi;t ¼ 1jxi;tÞ ¼
1

1þ e�ðxi;t�þhðtÞÞ:
ð1Þ

Event history models offer the promise of a variety of ways of characterizing the functional form of
the temporal dependence (such as natural cubic splines) and in dealing with multiple failures (i.e.,
the number of previous events). A more general specification is the following:

Prðyi;t ¼ 1jxi;tÞ ¼
1

1þ e�ðxi;t�þti;tgÞ;
ð2Þ

where t reflects the manner of temporal dependence specification (typically time since previous
event), whether as dummy variables, cubic polynomials, or some version of splines, and � charac-
terizes the strength and shape of the influence of t. Beck, Katz, and Tucker’s emphasis largely stops
there, as they stress that these are simply control variables and should not be treated as theoretical
variables (see Beck 2010, 294).

Carter and Signorino (2010) propose cubic polynomials (t, t2, and t3) as a more flexible speci-
fication of the temporal dependence variables that does not suffer from the problems that plague
the usage of temporal dummy variables (such as inefficiency and “quasi-complete separation”).
More important for our purposes, Carter and Signorino (280–81, 291) stress that scholars are
guided by theory in determining the splines, and then interpret these variables as part of the
overall empirical test. This is not an uncontroversial statement, as Beck (2010, 294) claims that
“time is not a theoretical variable.” More specifically, Beck (2010, 294) claims that the hazard rate
“is just a statement about omitted variables [so] duration dependence is both atheoretical and
changes with the model.”

Of these two camps, I hope to convince scholars of the superiority of the second camp. Whether
the source of temporally correlated errors is model under-specification or fundamental uncertainty,
scholars include temporal dependence variables—much like unit- or time-specific dummy vari-
ables—to account for their particular ignorance about the data-generating process (e.g., Beck,
Katz, and Tucker 1998). Yet, there is a great deal of information available in these terms, which
can be then used to more completely understand the substantive effects of the theoretical variables.
As Bennett (1999, 266) notes, “while duration dependence is indeed theoretically unexplained
variance, the pattern of that dependence is informative.” The magnitude and the shape of the
lasting effects of temporal dependence are closely related to the underlying hazard rate because
the effects themselves are a function of changing the values of time. I suggest that a full examination
of the temporal variables is not only beneficial for these purposes, but required as a means of
accessing the entire suite of inferences available from one’s empirical model.

While I agree with the practical message of Carter and Signorino, I whole heartedly agree with
Beck, Katz, and Tucker’s more general point that the goal of scholars in dealing with temporal
dependence—as is the case with other “nuisance” parameters such as fixed effects or heteroskedastic
parameters—is to provide the “correct” specification that makes these parameters statistically in-
significant (Beck 2010, 294; see also Bennett 1999). If the duration dependence is the result of
unobserved heterogeneity (or what Zorn [2000, 368] calls “spurious duration dependence”), then
one could potentially better specify the model to the point where there is no duration dependence.1

The simple hypothesis test would be that �¼ 0 in equation (2), and failing to reject this null would
support the conclusion of temporal independence. If these coefficients are jointly equal to 0, then
the grouped duration model would collapse to an exponential model with a flat underlying hazard
(Box-Steffensmeier and Jones 2004, 22).

1Zorn (2000: 368–69) differentiates this type from state dependence, or “true duration dependence,” which reveals “the
propensity of a state toward self-perpetuation.”
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However, we have seen that even in the case of substantive topics where there is a rich theoretical
literature from which to draw (such as international conflict), scholars have been unable to com-
pletely specify a model such that the temporal dependence variables do not add explanatory
power.2 For a variety of methodological reasons ranging from measurement error to idiosyncracies,
incorrect functional form to fundamental uncertainty, eliminating the temporal dependence by
including only conceptual variables may seem like an unattainable goal.

Based on this reality, I suggest that scholars fully interpret their temporal dependence variables
regardless of whether or not the hazard rate is itself theoretically interesting. Interpreting the
hazard rate is closely related to producing accurate inferences about the long-term substantive
effects of the theoretical variables. Modifying the current values of the variables changes the prob-
ability that future values of the temporal dependence variables will reset to 0. In much the same way
as an OLS model with a lagged dependent variable (de Boef and Keele 2008), the theoretical
variables contain both a short-term and an LTE. This probabilistic LTE can reflect a number of
different quantities of interest (ranging from one-period changes to permanent shocks), the possi-
bility of compounded effects, and can easily be modified to reflect non-proportional hazards. A
thorough interpretation of the hazard rate is, therefore, critically important to making a complete
and accurate set of inferences.

LTEs in Models with Temporal Dependence

Given that IR scholars employ temporal dependence variables as a simple means of incorporating
country- and dyad-specific histories, it is surprising that scholars treat all the explanatory variables
as if their effects occur immediately and without lag. To assess whether these patterns are consistent
across the discipline, I surveyed each article published in the American Political Science Review,
American Journal of Political Science, Journal of Politics, and International Studies Quarterly that
cited Beck, Katz, and Tucker (1998). Out of 178 articles, 131 employ some version of temporal
dependence variables. Of these, only two discuss the possibility of lasting effects of the independent
variables (Bennett 2006; Beardsley 2008), but neither calculates the actual LTEs. It is clear that the
vast majority of political science research in the most prestigious journals treats key variables as
having an impact that completely occurs at time t with no lasting effects.

This is surprising since scholars often justify the inclusion of temporal dependence variables
because “the probability of dyadic conflict in a given year, for example, is likely to be dependent on
the conflict history of that dyad” (Beck, Katz, and Tucker 1998, 1263). Studies examining reputa-
tions (Crescenzi 2007), “repetitive military challenges” (Grieco 2001), and enduring rivalries
(Thompson 2001) posit that international conflict can have lasting ramifications, and this logic
extends to other notable phenomena, such as coups (Londregan and Poole 1990) and civil wars
(Collier et al. 2003), to name a few. It is, therefore, unreasonable to expect that the effects of the
variables in one period do not bleed over into the next period. Other approaches incorporate
history by including the lagged dependent variable (or latent variable) on the right-hand side
(Jackman 2000). Though intuitively pleasing, transitional models such as these have not caught
on to the extent that the Beck, Katz, and Tucker techniques have (for an exception, see Przeworski
et al. 2000, 137–39). Nevertheless, it should be noted that any discrete choice model that includes
history on the right-hand side—whether it is as Beck, Katz, and Tucker advocate or something
more complex like a parameter-driven transitional model—causes the full effects of explanatory
variables to take more than one period to complete.

A more complete picture, therefore, treats the coefficients as only short-term effects of X on Y�

and evaluates the LTEs of those variables in the context of the temporal variables. This procedure
is complicated slightly because non-linear model specifications do not typically include an observed
lagged dependent variable (such as in OLS; see Esarey and DeMeritt 2014).3 With the inclusion of
any specification of time since the previous event (time), each change in the explanatory variables

2A notable exception is the work by Bennett and Stam (1996), who show that increasingly better specified models of war
duration change the temporal pattern from one of dependence to independence.

3Transitional models are a notable exception (Jackman 2000).
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has an LTE that is characterized probabilistically. In other words, modifying the values of any of

the independent variables at time t potentially influences the predicted probabilities of the outcome

in future time periods by forcing time since previous event to revert back to 0, which itself affects the
probability of observing the event.

The first step in calculating LTE is to calculate the predicted probability of the outcome, given a

particular configuration of values of the independent variables (or simulation scenario, XC),

Prðŷ ¼ 1jXCÞ. A quantity of interest that is often directly related to the hypotheses is the change

in predicted probability given a change in the variable of interest, XK, or �Prðŷ ¼ 1jXC;�XKÞ.

Depending on one’s theory, a variety of quantities of interest related to long-run dynamics are

available, including temporary and permanent changes to an explanatory variable. An LTE occurs
if the observed outcome, ŷ ¼ 1jXC; changes as a result of the change in XK. However, since this

exercise involves a counterfactual (King and Zeng 2006), we never actually observe ŷ, only

Prðŷ ¼ 1Þ.
This is an important distinction, since it determines whether scholars are merely “classifying”

observations (in-sample) or “predicting” observations (out-of-sample). For example, consider the

common practice of assessing model fit by classifying predicted probabilities into outcomes. Since
the actual values of the outcomes are observed for in-sample observations, this practice becomes

one of deciding a threshold, �, and classifying those observations with probabilities exceeding that

threshold as having a value of 1, and those who do not pass the threshold as having a value of 0

(Greene 2008). Though typically set at p ¼ 0:5, the threshold for classification is arbitrary and can

be modified so that one might increase the classification rate for low-probability events (Greene

2008). Of course, modifying this threshold imposes trade-offs between correctly classifying events
and incorrectly classifying non-events, hence one must determine the threshold a priori based on the

costs associated with each type of classification error (King and Zeng 2006, 632–33).
On the other hand, when dealing with counterfactuals (or other out-of-sample predictions), it makes

little sense to classify probabilities into outcomes. Scholars have centered their criticism on model fit

statistics such as “percent correctly predicted” and classification tables because it conflates a best guess

of ŷi with actually observing yi (Herron 1999; Train 2009).4 Just because a probability exceeds a certain
threshold does not imply the occurrence of the event, and making that inference “misrepresents choice

probabilities” (Train 2009, 69). For example, a predicted probability of 0.6 for a given simulation

scenario means that there is a 0.6 probability of the outcome occurring, or that out of 1000 times, the

event will occur 600 times. Extending this logic further into the realm of forecasts, Pindyck and

Rubinfeld (1991, 268–69) note that the best one can do is to provide a forecast of the probability of

the event occurring, which will never be correct ex post (since the outcome is either 0 or 1).
Therefore, the likelihood of a variable having an LTE is simply the change in the probability of

observing the outcome, �Prðŷ ¼ 1jXC;�XKÞ. In addition to reflecting the change in probability of

observing the outcome at time t, this quantity of interest characterizes the probability that time is

reset to 0 at time tþ 1, therefore changing the simulation scenario for time at subsequent time

periods.5 Probabilistic LTEs can, therefore, be structured for virtually any kind of theoretically

meaningful scenario. For example, the process is flexible enough that one can examine a change in
the explanatory variable (�XK) for one time period, a temporary change, or even a permanent

change. In this way, the utility of calculating LTEs reflects the variety of quantities of interest to

scholars who study long-run dynamics (e.g., de Boef and Keele 2008; Williams and Whitten 2012).
Since the probability of an LTE is based on parameter estimates which are themselves uncertain

(King, Tomz, and Wittenberg 2000), it is necessary to characterize this uncertainty with either

standard errors or confidence intervals. Fortunately, the calculation of this probability requires

4A superior indicator of model fit for in-sample observations is the “expected percent correctly predicted” (ePCP),
because it distinguishes between low and high probabilities and comes with measures of uncertainty (Herron 1999).

5Alternatively, if one is comfortable using probability thresholds, then for the purposes of these dynamic simulations one
can claim that a scenario has an LTE if it increases (decreases) the probability above (below) a cutoff specified a priori.
For example, scholars using the conventional threshold of p ¼ 0:5 would conclude that any variable that moves the
probability across that threshold has an LTE. A simulation scenario that fails to cross the threshold would have no
LTE.
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no additional assumptions beyond those used when calculating other quantities of interest.6

Nonetheless, using the parameter estimates to derive an additional set of inferences warrants
some careful consideration of model fit. I encourage scholars to be transparent by providing
measures such as ePCP (Herron 1999), cross-validation (Beck 2001), receiver-operating character-
istic (ROC) curves (King and Zeng 2006), area under the curve (AUC) (Weidmann and Ward
2010), and separation plots (Greenhill, Ward, and Sacks 2011). Scholars should also conduct a
series of diagnostic tests to ensure the appropriate specification of the temporal dependence prior to
calculating LTEs (Keele 2008, 109–35).

Once we have characterized the probability of an LTE, the next step is to calculate the LTE.
Recall that the LTE is the change in predicted probability of the outcome at periods tþ 1 to tþ k in
the baseline scenario (XC) compared to the scenario where the time since previous event (time)
reverts to 0 at time tþ 1. Since time is a counter based on previous periods’ values, there is an LTE
at each value of time, from tþ 1 to tþ k. In other words, the LTE is a sequence of moving differ-
ences in the probability for two points along the hazard rate: one that assumes the event occurred at
time t and one that does not. Assume that we set up a baseline scenario, XC, which represents the
average value of the independent variables, including time (t). We then assume that the event occurs
at time t so that the otherwise identical simulation scenario now has a value of time¼ 0 at time
tþ 1. The LTE at time tþ 1 is the following:

LTEtþ1
XC
¼ Prðŷ ¼ 1jXC; time ¼ 0Þ � Prðŷ ¼ 1jXC; time ¼ tÞ: ð3Þ

I calculate the LTE at time tþ 2 by updating the values of time in both scenarios:

LTEtþ2
XC
¼ Prðŷ ¼ 1jXC; time ¼ 1Þ � Prðŷ ¼ 1jXC; time ¼ t þ 1Þ: ð4Þ

And so on, up to a value of k (representing the maximum or some other intuitive value of time). It is
important to note that time—in addition to all the other temporal dependence variables derived
from time (such as splines or cubic polynomials)—must be updated at each time period. Fig. 1a–d
illustrate four configurations of LTEs depending on one’s quantities of interest.7 These data exhibit
a pattern of negative duration dependence, where the probability of the event is highest immedi-
ately following its occurrence, and the probability decreases with time.8

First consider Fig. 1a as we move from left to right. The first dot (and vertical dashed line)
represents the baseline probability (and 95% confidence interval) of the event occurring given the
simulation scenario (or Prðŷ ¼ 1jXCÞ). The second dot represents the updated probability of the
event occurring given a one-time change in the variable of interest (or Prðŷ ¼ 1jXC;�XKÞ). In this
case, the probability of the event occurring at time t is about 0.09. The number labels represent the
values of t in both scenarios. One can assess whether the change in XK produces a statistically
significant change in the probability of an LTE by determining whether the confidence intervals
overlap. In this case, the increase in XK does not produce a statistically significant change in the
probability for that time period. The remainder of Fig. 1a, however, reveals that the change in XK

has a meaningful impact on the probability in future periods by changing the probability that the t
variable resets to 0. The dashed lines from tþ 1 to tþ 12 are the 95% confidence intervals for the
probability of the event, given that the event did not occur at time t (Prðŷ ¼ 1jXC; time ¼ 14 . . . 25).
The solid lines, on the other hand, represent the counterfactual where ŷt ¼ 1. The two vertical lines
at time tþ 1 illustrate how the value of t either resets to 0 (if Y t¼ 1) or continues beyond its current
value (if Y t¼ 0). Of the two scenarios, the counterfactual where the event does not occur (Y t¼ 0) is
much more likely given its small probability (0.09). The difference between these two vertical lines is
the visual representation of the LTE from equation (3). We can also use the confidence intervals to

6See King, Tomz, and Wittenberg (2000, 351) for a discussion of the assumptions related to the sampling distribution
and model specification.

7Replication materials are available from the Harvard Dataverse (Williams 2016).
8I generate the data to mimic the typical features of a study examining international conflict. There are 1000 observa-
tions, and the negative hazard rate is based on Weibull distribution. The X is drawn from a uniform distribution from
�2 to 2, and the substantive effect is for a 0.5 increase in X (�XK

¼ 1). The outcome occurs in 17% of the sample, and
the t variable is right-skewed (skewness¼ 1.9) with a mean of 9.
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conclude that there is a statistically significant LTE from tþ 1 to tþ 9, at which point the confi-

dence intervals overlap and there is no statistical difference between the two probabilities.
One might also be interested in the LTEs of a more lasting increase in XK. Figure 1b is a slight

variation on Fig. 1a in that it depicts the same simulation scenario as before, except that the

quantity of interest is the change in long-term probability given an increase in XK for three

periods beyond t. The inferences regarding LTEs are unchanged, and the only difference is that

the probability of the event occurring for the two counterfactuals remains higher for those three

periods. If one’s emphasis is centered on a more lasting effect, then one can set up the simulation

scenario to represent a permanent increase in XK as in Fig. 1c. Again, the inferences remain the

same although the probabilities of the two scenarios are consistently higher. It is also easy to infer

what other LTEs might look like with different shapes of the hazard rates.9 A figure depicting the

(a) (b)

(c) (d)

Fig. 1 Variations of LTEs based on the counterfactual of interest for negative duration dependence.

Note: Numbers attached to points represent the values of t in the scenarios.

9In the Online Appendix, I provide examples of LTEs from a variety of estimation techniques with different shapes of
the underlying hazard rate.
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LTE for a positive hazard rate, for example, would rearrange the two counterfactual scenarios so

that the scenario where an event occurred at time t would be lower than the other counterfactual.

The resulting LTE would be negative.
Up until now, I have simplified the calculation of LTEs by suggesting that the event only

happens at time t, and the time variable only reverts back to 0 one time. In reality, increasing

the probability of the event in one time period—when combined with negative duration depend-

ence—makes it more likely that the event occurs at future time periods as well. A perfect example of

these compounded LTEs is the “conflict trap,” or the idea that once a country has experienced a

civil war it is much more likely to also have violence in the future. Consider the scenario where a

massive decrease in economic development triggers a civil war at time t; the civil war “weakens the

economy and leaves a legacy of atrocities. It also creates leaders and organizations that have

invested in skills and equipment that are only useful for violence” (Collier et al. 2003, 4). These

circumstances make it likely that the initial effects of economic shocks are compounded through

multiple civil conflicts. Therefore, a more realistic depiction allows the time counter to reset at

multiple time points.
As opposed to the other panels, Fig. 1d depicts two counterfactuals where the event occurs: the

solid line represents the resulting probabilities after we assume the event occurs at time t, and the

dotted line represents the resulting probabilities after we assume the event occurs at time tþ 5.10 In

addition to the LTE given the event at time t (with probability 0.09), there is a compounding effect

that results in an even larger LTE as a result of the event at time tþ 5 (with probability 0.20). This is

certainly consistent with our theoretical understanding of a wide range of political phenomena, and

it suggests that our empirical estimates of the effects of key theoretical variables are incorrect

because scholars have not calculated probabilistic LTEs.
The calculation and effective interpretation of LTE are complicated somewhat because the sub-

stantive magnitude of the LTE depends on the values of XC. Econometricians have long noted that

the effects of a variable on the probability of an outcome in a logit or probit model are conditional on

the location along the cumulative density function (CDF) (e.g., Nagler 1991; Nagler 1994; Long

1997, 73), which means that the marginal effects are different than those from an OLS model (e.g., Ai

and Norton 2003; Norton, Wang and Ai 2004). Though Berry, DeMeritt and Esarey (2010) have

recently highlighted the severity of the problem for political scientists, it is clear from the survey that

the discipline has yet to fully implement these suggestions.11 In the context of this project, this

problem becomes magnified when one employs temporal dependence variables, because these vari-

ables have a wide range and are typically of a high magnitude relative to the other variables.12

Consider the formulas used to calculate the LTEs described above. Since the substantive effect of

each variable in a logit or probit model is influenced by the X� (or the latent Y� variable), scholars

must consider the LTEs under different simulation scenarios (XC). Under these circumstances, it is

often incomplete, and in other times highly misleading, to interpret the LTEs holding the variables

in XC at their means or some other arbitrary values (i.e., the so-called “average-case” approach; see

Hanmer and Kalkan 2012). This is due to two concerns: first, “mean” values of the variables may

not reflect in-sample observations, but instead nonsensical values (King and Zeng 2006). Second,

these “mean” values may exaggerate (or minimize) the LTEs by producing an X� value close to 0.

One must, therefore, be cautious when choosing appropriate cases, by first choosing values of the

simulation scenario that reflect meaningful in-sample observations, and second interpreting the

LTEs at multiple, substantively interesting scenarios. Alternatively, one could calculate the

10As with the choice of whether or not there is an LTE, the decision to depict compounded LTEs (in this case, at time
tþ 5) can arise endogenously (due to the probability passing some threshold), or exogenously by the researcher (to
reflect an interesting or historical case). In either case, one should emphasize the probability of the LTE so that the
compounded LTEs depicted are not unreasonable or unlikely.

11Only 4.7% (6 out of 129) of the articles in the above survey calculated quantities of interest at multiple simulation
scenarios to demonstrate the effects of compression.

12In the Online Appendix I demonstrate that there is the potential for an observation’s location along the CDF (and thus,
the size of the substantive effect) to be largely determined by the values chosen for the temporal dependence variables in
the simulation scenario.
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average LTE using the actual values for each observation in the sample (i.e., the so-called
“observed-values” approach; see Hanmer and Kalkan 2013).

LTEs in models with temporal dependence are an important—and largely ignored—quantity of
interest in guiding substantive inferences. Much like other quantities of interest, effective presen-
tation of the LTE requires providing both the probability of an LTE and the LTE itself (with
measures of uncertainty). Fortunately, the probability of an LTE is already a quantity of interest
that scholars typically report, whether as the baseline probability or the change in the probability of
an outcome, conditional on a simulation scenario. Since the hyper-conditionality causes the LTE to
vary across values of time (as well as the other variables), the most comprehensive presentation is to
depict the relationship graphically across multiple scenarios. If one’s theoretical focus is motivated
by particular historical cases, then one can calculate the LTE for that configuration of conditions
(i.e., independent variables). Or, if one is more concerned about the “average” LTE, one can
calculate the LTE for each in-sample observation and then average over those values (Train
2009; Hanmer and Kalkan 2013). Graphically depicting the LTE (with appropriate measures of
uncertainty) offers two intuitive hypothesis tests. First, the null hypothesis that the simulation
scenario has no LTE is rejected if the confidence intervals for the LTE do not overlap zero.
Second, the null hypothesis that the LTE does not vary across values of time is rejected if the
confidence intervals do not overlap at distinct values of time.

Non-Proportional Hazards

A prominent issue in event history analysis is that most models (such as those described above)
assume proportional hazards (Box-Steffensmeier and Zorn 2001; Box-Steffensmeier and Jones
2004; Licht 2011), or that “the effects of covariates are constant over time; the effect of an inde-
pendent variable is to shift the hazard by a factor of proportionality, and the size of that fact
remains the same irrespective of when it occurs” (Box-Steffensmeier and Zorn 2001, 973).
Whenever the outcomes are influenced by “processes of learning, institutionalization, strategic
developments, and information transmission,” the assumption is likely to fail (Licht 2011, 228).
For example, in the context of international conflict, it certainly is reasonable to believe that the
factors exacerbating the risk of conflict should be most destructive immediately following the
previous conflict. Likewise, the constraining effects of conditions are likely to be most influential
immediately following a conflict when the risk of repeated violence is high. Since the models force
the proportional hazards assumption, we potentially risk systematic bias (Box-Steffensmeier and
Jones 2004, 132) when we fail to explicitly model the non-proportional hazards (NPH). In equation
(2), modeling non-proportional hazards would entail interacting the t variable(s) with the offending
X variable, which would allow the effects of X to vary with elapsed time.

Figures 2a and b depict the probabilities of an event for two counterfactuals (Y t¼ 0 and Y t¼ 1)
following a permanent increase (from 0 to 0.5) in XK (from tþ 1 to tþ 16) for a scenario with
negative duration dependence and positive non-proportional hazards.13 Essentially, while the
baseline probability of the event declines as a function of elapsed time, the effects of XK increase
with time. Figure 2a is based on an additive specification (based on one time counter, t) that ignores
the non-proportional hazards, while Fig. 2b explicitly models the non-proportional hazards with an
interaction between XK and t. The model that ignores the positive NPH estimates a smaller negative
hazard rate (�t ¼ �0:08), which is reflected in the smaller change in probabilities from tþ 1 to
tþ 16. The other model explicitly allows the effects of XK to increase with t, hence the hazard rate is
more negative (�t ¼ �0:19), yet this decreasing effect is counterbalanced at high values of t by the
positive NPH (�Xt ¼ 0:07).

Recall that the differences in probabilities in the two counterfactuals (from tþ 1 to tþ 16) form
the LTEs. Figure 2c demonstrates the difference in LTEs when modeled (Fig. 2b) compared to

13The data are created in a manner similar to those above, with the exception that the influence of XK now varies as a
function of t (XK � t), and the influence increases with time (�Xt¼ 0.04).
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ignored (Fig. 2a). When properly modeled, the LTE is statistically higher at early values of the
simulation and statistically lower at the later values of the simulation compared to the model that
incorrectly assumes proportional hazards. It is clear from this illustrative case that ignoring non-
proportional hazards incorrectly estimates the shape of the temporal dependence (�t) and com-
pletely misses the time-varying effects of XK (Carter and Signorino 2010, 289). Scholars should
think carefully about whether the influence of variables will wax or wane with the passage of time
and rule out those possibilities with explicit empirical tests prior to calculating LTE (Carter and
Signorino 2010, 289).

Alternatives to Duration Dependence

A number of alternatives to dealing with temporal dependence grow out of the time series tradition
rather than event history models. Transitional models integrate the history of the unit but do so in a
way that reflects whether an event occurred in the previous period (state dependence) rather than the
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Note: Numbers attached to points represent the values of t in the scenarios.
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time since the previous event (duration dependence) (Jackman 2000, 6).14 The interpretation of non-
proportional hazards reflects this subtle, but important, difference; instead of an explanatory vari-
able’s influence changing with time, its influence varies according to whether the event occurred in
the past (such as the previous period in an AR(1) process). Transitional models can either be
observation-driven (where the actual observed outcome in the previous period conditions the
effects of the covariates) or parameter-driven (where the latent y�t�1 appears as a covariate).

Given the elevated status of history, it is no surprise that LTEs are meaningful quantities of
interest in these models. The calculation of LTEs in the observation-driven transition model is
similar to the Beck, Katz, and Tucker approach in that one still uses probabilities to make coun-
terfactual claims about whether an event occurs, except that the probabilities determine the
previous state (and the values of the interaction terms). The LTEs in the parameter-driven transi-
tion model are close analogues to those derived from ADL models in the time series tradition
(Jackman 2000, 22–24; de Boef and Keele 2008; Esarey and DeMeritt 2014). Whereas the obser-
vation-driven model is much easier to estimate (see Jackman 2000, 10), the parameter-driven model
is a closer match to theories that often make claims about serial dependence relating from circum-
stances that are unobservable. Regardless of the method one chooses to account for temporal
dependence, each method offers different strategies for calculating LTEs and for addressing
possible non-proportional hazards.

Monte Carlo Experiments

The accurate calculation and effective depiction of LTEs—much like other quantities of
interest—“assume that the statistical model is identified and correctly specified” (King, Tomz,
and Wittenberg 2000, 351).15 More specifically, correct estimation of LTE depends on both the
estimate of the coefficient of interest (�) and the hazard rate (�t). The size of the � influences the
change in probabilities in the counterfactual scenario; an unbiased � will give an accurate estimate,
on average, of the increased (decreased) probability of experiencing the event at future periods. The
hazard rate also plays a key role in determining the size of the LTE; the magnitude and sign depend
on the value of t in the counterfactual scenario (which is then reset to 0), and the shape of the
functional form. It is possible to experience LTEs that are positive, negative, and both, depending
on whether shape of the hazard monotonically decreases, increases, or has a non-monotonic shape,
respectively. In the Online Appendix, I demonstrate how the inferences regarding LTEs vary based
on the functional form of the hazard rate.

Therefore, any discussion of the accuracy of LTE must address the estimate of � and the hazard
rate. It is not yet clear how inaccurately modeling temporal dependence influences the calculation of
LTE. My goal in this section is to assess the performance of a variety of estimation techniques to
model temporal dependence under different conditions. I generate a variety of data sets ranging in
size (N 2 f1000; 5000; 10000g)16 with the binary dependent variable based on an explanatory
variable (XK) drawn from a uniform distribution from �2 to 2 (�XK

¼ 1), a negative constant
(�C 2 f�3;�2g, to produce a variety of frequencies of events) and a hazard rate with the logistic

14Studies of conflict initiation unknowingly make assumptions about non-proportional hazards based on state dependence
when coding ongoing years of conflict as 0 in their empirical analyses (Bennett and Stam 2000, 661–62). Unless one
estimates a model that allows for state dependence (such as an observation-driven transitional model [see Jackman 2000]
or a dynamic probit [see Przeworski and Vreeland 2002]), this decision treats instances of peace and ongoing conflict as
the same and forces the effects of independent variables on both processes to be identical (McGrath 2015).

15Of course, this focus on “coefficient-induced bias” leaves out “transformation-induced bias’” which arises from the
transformation of coefficients into quantities of interest (Rainey 2015). Rainey (2015) demonstrates that quantities of
interest do not inherit the small sample properties of unbiasedness that coefficients do. The problem of transformation-
induced bias is complicated by the fact that it is tough to characterize the bias generally, especially if it is non-linear (as
in the case of logit or probit). Moreover, small sample bias is a bigger concern for quantities of interest than coefficients
(Rainey 2015). The remainder of this manuscript focuses on possible problems related to model misspecification (co-
efficient-induced bias) and briefly discusses transformation-induced bias under the guise of the consequences of
compression.

16Rainey (2015, 8) demonstrates that transformation-induced bias tends to approach 0 as sample size increases, so I
minimize this problem by creating large sample sizes.
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link function described in equation (1).17 I create four functional forms of hazard rates based on

their relationship with time: increasing, decreasing, and two scenarios of non-monotonic relation-

ships (one parabolic, one log-logistic).
We can assess the performance of the LTEs under different functional forms of the hazard rates

with two simple criteria that directly inform the calculation of LTE: bias in the coefficient of the

variable of interest (�XK
), and by comparing the estimated hazards to the true hazard rate at

different values of t. In the first three columns of Table 1, I show the average estimate, absolute

bias, and mean squared error of �XK
¼ 1 for five estimation techniques: exponential (flat, or no

hazard), time dummies (Beck, Katz, and Tucker 1998), cubic polynomials (Carter and Signorino

2010), B-splines located at three knots (1, 4, and 7 to compare the default from many statistical

programs), and automated smoothing splines (via generalized cross-validation). In the final two

Table 1 Performance of �x under various circumstances in Monte Carlo experiments: negative duration

dependence

Scenario Avg. �XK
Bias MSE SE SD

Exponential (Flat)
N¼ 1000; 1s¼ 16% 0.964 0.082 0.011 0.098 0.096

N¼ 1000; 1s¼ 37% 0.964 0.062 0.006 0.073 0.069
N¼ 5000; 1s¼ 16% 0.962 0.047 0.003 0.044 0.043
N¼ 5000; 1s¼ 36% 0.959 0.044 0.003 0.033 0.032

N¼ 10,000; 1s¼ 16% 0.959 0.043 0.003 0.031 0.031
N¼ 10,000; 1s¼ 36% 0.959 0.042 0.02 0.023 0.024

Temporal dummies

N¼ 1000; 1s¼ 16% 1.002 0.078 0.010 0.101 0.100
N¼ 1000; 1s¼ 37% 1.004 0.057 0.005 0.076 0.071
N¼ 5000; 1s¼ 16% 1.000 0.036 0.002 0.045 0.044

N¼ 5000; 1s¼ 36% 1.001 0.027 0.001 0.034 0.034
N¼ 10,000; 1s¼ 16% 0.998 0.025 0.001 0.032 0.032
N¼ 10,000; 1s¼ 36% 1.000 0.019 0.001 0.024 0.025

Cubic polynomials

N¼ 1000; 1s¼ 16% 0.999 0.078 0.010 0.101 0.099
N¼ 1000; 1s¼ 37% 1.006 0.057 0.005 0.076 0.072
N¼ 5000; 1s¼ 16% 0.995 0.036 0.002 0.045 0.045

N¼ 5000; 1s¼ 36% 1.000 0.027 0.001 0.034 0.034
N¼ 10,000; 1s¼ 16% 0.992 0.026 0.001 0.032 0.032
N¼ 10,000; 1s¼ 36% 0.999 0.020 0.001 0.024 0.025

B-Splines
N¼ 1000; 1s¼ 16% 1.005 0.078 0.010 0.101 0.100
N¼ 1000; 1s¼ 37% 1.007 0.057 0.005 0.076 0.072
N¼ 5000; 1s¼ 16% 1.000 0.036 0.002 0.045 0.045

N¼ 5000; 1s¼ 36% 1.001 0.027 0.001 0.034 0.034
N¼ 10,000; 1s¼ 16% 0.999 0.025 0.001 0.032 0.032
N¼ 10,000; 1s¼ 36% 1.000 0.020 0.001 0.024 0.025

Automated smoothing splines
N¼ 1000; 1s¼ 16% 0.997 0.078 0.010 0.101 0.099
N¼ 1000; 1s¼ 37% 1.003 0.057 0.005 0.075 0.071

N¼ 5000; 1s¼ 16% 0.997 0.036 0.002 0.045 0.045
N¼ 5000; 1s¼ 36% 1.000 0.027 0.001 0.034 0.034
N¼ 10,000; 1s¼ 16% 0.995 0.026 0.001 0.032 0.032

N¼ 10,000; 1s¼ 36% 0.999 0.020 0.001 0.024 0.025

Note: Bias is the mean of absolute bias: j�̂x � 1j. MSE is the mean of expected squared bias: E½ð�̂x � 1Þ2�. SE is the mean of the simulated
standard errors. SD is the standard deviation of the estimates.

17I follow the lead of Carter and Signorino (2010, 283) in designing these experiments.
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columns, I assess whether the standard errors accurately portray the variability of the estimate by

comparing the mean standard error of �XK
to the standard deviation of the 1000 estimates of �XK

.

Better estimators are those that have lower values of bias and where the average standard errors are

closer to the standard deviations of the estimated �XK
(Carsey and Hardin 2014, 84–96).

The evidence is clear; failing to correctly model temporal dependence biases the coefficient for

the explanatory variable of interest.18 In nearly every single scenario, the exponential distribution

has the highest absolute bias and mean squared error. While the coefficients are biased downward,

the similarity of the average standard error and the standard deviation of the coefficients means

that the standard errors—in these circumstances19—reflect the true variability of the estimates. The
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Fig. 3 Average hazard rates compared to true hazard rates.
Note: N¼ 1000, sims¼ 1000, beta¼ c(�3, 1).

18This is consistent with omitted-variable bias present in probit models that ignore temporal dependence (Yatchew and
Griliches 1985). In the Online Appendix, I show that this is the case for other functional forms as well (positive,
parabolic, and log-logistic).

19Though this might be a function of the particular level of temporal dependence (which does not vary) in these experi-
ments; other scholars find that the standard errors are often much smaller than they ought to be (Beck, Katz, and
Tucker 1998, 1263).
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evidence also suggests that as long as one specifies the temporal dependence in a reasonable fashion

(thus excluding the exponential functional form), one is likely to retrieve the actual estimate of �XK
,

on average (Beck, Katz, and Tucker 1998, 1278–79; see also Carter and Signorino 2010, 284).
Of course, this is not to say that the LTE will be accurate under all circumstances, as this

depends on appropriately modeling the underlying hazard rate as well. By comparing the true

hazard rate to the estimates from the various techniques, we can assess whether the estimates

contain large amounts of bias. Figure 3 provides these comparisons for four different functional

forms estimated on a data set with 1000 observations and a constant of �3 (which produces a

distribution where events occur in about 16% of the observations). The average hazard rates are

quite close to the true hazard rate over the entire period, and the estimation techniques do well at

picking up non-linearities in the hazard when they occur. The estimates reflect the slight increase at

higher values in the first non-monotonic scenario and the curvilinear shape at the lower values of

the second non-monotonic scenario.
More generally, the estimates are closer to the true hazard rate at lower, more common values

of t.20 As t increases, the estimates stray further from the true hazard, and this is exacerbated in two

situations. First, when the constant increases (shown in the Online Appendix), there is a higher

percentage of 1s in the sample (from about 15% to about 40%), at which point there is a greater

divergence from the true hazard at lower values. Second, some techniques provide better estimates

for some functional forms than others. For example, cubic polynomials do a particularly poor job

at higher values of t, and they often depict non-linearities in the hazard rate that are not there (as

shown in the Non-Monotonic 2 scenario in Fig. 3).21

In practice, however, there is still reason to be optimistic about the use of these techniques to

address temporal dependence. First, BTSCS models with temporal dependence are often predicting

rather rare events such as civil wars or interstate conflicts, and these data sets are similar in attri-

butes to the scenario depicted in Fig. 3. In situations where there is a lower percentage of 1s in the

sample, scholars should have more confidence that a reasonable technique will provide a close

estimate of the true hazard rate. Second, in the simulated data sets, values of t that are larger than

about 20 are relatively rare (all of the data are right-skewed), so it is reasonable to expect that our

estimates of the hazard rate under these anomalous situations would be potentially wrong. If

scholars are cautious about making inferences about observations that are not representative of

the entire sample, then they will focus their inferences on low to moderate values of t. In this range

of values, the estimates are quite close to the truth.
In Fig. 2, I depicted how ignoring and modeling non-proportional hazards produces meaning-

fully different depictions of the long-run dynamics of a relationship. To identify the source of these

differences, I estimate a series of Monte Carlo experiments on a similar data-generating process as

described above.22 The primary difference is that the influence of XK now varies as a function of t

(XK � t), and the influence varies across scenarios: (�Xt 2 f0:2; 0:1; 0:04; 0:02g). In the case of

negative non-proportional hazards, these coefficients are negative.
In the Online Appendix, I interpret these experiments in greater detail, but a couple of patterns

are informative. First, ignoring the non-proportional hazards biases the coefficient for XK, and this

bias increases with the degree of non-proportional hazards. Second, the estimated hazard rate tends

to track the true hazard rate pretty closely, especially at lower values of t. Third, the estimates of the

effects of XK across values of t, or the average predictive differences (APD), demonstrate that failing

to model minor levels of non-proportional hazards is not as problematic as one might think. In

most cases, the estimated APD is able to capture the rising (declining) influence of a variable due to

positive (negative) non-proportional hazards.

20This is also evident in the Monte Carlo experiments produced in the Online Appendix accompanying Carter and
Signorino (2010, 7).

21These poor estimates occur even when one accounts for possible numerical instability problem by dividing the values of
t by 100 before squaring and cubing them (Carter and Signorino 2010, 283).

22There are 1000 simulations of the estimates derived from a model with 1000 observations and coefficient values of �3
and 1 for the constant and �XK

, respectively.
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One interpretation of these findings is that there is little harm in estimating additive models that
ignore non-proportional hazards. Of course, these results are somewhat limited to the unique
circumstances present in this batch of experiments (with monotonic hazards with slight non-pro-
portionality). If one believes that there are non-proportional hazards present, and if one’s concern
is on estimating the effects of the variable with non-proportional hazards, it still makes more sense
theoretically to estimate the interactive model. Given the relative simplicity of estimating and
testing for non-proportional hazards (particularly in the case of cubic polynomials), it is extremely
short-sighted to move forward without a full examination of one’s data. Indeed, this is the only way
to ensure that the non-proportional nature of the relationship is properly understood.

Illustration

This section reveals how temporal dependence influences the inferences that one makes from their
BTSCS model. Each simulation scenario used to depict quantities of interest has a probabilistic
LTE made up of two components: the change in probability of the outcome occurring at time t and
the change in the probability of the outcome in future time periods, given a conflict at time t. Since
influencing the risk of the outcome at time t modifies future values of the temporal dependence
variables, scholars underestimate the substantive effects by neglecting the LTEs. In this example,
Clare’s (2010) key theoretical variable has a long-lasting effect that extends much farther than we
currently believe. There is reason to believe that the total effects have been seriously understated in
Clare (2010).

Clare (2010) theorizes that the behaviors of parliamentary governments vary based on the extent
to which the governing coalition is cohesive. The presence of outlier parties—either on the left or
the right—will have a disproportionate influence on foreign policy behavior because they can
threaten to leave the coalition. Since Clare (2010, 979) includes peaceyears, peaceyears,2 and
peaceyears3 to “address the problem of temporal dependence,” this project offers a perfect oppor-
tunity to explore the effects of including temporal dependence variables.23

Since Clare’s (2010) focus is on how ideological outliers pressure coalition governments into
either peaceful or adventurous foreign policies, I begin by calculating the LTEs of an increase in
ideological distance from its minimum value of �110 (representing a far-left outlier coalition
partner) toþ 122 (representing a far-right outlier coalition partner). The first step is to establish
the simulation scenario (XC). Each simulation scenario (XC) used to depict quantities of interest
provides both a baseline probability of the event occurring at time t (Prðyi ¼ 1jXCÞ) and the infor-
mation needed to calculate the LTE (see equations (3)–(4)). In this case, I treat each observation in
the data set as a separate simulation scenario so that I can quantify the effects of ideological distance
given observed values of the independent variables (Hanmer and Kalkan 2013).

Figure 4a shows the probability of dispute initiation given the observed simulation scenario
combined with the minimum value of ideological distance (Prðŷ ¼ 1jXC; ID ¼ minÞ), across the
range of values of peaceyears. Recall that the predicted probability provides two pieces of vital
information: first, the probability that the event occurs at time t, and second, the probability of a
LTE at future values of t. While the first is widely recognized and displayed as the principal
quantity of interest, the second is crucial for a complete depiction of the substantive effects. The
probabilities are quite small (ranging from nearly 0 to 0.05), which is common in models of rare
events (King and Zeng 2001).24

Figure 4b provides the probability of the event occurring at time t, given an increase in ideolo-
gical distance to its maximum (Prðŷ ¼ 1jXC; ID ¼ maxÞ). The difference between the values in the
two panels represents the probabilistic component of the LTE (�Prðŷ ¼ 1jXC;�IDÞ. The first
inference is that increasing ideological distance has by far its biggest impact on the probability of
dispute initiation (and, importantly, the probability of an LTE) if a conflict recently occurred. Keep

23All of the following discussion is based on Model 1 in Table 1 (Clare 2010, 982).
24The model fits the data reasonably well, as the ePCP is 94.6% and the area under the curve (AUC) is 0.77 (with a 95%
confidence interval of [0.71, 0.82]). In the Online Appendix file, I also provide the ROC and separation plots.
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in mind that, since ideological distance and peaceyears are incorporated additively, these varying
effects are due solely to compression.25

The next step in depicting LTEs is to calculate the change in probability of the outcome at time
tþ 1 to tþ k, given an outcome occurring at time t (see equations (3)–(4)). This can be done in a
variety of ways, though I present two here. The first option is to calculate the “average” LTEs with
the observed-value approach (Hanmer and Kalkan 2013) using the following steps:

1. Using the observed values for observation #1, calculate the change in probability of a
dispute initiation given a change in an explanatory variable.

2. Now assume that a dispute occurs at time t; calculate the change in probability at time tþ 1
when peaceyears (and its squared and cubed terms) is reset to 0 compared to what it would
be for that observation without a dispute at time t. Repeat this step for values tþ 1 through
tþ k.

3. Repeat steps #1–2 for all N observations in the data set.

4. At each value of tþ 1 through tþ k, calculate the mean of those N LTEs to generate the
“average” LTEs with the observed-value approach.

Figure 5 shows the probabilities of conflict for the two counterfactual scenarios (Fig. 5a) and the
“average” LTE (Fig. 5b) from tþ 1 through tþ 20. Experiencing a conflict at time t immediately
increases the risk of a dispute, which is consistent with a wide range of theories of international
conflict, for example, the lasting effects of territorial claims on the potential for future hostilities
(e.g., Senese 2005). Figure 5b shows that the LTE of conflict at time t produces a statistically
significant increase for the next 15 time periods. Furthermore, while the absolute values of the
LTE appear small (0.09 at tþ 1), the LTEs are quite large relative to the baseline probability at time
t (0.11).

An alternative to depicting the “average” LTEs is to establish multiple simulation scenarios
where the baseline probability varies considerably. This shows the influence of hyper-conditionality
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Fig. 4 Probabilities of LTEs when ideological distance is at its minimum and its maximum values.
Note: Scatterplots are slightly jittered to illustrate the density of observations. Each dot reflects the prob-

ability of an LTE given the actual values for that observation.

25In the Online Appendix file, I demonstrate that we fail to reject the null of proportional hazards, which means that any
change in the substantive effects of ideological distance across peaceyears is due to compression rather than an omitted
interactive relationship (see Carter and Signorino 2010).
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by allowing the size of the substantive effect to vary according to its position along the CDF.

Instead of crafting simulation scenarios that reflect substantively interesting cases, for the purposes

of this illustration, I create scenarios where the baseline probability of dispute initiation varies

considerably: 0.003, 0.05, 0.10, and 0.50.26 The value of peaceyears at time t is 5 across all four

scenarios. Figure 6 plots the LTEs of a dispute at time t (with 95% confidence intervals) for the first

eleven years following the dispute for these four scenarios.
As expected due to compression, the substantive and statistical signficance of the LTEs varies

according to the baseline probabilities. As the baseline probability increases (across panels of

Fig. 6), the magnitude of the LTE increases considerably. Moreover, the LTE is statistically dif-

ferent from 0 at all the depicted values of peaceyears. Given the massive influence that hyper-

conditionality can have on the magnitude and statistical significance of one’s inferences, these

figures would point to the utility of evaluating these LTEs at multiple simulation scenarios of

varying baseline probabilities. Otherwise, one might be vulnerable to offering general inferences

that only hold for a small portion of the observations.
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Fig. 5 Average LTEs across time since previous dispute.
Note: Lines depict 95% confidence intervals for the LTEs calculated using the observed-values approach.

Numbers attached to points represent the values of t in the scenario.

26It should be noted that the fourth scenario is highly unrealistic given the estimated parameters (the maximum in-sample
probability is 0.16) and is only intended to demonstrate how the LTE are influenced by compression. In the Online
Appendix, I provide the values of the variables selected for the scenarios.
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Conclusion

The goal of this project is to convince scholars that including temporal dependence variables does

much more than just provide peace of mind to those worried about temporal dependence. Rather,

including these variables—which often have massive influences on the outcome of inter-

est—changes the substantive effects of the key theoretical variables. Indeed, the inclusion of time

counters, cubic splines, or polynomials allows variables to have an LTE in addition to the imme-

diate effect. Prominent theories (such as the conflict trap; see Collier et al. 2003) often have ex-

pectations that the variables have long-lasting effects, or that the a variable’s influence grows with

each recurring event. Yet, up until this point, scholars have been unable to estimate and graphically

depict these theoretically interesting long-run dynamics from BTSCS models. I presented a wide

range of quantities of interest one can derive from BTSCS models with temporal dependence,

ranging from responses to a variety of changes in X, compounded effects, and effects that vary

with time. Putting these principles into practice is rather easy. Correctly interpreting the LTEs
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Fig. 6 LTEs across time since previous dispute for four simulation scenarios with varying baseline

probabilities.
Note: Lines depict 95% confidence intervals for the LTEs. Probabilities denote the baseline probability of a
dispute initiation for that simulation scenario. Numbers attached to points represent the values of t in the

scenarios.

Laron K. Williams260

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/p

an
/m

pw
00

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

Deleted Text: long-term effect
Deleted Text: long-term effect
https://doi.org/10.1093/pan/mpw009


requires no change in the estimation technique, and only requires adjusting how one interprets the
substantive effects. Interpreting one’s model in this manner allows scholars to paint a more
complete picture of the causal story under investigation.

I demonstrated the importance of these effects by replicating Clare’s (2010) study of conflict
behavior of parliamentary democracies. I showed that variables can be much more influential than
previously thought because of the potential to change future values of the temporal dependence
variables. The inferences one makes about the LTEs of ideological distance vary in magnitude and
statistical significance based on the values chosen for the temporal dependence variables. I then
offered two approaches to illustrating the LTE across multiple scenarios so that scholars can
observe the consequences of those decisions. In a companion piece, Gandrud and Williams
(2016) introduce R software that automates the process of generating probabilistic LTEs in
binary models with temporal dependence.

While this project demonstrated these effects with an example of a probit model with cubic
polynomials, the intuition is broadly applicable to different ways of operationalizing temporal
dependence, such as various kinds of splines. Since these methods depend on the time since the
occurrence of the event, it is simple to change the future values of the spline for the applicable
observations. Furthermore, this intuition extends to other models that employ temporal depend-
ence variables, such as count models (Li 2009), ordered logits (Melander 2005), multinomial logits
(Buhaug and Gleditsch 2008), and conditional logits (Dreher and Gassebner 2012). In all of these
models, explanatory variables potentially have a long-term component. The difference arises in how
one determines whether an “event” occurs, through either probabilities (in the case of conditional
logit, ordered logit, or multinomial logit) or expected values (in the case of count models).

Conflict of interest statement. None declared.
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