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Abstract

This paper deals with solvency requirements for life annuities portfolios and funded pension
plans. Particular emphasis is devoted to longevity risk, i.e. the risk arising from uncertainty in
future mortality trends. This risk must be faced by insurance companies and pension plans that

have guaranteed lifelong payoffs.
Solvency is investigated referring to immediate annuities, and hence the so-called decumu-

lation phase is addressed. To assess solvency, assets are compared with the random present
value of liabilities. Several requirements are considered, each leading to a required asset level

that must be financed both with premiums (or contributions) and capital allocation.

1 Introduction

A rapidly moving scenario is the current framework of life insurance business and

pension schemes. In particular, new types of risks affect the management of pension

annuities. A very important example is provided by the so-called longevity risk,

arising from the uncertainty in long-term mortality trends at adult and old ages.

Actually, this risk must be faced by insurance companies and pension plans that have

guaranteed lifelong payoffs. So, efficient tools must be used for monitoring the

capability to meet future obligations.

Meeting future obligations requires an appropriate funding, i.e. appropriate assets.

When an insurance portfolio is concerned, it is necessary: (i) to set up the portfolio

reserve, (ii) to allocate the solvency margin (or risk-based capital). Analogous

requirements hold for a (funded) pension plan.

The traditional approach to reserving focuses on the expected value of future

obligations, which is assessed adopting a prudent valuation basis, representing
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interest rates and mortality from the time of valuation onwards. Usual assumptions

consist in deterministic interest rates and in mortality levels obtained from past data

via mortality projections (when annuities or other lifelong living benefits are con-

cerned).

Solvency investigations are usually based on a comparison between the random

profile of the assets and the random profile of the reserve. However, this approach

might be lacking when lifetime living benefits are involved. In this case, owing to the

uncertainty in mortality trends at adult and old ages and in the future performance of

financial markets, it is difficult to judge on the appropriateness of a reserve profile

simply based on a deterministic view of the future scenario. Hence, comparing the

asset level and the reserve could be meaningless, in particular as far as the capability

of the assets to meet future obligations on realistic grounds is concerned.

In this paper, we investigate solvency comparing the assets with the random pres-

ent value of future obligations, hence without explicit reference to a reserve, whatever

the relevant valuation basis might be. Several requirements are considered, each

requirement leading to a ‘required asset level ’ that must be financed with both pre-

miums (or contributions) and capital allocation. In a traditional perspective, the total

actual amount of assets (which should be greater or equal to the required amount)

can be split into an amount backing the reserve (calculated with a given valuation

basis) and an amount representing the solvency margin (as a residual). Implications

of this approach on the management of pension annuities are discussed.

The paper is organized as follows. In section 2 risks inherent in life insurance

products and pension schemes and the relevant solvency requirements are discussed.

A model for risk investigations and solvency assessment is presented in section 3.

A procedure, based on stochastic simulation, for assessing the mortality risk, in-

cluding random fluctuations risk as well as longevity risk, is described in section 4

where pension annuities are specifically focussed. Results coming from numerical

investigations embedding the financial risk are presented and discussed in section 5.

Finally, section 6 presents some concluding remarks and suggestions for future

research.

Some bibliographic remarks can help in understanding the genesis of the present

paper. First, some references concerning mortality follow. Mortality trends at old-

adult ages reveal decreasing annual probabilities of death; the reader can refer to

Benjamin and Soliman (1993) also for a list of references. Population mortality trends

are investigated in many countries ; see, for example, MacDonald (1997), MacDonald

et al. (1998), Rüttermann (1999). Specific references about longevity risk and related

solvency requirements are still rather scanty. However, it is worth stressing that un-

certainty in future mortality improvements should be carefully considered when

pricing and reserving for life annuities ; to this purpose see, for example, Marocco and

Pitacco (1998) and Olivieri (2001). More generally, mortality trends and the relevant

uncertainty affect any insurance cover providing some kind of ‘ living benefits ’, such

as long-term care benefits or lifetime sickness benefits ; see, for example, Olivieri and

Pitacco (2002), Pitacco (2002).

The approach to solvency evaluation, leading to the definition of a required asset

level and disregarding in principle the concept of reserve, adopted in the present
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article, has been suggested by the paper of the Faculty of Actuaries’ Solvency

Working Party (1986). Readers can refer to this paper also for an extensive list of

references, including in particular the first studies on solvency in the European Union.

In the context of annuities and pension plans, much effort has been devoted to

the accumulation phase as witnessed by a rich literature. The reader can refer, for

example, to Cairns (2000), Haberman and Sung (2002), Haberman and Vigna (2002)

also for comprehensive lists of references. The paper by Milevsky and Promislov

(2001) specifically deals with the uncertainty in future mortality and the relevant

consequences on annuity pricing. In this framework, the present paper aims to

stimulate the debate about riskiness inherent in the decumulation phase of annuities,

in the context of annuity portfolios and pension plans.

2 Risks and solvency

In this section and in section 3 as well we deal with risks and solvency referring to

a context which is more general than the one concerned by immediate annuities.

A more general context has some advantages. In particular :

’ it paves the way for a more extensive risk and solvency analysis, also involving

the accumulation phase;
’ it allows for other types of benefit, for example death benefits, which can be

provided by a pension scheme (and obviously by a life office) ;
’ a link with the approach to solvency assessment procedures proposed by the

Faculty of Actuaries’ Solvency Working Party (1986) and adopted in this paper

is more easily established.

2.1 Types of risks

In order to state the terminology to be used in the following sections, a description of

some ‘causes’ of risks in life insurance and pension plans follows. Causes of risk can

be easily found in items that constitute the scenario in which a life office or a pension

plan operates.

The mortality risk is originated by the random lifetimes of insureds and annui-

tants ; it can be split as follows. The risk of random fluctuations of the actual number

of deaths around the expected arises from purely random variability of mortality.

Mortality trends different from the forecasted trend lead to the risk of systematic

deviation from the expected number of deaths. Clearly parameter and model uncer-

tainty produces this type of risk. In particular the longevity risk originates from

long-term mortality trends at adult and old ages. Finally, the catastrophe risk arises

from the possibility of exceptionally high mortality due to particular events (natural

disasters, wars, etc.).

The investment risk originates from facts concerning the financial market in which

the insurer or the pension plan invests. The investment risk can be split, for example,

as follows. The performance risk concerns insurance covers and annuities with

financial guarantees, and arises from the possibility that the asset value is lower than
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the liability value. The mismatching risk within unit-linked products originates from

the possibility that the investment portfolio differs from the set of assets whose per-

formance determines the unit value. The risk of default arises from the possibility

that the institution issuing the financial instruments purchased by the insurer or the

pension plan does not pay the promised amount at maturity.

Further risks typically concern the life insurance business. In particular, expense

risks originate from the behaviour of insurer’s expenses compared with the income

from expense loadings included in the premiums. Option risks are determined by

choices of the policyholders. Actually, many recent products should be regarded as

‘options packages ’, owing to the flexibility allowed by the policy conditions in terms

of annual premium amount, annuity options, insurability options, switching options

in united linked contracts, etc. Finally, economic risk is any risk not classified in the

above categories and arising from the evolution of the economic scenario. Inflation,

taxes and exchange rates constitute examples of items of economic risk. Correlations

among risks clearly emerge from the above considerations. For example, the policy-

holders’ behaviour also reflects financial and economic issues. So, increasing rates of

interest may encourage surrenders should the bonus policy adopted by the insurer be

considered not profitable enough.

The ‘severity’ of the various types of risk is influenced by the size of the portfolio

or pension plan and the distribution of the benefits. As far as the role of the size

is concerned risks can be classified into (a) pooling risks, whose effect (conveniently

assessed) decreases as the size increases, and (b) non-pooling risks, the effect of which

is independent of the size and the financial impact increases as the size increases.

Within the category of mortality risks, random fluctuations constitute a pooling risk,

as a larger size helps compensations. On the contrary, longevity risk is a non-pooling

risk, since systematic deviations affect all individuals in the same direction. See

Olivieri (2001) for a more comprehensive discussion of longevity risk in life insurance

and annuities. Investment risk is, of course, a non-pooling risk.

2.2 Results affected by risks

The effects of risks can be measured in terms of various ‘results ’. As already men-

tioned, the topics we are dealing with concern life insurance and annuity portfolios as

well as pension schemes. To simplify the text, we will present problems and relevant

approaches in terms of a life insurance and annuity portfolio only. The same termin-

ology will be used in section 3. With slight and obvious modifications all arguments

can be referred to pension schemes.

From a merely intuitive point of view, portfolio results can be classified as follows.

Firstly (following Colotti and Oliveri, 1998), we can distinguish between: (1) cash

results simply referring to monetary inflows and outflows; (2) profit results involving

reserves and aiming to measure annual and total profits ; (3) asset/liability results

which explicitly consider the value of assets and the capital invested into the business.

Results can be examined at several detailed levels as far as time is concerned.

In particular it is possible to work with: (1) annual results, formally represented

by vector-valued functions, for example the sequence of expected annual premiums
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over a given number of years ; (2) single-figure results, aiming to provide appropriate

summaries, for example the present value of expected annual premiums.

Time intervals assumed in order to define the size of the sequence of annual results

or to produce single-figure results lead to the following classification: (1) short-term

results concerning one to two years, say; (2) medium-term results, concerning three to

five years ; (3) cohort results referring to the time interval within which a given cohort

of policies terminates ; (4) long-term results, concerning more than five years (Single-

figure asymptotic results in principle belong to this category. In practice, however,

this latter type of results does not comply with numerical procedures needed in a

‘corporate’ approach to risk analysis).

Working with a given set of results obviously requires a rigorous definition of the

concept of ‘portfolio’ (or pension scheme) which the results refer to. Actually the

portfolio can be thought of as a ‘closed’ collection of policies already in force, as well

as an ‘open’ collection of policies to which future business can contribute. So, (1) the

run-off approach is based on the assumption that the insurer’s activities are restricted

to the in-force portfolio and hence cease when the portfolio comes to its end; (2) in

the going-concern approach it is assumed that the insurer’s activities develope with

new acquisitions throughout the chosen time span. Adopting the run-off approach

rather than the going-concern approach means different effects are produced by

some types of risks. For example, random mortality fluctuations (i.e. a pooling risk)

normally lead to a higher variability in a run-off context, owing to the decreasing

portfolio size.

3 A model for risk investigation and solvency assessment

3.1 Notation

In this section we describe the framework within which risk analyses are performed.

More precisely, we make reference to a model which allows us to assess cash flow,

profit and patrimonial results (for more details, see Colotti and Olivieri (1998), in

particular as far as portfolio valuations are concerned). What follows applies to a

generic portfolio of life insurance products. The following notation is adopted:

Zt random portfolio fund at time t ;
At random value of assets at time t ;
Pt random office premium income at time tx1 (for tth year) ;
Et random outcome for expenses paid at time tx1 (for tth year) ;
Ct random outcome for death benefits paid at time t ;
St random outcome for living benefits paid at time t ;
Yt random value at time t of future obligations;
Vt random portfolio reserve set up at time t ;
It random financial incomes in year (tx1, t) ;
Jt random capital gains or losses on asset value in year (tx1, t) ;
Kt random payment (withdrawal) by the insurer to (from) the fund at time t (Kt>0

denotes a payment, Kt<0 a withdrawal).

Living benefits paid at the beginning of the year, i.e. at time tx1, can be rep-

resented by letting Pt be negative (in absolute value equal to the benefit).
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Randomness of the above-mentioned quantities comes in general from all the types

of risks described in section 2.1. In particular, the portfolio reserve is random because

it is the sum of a random number of individual reserves. The individual reserve,

usually assessed as the actuarial value of future net payments, can be random in its

turn in the case of benefits linked to some financial index.

3.2 Cash flow analysis

Cash flow analysis can be performed either retrospectively, looking at past incomes

and outcomes, or prospectively, looking at future payments. In a retrospective

approach, the behaviour of the portfolio fund describes purely cash incomes and

outcomes occurred up to the time which the fund is referred to. Let Z0 denote the

(known) value of the fund at time 0 (the valuation time). The random path of the fund

is recursively described (starting from the given value at time 0) as follows:

Zt=Ztx1+PtxEt+ItxCtxSt+Kt (3:1)

The random variable ZtxVt is usually called the free portfolio fund.

In a prospective approach, we define the random value of future obligations as

follows

Yt=
X1
h=1

[(Ct+h+St+hxKt+h) v(t, t+h)x(Pt+hxEt+h) v(t, t+hx1)] (3:2)

where v(t, t+h) denotes the (random) discount factor for the period (t, t+h), chosen

accordingly to the future performance of investments (in this regard see also section

3.7). Note that a broad sense is attached to the term ‘obligations ’, since Yt includes

payments both to/from policyholders (‘ industrial ’ obligations) and to/from share-

holders (‘corporate’ obligations).

3.3 Profit analysis

Annual profit emerging from the management of the portfolio can be assessed as

follows

Ut=PtxEt+It+JtxCtxSt+Vtx1xVt (3:3)

The annual profit Ut can be split in several ways, reflecting the profit sources.

However, we do not go deeply into this aspect, since it is not directly required in

solvency analysis. We just mention the following relationships between profit and the

portfolio fund, which can be easily verified

Ukt=DZtxDVtxKt (3:4)

ZtxVt=(Z0xV0)+
Xt

h=1

(Ukh+Kh) (3:5)

where Ukt=UtxJt and, for a given function ft, Dft=ftxftx1.
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3.4 Patrimonial analysis

A patrimonial analysis consists in the investigation of both assets and liabilities. We

assume that the value of assets can be recursively described as follows (for a given

value of A0)

At=Atx1+DZt+Jt (3:6)

where DZt expresses new financial resources, and hence new investments, emerging in

year (tx1, t), whilst Jt represents increases (capital gains) or decreases (capital losses)

in asset value in the same year.

For the ‘balance condition’, at each time the portfolio reserve (i.e. the value of

industrial liabilities) and shareholders’ fund,Mt, must be equal to the value of assets.

Then we have

At=Mt+Vt (3:7)

whence, trivially, Mt=AtxVt. We easily obtain

Ut=DAtxDVtxKt (3:8)

Mt=M0+
Xt

h=1

(Uh+Kh) (3:9)

Further relationships among the three types of portfolio results obviously hold;

readers are referred to Colotti and Olivieri (1998).

3.5 Solvency

Albeit solvency is a fundamental concept in insurance theory and practice, it is

not clearly and unequivocally defined. What is commonly adopted is a stochastic

approach to risk analysis. In this framework, solvency is meant as the ability to meet,

with an assigned (high) probability, the random liabilities as described by a realistic

(experience based) probabilistic structure.

The concept of stochastic solvency requires some specifications. In particular,

choices are needed with respect to:

’ the portfolio results which can be used to assess the above ability ;
’ the time span which the above results must be referred to;

in case the time span is longer than one year (as it is common):

’ vector-valued results vs single-figure results ;
’ run-off vs going-concern approach;

the meaning of the above choices can be easily understood in terms of the classifi-

cation scheme presented in section 2.

In order to make the above-mentioned choices, the point of view from which

solvency is ascertained must be stated. Policyholders, shareholders and the super-

visory authority represent possible viewpoints on the insurance business. However,

Solvency requirements for pension annuities 133

https://doi.org/10.1017/S1474747203001276  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747203001276


the policyholders’ and shareholders’ perspectives involve profitability requirements

probably higher than those implied by the need to meet liabilities. Such requirements

would lead to a concept of insurer’s solidity, rather than solvency. So, we will restrict

our attention to the supervisory authority’s perspective.

The supervisory authority is charged to protect mainly the interests of present and

forthcoming policyholders. From this point of view, cash and patrimonial results are

mostly important. A long-term perspective should be considered; shorter horizons

are consistent with a careful and frequent monitoring of the portfolio as well as with

severe solvency requirements.

3.6 Reserve-based solvency requirements

In the traditional approach to solvency, the ability to meet random liabilities (see

section 3.5) is meant as the ability to set up the reserve for each policy in the portfolio

and hence the portfolio reserve. In terms of patrimonial results, the insurance com-

pany is therefore able to meet its liabilities at a given time t if the asset value is greater

or equal to the portfolio reserve (see (3.7))

Mto0 (3:10)

In this framework, Mt is usually referred to as the solvency margin assigned to the

portfolio.

Let 0 denote the time at which solvency is ascertained and assume M0o0. Given

a time horizon of T years, we say that the insurer has a solvency of degree 1xe

if and only if

Pr
T̂

t=1

Mto0

( )
=1xe (3:11)

Specific solvency requirements can be found by choosing proper values for the

quantities which affect (3.11), i.e.

’ the probability e (ruin probability) ;
’ the time span T ;
’ the capital flows Kt ;
’ a run-off or a going-concern approach.

In particular, if the point of view of the supervisory authority is adopted, it seems

natural to choose Kt=0 except for the time of valuation, when a proper solvency

margin must be financed. On the contrary, when shareholders’ perspective is con-

sidered, the choice of the flows Kt could reflect their targets concerning the timing of

shareholders’ capital investment into the portfolio or dividend distribution.

Note that the assumed time span T implies the consideration of incomes and out-

comes over a period of n years, with noT. Actually, for all t the portfolio reserve Vt

takes into account premiums and benefits falling due after time t ; so, for any fixed T,

the time interval actually involved in the solvency ascertainment has a term given by

T plus the largest residual duration of policies virtually in force at time T.
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Our aim is to determine the solvency margin required at time 0 such that, for a

given choice of the quantities mentioned above, condition (3.11) is satisfied. Since we

adopt the viewpoint of the supervisory authority, we assume Kt=0, t=1, 2, … and

K0o0. We denote the required solvency margin M0
(R)

(the superscript ‘R ’ indicates

that a reserve-based requirement has been adopted). Note that

A
(R)
0 =M

(R)
0 +V0 (3:12)

is the required (total) investment at time 0.

Definition (3.11) is based on a vector-valued portfolio result, since the quantities

M1, M2, …, MT are taken into account. A different concept of solvency can be stated

referring to a single-figure result; typically

Pr {MTo0}=1xe (3:13)

Of course, equation (3.13) leads to a weaker concept of solvency than (3.11).

Solvency requirements can be formulated also with reference to cash results. In this

case, the insurance company is solvent at a given time if the free portfolio fund is

positive, i.e. if

ZtxVto0 (3:14)

Note that now the solvency margin linked to the portfolio is given by ZtxVt.

Solvency requirements based on the following conditions

Pr
T̂

t=1

ZtxVto0

( )
=1xe (3:15)

Pr{ZTxVTo0}=1xe (3:16)

lead to a required initial free portfolio fund (or solvency margin) [Z0
(R)xV0], and a

required initial fund Z0
(R)

, for a given choice of the ruin probability e, the time horizon

T and the run-off or going-concern approach (we still assume K0o0 and Kt=0,

t=1, 2, …). The main difference between [Z0
(R)xV0] and M0

(R)
is due to capital gains

or losses. In periods of high investment performance, requirements (3.15) and (3.16)

could be more severe than (3.11) and (3.13), since capital gains are disregarded. The

reverse obviously holds in periods of investment under performance. In section 4 we

will make some hypotheses under which cash and patrimonial results are equivalent.

Further requirements can be given considering short-term cash flows, thus in-

volving in particular liquid assets as well as premiums, expenses and sums assured

paid in a year. We do not discuss such requirements (see, for example, Kahane,

Tapiero and Laurent, 1989).

3.7 Obligations-based solvency requirements

The disadvantage of the solvency requirements discussed in section 3.6 is that they

refer to the notion of reserve, which is usually assessed (at the individual level) as an
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expected value (on a conservative basis) of future industrial obligations (i.e. benefits

less premiums). When lifetime living benefits are concerned, this approach might be

lacking. Actually, owing to the uncertainty in mortality trends at adult and old ages

and in the future performance of investments, it is difficult to judge the appropriate-

ness of a reserve profile simply based on a deterministic view of future scenarios.

For such products, solvency requirements based on the random value of future

obligations might be more appropriate than those discussed in section 3.6.

We will therefore consider requirements according to which the insurance com-

pany is judged solvent at time t if at that time it is able to meet its future obligations

(a similar approach has been adopted in Faculty of Actuaries’ Solvency Working

Party, 1986). In patrimonial terms, solvency requirements like the following

Pr
T̂

t=1

AtxYto0

( )
=1xe (3:17)

Pr {ATxYTo0}=1xe (3:18)

can be considered.

Note that, besides the above mentioned, another advantage of definitions (3.17)

and (3.18), when compared with (3.11) and (3.13), is that Yt includes strictly in-

dustrial obligations (i.e. with respect to policyholders) as well as corporate obliga-

tions (i.e. with respect to shareholders). On the contraryVt, used in (3.11) and (3.13),

only considers future payments to policyholders. Hence, definitions (3.17) and (3.18)

could be more appropriate when solvency is ascertained from the point of view of

shareholders. In the following, we consider the supervisory authority’s perspective.

Hence, as in section 3.6, we assume Kt=0 except for the time of valuation.

With regard to the value of future obligations, Yt should for consistency be cal-

culated with discount factors chosen accordingly to the future behaviour of both

financial incomes, It+h, and capital gains/losses, Jt+h, since they both affect the value

of assets (see (3.6)). Further, the summation in (3.2) should be extended to the largest

residual duration of policies virtually in force at time T. Denoting with n such dur-

ation, we have Yn=0 and we can verify that, under the information available at time

0, the following equality holds (for whatever choice of the flows Kt)

Pr
T̂

t=1

AtxYto0

( )
=Pr{Ano0} (3:19)

Actually, under the hypotheses adopted so far, assets at time t can be expressed as

follows

At=A0
1

v(0, t)
+

Xt

h=1

(PhxEh)
1

v(hx1, t)
x(Ch+ShxKh)

1

v(h, t)

� �
(3:6k)

(where 1
v(s, z) represents the accumulated value of one monetary unit invested at

time s for zxs years, which for simplicity is inclusive of financial income and capital
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gains/losses) and liabilities as follows

Yt=
Xn

h=t+1

[(Ch+ShxKh) v(t, h)x(PhxEh) v(t, hx1)] (3:2k)

We can first of all note that under the information available at time 0 (when all future

flows and rates of interest are random) the following result holds

AtxYto0,At
1

v(t, n)
xYt

1

v(t, n)
o0

,A0
1

v(0, n)
+

Xt

h=1

(PhxEh)
1

v(hx1, n)
x(Ch+ShxKh)

1

v(h, n)

� �

x
Xn

h=t+1

(Ch+ShxKh)
1

v(h, n)
x(PhxEh)

1

v(hx1, n)

� �
o0

,Ano0

We then have (denoting by I0 the information available at time 0)

Pr
T̂

t=1

AtxYto0 jI0

( )
=Pr

T̂

t=1

Ano0 jI0

( )
=Pr {Ano0 jI0} (3:19k)

Interpretation is as follows: given that At includes all flows relating to [0, t] and Yt

those relating to [t, n], when the difference AtxYt is concerned, the overall flows

relating to [0, n] are under consideration. Given the information available at time 0,

it is then equivalent to refer such flows to time t or to time n (or to some other time).

Following steps similar to those described above, we can further verify that

Pr
T̂

t=1

AtxYto0

( )
=Pr{ATxYTo0} (3:19a)

Relation (3.19) shows in particular that, as for reserve-based requirements, a time

span greater than T is involved. However, whilst in the reserve-based approach ex-

pected values of future payments are considered (at least at individual level) we are

now dealing with random values only (which allows simplifications (3.19) and (3.19a)
to be made).

For a given choice of the ruin probability e, under a run-off or going concern

approach, conditions (3.17) and (3.18) (which according to (3.19) and (3.19a) are
equivalent and independent of the time span T ) lead to a required initial (total)

investment A0
(O), to be financed both with premiums and shareholders’ fund (the

up-letter ‘O ’ indicates that an obligations-based requirement has been adopted). In

particular, given the portfolio reserve at time 0 (which should be built with pre-

miums), the required solvency margin according to requirement (3.19) is

M
(O)
0 =A

(O)
0 xV0 (3:20)
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In terms of cash results, future obligations are compared with the portfolio fund.

Solvency requirements can be formulated as follows

Pr
T̂

t=1

ZtxYto0

( )
=1xe

, Pr{ZTxYTo0}=1xe

, Pr{Zno0}=1xe
(3:21)

Note that in (3.21), for consistency, Yt should be based on discount factors chosen

according only to the future behaviour of financial incomes, Ih (see (3.1)).

For a given choice of the ruin probability e and the approach (run-off or going

concern), condition (3.21) leads to a required initial fund Z0
(O)

to be assigned to

the portfolio. Given the initial reserve V0, the required initial free portfolio fund

(or solvency margin) is then [Z0
(O)xV0].

It is worth noting that the obligation-based requirements approach, to some ex-

tent, is a ‘fair value’ concept of solvency. Clearly, as regards assets the fair valuation

leads to a ‘market ’ value, whereas the fair value of liabilities can be meant as a value

calculated according to the ‘best estimate’, namely, in a stochastic framework, the

most realistic probability structure describing the random mortality of annuitants.

Indeed an appropriate choice of the probability structures underpinning require-

ments (3.17), (3.18) or (3.21) leads to a realistic representation of future scenarios and

hence to a fair valuation of both assets and liabilities.

4 Demographic risk in a portfolio of immediate annuities

4.1 Hypotheses

The meaning and implications, in numerical terms, of the solvency requirements

discussed in the previous section are investigated with reference to a portfolio of

immediate life annuities. Slight modifications allow us to refer the discussion to a

pension scheme. Since these products are in particular affected by longevity and

investment risk, we concentrate on these risks only, disregarding expense, option

and economic risks.

More precisely, we consider a portfolio of immediate annuities, homogeneous in

terms of entry time, age, annual amount, etc. For simplicity, we disregard expenses

and consider constant benefits. Let Nt be the random number of annuitants at time t,

t=0, 1, … (in particular, N0 is a known quantity), R the annual amount for each

annuity, Rt the total amount paid at time t to annuitants alive at that time and y the

age at time 0.

In this section, we adopt a deterministic hypothesis with reference to investment

performance, denoting with i*t the rate of interest for the tth year (investment risk is

dealt with in section 5). Note that in a deterministic framework capital gains/losses

are meaningless ; hence At=Zt at each time t.
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Under our hypotheses, the portfolio fund, future obligations and the portfolio

reserve are now described (letting P=xR and Pt=xRt) as follows

Zt=Ztx1xRt+It=(Ztx1xNtx1R)(1+it*) (4:1)

Yt=
Xvxyxt

h=1

Rt+h v(t, t+hx1)=
Xvxyxt

h=1

RNt+hx1 v(t, t+hx1) (4:2)

Vt=NtVt=NtR€aay+t (4:3)

where v is the maximum age (whence vxyxt is the maximum duration of a

policy at time t), v(t, t+hx1) is calculated according to the interest rates i*t+1,

i*t+2, …, i*t+hx1 and äy+t denotes the actuarial value of a unitary immediate annuity

for a person aged y+t, calculated according to a proper valuation basis. We note that

shareholders’ capital flows Kt are disregarded because the viewpoint of the supervis-

ory authority is considered.

Requirements (3.15) and (3.21) are adopted. In order to perform the valuation, we

still need to assume a mortality model.

4.2 Mortality assumptions

Denoting with qx and px the mortality and survival rates at age x, we model life

annuitants’ mortality by assuming

qx
px

=GHx (4:4)

where the qx/px is the so-called ‘odds’. Note that the right-hand side of (4.4) is the

third term in the well-known Heligman–Pollard law, i.e. the term describing the old-

age pattern of mortality (see Heligman and Pollard, 1980). The expression of

the mortality rate qx and the survival function S(x) (S(x)=Pr{T0>x}, with T0 the

lifetime for a newborn), can be easily obtained. Note that the parameter G expresses

the level of senescent mortality andH the rate of increase of senescent mortality itself.

In order to represent mortality trends, we will adopt projected survival functions.

Mortality trends at adult ages reveal decreasing annual probabilities of death and in

particular :

(i) the concentration of deaths around the mode of the probability density function

f0(x)=x dS(x)
dx , whose graph is also called ‘curve of deaths’, increases with time; in

terms of the graph of the survival function, this implies the so-called ‘rectangu-

larization’ ;

(ii) the mode of the curve of deaths moves towards very old ages, leading to the

so-called ‘expansion’.

Commonly, mortality projections are extrapolations of (recent) trends as far as

these can be perceived from mortality statistics. A different approach leads to models
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expressing the basic characteristics of the evolving scenario in which mortality im-

provements take place. In this case the projection model should catch the aspects

(i) and (ii). To this purpose, analytical mortality laws should be used as, for example,

the Heligman–Pollard law. According to this approach, mortality trends are rep-

resented assuming that the parameters of the mortality law are functions of the

calendar year. Hence, also the mode and the variance of the curve of deaths depend

on the calendar year. Then, the adequacy of the projection model can be checked

comparing the behaviour of the curve of deaths with the scenario characteristics

described above (see (i) and (ii)).

It should be stressed that the increasing concentration of deaths around the mode

of the curve of deaths reduces the risk affecting annuity benefits, whatever the location

of the mode may be. Hence, any given mortality projection implying this feature

reveals a reduction of the mortality risk originating from random fluctuations, with

respect to the results produced by a non-projected mortality model. However, the

mortality projection itself is affected by uncertainty. Evaluating the degree of uncer-

tainty and incorporating this evaluation in the actuarial model, a higher mortality

risk emerges. The additional risk, called the longevity risk, is attributable to system-

atic deviations of the mortality from the projected mortality assumed in the calcu-

lation basis (used in pricing or reserving).

As far as the mortality risk is concerned, we adopt the following approaches :

(1) a ‘deterministic ’ approach, implemented by using a given projected survival

function; this approach only allows for the random fluctuation risk;

(2) a ‘stochastic’ approach, implemented by using a set of projected survival

functions, representing the uncertainty inherent in the projection; a ‘degree of

belief ’ will be assigned to each function; this approach allows for both the

random fluctuation risk and the longevity risk.

More precisely, we will define three projected survival functions, denoted by

S[min](x), S[med](x) and S[max](x), expressing, respectively, a little, a medium and a high

reduction in mortality. In the deterministic approach only S[med](x) is used, whilst the

stochastic approach involves the three functions.

As stated at the beginning of this section, a Heligman–Pollard-like model is

adopted. The parameters of the three survival functions are shown in table 1 (the

maximum age, v, is set equal to 110). As it emerges from such parameters, the proj-

ected functions have been obtained so that they perform the trends of expansion and

rectangularization. Figures 1 and 2 show, respectively, the three survival functions

and the related probability density functions.

Table 1. Mortality laws for annuitants

[min] [med] [max]

G 0.000042 0.000002 0.0000001

H 1.09803 1.13451 1.17215
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4.3 Solvency in a deterministic approach to mortality

The portfolio we are investigating consists of identical annuities, paid to persons of

initial age y=65, with annual amount R=100. We assume that the future lifetimes of

the annuitants have a common distribution and are independent of each other (con-

ditional on any given survival function). The single premium (to be paid at entry) is

calculated, for each policy, according to the survival function S[med](x) and with a

constant annual interest rate i=0.03. Further we assume that for each policy in force

at time t, t=0, 1, …, a reserve must be set up, which is calculated according to such

hypotheses.

In the deterministic approach to mortality, the probability distribution of the

future lifetime of each insured is known, the only cause of uncertainty consisting in

the time of death. The assessment of the solvency margin required according either to

a reserve-based or an obligations-based condition is performed through simulation.

In order to obtain results easier to interpret, we disregard profit ; the actual life dur-

ation of the annuitants is thus simulated with the survival function S[med](x). Further,

we assume i*t=i=0.03. A run-off approach is adopted (i.e. only the cohort entering

at time 0 is considered).

Figure 1. Survival functions.

Figure 2. Curves of deaths.

Solvency requirements for pension annuities 141

https://doi.org/10.1017/S1474747203001276  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747203001276


In table 2 the solvency margin required at time 0 is quoted according to conditions

(3.15) and (3.21). In the former case, the time spans T=n=vxy and T=5 years are

alternatively chosen. When the largest time span (i.e. T=n) is chosen, [Z0
(R)xV0] and

[Z0
(O)xV0] are quite similar. However, the reserve-based approach seems to be more

severe than the obligations-based one. In order to understand why consider that,

since Vn=0, we have ZnxVn=Zn. According to requirement (3.21), solvency is in

practice ascertained only at time n (checking the positivity of Zn), whilst under (3.15)

it is ascertained not only at time n (checking the positivity of ZnxVn=Zn), but also

at time t, t<n, when a negative free portfolio fund can occur. It can therefore happen

that ZtxVt<0 even though Zn=0, whence the reserve-based approach leads to

higher solvency margins than the obligations-based one (note that this situation can

emerge both from random interest rates and random fluctuations in mortality; given

our current hypotheses, the differences between [Z0
(R)xV0] and [Z0

(O)xV0] in table 2

are due to the latter). When T=5, [Z0
(R)xV0] seems to be insufficient when compared

to [Z0
(O)xV0]. This is due to the fact that the risk of random fluctuations of the

portfolio fund around the reserve (roughly speaking, of the number of survivors

around their expected value) is heavy in the long run, but not within a short horizon.

As far as the size of the portfolio is concerned, table 2 shows that the required margin

decreases as N increases. This is due to the fact that a deterministic approach to

mortality only catches the risk of random fluctuations which, as it is well-known, is

a pooling risk (i.e. its effect decreases when larger numbers of similar policies are dealt

with). Finally, note that since by definition the initial reserveV0 is equal to the single

premium, the solvency margin at time 0 must be financed with shareholders’ funds.

Results in tables 3 and 4 have been obtained by performing the valuation at time h,

h=0, 5, 10, …, in order to inspect the behaviour of the required margin through time

(amendments to formulae in section 3 are straightforward). At each valuation time h

we have considered, for a given initial sizeN0, a portfolio of E(Nh) insureds, each aged

y+h, and a portfolio reserve Vh=E(Nh)Vh (the expected value E(Nh) is calculated

according to the assumed mortality distribution, i.e. S[med](x)). The increase in the

Table 2. Required solvency margin: e=0.025

N0

T=n T=5

[Z0
(R)xV0]

[Z (R)
0 xV0 ]

V0
[Z0

(R)xV0]
[Z (R)

0 xV0]

V0
[Z0

(O)xV0]
[Z (O)

0 xV0]

V0

1000 32,959 2.180% 17,242 1.140% 29,744 1.967%
2000 44,937 1.486% 25,253 0.835% 40,653 1.344%
3000 54,398 1.199% 27,771 0.612% 48,462 1.068%
4000 65,460 1.082% 33,340 0.551% 58,894 0.974%

5000 73,242 0.969% 36,621 0.484% 64,319 0.851%
6000 79,956 0.881% 39,597 0.437% 68,790 0.758%
7000 87,585 0.828% 44,861 0.424% 80,891 0.764%

8000 90,332 0.747% 47,302 0.391% 81,071 0.670%
9000 100,555 0.739% 49,744 0.366% 90,192 0.663%
10000 103,149 0.682% 52,032 0.344% 92,398 0.611%
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(relative) solvency margin, whatever requirement is adopted, is due to the fact that

the size of the portfolio reduces and the age of the annuitants increases with time.

Note, however, that the increase is stronger when a reserve-based approach with

horizon T=5 is chosen. The example shows that, as it is quite intuitive, such an

approach requires proper adjustments once the given horizon has been reached.

Moreover, it implies a different capital allocation than the other two conditions

examined numerically (i.e. T=n and the obligations-based approach), in the sense

that the lower initial required fund must be followed, at the subsequent times,

by a greater increase of the fund itself. As far as financing of the required fund

Zh
(R)

(Zh
(O)

) is concerned, in case the reserve actually cumulated is not equal to its

expected value, a shareholders’ fund greater than [Zh
(R)xVh] ( [Zh

(O)xVh]) could be

necessary.

Finally, tables 5–8 show dependence on the ruin probability.

To conclude the examples relating to the deterministic approach, we just mention

that investigations performed with either the survival function S[min](x) or S[max](x)

suggest comments similar to those above discussed. However, due to the phenom-

enon of rectangularization, the solvency margin required according to S[max](x)

(S[min](x)) is lower (higher) than that assessed using S[med](x). Finally, it must be

mentioned that the relatively low levels of ZhxVh

Vh
in all the examples presented is

Table 3. Required solvency margin [Zh
(R)xVh]/Vhr100; e=0.025

h

T=n T=5

N0=1000 N0=5000 N0=10000 N0=1000 N0=5000 N0=10000

0 2.180 0.969 0.682 1.140 0.484 0.344
5 2.613 1.206 0.808 1.501 0.663 0.450
10 3.124 1.430 0.981 2.079 0.953 0.649
15 4.146 1.761 1.239 2.982 1.321 0.937

20 5.442 2.270 1.675 4.372 1.823 1.371
25 7.489 3.357 2.351 6.222 2.984 2.046
30 14.089 5.866 4.071 12.694 5.313 3.786

35 41.613 15.339 10.492 38.071 14.166 9.850

Table 4. Required solvency margin [Zh
(O)xVh]/Vhr100; e=0.025

h N0=1000 N0=5000 N0=10000

0 1.967 0.851 0.611
5 2.345 1.024 0.741

10 2.972 1.243 0.910
15 3.809 1.634 1.154

20 5.022 2.136 1.511
25 7.148 3.103 2.242
30 13.996 5.329 3.807

35 40.934 14.407 9.928
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due to the fact that, because of the deterministic approach to mortality (and to in-

vestment as well), only the risk of random fluctuations has been accounted for.

4.4 Solvency in a stochastic approach to mortality

The assessment of the solvency margin is now obtained considering explicitly uncer-

tainty in future mortality trends. To this aim, we first consider the three survival

functions S[min](x), S[med](x) and S[max](x), assuming that each of them is meant as

a possible distribution of the future lifetime. The weights r[min], r[med] and r[max]

represent, respectively, the ‘degree of belief ’ of such functions.

The single premium for each policy and the individual reserve are still calculated

with the survival function S[med](x) and the interest rate i=0.03; we let i*t=i=0.03.

Unless otherwise stated, we assume r[min]=0.2, r[med]=0.6, r[max]=0.2 (reflecting the

fact that S[med](x), which is used for pricing and reserving, is assumed to give the most

reliable mortality description).

The investigation is carried out through simulation. We now deal with two causes

of uncertainty: the actual distribution of the future lifetimes and the time of death

Table 5. Required solvency margin [Z0
(R)xV0]/V0r100

N0

T=n T=5

e=0.01 e=0.025 e=0.05 e=0.01 e=0.025 e=0.05

1000 2.503 2.180 1.887 1.254 1.140 1.024
2000 1.736 1.486 1.272 0.949 0.835 0.696
3000 1.475 1.199 1.080 0.686 0.612 0.543
4000 1.226 1.082 1.082 0.636 0.551 0.488

5000 1.147 0.969 0.844 0.581 0.484 0.420
6000 0.969 0.881 0.773 0.511 0.437 0.390
7000 0.946 0.828 0.715 0.473 0.424 0.376

8000 0.868 0.747 0.676 0.454 0.391 0.324
9000 0.861 0.739 0.642 0.471 0.366 0.308
10000 0.775 0.682 0.588 0.380 0.344 0.295

Table 6. Required solvency margin [Z0
(O)xV0]/V0r100

N0 e=0.01 e=0.025 e=0.05

1000 2.314 1.967 1.644
2000 1.589 1.344 1.107

3000 1.347 1.068 0.927
4000 1.116 0.974 0.974
5000 1.053 0.851 0.725
6000 0.927 0.758 0.645

7000 0.845 0.764 0.647
8000 0.808 0.670 0.589
9000 0.762 0.663 0.576

10000 0.764 0.611 0.523
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of each insured. Firstly, the survival function must be chosen (through simulation)

and then, assuming that under a given lifetime distribution the annuitants are inde-

pendent risks, the actual duration of life of each person is simulated.

Tables 9 to 15 show the results of valuations of the same type as those performed in

the deterministic framework. The following aspects must be stressed.

For a given choice of parameters (i.e. size of the portfolio, rate of interest, ruin

probability etc.), the comparison between the deterministic and the stochastic case

shows a heavy increase of the required solvency margin in the latter. This is due to the

fact that a stochastic framework allows us to analyse not only the risk of random

fluctuations in the number of survivors, but also that of systematic deviations (i.e.

the longevity risk), which is a non-pooling risk. Considering for example table 9,

the decreasing behaviour of the relative required solvency margin with respect to N0

is due to the pooling effect of random fluctuations; however, its magnitude is rather

stable and its value seems to tend to a large positive amount (as could be checked

considering larger portfolios) ; hence, the non-pooling effect of longevity risk is

witnessed.

Requirement (3.15) with time span T=5 leads to a solvency margin significantly

lower than either the case T=n or requirement (3.21). This shows first of all that

the longevity risk reveals itself in the long run. Secondly, the choice of assessing the

Table 7. Required solvency margin [Zh
(R)xVh]/Vhr100; N0=5000

h

T=n T=5

e=0.01 e=0.025 e=0.05 e=0.01 e=0.025 e=0.05

0 1.147 0.969 0.844 0.581 0.484 0.420
5 1.377 1.206 1.006 0.804 0.663 0.578
10 1.569 1.430 1.224 1.041 0.953 0.798
15 2.129 1.761 1.556 1.638 1.321 1.157

20 2.633 2.270 1.958 2.307 1.823 1.598
25 3.749 3.357 2.846 3.369 2.984 2.532
30 6.829 5.866 4.717 6.391 5.313 4.421

35 17.530 15.339 13.104 17.265 14.166 12.395

Table 8. Required solvency margin [Zh
(O)xVh]/Vhr100; N0=5000

h e=0.01 e=0.025 e=0.05

0 1.053 0.851 0.725

5 1.283 1.024 0.914
10 1.517 1.243 1.090
15 1.930 1.634 1.346

20 2.507 2.136 1.795
25 3.575 3.103 2.657
30 6.543 5.329 4.389

35 16.205 14.407 12.193
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required solvency margin according to (3.15) with T=5 implies a strong postpone-

ment of the solvency margin building up (as witnessed by tables 10, 11, 14 and 15) and

the need to monitor carefully the portfolio in order to adjust the solvency margin in

case it is insufficient.

Table 9. Required solvency margin; e=0.025

N0

T=n T=5

[Z0
(R)xV0]

[Z
(R)
0 xV0]

V0
[Z0

(R)xV0]
[Z

(R)
0 xV0 ]

V0
[Z0

(O)xV0]
[Z

(O)
0 xV0 ]

V0

1000 218,172 14.431% 43,869 2.902% 217,543 14.389%
2000 425,758 14.081% 83,771 2.770% 425,222 14.063%
3000 632,324 13.941% 123,672 2.727% 631,324 13.919%

4000 840,797 13.903% 162,592 2.689% 839,595 13.883%
5000 1,046,066 13.838% 202,827 2.683% 1,045,173 13.826%
6000 1,253,963 13.824% 241,871 2.666% 1,252,419 13.807%

7000 1,457,367 13.771% 279,694 2.643% 1,455,255 13.751%
8000 1,660,461 13.729% 318,527 2.634% 1,658,925 13.716%
9000 1,867,065 13.722% 357,704 2.629% 1,865,099 13.707%
10000 2,072,830 13.710% 395,813 2.618% 2,071,272 13.700%

Table 10. Required solvency margin [Zh
(R)xVh]/Vhr100; e=0.025

h

T=n T=5

N0=1000 N0=5000 N0=10000 N0=1000 N0=5000 N0=10000

0 14.431 13.838 13.710 2.902 2.683 2.618
5 16.525 15.830 15.651 4.658 4.322 4.249

10 18.236 17.320 17.073 7.140 6.664 6.543
15 18.979 17.585 17.272 10.146 9.322 9.175
20 17.766 16.008 15.562 12.690 11.379 11.098

25 15.047 12.060 11.498 13.034 10.769 10.249
30 16.758 11.035 10.072 14.563 9.082 7.948
35 45.498 24.129 21.122 40.183 22.325 19.357

Table 11. Required solvency margin [Zh
(O)xVh]/Vhr100; e=0.025

h N0=1000 N0=5000 N0=10000

0 14.389 13.826 13.700

5 16.479 15.815 15.640
10 18.158 17.292 17.036
15 18.845 17.536 17.218
20 17.538 15.880 15.481

25 14.731 11.814 11.291
30 16.250 10.968 10.061
35 45.258 23.992 21.098
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It is quite clear that the figures quoted so far strongly depend on the choices

assumed, in particular with regard to the mortality model (viz. survival functions and

the relevant weights). However, to a large extent what discussed above gives a general

perspective of the severity of longevity risk. In table 16 the required solvency margin

has been investigated assuming different weights r, i.e. r[min]=0.1, r[med]=0.8,

r[max]=0.1. Similar results have been obtained under other choices of the weights

r (considering anyway reasonable that S[med](x) is the most realistic scenario).

It could be argued that when just three scenarios are dealt with, the dramatic

increase in the solvency margin when considering also the longevity risk is due to the

difference between the reserve calculated with the ‘worst ’ scenario and the reserve

based on the central scenario. Denoting by Vt
[.] the individual reserve calculated with

the survival function S[.](x), we find

V [ max ]
0

V [med]
0

x1=13:383%

Table 12. Required solvency margin [Z0
(R)xV0]/V0r100

N0

T=n T=5

e=0.01 e=0.025 e=0.05 e=0.01 e=0.025 e=0.05

1000 14.897 14.431 13.999 3.033 2.902 2.734
2000 14.372 14.081 13.812 2.874 2.770 2.664
3000 14.157 13.941 13.729 2.823 2.727 2.635
4000 14.079 13.903 13.688 2.756 2.689 2.619

5000 13.988 13.838 13.658 2.768 2.683 2.610
6000 13.962 13.824 13.644 2.732 2.666 2.599
7000 13.898 13.771 13.610 2.700 2.643 2.585

8000 13.879 13.729 13.590 2.700 2.634 2.580
9000 13.851 13.722 13.603 2.686 2.629 2.580
10000 13.843 13.710 13.584 2.685 2.618 2.568

Table 13. Required solvency margin [Z0
(O)xV0]/V0r100

N0 e=0.01 e=0.025 e=0.05

1000 14.851 14.389 13.968

2000 14.353 14.063 13.789
3000 14.140 13.919 13.712
4000 14.063 13.883 13.665

5000 13.971 13.826 13.639
6000 13.939 13.807 13.634
7000 13.877 13.751 13.596

8000 13.870 13.716 13.574
9000 13.838 13.707 13.593
10000 13.829 13.700 13.571

Solvency requirements for pension annuities 147

https://doi.org/10.1017/S1474747203001276  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747203001276


So, in the example the magnitude of the difference between such reserves is actually

similar to the magnitude of the required solvency margin.

However this example does not lead to any general conclusion, given that the

individual reserve is an expected value of liabilities, whilst the solvency reserve is

related to the right tail of the distribution of assets. In order to have a better under-

standing, let us consider a wider set of scenarios, as depicted in table 17.

Note that the scenarios differ one from the other in terms of the way they represent

the phenomena of rectangularization and expansion (in both cases, levels increase

moving from scenario [1] to [7]).

In table 18 the solvency margins obtained according to the different requirements

discussed previously and for some values of the ruin probability are quoted. Table 19

shows similar results, but with a different choice for the weights r. For the sake of

brevity, in both cases just one portfolio size has been considered, i.e. N0=1000 (as

well as only one valuation time, i.e. time 0). The individual reserve is still calculated

with S[med](x).

In order to reach some conclusions, first of all it is worth noting that the (individ-

ual) reserve calculated according to the worst scenario among the seven currently

under investigation (i.e. with S[7](x)) is 20.631% higher than that calculate according

to S[med](x). Setting aside a solvency margin simply based on the comparison of

Table 14. Required solvency margin [Zh
(R)xVh]/Vhr100; N0=5000

h

T=n T=5

e=0.01 e=0.025 e=0.05 e=0.01 e=0.025 e=0.05

0 13.988 13.838 13.658 2.768 2.683 2.610
5 16.077 15.830 15.603 4.429 4.322 4.225
10 17.600 17.320 17.037 6.829 6.664 6.492
15 17.900 17.585 17.212 9.569 9.322 9.092

20 16.609 16.008 15.485 11.753 11.379 10.949
25 12.824 12.060 11.235 11.404 10.769 10.097
30 12.630 11.035 9.725 10.201 9.082 8.053

35 27.794 24.129 20.302 25.656 22.325 18.827

Table 15. Required solvency margin [Zh
(O)xVh]/Vhr100; N0=5000

h e=0.01 e=0.025 e=0.05

0 13.971 13.826 13.639
5 16.051 15.815 15.581

10 17.589 17.292 17.011
15 17.849 17.536 17.154
20 16.539 15.880 15.394

25 12.593 11.814 11.060
30 12.503 10.968 9.681
35 27.660 23.992 20.114
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reserves calculated with different survival functions (as some practice suggests) on the

one hand would disregard the risk of random fluctuations (which obviously can be

considered separately) and on the other would disregard a valuation of the prob-

ability of ruin, possibly leading to unsound capital allocation.

5 Allowing for financial risk

5.1 Investment hypotheses

The examples in the previous section show the importance of the mortality risk,

namely of the longevity risk, in life annuity portfolios. Another important source of

Table 16. Required solvency margin; e=0.025. (1) deterministic approach; (2) stoch-

astic approach: r[min]=0.2, r[med ]=0.6, r[max]=0.2; (3) stochastic approach:

r[min]=0.1, r[med]=0.8, r[max]=0.1

N0

[Z
(R)
0 xV0]

V0
r100,T=n

[Z
(O)
0 xV0]

V0
r100

(1) (2) (3) (1) (2) (3)

1000 2.180 14.431 14.024 1.967 14.389 13.984

2000 1.486 14.081 13.816 1.344 14.063 13.793
3000 1.199 13.941 13.733 1.068 13.919 13.713
4000 1.082 13.903 13.691 0.974 13.883 13.678

5000 0.969 13.838 13.643 0.851 13.826 13.629
6000 0.881 13.824 13.665 0.758 13.807 13.653
7000 0.828 13.771 13.602 0.764 13.751 13.583

8000 0.747 13.729 13.610 0.670 13.716 13.592
9000 0.739 13.722 13.608 0.663 13.707 13.599
10000 0.682 13.710 13.581 0.611 13.700 13.566

Table 17. Mortality laws for annuitants

[1] [2](=[min]) [3] [4](=[med]) [5] [6](=[max]) [7]

G 0.000178 0.000042 0.000009 0.000002 0.0000004 0.0000001 0.00000001
H 1.07968 1.09803 1.11670 1.13450 1.15379 1.17215 1.19208

Table 18. Required solvency margin; r[1]=r[7]=0.05, r[2]=r[6]=0.10, r[3]=r[5]=0.15,

r[4]=0.40

e

T=n T=5

[Z0
(R)xV0]

[Z(R)
0 xV0]

V0
[Z0

(R)xV0]
[Z(R)

0 xV0 ]

V0
[Z0

(O)xV0]
[Z(O)

0 xV0]

V0

0.025 311,832 20.626% 48,571 3.213% 311,525 20.605%

0.05 253,906 16.794% 44,625 2.952% 253,460 16.765%
0.1 203,123 13.435% 38,134 2.522% 202,538 13.396%
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risk comes from investment. In this section we intend to analyse the global riskiness

arising from both mortality and investment.

As far as financial modelling is concerned, we do not deal with the problem of

assessing the market value of the different types of financial instruments in which the

insurance company can invest, nor with the problem of choosing a proper investment

strategy. We simply adopt a model for the short interest rate, whose (random) be-

haviour should reflect interest incomes as well as capital gains/losses arising from the

performance of the assets linked to the portfolio.

Let rt be the short interest rate, expressing the instantaneous total rate of return

on assets. We assume that its behaviour can be described with the Vasicek model

(i.e. with an Ornstein-Uhlenbeck process). Thus

drt=a(cxrt)dt+sdWt (5:1)

where {Wt} is a standard Wiener process and a, c and s are positive constants. Note

that c represents the long-term mean of the short rate, a a friction force bringing the

process back towards c and s the diffusion coefficient. We do not discuss further

the features of model (5.1) (see Vasicek, 1977). We just mention that the Vasicek

model is often used in actuarial applications since it represents quite satisfactorily the

long-term development of the rate of return (see, for example, Parker (1997) and

the list of references therein). Note that (5.1) could lead to a negative value for the

short rate ; under our hypotheses this is anyway acceptable, since capital losses are

admitted.

Having assumed that the behaviour of rt includes both financial incomes and

capital gains/losses, solvency is investigated in patrimonial terms. Assets are now

described as follows

At=Atx1xNtx1R+It+Jt (5:2)

whilst the value of future obligations and the portfolio reserve are still given by (4.2)

and (4.3), respectively (considering the perspective of the supervisory authority, the

flows Kt are disregarded). Requirements (3.11) and (3.19) are considered.

5.2 Numerical investigations

We refer to the same portfolio considered in section 4; hence, in particular, we adopt

a run-off approach. As far as mortality is concerned, we adopt the three scenarios

Table 19. Required solvency margin; r[1]=r[7]=0.01, r[2]=r[6]=0.04, r[3]=r[5]=0.20,

r[4]=0.50

e

T=n T=5

[Z0
(R)xV0]

[Z(R)
0 xV0 ]

V0
[Z0

(R)xV0]
[Z(R)

0 xV0]

V0
[Z0

(O)xV0]
[Z(O)

0 xV0]

V0

0.025 206,852 13.682% 39,592 2.619% 206,293 13.645%

0.05 156,250 10.335% 33,531 2.218% 155,152 10.262%
0.1 108,272 7.161% 26,871 1.777% 107,111 7.085%
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described in section 4.1 (see table 1 and figures 1 and 2) ; both a deterministic and a

stochastic framework are dealt with. In any case, we still assume that the future

lifetimes of the annuitants have a common distribution and that the single premium

and the individual reserve are calculated according to S[med](x) and i=0.03.

Within a deterministic approach to mortality, the causes of uncertainty are two:

the time of death of each annuitant and the level of the short interest rate at any time

t. We assume, as it is quite common, independence between demographic and

financial variables and we proceed to the assessment of the solvency margin through

simulation (assuming independence among the insured risks, as far as mortality is

concerned, conditional on a given survival function). Parameters for the financial

simulation are given in table 20. They are (arbitrarily) chosen so that they reflect the

overall performance of assets, resulting from both market behaviour and the invest-

ment strategy of the insurance company. Once the short rate has been simulated,

values for It+Jt and v(t, t+h) can be easily obtained. For example

v(0, h)= exp x
Z
0

h

ru du

� �
(5:3)

Note that under the parameters of table 20, an expected investment profit derives

(the average simulated annual interest rate is slightly greater than 0.04). Hence,

results quoted in this section are not comparable with those of section 4.

Table 21 shows the solvency margin required at time 0 according to condition

(3.11) (M0
(R)

), with both T=n and T=5, as well as to (3.19) (M0
(O)

). The greater

severity of requirement (3.11) (both in the case T=n and T=5) is due to the fact that

Table 20. Parameters for the short rate

r0 0.05 a 0.1
c 0.04 s 0.01

Table 21. Required solvency margin; deterministic approach to mortality, e=0.025

N0

T=n T=5

M0
(O) M

(O)
0

V0
M0

(R) M
(R)
0

V0
M0

(R) M
(R)
0

V0

1000 89,226 5.902% 69,633 4.606% 27,737 1.835%
2000 177,550 5.872% 140,135 4.634% 55,639 1.840%

3000 265,559 5.855% 211,177 4.656% 82,428 1.817%
4000 352,875 5.835% 281,198 4.650% 108,223 1.790%
5000 441,260 5.837% 351,858 4.655% 135,558 1.793%

6000 529,288 5.835% 422,707 4.660% 162,775 1.794%
7000 616,138 5.822% 492,382 4.653% 188,919 1.785%
8000 703,182 5.814% 563,850 4.662% 216,284 1.788%
9000 790,749 5.811% 634,518 4.663% 243,852 1.792%

10000 879,061 5.814% 705,166 4.664% 271,403 1.795%
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assets, cumulating at a random rate, are compared with the reserve, calculated

according to a financial hypotheses which could be significantly different from the

actual investment performance. On the contrary, under condition (3.19) assets are

compared with the present value of future obligations, calculated under the same

investment scenario (actually, (3.19) reduces to the inspection of An) ; hence, a sort of

offsetting effect arises for the investment risk when the obligations-based approach is

considered, i.e. when the ability to meet liabilities is ascertained on realistic grounds.

It must be stressed, in particular, that contrary to the deterministic financial setting

(section 4), we find M0
(O)<M0

(R)
also in the case of T=5, witnessing the fact that

investment risk reveals itself already in the short run. As far as the size of the portfolio

is concerned, in any case the entity of the relative required solvency margin M0

V0

� �
is

almost constant ; actually, the investment risk is non-pooling and its effect, in relative

terms, is independent of the size of the portfolio. Finally, it should be kept in mind

that results in table 21 (and 22 as well) have been obtained in the presence of an

expected (positive) investment profit. In order to understand its effect, we mention

that adopting a deterministic financial scenario and assuming i*t=0.04 (hence in-

cluding an investment profit whose magnitude is comparable with that obtained in

the stochastic financial framework) it turns out that no solvency margin is required at

time 0, the mortality risk being completely covered by the expected financial profit.

In a stochastic approach to mortality, the causes of uncertainty are three : the

distribution of future lifetimes, the time of death of each insured and the investment

performances. As before, we assume independence between demographic and

financial variables ; further, we assume that, once the mortality distribution has been

assigned, annuitants have independent durations of life. Results in table 22 have been

obtained through simulation (assuming r[min]=0.2, r[med]=0.6 and r[max]=0.2), with

valuation time 0. Note the sharp increase in the marginsM0
(R)

, under T=n, andM0
(O)

with respect to table 21, obviously due to longevity risk. In particular, since longevity

risk emerges in the long run, M0
(O)

is now greater than M0
(R)

when T=5. Note also

that when comparing table 22 with 21 it turns out thatM0
(O)

is more seriously affected

Table 22. Required solvency margin; stochastic approach to mortality, e=0.025

N0

T=n T=5

M0
(O) M(O)

0
V0

M0
(R) M(R)

0
V0

M0
(R) M(R)

0
V0

1000 234,809 15.531% 105,820 6.999% 233,627 15.453%
2000 465,021 15.379% 211,859 7.007% 463,350 15.324%
3000 696,735 15.361% 318,642 7.025% 694,796 15.319%
4000 927,784 15.358% 424,604 7.021% 926,516 15.321%

5000 1,160,254 15.349% 531,348 7.029% 1,157,321 15.310%
6000 1,394,717 15.375% 638,309 7.037% 1,391,178 15.336%
7000 1,622,656 15.333% 743,647 7.027% 1,618,809 15.296%

8000 1,857,986 15.362% 851,135 7.037% 1,853,379 15.324%
9000 2,090,759 15.366% 957,496 7.037% 2,086,065 15.331%
10000 2,317,505 15.329% 1,063,397 7.034% 2,313,219 15.300%
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Figure 3. Required solvency margin ½Z0xV0�
V0

; deterministic financial approach, e=0.025. (1) deterministic approach to mortality ; reserve-based, T=n ;
(2) deterministic approach to mortality; reserve-based, T=5; (3) deterministic approach to mortality; obligations-based; (4) stochastic approach to
mortality; reserve-based, T=n ; (5) stochastic approach to mortality ; reserve-based, T=5; (6) stochastic approach to mortality ; obligations-based.
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Figure 4. Required solvency margin M0

V0
; stochastic financial approach, e=0.025. (1) deterministic approach to mortality ; reserve-based, T=n ;

(2) deterministic approach to mortality; reserve-based, T=5; (3) deterministic approach to mortality ; obligations-based; (4) stochastic approach to
mortality ; reserve-based, T=n ; (5) stochastic approach to mortality; reserve-based, T=5; (6) stochastic approach to mortality; obligations-based.
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by longevity than investment risk. Actually it must be stressed that, contrarily to table

21, M0
(R) under T=n and M0

(O) have the same magnitude. This shows that for lon-

gevity risk neither a pooling effect (as for the random fluctuation risk) nor an off-

setting effect (as for the investment risk) can be obtained, albeit that the investigation

is performed on realistic grounds. In any case, as in table 21, the relative required

solvency margin M0

V0
, plotted against N0, is almost constant, due to the non-pooling

effect of both longevity and investment risk. In order to catch the effect of investment

profit, we point out that numerical evaluations performed within a deterministic

financial setting lead to a required solvency margin of nearly 3% of the initial reserve

in the reserve-based approach with T=n and in the obligations-based approach and

to no margin required in the reserve-based approach with T=5.

Finally, with regard to the dependence of the results obtained on the mortality

model, we mention that the wider set of scenarios considered at the end of section 4

lead to similar conclusions. For the sake of brevity, the relevant results are omitted.

Figures 3 and 4 offer an overall comparison among some of the results discussed in

sections 4 and 5 (relating to the three mortality scenarios represented by S[min](x),

S[med](x), S[max](x)).

6 Concluding remarks

Solvency requirements for immediate annuities have been analyzed. Particular em-

phasis has been placed on the longevity risk, i.e. the mortality risk originated by

possible systematic deviations from the assumed projected mortality, viz. arising

from parameter and model uncertainty.

Solvency is traditionally defined in terms of comparisons between asset and reserve

values. In order to avoid problems inherent in the choice of the valuation basis used

in reserving, solvency has been defined also in terms of random values of future

obligations.

Several numerical examples illustrate solvency requirements produced by the two

different approaches. In particular, the results obtained taking into account the

mortality as well as the financial risk provide an interesting description of the riski-

ness inherent in a portfolio of immediate annuities and in a pension plan as well.

Numerical results only provide an illustration, since they obviously depend on the

specific assumptions concerning the randomness in mortality as well as on the model

used to describe the investment performance. Nevertheless, the results presented in

this paper underline the dramatic importance of a sound evaluation of the solvency

requirements for life annuities (and, more generally, for insurance products providing

lifetime living benefits, for example long-term care covers, post-retirement sickness

benefits, etc.).

Further research work should concern various aspects of the risks’ inherent in

pension annuities, focussing in particular on the relevant solvency requirements.

Following a rather traditional approach to solvency, appropriate short-cut formulae,

expressing the required amount of assets in terms of quantities which properly reflect

important risk drivers (investment policy, number of the annuitants, average age

of the annuitants, etc.), should be constructed and proposed in order to make easier
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a quick assessment of solvency. In this context the solvency requirements should

be related to some ‘objective ’ quantity as, for example, the total amount paid

yearly to the annuitants, rather than the reserve which is usually considered in

traditional short-cut formulae but whose amount heavily depends on the chosen

valuation basis.

Aggregate risk models can suggest an innovative approach to solvency require-

ments for pension annuities. This context seems appropriate for a joint analysis of

risks related to the accumulation phase and the decumulation phase, providing tools

for quantifying the overall risk exposure of pension schemes and annuity portfolios.

Finally, more emphasis should be placed on the ‘value ’ of pension liabilities.

As noted in section 3, obligation-based solvency requirements allow for a fair value-

oriented approach to solvency. Focussing on the concept of fair value of pension

liabilities is particularly important as a market-based valuation seems difficult,

because markets for these liabilities are far from perfect or complete.
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