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The transport of motile micro-organisms exhibits rich and complex phenomena, of
significance to various biological and environmental applications. For dilute suspen-
sions of gyrotactic algae dispersing in vertical pipe flows, previous studies obtained
only approximate values for the overall drift and dispersivity in the longitudinal
direction, using two-step averaging methods with the Pedley–Kessler (PK) model
and the generalized Taylor dispersion (GTD) model. These two-step methods impose
restrictive assumptions: both the swimming Péclet number and the variation of shear
rates relative to swimming must be sufficiently small. Thus, it is difficult to analyse
the gyrotactic dispersion process in the ‘breakdown’ parameter region. Following
a recent study of Jiang & Chen (J. Fluid Mech., vol. 877, 2019, pp. 1–34), this
paper applies the integrated and precise one-step GTD method to study the overall
dispersion process and performs a quantitative test for the applicability of two-step
methods. An appropriate function basis for series expansions in the GTD method
is proposed to deal with reflective boundary conditions imposed at the tube wall.
Detailed results for Chlamydomonas nivalis are presented to illustrate the influence
of the gyrotactic focusing on the overall dispersion process, for both downwelling
and upwelling flows. The overall drift above the mean flow increases monotonically
with the flow rate. However, the overall dispersivity will first decrease, then increase,
and finally saturate as the flow rate increases, due to a combined effect of gyrotaxis,
swimming and convection. Shear alignments of prolate cells will weaken the focusing,
and thus reduce the drift and enhance the dispersivity. The predictions by two-step
methods with the PK and GTD models are found to be successful inside their
required parameter region. Within the ‘breakdown’ region, the two-step GTD method
still gives reasonable results for the local distribution and the drift, but fails in the
predictions of dispersivity.

Key words: micro-organism dynamics, swimming/flying, mixing and dispersion

1. Introduction
The transport of micro-organisms is a crucial issue for a wide range of biological

and environmental applications, such as algae cultivation (Posten 2009; Liao et al.

† Email address for correspondence: gqchen@pku.edu.cn
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2014; Acién et al. 2017), biofuels (Chisti 2007; Mata, Martins & Caetano 2010;
Stephenson et al. 2010), bio-remediation (Muñoz & Guieysse 2006; Suresh Kumar
et al. 2015) and wetlands (Zeng & Pedley 2018; Zeng et al. 2019; Yang et al.
2020). Suspensions of motile micro-organisms exhibit much richer and more complex
phenomena than those of passive particles (Saintillan 2018), including collective
behaviour (Pedley & Kessler 1992; Ishikawa & Pedley 2007, 2008; Pedley 2010a;
Marchetti et al. 2013), upstream swimming (Hill et al. 2007; Rusconi & Stocker
2015; Mathijssen et al. 2016) and wall accumulation (Rothschild 1963; Berke et al.
2008; Elgeti & Gompper 2013).

Besides the self-propulsion effect, taxes of micro-organisms, such as gravitaxis (in
response to gravity), chemotaxis (chemical gradients) and phototaxis (light) (Pedley
& Kessler 1992; Bees & Croze 2014; Goldstein 2015), also play a significant
role in transport processes. In shear flows, the phenomenon induced by gyrotaxis
is of considerable interest, which is a combined effect of the gravitational torque
(by gravitaxis (Fenchel & Finlay 1984, 1986)) and the viscous torque (by shear
(Jeffery 1922)). The imposed flow induces a gyrotactic bias for micro-organisms,
e.g. bottom-heavy algae like Chlamydomonas nivalis and Dunaliella. One of the
most well-known phenomena is the gyrotactic focusing of algae in vertical pipe
flows (Kessler 1984, 1985, 1986). Cells accumulate at the centre of the tube in a
downwelling flow and migrate to the walls in an upwelling flow (Pedley & Kessler
1992). This self-focus phenomenon can also be induced by phototaxis in a horizontal
pipe flow (Garcia, Rafaï & Peyla 2013; Martin et al. 2016), called photofocusing. The
gyrotactic nature can lead to instability in bioconvection (Childress, Levandowsky &
Spiegel 1975; Pedley, Hill & Kessler 1988; Pedley 2010b; Hwang & Pedley 2014a).
In coastal ocean, gyrotaxis plays the fundamental role in the formation of thin
layers of phytoplankton, called gyrotactic trapping (Durham, Kessler & Stocker 2009;
Durham & Stocker 2012; Ishikawa 2012; Cencini et al. 2019).

Dispersion of gyrotactic micro-organisms in confined flows has also been intensively
investigated. The pioneering work by Bees & Croze (2010) has extended the classic
Taylor–Aris dispersion theory (Taylor 1953, 1954; Aris 1956) of passive particles in
pipe flows to the case of gyrotactic particles. The convection–diffusion equation for
a passive solute is replaced by a new and effective one for active particles, originally
proposed by Pedley & Kessler (1990). This new continuum model, referred to as the
Pedley–Kessler (PK) model, is a simplification of the Smoluchowski equation (Doi &
Edwards 1988), i.e. the transport equation in the six-dimensional position–orientation
space (Hwang & Pedley 2014a). The effective drift and dispersivity tensor for
the convection–diffusion equation in the position space is approximated by a
Fokker–Planck (FP) equation (Risken 1996) for the swimming direction of active
particles in the orientation space (Pedley & Kessler 1992). Based on the PK model
(also called the FP model), Bees & Croze (2010) analytically derived the overall drift
and effective dispersivity for macrotransport in the longitudinal direction of a pipe
flow and found significant differences from the passive case due to the focusing.

Apart from the PK model, the generalized Taylor dispersion (GTD) theory (Brenner
1982; Frankel & Brenner 1989) has also been applied to study the macrotransport
of gyrotactic micro-organisms in confined flows. Taking the orientation as the local
space, with the position as the global space, the fundamental work by Hill & Bees
(2002) extended the GTD of passive Brownian particles in unbounded homogeneous
shear flow (Frankel & Brenner 1991, 1993) to the case of gyrotactic spherical cells.
Performing the mean operation on the local orientation space, the effective drift
and dispersivity tensor for the convection–diffusion equation in the position space
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were calculated and extended to the case of ellipsoidal cells by Manela & Frankel
(2003). Bearon, Hazel & Thorn (2011) made a key attempt to widen the range
of applications of the GTD model to flows with variable shear rates. Instead of
using the PK model in Bees & Croze (2010), the effective dispersivity tensor at
each position is approximated by the GTD model with the case of an imaginary
unbounded homogeneous shear flow with the same shear as the local one. Next,
using this new effective convection–diffusion equation in the position space as the
first step, Bearon, Bees & Croze (2012) performed a second mean operation on the
confined section using the classic Taylor–Aris dispersion theory (Taylor 1953; Aris
1956; Bees & Croze 2010) and obtained the overall drift and dispersivity in the
longitudinal direction. For dilute suspensions in vertical downwelling pipe flow, they
found more reasonable dispersion results, compared with those of Bees & Croze
(2010) using the PK model. Later, Croze et al. (2013) extended both the PK and
GTD models to the dispersion of algae in laminar and turbulent channel flows, and
compared the theoretical predictions with numerical simulations by the random walk
method. Recently, an experimental test for these models was taken by Croze, Bearon
& Bees (2017). When the shear rate is large, both the numerical and experimental
results found good agreements with the GTD model but poor agreements with the
PK model.

However, both the PK and GTD models for the convection–diffusion equation
have made restrictive assumptions and thus their applications are limited (Bearon
et al. 2011). Note that, although in the second step, the overall drift and dispersivity
for the macrotransport in the longitudinal direction of the confined flow can be
analytically derived by the classic Taylor–Aris dispersion theory (Bees & Croze
2010) based on the effective convection–diffusion equation, the effective equation
itself obtained in the first step is only a simplified approximation of the complete
transport equation of the phase space (position–orientation) into the lower-dimensional
position space. It requires that the swimming Péclet number Pes � 1. Namely, the
time scale that the swimmer takes to rotate in the orientation space is much less
than the time it takes to swim across the tube (Bearon et al. 2011; Jiang & Chen
2019a), and thus the boundary effect can also be neglected. Additionally, the PK
model neglects the local spatial distribution by the cell locomotion in a shear flow,
which is valid only for weak shear (Croze et al. 2017). Although the GTD model
incorporates the local shear as unbounded homogeneous shear, the relative variation
of the shear rates must also be small enough to be neglected. In fact, discrepancies
in the local distribution, overall drift and overall dispersivity between the predictions
by the two models and numerical simulations (Bearon et al. 2011; Croze et al. 2013)
have been demonstrated outside the required parameter region.

To analytically derive the overall drift and dispersivity, recently, a more integrated
one-step approach has been devised in place of the above two-step methods (Jiang
& Chen 2019a). Unlike the two-step GTD method, this one-step method sets both
the orientation space and confined section of the position space together as the local
space, and thus the longitudinal coordinate as a one-dimensional global space. Fully
utilizing the GTD theory, the mean operation on the local space is performed only
once, then the overall dispersion coefficients can be obtained, without introducing
the effective convection–diffusion equation in the position space as an approximation
in the two-step methods with the PK or GTD models. Therefore, the one-step
method can be analytically accurate and strongly adaptable for applications. Jiang
& Chen (2019a) gave elementary examples of dilute suspensions of active particles
dispersing in channel flows. The case of gyrotactic micro-organisms has not yet been
investigated.
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889 A18-4 W. Jiang and G. Chen

In this work we apply the one-step method to study the dispersion of dilute
suspensions of gyrotactic micro-organisms in vertical pipe flows, and illustrate the
influence of the gyrotactic focusing on the dispersion process. It is of considerable
interest to perform a quantitative test for the applicability of the two-step methods with
the GTD and PK models. For the transport problem formulated in § 2, the one-step
GTD method is applied in § 3. The key is to solve the local transport equation
equipped with reflective boundary conditions that are an idealization assuming elastic
collisions between particles and solid boundaries (Bearon et al. 2011; Volpe, Gigan
& Volpe 2014; Jakuszeit, Croze & Bell 2019). In the paper by Jiang & Chen
(2019a), the reflection principle in the random walk theory is used to obtain the local
distribution with the Galerkin method, by reflecting the channel flow field. However,
for the pipe flow, it is not applicable because the geometric shape of the cross-section
is a circle. To overcome this, we propose new reflection basis functions on the local
space for the series expansion. In § 4, the overall dispersion of the classic case for
the gyrotactic focusing is illustrated, for both downwelling and upwelling flows.

2. Formulation of transport problem
2.1. Governing equations

Consider the probability density function (p.d.f.) P of motile micro-organisms in
the position–orientation space (R∗, p), where R∗ is the position vector and p is the
orientation vector. The conservation equation for P can be given by the Smoluchowski
equation (Doi & Edwards 1988) as

∂P
∂t∗
+∇

∗

R · J∗R +∇p · j∗p = 0, (2.1)

where ∇∗R denotes the gradient operator in the position space, ∇p is that in the
swimming orientation space, t∗ is time,

J∗R = [U
∗(R∗)+ V∗s p]P−D∗t∇

∗

RP (2.2)

is the position-space flux and

j∗p = ṗ∗P−D∗r∇pP (2.3)

is the orientation-space flux density, with U∗ the velocity of the external flow, V∗s
the mean swimming speed of the particles, D∗t the translational diffusivity and D∗r the
rotational diffusivity. The rate of change of swimming direction is

ṗ∗ =Ω∗a × p, (2.4)

where a dot above a variable denotes the time derivative and Ω∗a is the total angular
velocity of the particle. For gyrotactic micro-organisms (Jeffery 1922; Leal & Hinch
1972; Pedley & Kessler 1992)

Ω∗a =
1

2B∗
p× k+

1
2
ω∗ + α0[p× (E∗ · p)], (2.5)

where B∗ is the gyrotactic time scale, k is the unit vector pointing vertically upwards,

ω∗ =∇∗R ×U∗ (2.6)
is the ambient vorticity,

E∗ = 1
2 [∇

∗

RU∗ + (∇∗RU∗)T] (2.7)

is the rate-of-strain tensor and α0 is the shape factor of the particle, with α0 = 0 for
a sphere and α0 = 1 for an infinitely thin rod-like particle.
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FIGURE 1. Sketch of a gyrotactic micro-organism swimming in a vertical downwelling
pipe flow. Here p is the swimming direction with polar angle θ and azimuthal angle φ.

2.2. Dimensionless formulation
For a dilute suspension of gyrotactic micro-organisms in a vertical pipe flow with
radius a∗, as shown in figure 1, we employ cylindrical coordinates (r∗, ψ, z∗) in the
position space with unit vectors er, eψ and ez, so that

U∗ =U∗(r∗)ez, (2.8)

where U∗ is the flow speed.
In the orientation space, we employ spherical coordinates (ρ, θ, φ) with unit vectors

eρ , eθ and eφ . Here θ is the polar angle between p and eψ , and φ is the azimuthal
angle between −ez and the projection of p onto the z–r plane. Then the swimming
direction is

p= eρ = pr(θ, φ)er + pψ(θ, φ)eψ + pz(θ, φ)ez, (2.9)

where

pr =−sin θ sin φ, pψ = cos θ, pz =−sin θ cos φ. (2.10a−c)

Dimensionless variables and parameters are introduced:

t= t∗D∗r , r=
r∗

a∗
, z=

z∗

a∗
− Pef t, U =

U∗

U∗m
− 1,

Pes =
V∗s

D∗r a∗
, Pef =

U∗m
D∗r a∗

, Dt =
D∗t

D∗r a∗2
, λ=

1
2B∗D∗r

.

 (2.11)

The frame of reference is transformed to that moving with the mean flow U∗m,

U∗m ,
1

a∗2

∫ a∗

0
2r∗U∗(r∗) dr∗, (2.12)
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889 A18-6 W. Jiang and G. Chen

and thus U is the flow deviation from the mean. In the above, Pes is the swimming
Péclet number for the rotational diffusion, Pef is the flow Péclet number, Dt is the
ratio of the translational diffusivity to the rotational diffusivity, and λ is the bias
parameter.

In the current coordinate system, the conservation equation (2.1) becomes

∂P
∂t
+∇R · [(Pef Uez + Pes p)P−Dt∇RP] +∇p · ( ṗrP−∇pP)= 0, (2.13)

where ∇R= er(∂/∂r)+ eψ(1/r)(∂/∂ψ)+ ez(∂/∂z), ∇p= eθ(∂/∂θ)+ eφ(1/sin θ)(∂/∂φ),
and the relative rate of change of swimming direction

ṗr = ṗ− ṗc, (2.14)

with the Coriolis effect ṗc = ψ̇ez × p and ψ̇ = (Pespψ/r). Let

ṗr = θ̇ eθ + φ̇ sin θ eφ, (2.15)

then

θ̇ = λ cos φ cos θ +
α0Pef

4
∂U
∂r

sin 2θ sin 2φ −
Pes

r
cos θ sin φ, (2.16)

φ̇ =−λ
sin φ
sin θ

−
Pef

2
∂U
∂r
(1− α0 cos 2φ)−

Pes

r
cos θ cot θ cos φ. (2.17)

Note that when λ= 0 (without the gyrotactic bias), θ̇ and φ̇ correspond to the results
of Zöttl & Stark (2013).

It is assumed that collisions between particles and solid boundaries are perfectly
elastic (Bearon et al. 2011; Ezhilan, Pahlavan & Saintillan 2012; Volpe et al. 2014;
Jakuszeit et al. 2019). Thus, reflective boundary conditions at pipe walls are imposed
as

P(1, ψ, z, θ, φ, t)= P(1, ψ, z, θ,−φ, t), (2.18)
∂P
∂r
(1, ψ, z, θ, φ, t)=−

∂P
∂r
(1, ψ, z, θ,−φ, t), (2.19)

ensuring zero total wall-normal probability flux through the walls,

0 =
∫ π

0
sin θ dθ

∫ 2π

0
dφ (er · JR)

=

∫ π

0
sin θ dθ

∫ π

−π

dφ
(
−Pes sin θ sin φ P−Dt

∂P
∂r

)
. (2.20)

Note that previous studies (Bearon et al. 2011; Ezhilan & Saintillan 2015; Jiang &
Chen 2019a) only considered (2.18), with the swimming flux balanced by reflections.
In fact, the transitional diffusive flux is also balanced and thus satisfies (2.19).

At the cylindrical coordinate origin (r = 0), a finite probability condition is stated
as

P|r=0 6=∞. (2.21)
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Dispersion of gyrotactic micro-organisms 889 A18-7

Periodic boundary conditions for ψ are

P|ψ=0 = P|ψ=2π,

∂P
∂ψ

∣∣∣∣
ψ=0

=
∂P
∂ψ

∣∣∣∣
ψ=2π

.

 (2.22)

In the orientation dimension, a finite probability condition for θ reads as

P|θ=π/2 6=∞, P|θ=−π/2 6=∞, (2.23a,b)

and periodic boundary conditions for φ are

P|φ=π = P|φ=−π,

∂P
∂φ

∣∣∣∣
φ=π

=
∂P
∂φ

∣∣∣∣
φ=−π

.

 (2.24)

An initial probability distribution P(0) is prescribed

P|t=0 = P(0)(r, ψ, z, θ, φ). (2.25)

3. Solutions for generalized Taylor dispersion model
3.1. Local and global spaces

For pipe flows, the longitudinal scale is much larger than the transverse scale (Wu
& Chen 2014). The overall dispersion in the longitudinal direction is of interest. To
obtain the overall drift and dispersivity, one can apply the GTD theory (Brenner 1982;
Frankel & Brenner 1989).

Following Jiang & Chen (2019a), the one-step GTD method is employed: the
unbounded longitudinal coordinate z is chosen as the global space variable Q = (z),
while the local space q = (r, ψ, θ, φ). The transport equation (2.13) is recast as

∂P
∂t
+ [Pef U(r)− Pes sin θ cos φ]

∂P
∂z
−Dt

∂2P
∂z2
+LP= 0, (3.1)

where L is an operator defined in the local space q, and explicitly

LP , −
Pes sin θ sin φ

r
∂(rP)
∂r
+

Pes cos θ
r

∂P
∂ψ
−Dt

[
1
r
∂

∂r

(
r
∂P
∂r

)
+

1
r2

∂2P
∂ψ2

]
+

1
sin θ

∂(θ̇ sin θ P)
∂θ

+
∂(φ̇P)
∂φ
−

1
sin θ

∂

∂θ

(
sin θ

∂P
∂θ

)
−

1
sin2 θ

∂2P
∂φ2

. (3.2)

We use angle brackets to denote the integration over the local space (a cross-section
in the phase space), e.g.

〈P〉,
∫ 1

0
r dr

∫ 2π

0
dψ
∫ π

0
sin θ dθ

∫ 2π

0
dφ P(r, ψ, z, θ, φ, t) (3.3)

represents the cross-sectional mean concentration of micro-organisms in the longitu-
dinal direction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.91


889 A18-8 W. Jiang and G. Chen

3.2. Long-time asymptotic distribution in local space
First, we consider the long-time asymptotic state of the zeroth-order longitudinal
moment of P,

P∞0 (r, ψ, θ, φ), lim
t→∞

(∫
+∞

−∞

P(r, ψ, z, θ, φ, t) dz
)
, (3.4)

i.e. a steady local distribution in the local space. According to the GTD theory
(Brenner 1982; Frankel & Brenner 1989), P∞0 satisfies

LP∞0 = 0. (3.5)

The form of the boundary conditions for P∞0 is the same as those for P, i.e. (2.18)–
(2.24). Note that the above boundary value problem (BVP) for P∞0 is independent
of ψ .

One can solve for P∞0 by the Galerkin method (Doi & Edwards 1978; Hill & Bees
2002; Manela & Frankel 2003), expanding in cylindrical and spherical harmonics. To
perform the series expansion, first, we seek the basis functions satisfying the reflective
boundary conditions.

3.2.1. Reflection basis functions
One can use the eigenfunctions of the Laplace operator,

∆q =
1
r
∂

∂r

(
r
∂

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2
, (3.6)

on the local space to find the required basis functions. The inner product for given
functions f and g is

〈 f , g〉,
∫ 1

0
rdr

∫ π

0
sin θ dθ

∫ 2π

0
dφ f (r, θ, φ)g(r, θ, φ). (3.7)

Note that ∆q is self-adjoint with the reflective, finite and periodic boundary conditions
(2.18)–(2.24). One needs to check the radial term. Integration by parts gives∫ 1

0
r dr

∫ π

0
sin θ dθ

∫ 2π

0
dφ g

1
r
∂

∂r

(
r
∂f
∂r

)
=

∫ π

0
sin θ dθ

∫ 2π

0
dφ
(

gr
∂f
∂r
− rf

∂g
∂r

)∣∣∣∣r=1

r=0

+

∫ 1

0
r dr

∫ π

0
sin θ dθ

∫ 2π

0
dφ f

1
r
∂

∂r

(
r
∂g
∂r

)
.

The reflection conditions (2.18) and (2.19) ensure that all the boundary terms are equal
to zero. Namely,∫ π

0
sin θ dθ

∫ 2π

0
dφ
(

rg
∂f
∂r

)∣∣∣∣
r=1

=

∫ π

0
sin θ dθ

∫ 2π

0
dφ
(

rf
∂g
∂r

)∣∣∣∣
r=1

= 0 (3.8)

because both (∂f /∂r(1, θ, φ)) and (∂g/∂r(1, θ, φ)) are odd functions with respect to φ.
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Dispersion of gyrotactic micro-organisms 889 A18-9

To construct the eigenfunctions for ∆q, one can use the spherical harmonics,

Rc(r)

√
2l+ 1

4π
Pl(cos θ), (3.9)

Rc(r)
√

2

√
2l+ 1

4π

(l−m)!
(l+m)!

cos(mφ)Pm
l (cos θ), m= 1, 2, . . . , l, (3.10)

Rs(r)
√

2

√
2l+ 1

4π

(l−m)!
(l+m)!

sin(mφ)Pm
l (cos θ), m= 1, 2, . . . , l, (3.11)

where l = 0, 1, 2, . . . , Pl are the Legendre polynomials and Pm
l are the associated

Legendre polynomials (Olver et al. 2010),

Pm
l (x)= (−1)m(1− x2)m/2

dm

dxm
Pl(x), (3.12)

with the Condon–Shortley phase (−1)m.
The undetermined functions Rc(r) and Rs(r) satisfy

1
r
∂

∂r

(
r
∂R(r)
∂r

)
− l(l+ 1)R(r)= χR(r), (3.13)

where χ is the eigenvalue for ∆q. For Rc(r), the reflection conditions (2.18) and (2.19)
require

cos(mφ)Rc(1)= cos(−mφ)Rc(1), ∀ φ ∈ [0, 2π], (3.14)

cos(mφ)
∂Rc(1)
∂r
=− cos(−mφ)

∂Rc(1)
∂r

, ∀ φ ∈ [0, 2π], (3.15)

namely,
∂Rc(1)
∂r
= 0. (3.16)

Therefore, the solution for Rc(r) is

Rc
n(r)=

√
2

J0(
√
−βnr)

J0(
√
−βn)

, n= 0, 1, 2, . . . , (3.17)

where J0 is the Bessel function of the first kind and βn is the nth non-negative zero
of

dJ0

dr
(
√
−βn)= J1(

√
−βn)= 0, n= 0, 1, 2, . . . . (3.18)

Notice that β0 = 0 and Rc
0(r)=

√
2. The corresponding eigenvalue is

χ c
nl =−l(l+ 1)− β2

n , n= 0, 1, 2, . . . . (3.19)

Similarly, for Rs(r), the reflection conditions (2.18) and (2.19) require

sin(mφ)Rs(1)= sin(−mφ)Rs(1), ∀ φ ∈ [0, 2π], (3.20)
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sin(mφ)
∂Rs(1)
∂r
=− sin(−mφ)

∂Rs(1)
∂r

, ∀ φ ∈ [0, 2π], (3.21)

namely,
Rs(1)= 0. (3.22)

Therefore, the solution for Rs(r) is

Rs(r)=
√

2
J0(
√
−γnr)

J1(
√
−γn)

, n= 1, 2, . . . , (3.23)

where γn is the nth zero of

J0(
√
−γn)= 0, n= 1, 2, . . . . (3.24)

Note that Rs(r) is not orthogonal to Rc(r) with respect to r, namely∫ 1

0
Rs(r)Rc(r) r dr 6= 0. (3.25)

The corresponding eigenvalue is

χ s
nl =−l(l+ 1)− γ 2

n , n= 1, 2, . . . . (3.26)

Note that the above sequence of spherical harmonics (3.9), (3.10) and (3.11) with
(3.17) and (3.23) is orthonormal with respect to the inner product (3.7). It forms
a basis for functions on the local space satisfying the reflective, finite and periodic
boundary conditions (2.18)–(2.24). Thus, we call it a ‘reflection basis’.

3.2.2. Galerkin method
Now we apply the Galerkin method with the above reflection basis to obtain the

solution of P∞0 . We use {er
i}
∞

i=1 to denote the basis; then the expression for P∞0 is

P∞0 (r, θ, φ)=
∞∑

i=1

qier
i(r, θ, φ), (3.27)

where qi is the expansion coefficient to be determined. Note that the BVP for P∞0 is
symmetric with respect to the line θ =π/2,

P∞0 (r, θ, φ)= P∞0 (r,π− θ, φ). (3.28)

Therefore, only even-symmetric associated Legendre polynomials are used in the
expansion, i.e. with l+m even.

To obtain the Galerkin equation, i.e. the weak formulation of (3.5) by inner product
with the reflection basis {er

i}
∞

i=1, one needs to construct the bilinear form a(·, ·) for the
local operator L. In matrix form, the element of the corresponding matrix is

Aij = a(er
i, er

j)= 〈e
r
i,Ler

j〉, i= 1, 2, . . . , j= 1, 2, . . . . (3.29)

Because P∞0 is independent of ψ , equation (3.5) reduces to

− Pes sin θ sin φ
1
r
∂(rP∞0 )
∂r

+∇p · ( ṗP∞0 )=Dt
1
r
∂

∂r

(
r
∂P∞0
∂r

)
+ (∇p · ∇p)P∞0 . (3.30)
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The diffusive term (the right-hand side of (3.30)) is Laplacian, and thus it is easy
to treat with the reflection basis, resulting in a diagonal matrix for the corresponding
bilinear form.

However, the ‘convective’ term (the left-hand side of (3.30)) is laborious to handle.
To simplify the bilinear form with spherical harmonics, recursion relations and
identities of associated Legendre polynomials can be imposed (Strand & Kim
1992; Bees, Hill & Pedley 1998; Hill & Bees 2002; Manela & Frankel 2003),
but it still leads to lengthy expressions and tedious calculations. We follow Doi &
Edwards (1978) and treat the local operator L in a more systematic way. The angular
momentum operators in quantum mechanics are introduced and related to L. Integrals
of the spherical harmonics are given by the Wigner 3j-symbols. More details are
shown in appendix A. Finally, truncation of the series (3.27) to some degree N gives
a Galerkin solution for P∞0 .

3.3. Overall drift and dispersivity
The overall dispersion process in the longitudinal direction can be characterized by the
overall drift Ud and dispersivity DT , which are related to the first- and second-order
longitudinal moments of the cross-sectional mean concentration 〈P〉,

Ud , lim
t→∞

dM1

dt
, (3.31)

DT ,
1
2

lim
t→∞

d
dt
(M2 −M2

1), (3.32)

where Mi is the ith moment of 〈P〉,

Mi ,
∫
∞

−∞

zi
〈P〉 dz, i= 0, 1, 2, . . . . (3.33)

Note that the frame of reference is transformed to that moving with the mean flow as
shown in (2.11), thus Ud is the drift above the mean flow. Based on the longitudinal
moments, one can perform a cumulant expansion for 〈P〉 and P (Chatwin 1970; Guo
et al. 2018; Jiang & Chen 2018, 2019b), and can include higher-order cumulants like
skewness and kurtosis (Frankel & Brenner 1989; Wang & Chen 2017).

According to the GTD theory (Hill & Bees 2002; Jiang & Chen 2019a), Ud and
DT can be evaluated as

Ud = 〈Vz(r, θ, φ)P∞0 (r, θ, φ)〉, (3.34)
DT =Dt + 〈Vz(r, θ, φ)b(r, ψ, θ, φ)〉, (3.35)

where Vz(r, θ, φ) is the total longitudinal speed,

Vz(r, θ, φ)= Pef U(r)+ Pespz(θ, φ)= Pef U(r)− Pes sin θ cos φ, (3.36)

and b(r, ψ, θ, φ) is the solution for

Lb= P∞0 (Vz −Ud), (3.37)

with boundary conditions in the same form as those of P∞0 (2.18)–(2.24) and the
normalization condition

〈b(r, ψ, θ, φ)〉 = 0. (3.38)
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Parameter Description Reference value Units

V∗s Swimming speed 6.3× 10−5 m s−1

B∗ Gyrotactic time scale 3.4 s
D∗r Rotational diffusivity 0.067 s−1

D∗t Translational diffusivity 0 m2 s−1

a∗ Pipe radius 9.4× 10−5 to 9.4× 10−3 m
U∗m Mean flow speed 6.3× 10−6 to 6.3× 10−4 m s−1

λ Bias parameter 2.2
α0 Cell shape factor 0.31
Pes Swimming Péclet number 0.1–10
Pef Flow Péclet number 0.01–100
wV Ratio between speeds 0.1–10

TABLE 1. Dimensional and non-dimensional parameters for dispersion of C. nivalis in the
present study. The data of cell properties are taken from Pedley & Kessler (1990, 1992)
and Hwang & Pedley (2014a).

Like P∞0 , the above BVP for b is independent of ψ and is symmetric with respect to
the line θ = π/2. Therefore, one can also apply the Galerkin method with the same
reduced reflection basis to obtain the solution for b as

b(r, θ, φ)=
∞∑

i=1

bier
i(r, θ, φ). (3.39)

Performing the cross-sectional mean operation (3.34) and (3.35), finally, we obtain the
corresponding Galerkin solutions for Ud and DT .

4. Overall dispersion in Poiseuille flow

We now apply the above one-step GTD theory to the problem of a dilute suspension
dispersing in vertical pipe flow. The negative buoyancy of the cells, which can modify
the flow (Bees & Croze 2010; Croze et al. 2017), is neglected. Thus we consider a
Poiseuille flow. For the downwelling case, the speed deviation from the mean is

U(r)= 1− 2r2, (4.1)

and then
∂U
∂r
=−4r. (4.2)

We also consider the upwelling case, namely reversing the sign of the velocity and
shear, or, equivalently, reversing the sign of λ (the direction of the gyrotactic bias).

The gyrotactic algae, C. nivalis, is studied and the results are compared with those
of previous studies (Hill & Bees 2002; Bearon et al. 2012). The parameters and their
reference values used in the present study are listed in table 1. In previous studies
(Hill & Bees 2002; Bearon et al. 2012), the cell was assumed to be completely
spherical (α0 = 0) for simplicity. Here, we test this assumption and consider an
ellipsoidal cell (α0 = 0.31). Additionally, a spherical cell in the absence of gyrotactic
bias (α0 = 0, λ= 0) is also considered for comparison.
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It is of considerable interest to compare the above results through the one-step
GTD method to those produced by the two-step methods, including the GTD
and PK models in previous studies (Hill & Bees 2002; Bearon et al. 2012). The
two-step GTD method requires that the swimming Péclet number Pes should be
sufficiently small in order to avoid the influence of the reflective boundary (Bearon
et al. 2011). Additionally, the variation of shear rates relative to swimming should
also be small because the convection–diffusion equation for the position space in
the first step is approximated by the dispersion of swimming cells in an unbounded
homogeneous shear flow. To measure the variation of the shear rates (quantified by
∂2(Pef U)/∂r2

=−4Pef for the downwelling Poiseuille flow) relative to the swimming
term (quantified by Pes) in the dimensionless conservation equation (2.13), we
introduce the ratio between Péclet numbers,

wV ,
Pef

Pes
=

U∗m
V∗s
, (4.3)

which is also the ratio of the mean flow speed to the swimming speed. We will show
the discrepancy between the results of the one- and two-step methods in the Pes–wV

plane.
For the one-step GTD method, the Galerkin method with the reflection basis is

applied to obtain the dispersion results. The series expansion is truncated up to n= 40
in the radial direction for the gyrotactic focusing and l= 10 in the orientation space
with spherical harmonics. The resulting Galerkin equation is solved.

For the two-step method, the mathematical structures of the GTD (Hill & Bees
2002; Manela & Frankel 2003) and PK (Pedley & Kessler 1990, 1992) models are
summarized by Bearon et al. (2012) and Croze et al. (2017). The parameters used in
the GTD and PK models for C. nivalis with λ= 2.2 can be found in appendix E of
Bearon et al. (2012). The overall drift and dispersivity are also evaluated by the GTD
theory. Detailed calculations are based on Bees & Croze (2010, equations (6.1) and
(6.2)); see also Croze et al. (2017, equations (2.10) and (2.11)).

4.1. Local distribution P∞0
The long-time asymptotic state of the zeroth-order moment P∞0 is the steady marginal
density function in the phase space (r, θ, φ) (Ezhilan & Saintillan 2015; Jiang & Chen
2019a). As a local distribution, it can demonstrate the gyrotactic focusing and shear
alignment of cells.

4.1.1. Distribution in phase space
Examples for the gyrotactic focusing of cells in vertical pipe flows are shown in

figure 2. For the case of a downwelling flow, cells accumulate near the centre of
the tube (Kessler 1984, 1985), with the highest concentration at the centre (r = 0).
The distributions of cells in the φ–θ plane at all the radial positions are similar: cells
concentrate near the point φ = 0, θ = π/2. Note that there is no obvious swimming
bias towards the centre (0< φ < π), which is significantly different from the biased
distribution predicted by the FP equation in both the two-step methods (Bearon et al.
2011). For the upwelling flow, the results are just reversed: the concentration at the
wall (r= 1) is the highest (Kessler 1984, 1985).

The structure of the local distribution in the phase space can be captured by the
dynamical system theory (Zöttl & Stark 2012, 2013; Santamaria et al. 2014). A local
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FIGURE 2. Density plot of local distributions P∞0 (r, θ, φ) of spherical and ellipsoidal
gyrotactic cells at different radial positions: (a,d,g,j) r= 0; (b,e,h,k) r= 0.5; (c, f,i,l) r= 1.
(a–c) Spheres in downwelling flow (α0 = 0); (d–f ) ellipsoids in downwelling flow (α0 =

0.31); (g–i) spheres in upwelling flow (α0 = 0); ( j–l) ellipsoids in upwelling flow (α0 =

0.31). In all cases, λ= 2.2, Pes = 1 and wV = 1.

velocity field for the local transport problem in the phase space (r, θ, φ) can be
defined as (Jiang & Chen 2019a)

u= (−Pes sin θ sin φ, θ̇, φ̇). (4.4)

Swimmers will accumulate near stable critical points (with zero local velocity). For
vertical downwelling pipe flow, the critical point (0, π/2, 0) is stable, where cells
swim perfectly upwards, resulting in gyrotactic focusing. In contrast, the critical point
(0, π/2, π) is unstable, where cells swim downwards, resulting in an area with the
lowest concentration. For the case of the upwelling flow, the cells accumulate near
the reflective boundaries due to swinging motions towards the tube wall, similar
to the trapping by tumbling motions near high-shear regions (Zöttl & Stark 2013;
Rusconi, Guasto & Stocker 2014). Additionally, for the case of spherical cells without
gyrotactic bias (α0 = 0, λ = 0), note that the local velocity field is divergence-free,
as shown in § A.2.1. Therefore, the local transport problem (3.30) with reflective
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boundary conditions (2.18) and (2.19) has a constant solution P∞0 = 1/(4π2). There
is no stable critical point and thus no focusing. Note that the incident probability
flux at the wall (r = 1, −π < φ < 0) can be non-zero but is equal to the reflection
flux (0 < φ < π) because the reflective boundary conditions (2.18) and (2.19) for
the continuum transport equation (2.13) are a simplified description of the reflection
process, assuming that the incidence and reflection of a cell happen in an instant.

For the influence of cell shape, as shown in figure 2(a,d) for the downwelling flow,
the main difference between the cases of spheres (α0= 0) and ellipsoids (α0= 0.31) is
due to the effect of shear alignments. The concentrated area of ellipsoids in figure 2(d)
is much smaller than that of spheres in figure 2(a) because the swimming direction
of prolate cells is aligned closely along the streamlines of the flow by the strain
effect. However, the focusing of ellipsoids in the radial direction is weaker than that of
spheres. Shear alignments reduce the probability that prolate cells can swim towards
the centre of the tube, resulting in a more uniform distribution in the radial direction.
The discussion for the upwelling case is similar.

4.1.2. Orientation-space-mean probability density function
The gyrotactic focusing of cells near the centre of the tube can be illustrated more

clearly in terms of the orientation-space-mean p.d.f.

〈P∞0 〉O ,
∫ π

0
sin θ dθ

∫ 2π

0
dφ P∞0 (r, θ, φ), (4.5)

i.e. the marginal p.d.f. in the position plane r–ψ (here independent of ψ). With the
orientation space eliminated, results are compared to those by the two-step models for
the transport problem in the position space (Bearon et al. 2012).

First, we discuss the case of the downwelling flow. As shown in figure 3, the
gyrotactic focusing near the axis of the tube is enhanced with increased flow rates
(also quantified by the ratio between speeds wV with a fixed swimming speed).
However, the distributions of the spherical cells in figure 3(a–c) are roughly the
same. Namely, the focusing of spherical cells is nearly dependent only on wV , the
ratio between the Péclet numbers. Note that the steady gyrotactic focusing can be
predicted by a Gaussian distribution (Kessler 1984, 1985; Pedley & Kessler 1992).
Near the centre of the tube with sufficiently small shear, Bearon et al. (2012) gave
an asymptotic solution based on the two-step GTD method, in current notation,

〈P∞0 〉O ∼ e−λwV r2
, (4.6)

which depends only on wV and λ. We remark that this approximate result is hard
to obtain directly from the local transport equation (3.30) in the whole phase space
by asymptotic analysis, but can be simply derived from the effective transport
equation only in the position space by the two-step method; see Bearon et al. (2012,
equation (24)). In the absence of gyrotactic bias (λ= 0), there is no focusing and the
radial distribution is uniform.

For the influence of cell shape, shear alignments of ellipsoids (α0 = 0.31) can
weaken the gyrotactic focusing, which is consistent with previous studies (Bearon
et al. 2011; Croze et al. 2013) for channel flows. Compared with the spherical case
(α0 = 0), distributions of ellipsoids are much more uniform in the radial direction.
More importantly, the decrease of concentration near the centre of the tube from
the spherical case to the ellipsoidal case is greater with both larger flow rates
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FIGURE 3. Orientation-space-mean p.d.f.s 〈P∞0 〉O of cells in the downwelling flow for
different swimming Péclet numbers Pes: (a,d,g) Pes= 0.1; (b,e,h) Pes= 1; (c, f,i) Pes = 10;
and different ratios between speeds wV : (a–c) wV = 0.1; (d–f ) wV = 1; (g–i) wV = 10.
‘Spherical’ denotes the case of gyrotactic spherical cells (α0 = 0, λ = 2.2). ‘Ellipsoidal’
denotes ellipsoidal cells (α0=0.31, λ=2.2). ‘No gyrotaxis’ denotes spherical cells without
gyrotactic bias (α0= 0, λ= 0). ‘Two-step, GTD’ and ‘Two-step, PK’ denote the results of
spherical cells (α0 = 0, λ= 2.2) by the two-step method with the GTD and PK models,
respectively. ‘Asymptotic’ denotes the associated asymptotic Gaussian distribution (4.6).

(quantified by wV) and larger swimming Péclet numbers Pes, as shown in figure 3.
The reason is that shear alignments by the strain effect can inhibit prolate cells from
swimming towards the centre of the tube, as discussed in § 4.1.1. The increase of
both Pes and wV corresponds to a larger flow Péclet number Pef due to the definition
of wV (4.3), as the ratio between the Péclet numbers. Thus, the shear rate and the
strain also increase, enhancing the inhibiting effect.

For the case of spherical gyrotactic cells (α0 = 0, λ = 2.2), both the two-step
method with the GTD model and that with the PK model (Bearon et al. 2012)
give successful predictions with small swimming Péclet numbers Pes and relative
variations of shear rates of the Poiseuille flow (quantified by wV). As confirmed in
figure 3(a,b,d), these three curves are on top of each other. However, outside the
required parameter range in the Pes–wV plane, as shown in figure 3(e, f,h,i), there are
considerable differences of the results by the PK model from the exact results by the
one-step method. With stronger shear, more uniform distributions are predicted in the
PK model than in GTD models, due to neglecting the local spatial distribution (thus
valid only for weak flows) (Bearon et al. 2011, 2012; Croze et al. 2017). On the
other hand, the predictions given by the two-step GTD method are still in agreement
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FIGURE 4. Orientation-space-mean p.d.f.s 〈P∞0 〉O of cells in the upwelling flow for
different swimming Péclet numbers Pes: (a,d,g) Pes= 0.1; (b,e,h) Pes= 1; (c, f,i) Pes = 10;
and different ratios between speeds wV : (a–c) wV = 0.1; (d–f ) wV = 1; (g–i) wV = 10.
‘Spherical’ denotes the case of gyrotactic spherical cells (α0 = 0, λ = 2.2). ‘Ellipsoidal’
denotes ellipsoidal cells (α0=0.31, λ=2.2). ‘No gyrotaxis’ denotes spherical cells without
gyrotactic bias (α0= 0, λ= 0). ‘Two-step, GTD’ and ‘Two-step, PK’ denote the results for
spherical cells (α0 = 0, λ= 2.2) by the two-step method with the GTD and PK models,
respectively. ‘Asymptotic’ denotes the associated asymptotic Gaussian distribution (4.6)
with λ=−2.2.

with the exact results, even in figure 3(i) with large Pes and wV . To some extent, the
gyrotactic focusing accumulates cells in the regions with low shear and far from the
tube wall, which enlarges the appropriate parameter range for the two-step method
(Bearon et al. 2011).

Now we turn to the case of the upwelling flow. The distinct difference is that the
gyrotactic focusing is near the walls (Kessler 1984, 1985), as shown in figure 4. As
in the upwelling case, the orientation-space-mean p.d.f. can still be matched by the
asymptotic solution (4.6) with the reversed sign of shear, although the shear near
the wall is much larger than that near the centre of the tube. When the shear rate
is large, shown in figure 4(g–i), the focusing is so intense that higher-order basis
functions in the radial direction are needed for the series expansion (3.27) to reduce
the truncation error. Also, distributions of spherical cells are nearly independent of
swimming Péclet number Pes with a fixed ratio between speeds wV , but it is not true
for the ellipsoids. The shear alignments can also flatten the distributions in the radial
direction. The discussion about the predictions by the two-step methods is analogous:
the GTD model gives more successful results than the PK model, even inside the
‘breakdown’ parameter region.
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4.2. Overall drift and dispersivity for downwelling flow
For the downwelling flow, the gyrotactic focusing near the centre of the tube, as
demonstrated by the local distribution, will exert a strong influence on the overall
dispersion process in the longitudinal direction. Results of the overall drift and
dispersivity in the parameter plane Pes–wV are presented. Here, we focus on the
effects of shear and boundaries on the dispersion coefficients. The influence of cell
shape and the predictions by the two-step methods will be tested.

4.2.1. Influence of shear flow
First, we discuss the influence of shear on the overall drift of spherical cells. Note

that Ud (3.34) is the drift above the mean flow because the frame of reference has
been transformed in (2.11). With the swimming Péclet number Pes fixed, changing
the ratio between speeds wV in figure 5 corresponds to changing the flow rate and
shear rate.

The drift increases monotonically with the flow rate, as shown in figure 5(a,c,e). At
small flow rates, where the swimming effect is dominant, the drift is negative due to
the upward orientation of the cells by the gravitational torque (Bees & Croze 2010;
Croze et al. 2017). As the flow rate increases, the drift becomes positive because
the gyrotactic focusing accumulates cells near the centre of the tube where the flow
speed Pef is the fastest. Therefore, at high flow rates, it is observed that Ud ∼ Pef =

wVPes, which is consistent with the discussion by Croze et al. (2017). In the absence
of gyrotactic bias (λ = 0), there is no drift above the mean flow because the local
distribution is uniform in the whole phase space.

Next, for the dispersivity, its variation with flow rate is much more complex. Note
that the dispersion process is driven by both the swimming diffusion effect and the
convection (Jiang & Chen 2019a). When the swimming Péclet number Pes is not large,
the convection effect plays the central role. As shown in figure 5(b,d), the dispersivity
rises as the flow rate increases. However, at high flow rates, the dispersivity appears
to ‘saturate’ and then falls with wV (Croze et al. 2013, 2017). The reason is that the
gyrotactic focusing of cells near the centre of the tube greatly hinders the effect of
convection on the dispersion process. Therefore, without gyrotactic bias (λ = 0), the
dispersivity increases monotonically with the flow rate and is much larger than that
of gyrotactic cells.

When the swimming Péclet number Pes is large, the strong swimming diffusion
drives the macrotransport process. As shown in figure 5( f ), there are significant
differences in the trends of dispersivity with flow rates compared with those in
figure 5(b,d): the dispersivity will first decrease, then it increases and saturates like
the convection-effect-dominated cases. More importantly, in the absence of gyrotaxis,
there is also a sharp decrease in dispersivity before the rising. Namely, the imposed
shear can reduce the swimming diffusion effect. To find the reason, note that the
swimming diffusion effect can be quantified by V2

s /Dr (Bearon et al. 2011). The
imposed shear will enhance the rotation of cells, and thus reduce the swimming
range, resulting in the decrease of the dispersivity.

Additionally, gyrotaxis can also reduce the swimming diffusion effect. As shown
in figure 5(d, f ) at small flow rates, i.e. the swimming-effect-dominated region, it
results in a much smaller dispersivity compared with the no-bias case. Because
gyrotaxis forces cells to swim upwards together, the tendency of the cells to separate
from each other by swimming with rotation diffusion is weakened. However, the
perfectly upward orientation of cells can be disturbed by the imposed shear due
to the enhanced rotation, resulting in an increase in dispersivity, in contrast to the
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FIGURE 5. For the downwelling flow, variations of (a,c,e) overall drift Ud (3.34) and
(b,d, f ) dispersivity DT (3.35) with the ratio between speeds wV subject to different fixed
swimming Péclet numbers Pes: (a,b) Pes = 0.1; (c,d) Pes = 1; (e, f ) Pes = 10. ‘Spherical’
denotes the case of gyrotactic spherical cells (α0 = 0, λ = 2.2). ‘Ellipsoidal’ denotes
ellipsoidal cells (α0 = 0.31, λ = 2.2). ‘No gyrotaxis’ denotes spherical cells without
gyrotactic bias (α0= 0, λ= 0). ‘Two-step, GTD’ and ‘Two-step, PK’ denote the results for
spherical cells (α0 = 0, λ= 2.2) by the two-step method with the GTD and PK models,
respectively. Note that with Pes fixed, increasing wV corresponds to increasing the mean
speed U∗m.

decrease discussed above. In fact, these enhanced and reduced effects of the shear
rotation on the dispersion process will be balanced: the dispersivity of the gyrotactic
case is comparable to that without the bias, as shown in figure 5(b) when wV < 2.

With respect to the influence of cell shape, shear alignments of ellipsoids (α0 =

0.31) can slightly reduce the drift and greatly enhance the dispersivity, because the
gyrotactic focusing is weakened (Croze et al. 2013). As discussed in § 4.1.1, the local
distribution of ellipsoids is more uniform in the radial direction, compared with that
of spheres. Therefore, more cells swim outside the fast flow zone, decreasing the drift
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above the mean flow. Meanwhile, the convection effect on the dispersion process is
strengthened.

The predictions by the two-step methods on the dispersion process are compared
with the results by the one-step method for the case of spherical gyrotactic cells.
When the swimming Péclet number Pes is small, as required in the two-step methods,
both the GTD and PK models provide perfect results for the drift and dispersivity
as expected, also shown in figure 5(a,b), although there is still a small deviation
in dispersivity at high flow rates (quantified by wV). With larger Pes, considerable
discrepancies are observed in figure 5(c–f ). Instead of growing with the flow rate, the
drift by the PK model tends to be a constant much smaller than the exact one at high
flow rates (Croze et al. 2013, 2017). As discussed in § 4.1.1, the PK model neglects
the local spatial distribution by shear and predicts a more uniform distribution of cells
in the radial direction, resulting in a smaller drift similar to the case without gyrotactic
bias. In the GTD model, the curve of drift still adheres to the exact one, but curves of
dispersivity diverge. The deviation in dispersivity becomes larger as the variation of
shear rates in the radial direction (also quantified by the ratio between Péclet numbers
wV for the Poiseuille flow) increases and exceeds the requirements of the first step in
obtaining the convection–diffusion equation in the position space.

4.2.2. Influence of boundaries
We have tested the predictions produced by the two-step methods on the dispersion

process with the variation of shear rates wV at different swimming Péclet numbers
Pes. Here, we give a more direct illustration of the influence of Pes, with wV fixed.
Note that for C. nivalis with fixed swimming velocity V∗s and rotational diffusivity
D∗r , increasing Pes corresponds to decreasing the pipe radius a∗, and thus increasing
the influence of boundaries.

Changing Pes hardly affects the gyrotactic focusing, as discussed in § 4.1.1.
However, it significantly influences the drift and dispersivity as functions of wV ,
as shown in figure 5. With a fixed ratio between Péclet numbers wV , i.e. the relative
importance of the shear effect to the swimming effect, increasing Pes will enhance
both these effects. Therefore, the drift and dispersivity vary monotonically with Pes,
for both cases of spherical and ellipsoidal cells, as shown in figure 6.

To obtain the convection–diffusion equation in the position space in the two-step
methods, a small Pes is the key requirement, which means that the influence of
boundaries can be neglected (Bearon et al. 2011). As shown in figure 6, increasing Pes

is destructive to the validity of the two-step methods, for both PK and GTD models.
The discrepancies in the drift and dispersivity between the two-step methods and the
exact ones grow considerably with Pes. Note that, although the reflective boundary
conditions (2.18) and (2.19) considered in the current study are an idealized condition
for the population models, it is demonstrated that the existence of boundaries will
lead to significant deviations in the two-step methods. In fact, when boundaries play
a central role, more complicated effects, e.g. hydrodynamic interactions between cells
and walls (Berke et al. 2008), should be taken into consideration in both the one-step
and two-step methods for the dispersion process.

4.3. Overall drift and dispersivity for upwelling flow
For the upwelling flow, the position of the gyrotactic focusing is reversed from the
centre to the wall of the tube. However, the results of the overall drift and dispersivity
are similar to those of the downwelling flow. We keep all the parameters the same as
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FIGURE 6. For downwelling flow, variations of (a,c,e) overall drift Ud (3.34) and
(b,d, f ) dispersivity DT (3.35) with the swimming Péclet number Pes subject to different
fixed relative variations of shear rates (quantified by the ratio between Péclet numbers wV):
(a,b) wV = 0.1; (c,d) wV = 1; (e, f ) wV = 10. ‘Spherical’ denotes the case of gyrotactic
spherical cells (α0= 0, λ= 2.2). ‘Ellipsoidal’ denotes ellipsoidal cells (α0= 0.31, λ= 2.2).
‘No gyrotaxis’ denotes spherical cells without gyrotactic bias (α0 = 0, λ = 0). ‘Two-step,
GTD’ and ‘Two-step, PK’ denote the results of spherical cells (α0 = 0, λ = 2.2) by the
two-step method with the GTD and PK models, respectively. Note that for the studied
case, increasing Pes corresponds to decreasing the pipe radius a∗.

those of the downwelling case and give an analogous discussion on the influence of
shear flow.

As in the downwelling case, the drift is monotonic with the flow rate, as shown in
figure 7(a,c,e). Note that the drift Ud (3.34) is above the mean flow; thus changing
the direction of the flow does not affect the trend of cells towards the mean flow.
The explanation for the change of the sign of the drift is similar to those for the
downwelling case (Croze et al. 2013). At high flow rates, the gyrotactic focusing is
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FIGURE 7. For the upwelling flow, variations of (a,c,e) overall drift Ud (3.34) and
(b,d, f ) dispersivity DT (3.35) with the ratio between speeds wV subject to different fixed
swimming Péclet numbers Pes: (a,b) Pes = 0.1; (c,d) Pes = 1; (e, f ) Pes = 10. ‘Spherical’
denotes the case of gyrotactic spherical cells (α0 = 0, λ = 2.2). ‘Ellipsoidal’ denotes
ellipsoidal cells (α0 = 0.31, λ = 2.2). ‘No gyrotaxis’ denotes spherical cells without
gyrotactic bias (α0= 0, λ= 0). ‘Two-step, GTD’ and ‘Two-step, PK’ denote the results for
spherical cells (α0 = 0, λ= 2.2) by the two-step method with the GTD and PK models,
respectively.

near the wall, where the flow rate is also positive to the mean flow, resulting in the
positive drift.

For the dispersivity, as shown in figure 7(b,d, f ), trends with flow rates are similar
to those of the downwelling case: the dispersivity rises and then falls with the
ratio between speeds wV . Also, there is a slight decrease at low flow rates when the
swimming Péclet number Pes is large. The explanation for gyrotaxis reducing both the
convection and the swimming diffusion effects is analogous. However, the changed
position of the focusing from the centre to the wall does have an influence on the
dispersion process: the dispersivity is significantly smaller, comparing figure 7(b,d)
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with figure 5(b,d). This can be understood by the orientation-space-mean p.d.f.s:
the distribution of the upwelling case is not as uniform as the downwelling case.
Therefore, the convection effect on the dispersion process is weakened. On the other
hand, when the swimming diffusion effect is dominant, as shown in figure 7( f )
and figure 5( f ), the dispersivity of the upwelling case is larger. Note that, due to
the focusing, the characteristic length for the dispersion process is smaller than the
radius of the tube, namely, a larger effective swimming Péclet number can be defined
similarly to Pes as in (2.11). For the upwelling case with a steeper distribution in
the radial direction, the effective swimming Péclet number is larger than that of the
downwelling case, resulting in the stronger swimming diffusion effect.

For the ellipsoidal swimmers, the influence of shear alignments on the dispersion
process is similar to the downwelling case: the drift is reduced and the dispersivity
is enhanced, because of the stronger convection effect under a more uniform radial
distribution. However, when the swimming diffusion effect is strong, as shown in
figure 7( f ), the dispersivity is comparable to the downwelling one. This is also
because of the changed position of the focusing. As discussed above, the swimming
diffusion effect is weakened due to the more uniform distribution; thus it cancels out
the enhancement by the convection effect.

The predictions by the two-step methods for the upwelling case are also tested. For
the overall drift as shown in figure 7(a,c,e), the GTD model gives more successful
results than the PK model. However, for the dispersivity, both these two-step methods
fail in their ‘breakdown’ parameter region, as shown in figure 7(d, f ). The reason
is similar to the downwelling case: their restrictions on the derivation of the
convective–diffusion equation in the position space during the first step. Additionally,
the discussion on the influence of boundaries is also similar. As shown in figure 8,
the discrepancies in the drift and dispersivity between the two- and one-step methods
grow considerably with the swimming Péclet number Pes.

5. Conclusions

For dispersion of dilute suspensions of gyrotactic micro-organisms in vertical pipe
flows, previous work used the two-step methods with the PK model and GTD model
and obtained only approximate values of the overall drift and dispersivity. This study
provides the first analytical derivation for the dispersion coefficients, by the integrated
one-step GTD method. Prior to this study, it was difficult to analyse the dispersion
process in the ‘breakdown’ parameter region in the two-step methods due to the
restrictive assumptions: both the swimming Péclet number and the variation of shear
rates relative to swimming must be sufficiently small. Thus, the results also give a
quantitative test for the applicability of the two-step methods, which is of considerable
interest.

Another strength of this study is proposing an appropriate function basis under
reflective boundary conditions for the series expansion in the Galerkin method. The
reflection principle used in previous studies does not apply to the current flow case,
because one cannot reflect the pipe flow field on the circular cross-section. Instead,
the required basis functions are constructed by cylindrical and spherical harmonics,
using the full form of reflective boundary conditions (2.18) and (2.19), including
both the probability and its radial derivative. The so-called reflection basis plays the
central role in solving the local distribution, the overall drift and the dispersivity in
the one-step GTD method.
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FIGURE 8. For the upwelling flow, variations of (a,c,e) overall drift Ud (3.34) and (b,d, f )
dispersivity DT (3.35) with the swimming Péclet number Pes subject to different fixed
relative variations of shear rates (quantified by the ratio between Péclet numbers wV):
(a,b) wV = 0.1; (c,d) wV = 1; (e, f ) wV = 10. ‘Spherical’ denotes the case of gyrotactic
spherical cells (α0= 0, λ= 2.2). ‘Ellipsoidal’ denotes ellipsoidal cells (α0= 0.31, λ= 2.2).
‘No gyrotaxis’ denotes spherical cells without gyrotactic bias (α0 = 0, λ = 0). ‘Two-step,
GTD’ and ‘Two-step, PK’ denote the results of spherical cells (α0 = 0, λ = 2.2) by the
two-step method with the GTD and PK models, respectively.

Detailed results for C. nivalis are presented to illustrate the influence of the
gyrotactic focusing on the overall dispersion process, for both the downwelling and
upwelling flows. The gyrotactic bias is demonstrated by the local distribution in the
phase space. The drift above the mean flow increases monotonically with the flow rate.
For the dispersivity, when the flow rate is small, the combined effect of gyrotaxis,
swimming and shear on the dispersion process is complicated: the dispersivity first
decreases, then increases and finally saturates as the flow rate increases. For prolate
cells, shear alignments with streamlines of the imposed flow lead to weaker focusing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.91


Dispersion of gyrotactic micro-organisms 889 A18-25

than that of spherical ones, and thus reduce the overall drift and greatly enhance
the overall dispersivity. For the case of spherical gyrotactic cells, the predictions by
the two-step methods are compared with the exact results. Both the PK and GTD
models give successful predictions inside their required parameter region. Within the
‘breakdown’ region, the predictions of the two-step GTD method are still matched
for the local distribution and the overall drift, but fail in the overall dispersivity.

This study has only considered dilute suspensions, and idealized reflective boundary
conditions are imposed for the theoretical analysis. Future studies should include
cell–cell, cell–fluid and cell–wall interactions in the one-step approach for dense
suspensions. The challenge is to solve the Smoluchowski equation for transport
coupled to the Navier–Stokes equation as modified by adding a new term to reflect the
active stress in the flow field (Bees & Croze 2010; Croze et al. 2017; Saintillan 2018).
Self-organization (Lushi, Wioland & Goldstein 2014) and hydrodynamic instabilities
(Pedley & Kessler 1992; Hwang & Pedley 2014b) should also be considered in finding
the local distribution. Additionally, the dispersion process can be very sensitive to the
type of boundary conditions. For example, the Robin boundary condition (Ezhilan
& Saintillan 2015) accounting for the wall accumulation effect of micro-organisms
like bacteria and sperms can enhance or reduce the overall dispersivity compared
with those under the reflective boundary condition (Jiang & Chen 2019a). In fact,
the experimentally observed behaviour of swimming micro-organisms at boundaries
can be much more complicated (Bianchi, Saglimbeni & Di Leonardo 2017; Lushi,
Kantsler & Goldstein 2017). Further work is required to develop appropriate boundary
conditions for the continuum transport model to characterize the complex cell–wall
interactions such as sliding, scattering and steric repulsion effects (Drescher et al.
2011; Kantsler et al. 2013; Contino et al. 2015).
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Appendix A. Galerkin method with spherical harmonics

The idea of systemically treating spherical harmonics in the Galerkin method was
given by Doi & Edwards (1978). The key is to express the local operator L in
terms of the angular momentum operators and multiplication operators with spherical
harmonics. Here we reveal their relation generally.

A.1. Angular momentum operators

In quantum mechanics, the orbital angular momentum operator is defined as (Doi &
Edwards 1978)

L ,−ih̄(r ×∇), (A 1)
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where h̄ is the Planck constant and r is the position vector. Its three components
(Lx,Ly,Lz) in Cartesian coordinates can be expressed in terms of spherical coordinates
as

Lx =−ih̄
(
− sin φ

∂

∂θ
− cot θ cos φ

∂

∂φ

)
, (A 2)

Ly =−ih̄
(

cos φ
∂

∂θ
− cot θ sin φ

∂

∂φ

)
, (A 3)

Lz =−ih̄
∂

∂φ
. (A 4)

The square of L,
L2
= L · L= L2

x + L2
y + L2

z , (A 5)

gives the Laplace operator, and in spherical coordinates

L2
=−h̄2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
. (A 6)

Note that the results of the angular momentum operator on spherical harmonics are
simple. To illustrate, the spherical harmonics (3.9), (3.10) and (3.11) are redefined
with complex exponentials

Ym
l (θ, φ)=

√
2l+ 1

4π

(l−m)!
(l+m)!

Pm
l (cos θ)eimφ, (A 7)

where m=−l,−(l− 1), . . . , 0, . . . , l− 1. The orthogonality relationship is∫ 2π

0
dφ
∫ π

0
Ym′

l′ (θ, φ)Y
m
l (θ, φ) sin θ dθ = δll′δmm′, (A 8)

where the bar denotes the complex conjugate. For Lz on spherical harmonics,

LzYm
l (θ, φ)=mh̄Ym

l (θ, φ). (A 9)

For components Lx and Ly, one can introduce the ladder operators (Doi & Edwards
1978)

L± , Lx ± iLy, (A 10)

which have the following important property:

L±Ym
l (θ, φ)= h̄[l(l+ 1)−m(m± 1)]1/2Ym±1

l (θ, φ). (A 11)

Therefore, one can use

Lx =
1
2(L+ + L−), (A 12)

Ly =−i 1
2(L+ − L−), (A 13)

to obtain the results of their action on spherical harmonics.
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A.2. Expression of local operator by angular momentum operators
In the swimming orientation space, the local operator L can be expressed in terms of
the angular momentum operator L. The main part of L (3.2) that needs treating is

Lp f ,∇p · ( ṗr f ), (A 14)

because

∇p · ∇p =∆p =−
L2

h̄2 (A 15)

is just the Laplace operator in the orientation space and the radial convective term
in (3.30) can be written as

− Pes sin θ sin φ
1
r
∂(rf )
∂r
= −Pes sin θ sin φ

(
f
r
+
∂f
∂r

)
= −Pesi

√
2π

3
[Y−1

1 (θ, ϕ)+Y1
1(θ, ϕ)]

(
f
r
+
∂f
∂r

)
. (A 16)

Note that according to (2.4) and (2.14), Lp (A 14) can be rewritten as

Lp f =∇p ·
[
(Ωr × p) f

]
, (A 17)

where Ωr is the dimensionless relative angular velocity,

Ωr = Ωa − ψ̇ez

= λp× k+
1
2

Pefω+ α0Pef [p× (E · p)] −
Pes cos θ

r
ez, (A 18)

and the dimensionless total angular velocity is Ωa ,Ω∗a/D
∗

r .
Next is to pass Lp to the whole spherical coordinate system, i.e. the whole

momentum space with the employed spherical coordinates (ρ, θ, φ). At each point
(r, ψ, z) of the position space, we also employ a Cartesian coordinate system for
the momentum space, with x̂ =−ez, ŷ=−er and ẑ= eψ . To distinguish the gradient
operator for the momentum space from ∇p on the unit sphere (orientation space), we
use ∇s to denote it. Now the angular momentum operator (A 1) can be introduced to
the momentum space as

L = −ih̄(ρ ×∇s)

= Lxx̂+ Ly ŷ+ Lz ẑ
= −Lxez − Lyer + Lzeψ , (A 19)

where ρ = ρeρ = ρ p is the ‘position’ vector in the momentum space.
Note that operator Lp (A 17) is independent of ρ. Therefore, its results on the unit

sphere (ρ=1) in the momentum space are the same as those in the original orientation
space:

Lp f = ∇s · (Ωr × pf )
= (∇s ×Ωr) · pf −Ωr · [∇s × (pf )]. (A 20)
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With ∇s × p = 0, the second term of (A 20) can be expressed by the angular
momentum operator (A 19)

∇s × (pf ) = −p×∇s f + (∇s × p)f

=
L

ih̄ρ
f

=
L
ih̄

f . (A 21)

Finally,

Lp f = (∇s ×Ωr) · pf −
(
Ωr ·

L
ih̄

)
f . (A 22)

Note that this form of Lp can also be obtained using the rotation operator (Brenner
& Condiff 1972).

A.2.1. Detailed expression for Lp

We substitute Ωr (A 18) into (A 22) to obtain the detailed expression for Lp. The
coefficients of Lp are replaced with corresponding spherical harmonics as multipliers
for the bilinear form. In matrix form, the dimensionless relative angular velocity is

Ωr = λ

 − cos θ
− sin θ sin φ

0

+ Pef

2
∂U
∂r

 0
−1
0


+
α0Pef

2
∂U
∂r

− cos θ sin θ sin φ
sin2 θ cos 2φ

cos θ sin θ cos φ

− Pes cos θ
r

0
0
1



= λ


−2
√

π

3
Y0

1

−i

√
2π

3
(Y1

1 +Y−1
1 )

0

+
Pef

2
∂U
∂r

 0
−1
0



+
α0Pef

2
∂U
∂r


−i

√
2π

15
(Y1

2 +Y−1
2 )

2

√
2π

15
(Y2

2 +Y−2
2 )√

2π

15
(−Y1

2 +Y−1
2 )


−

Pes

r
2
√

π

3
Y0

1

0
0
1

 . (A 23)

The divergence term (∇s ×Ωr) · p in Lp (A 22) can be further simplified. For the
gyrotactic term of Ωr, one has

λ[∇s × (p× k)] · p = −λp · [(k · ∇s)p+ k(∇s · p)]

= −λ

[
1
2

k · ∇(p · p)+
2
ρ

p · k
]

= −2λp · k
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= −2λ sin θ cos φ

= −2λ

√
2π

3
[Y−1

1 (θ, ϕ)−Y1
1(θ, ϕ)]. (A 24)

For the vorticity term of Ωr,

[∇s × (
1
2 Pefω)] · p= 0. (A 25)

For the strain-tensor term of Ωr,

p · {∇s × [p× (E · p)]}
= p · {[(E · p) · ∇s]p− p · ∇s(E · p)+ p div(E · p)− (E · p) div p}

=
1
2

p · E · ∇s(p · p)− p · E · [∇s(p · p)] + E : ∇s p− p · E · p
2
ρ

= E : ∇s p− p · E · p
2
ρ

= E :

(
−

1
ρ

pp+
1
ρ

I

)
− p · E · p

2
ρ

= tr(E)− 3 p · E · p, (A 26)

where tr denotes the trace and the following identity

∇s p=∇s

(
1
ρ
ρ

)
= ∇s

(
1
ρ

)
ρ +

1
ρ
∇sρ

= −
1
ρ3
ρρ +

1
ρ

I

= −
1
ρ

pp+
1
ρ

I (A 27)

is used. Let ρ = 1, then

α0Pef p · {∇s × [p× (E · p)]} = −
3
2
α0Pef

∂U
∂r

sin2 θ sin 2φ

= −i3α0Pef
∂U
∂r

√
2π

15
(Y−2

2 −Y2
2). (A 28)

For the Coriolis term of Ωr,

p ·
[
∇s ×

(
−

Pes cos θ
r

ez

)]
= −

Pes

r
p · {∇s × [(eψ · p)ez]}

= −
Pes

r
p · [∇s(eψ · p)× ez]

= −
Pes

r
p · [(eψ · ∇s p)× ez]

= −
Pes

r
p · (eψ × ez)

= −
Pes

r
p · er, (A 29)

which cancels out the radial divergence −Pes sin θ sin φ (1/r) in the radial convective
term of (A 16).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.91


889 A18-30 W. Jiang and G. Chen

A.3. Bilinear form for Galerkin equation
Note that the coefficients of L have been replaced with corresponding spherical
harmonics; thus one can use the Wigner 3j-symbols to construct the matrix for
the bilinear form for the Galerkin equation (Doi & Edwards 1978; Messiah 2014;
Nambiar et al. 2019).

The coefficients are treated as multiplication operators with multipliers like Yq
p. For

the bilinear form with the complex spherical harmonics,∫ 2π

0

∫ π

0
Ym′

l′ Yq
pYm

l sin θ dθ dφ =
∫ 2π

0

∫ π

0
(−1)m

′

Y−m′
l′ Yq

pYm
l sin θ dθ dφ

= (−1)m
′

√
(2l′ + 1)(2p+ 1)(2l+ 1)

4π

×

(
l′ p l
0 0 0

)(
l′ p l
−m′ q m

)
, (A 30)

where the conjugation Ym
l = (−1)mY−m

l . Note that with the selection rules of the
Wigner 3j-symbols (Messiah 2014), only several elements are not zero (Doi &
Edwards 1978). Additionally, all the multiplication operators in L are Hermitian
because P∞0 is a real function.

To obtain the matrix for the bilinear form with the reflection basis (3.9), (3.10)
and (3.11), a change of bases from complex spherical harmonics to their real parts
is needed. The transformation is

√
2

√
2l+ 1

4π

(l−m)!
(l+m)!

cos(mφ)Pm
l (cos θ)=

√
2

2
[Ym

l (θ, φ)+ (−1)mY−m
l (θ, φ)], (A 31)

√
2

√
2l+ 1

4π

(l−m)!
(l+m)!

sin(mφ)Pm
l (cos θ)=−

√
2

2
i[Ym

l (θ, φ)− (−1)mY−m
l (θ, φ)], (A 32)

for m 6=0. The corresponding transformation matrix is unitary. Then one can perform a
congruent transformation with respect to the conjugate transpose to obtain the bilinear
form under the reflection basis.
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