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We investigate the motion of high-Reynolds-number gravity currents (GCs) in a
horizontal channel of V-shaped cross-section combining lock-exchange experiments
and a theoretical model. While all previously published experiments in V-shaped
channels were performed with the special configuration of the full-depth lock, we
present the first part-depth experiment results. A fixed volume of saline, that was
initially of length x0 and height h0 in a lock and embedded in water of height H0 in
a long tank, was released from rest and the propagation was recorded over a distance
of typically 30x0. In all of the tested cases the current displays a slumping stage
of constant speed uN over a significant distance xS, followed by a self-similar stage
up to the distance xV , where transition to the viscous regime occurs. The new data
and insights of this study elucidate the influence of the height ratio H = H0/h0 and
of the initial Reynolds number Re0 = (g′h0)

1/2h0/ν, on the motion of the triangular
GC; g′ and ν are the reduced gravity and kinematic viscosity coefficient, respectively.
We demonstrate that the speed of propagation uN scaled with (g′h0)

1/2 increases with
H, while xS decreases with H, and xV ∼ [Re0(h0/x0)]4/9. The initial propagation in
the triangle is 50 % more rapid than in a standard flat-bottom channel under similar
conditions. Comparisons with theoretical predictions show good qualitative agreements
and fair quantitative agreement; the major discrepancy is an overpredicted uN , similar
to that observed in the standard flat bottom case.

Key words: geophysical and geological flows, gravity currents

1. Introduction

In its broadest sense, a gravity current (GC) appears when fluid of one density,
ρc, spreads into a fluid of another density, ρa, in a mainly horizontal propagation.
GCs occur at a variety of scales throughout nature. Examples include oceanic fronts,
avalanches, seafloor turbidity currents, pyroclastic flows, and lava flows. Most studies
have focused on the flow of currents which propagate on the flat bottom of a
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rectangular channel. If the Reynolds number is large, as assumed here, the lateral
boundaries of the rectangular channel are unimportant, and a standard laterally
unbounded GC can be assumed (see Simpson 1997; Ungarish 2009). The analytical
modelling, experimental, and numerical-simulation tools for the analysis and prediction
of currents in rectangular channels are well developed. However, GCs generated and
spreading in channels with non-rectangular cross-sections are realistic configurations
in nature (e.g. valleys and rivers) and environmental/industrial settings (flow under the
roofs of buildings and tunnels, irrigation and drainage systems, oil and gas transport).
It is therefore of both practical and academic importance to extend the tools of
analysis from the rectangular channel to the counterpart with inclined or curved
side-walls, and to assess the quality of the extended models by careful experiments.
The present study is concerned with the extension of the thin-layer approximation
to the V-shaped valley geometry (shallow-water (SW) theory for the almost-inviscid
flow, and lubrication theory for the subsequent viscous flow).

The availability of good approximate models and insights is of higher importance
for the non-rectangular case than for the rectangular one. The reasons are as follows.
(i) The rectangular current can be simulated fairly well with a 2D xz Navier–Stokes
code on moderate grids of roughly 1000× 200 intervals (see Bonometti, Balachandar
& Magnaudet 2008), in a small number of hours on a laptop computer. Here x
means the horizontal direction of propagation, and z the vertical. Such simulations
provide efficient verification, and supplementary details, to the predictions of the
models. However, a channel with a non-rectangular cross-section requires a 3D
simulation because the boundary conditions depend on the lateral coordinate y. The
necessary code, and data processing, are more complicated; more importantly, a
3D simulation with a modest 100 grid intervals in the lateral direction takes many
CPU hours and large memory space. We argue that the numerical simulation for the
non-rectangular channel is expected to be of the same complexity as the simulations
of GCs in the presence of bottom bumps or obstacles; see Constantinescu (2014) and
Nasr-Azadani & Meiburg (2014). These papers, and the references therein, indicate
that computational and data processing efforts is by about two orders of magnitude
larger than in 2D simulations. Such large simulation codes and computer resources
are certainly not available to many potential users of GCs. Even where available,
such a simulation is not a direct competitor to a model that provides the flow-field
essentials in several laptop CPU seconds, in spite of the unavoidable approximation
errors. (ii) Our ‘intuition’ is based on rectangular channels, but there is no clear-cut
extension to other cases. For example, there is evidence that a current in a V-shaped
valley moves faster than on a flat bottom, but our intuition and flat-bottom models
cannot explain this observation, nor predict with confidence the stages of the motion
and the speed. Actually, can a simple model both qualitatively and quantitatively
predict the current velocity and the typical stages of motion in the V-shaped valley?
A candidate model is available, as specified later in § 3, and its validation requires
benchmarking with laboratory experiments. This validation task is the topic of our
paper.

This study is concerned with the class of GCs called either ‘compositional-driven’
or ‘homogeneous’. In the compositional-driven currents, the density difference between
the ‘current’ and the ‘ambient’ is a result of a dissolved component, for instance, salt
in water in lakes and oceans. In the homogeneous currents, the density difference
results from a temperature contrast such as cold air in warmer air, or the opposite, in
the atmosphere. In such class of currents, the density difference between the current
and the ambient remains constant during the propagation, because in many cases
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of interest the molecular or thermal diffusion can be neglected during a period of
significant propagation.

In the context of our investigation, we note that compositional-driven or
homogeneous currents in nature are often propagating while interacting with
topography, or landforms. We provide some examples. (i) Based on a Doppler lidar
measurement campaign, Gohm et al. (2010) described in great detail the passage
of a cold front recognized as a density current propagating in the Wipp valley
(Austria) in November 1999. Studying the sea breezes in the broad Rhône valley and
narrow Durance valley, Bastina et al. (2005) noted that lateral constriction of the sea
breeze could accelerate the propagation. (ii) Hiscott et al. (2013) using various field
measurements, demonstrate that the Bosphorus Strait is a large-scale channel network,
where saline underflows of GC type interact with the topography. In both of these
cases, regardless of the origin of the density contrast (i.e. thermal or compositional),
the fundamental flow is that of a high-Reynolds number Boussinesq GC in a channel
of non-rectangular cross-section. We therefore argue that a good understanding and
modelling of such currents is needed. This also applies to currents on smaller scales,
such as the propagation of smoke under the roof of a tunnel, or discharge of cooling
fluid in a drainage duct. We emphasize that a significant effect in these flows is the
presence of a constraining non-rectangular ‘bottom’ or ‘top’ along which the current
spreads out. Again, GCs in rectangular or laterally unconstrained channels have been
well investigated, but this body of knowledge cannot be applied with confidence and
accuracy to the non-rectangular cases. A carefully derived and corroborated set of
extensions is needed, and our work attempts to contribute in this direction.

The investigation of the flow field of high-Reynolds-number GCs in channels
with non-rectangular cross-sections is a relatively new topic (Marino & Thomas
2009, 2011; Monaghan et al. 2009a,b; Mériaux & Kurz-Besson 2012; Ungarish
2012). The main objective is to determine the speed and shape of the currents, in
particular for the typical lock-release problem. The modelling consists mostly of
extensions of SW formulations of the type used for the standard rectangular case. In
this model the dependent variables are the height of the interface h and the speed
u, being averaged over the cross-section area of the current, as functions of time t
and horizontal position x. The common features of the currents, irrespective of the
shape of the channel, are: the hydrostatic pressure, the propagation of perturbations
by waves-characteristics and a jump condition at the nose. Marino & Thomas (2009,
2011) and Ungarish (2012) generalized Benjamin (1968) steady-state analysis. Zemach
& Ungarish (2013) have developed a one-layer SW Boussinesq formulation. Ungarish
(2013) presented the two-layer SW model, valid for Boussinesq and non-Boussinesq
systems. Solutions of these models were presented for various practical cross-sections
(power-law, trapezoidal, circular).

The SW models for the standard rectangular geometry have been subjected
to numerous supportive verification against both Navier–Stokes simulations and
laboratory experiments (for example: Rottman & Simpson 1983; Shin, Dalziel &
Linden 2004; Birman, Martin & Meiburg 2005; Lowe, Rottman & Linden 2005;
Bonometti, Ungarish & Balachandar 2011; Rotunno et al. 2011). In contrast, for the
non-rectangular cross-section, there is very little evidential support to the theoretical
models. The support must come from Navier–Stokes simulations and laboratory
experiments; since the first type of corroboration needs expensive 3D computations
and data processing, it seems that, in the near future, the laboratory experiments are a
more promising approach for the verification and extension of the theoretical models.
This inference was the guiding line of the present work.
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FIGURE 1. Schematic description of the lock-released current in the V-shaped cross-
section channel.

Useful experimental data for non-rectangular cross-sections were presented by
Marino & Thomas (2009, 2011) and Monaghan et al. (2009b) for V and power-law
shapes. However, the available information covers a very restricted parameter range,
as all of the experiments were performed with a full-depth lock at H = 1, where H
is the initial depth ratio of ambient to current fluids. It is well known that this is
a very special configuration, in which a backward-moving bore appears in the lock,
and is then reflected from the backwall. The models predict that H is an important
dimensionless governing parameter in the behaviour of the current, therefore a reliable
comparison between theory and experiment must be over a range of H. Furthermore,
the experiments of Marino & Thomas (2009, 2011) were concerned mostly with the
speed of propagation during the slumping stage; and while Monaghan et al. (2009b)
observed also the later stages of propagation, the details of the transition between
stages were not under focus. We believe that a reliable verification of the positions
where the slumping stage ends, and where viscous influence begins, is important for
the modelling and understanding of the GC.

The present work attempts to close some of the previously mentioned gaps of
knowledge. We focused attention on the motion of saline GCs in a V-shaped triangular
channel, see figure 1. We performed experiments for both full- and part-depth locks.
In particular, we analysed the extent of the various stages of propagation, and
compared our experimental results to the theoretical predictions. Our conclusion is
that the available models are useful and consistent extensions of the counterparts in
the standard rectangular geometry.

The present paper is devoted to the compositional-driven, or homogeneous, currents.
A different class of currents is named ‘particle-driven’ because in these flows the
density difference with the ‘ambient’ is due to suspended particles in the ‘current’.
Examples are turbidity currents, in which sediments are suspended in sea water,
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or pyroclastic flows in which solid fragments, known as tephras, are suspended
in hot gas. In contrast to the compositional-driven or homogeneous currents, the
density difference in particle-driven currents is decreasing during the propagation
as sedimentation occurs. Therefore the SW study of such currents is more difficult,
and it is more effectively performed after a good understanding of the simpler,
homogeneous current, has been developed (see, for example, Bonnecaze, Huppert
& Lister 1993; Hogg, Ungarish & Huppert 2000). Like the homogeneous currents,
particle-driven currents in non-rectangular cross-section channels also have numerous
interesting geophysical and environmental applications such as submarine surges
produced by earthquakes and landslides, erosion of rivers (see Simpson 1997; Kneller
& Buckee 2000). However, there are strong practical reasons for not combining the
classes of homogeneous and particle-driven currents into one investigation. While this
work is concerned with the experimental corroboration of the theoretical modelling
of the various phases of motion of the homogeneous current in both partial- and
full-depth configurations, no counterpart model for the particle-driven currents exists,
and no partial-depth particulate currents are experimentally feasible as there is
no practical way particles could be maintained in suspension until the system
is set up for the current’s release. For the particle-driven current in a V-shaped
triangular cross-section at full-depth lock release, a ‘box model’ has been presented
and calibrated by experimental data by Monaghan et al. (2009a) and Mériaux &
Kurz-Besson (2012). The box model is a simplification, and cannot predict correctly
the slumping stage, and influence of the part-depth lock, which were under focus
in the present investigation. Moreover, particle-driven currents display physical
effects such as sedimentation and particle run-out that have no counterpart in the
homogeneous current; this means that special experimental measurements and data
processing are needed. These considerations lead to the conclusion that the most
efficient method of investigation is to deal first with the homogeneous current,
and then use the knowledge and insights to extend the work to the particle-driven
counterpart in a future study. We wish to mention that this was also the order in the
rectangular case: the SW models for the particle-driven flow (Bonnecaze et al. 1993;
Hogg et al. 2000) were based on, and include, the extensive knowledge acquired
for homogeneous currents (Benjamin 1968; Huppert & Simpson 1980; Rottman &
Simpson 1983).

The structure of the paper is as follows. The laboratory experiments are described in
§ 2. The theoretical model used for comparisons is presented briefly in § 3. In § 4 we
analyse the experimental data, with emphasis on the slumping speed uN and slumping
distance xS dependencies on H, and the distance xV of transition to viscous regime
dependency on the Reynolds number. In § 5 some concluding remarks are given. A
short derivation of the theoretical distance xV is given in appendix A.

2. The laboratory experiments

The lock-exchange experiments were carried out in a Perspex rectangular tank 5 m
long and 30 cm wide, in which had been inserted a channel of triangular cross-section,
see figure 2. The channel of triangular cross-section had a height H0 of 6.65 cm. Two
fluids, that were water and an aqueous solution, were used. The current consisted of
the saline fluid of density ρc, while the ambient fluid was the less dense water, of
density ρa. At the start of each experiment, the gate of the lock was placed at a
distance x0= 13 cm from one end of the tank, referred to as the ‘backwall’. The lock
and the rest of the tank were then filled at the same rate. The height of the dense

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.396


Propagation of gravity currents in a V-shaped triangular cross-section tank 237

Top of channel

Two slits
where sliding
the lock gate

Tank
backwall

Inserted channel of triangular cross section

Mirror
providing
top view

Bottom of channel

FIGURE 2. Experimental tank. The photo is only showing the first 2.5 m of the tank.

fluid in the lock is denoted by h0. In the full-depth experiments, the lock and the rest
of the tank, separated by the gate, were filled up to the same depth, h0=H0, with the
saline solution and water, respectively. In the partial-depth experiments, the lock and
the rest of the channel were first filled up to a height h0 with the saline solution and
water, respectively. Fresh water was subsequently very carefully added on both sides
of the lock gate to the total depth H0. The lock had then a clearly defined horizontal
density interface between the saline solution and water before the gate was rapidly
lifted to release the dense fluid, which typically took 0.24 s.

The saline solution was dyed to provide flow visualization. Each experiment was
recorded by a video camera. The motion of the current was monitored over 5 m =
38.5x0 length, by recording the time ti at which the front reached marked xi positions
in the tank. There were 19 marks, at smaller intervals for the first half of the tank
near the lock, and larger in the second half (where deceleration was expected).

We performed seven experiments, whose main parameters are presented in table 1.
The height of the ambient fluid H0 = 6.5 cm, and the lock length x0 = 13 cm, were
constant in all of the experiments. The height of the saline in the lock, h0, varied.
The depth ratio H=H0/h0 ranged from 1.00 to 2.15; two of the experiments were of
full-depth release type, H= 1. The lock aspect ratio, x0/h0, changed from 2 to 4.2 as
H increases from 1 to 2.15. The initial density difference was approximately 9 % in
five experiments; two of these experiments, with H = 1 and 1.51, were also repeated
for a density difference close to 5 %. The initial Reynolds numbers, Re0, are also given
in table 1. The large values of this parameter (>5000) indicate that all of the tested
currents were expected to be in the inertial-buoyancy regime for a significant distance
of propagation of several lock lengths. The large value of this parameter also implies
a very large Péclet number (=κRe0, because the Schmidt number κ is approximately
700 for saline). There were no heat sources inside or close to the experimental fluids,
and the heat generated during the gate removal process, and the internal dissipation
of the moving fluids, could produce only insignificant gradients of temperature in the
flow field. Consequently, the molecular mass diffusion effects, and heat transfer, were
negligible during the recorded time of propagation of the current.

A video for experiment 7 PD, showing the typical time-dependent evolution
of the flow is given in the online supplementary material available at
http://dx.doi.org/10.1017/jfm.2014.396.
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3. Theoretical model
3.1. Scaling

It is convenient to introduce the density ratio parameter R of light to heavy fluids, and
the reduced gravity

R= ρa

ρc
; g′ = ρc − ρa

ρc
g= (1− R)g, (3.1a,b)

where g is the gravitational acceleration. The scaling speed U and time T are as in
the classical case,

U = (g′h0)
1/2; T = x0/U. (3.2a,b)

The x lengths are scaled by x0, the vertical z lengths (heights) and the lateral y lengths
are scaled by h0.

The dimensionless parameters of our problem are: the height ratio of ambient to
lock H; the density ratio R; the lock aspect ratio x0/h0; and the initial Reynolds
number, defined as Re0 = Uh0/ν, where ν = 0.01 cm2 s−1. The shape of the cross-
section is a triangle that is symmetric about the xz plane, see figure 1. The angle of
the sidewalls with horizontal is φ = 25◦.

The H = 1 case is referred to as ‘full-depth lock’, and the initial stage as lock
exchange; the other cases, as part depth.

3.2. Theoretical model predictions
If the initial Reynolds number Re0 is large, the propagation after the release at t= 0 is
in the buoyancy-inertia inviscid regime. The SW approximation provides the governing
equations for the position of the interface h measured from the bottom line of the
tank, see figure 1, and the area-averaged velocity u of the dense fluid, as functions of
t, x (see Ungarish 2013 for details). Let a= a(x, t)= h/H. For the present triangular
cross-section current, the continuity and momentum equations are

∂h
∂t
+ u

∂h
∂x
+ h

2
∂u
∂x
= 0,

∂u
∂t
+D

∂h
∂x
+ (1− 2B)u

∂u
∂x
= 0,

(3.3)

where

B= Ra2

1− a2
(1−a2+Ra2)−1 and D=

[
1− a2 − R

(
1

1− a2

)2 2
H

au2

]
(1−a2+Ra2)−1.

(3.4a,b)

The partial differential equation system (3.3) is hyperbolic, with characteristic
relationships and trajectories given by

dh
du
= 1

D

[
Bu∓

√
(Bu)2 +D

h
2

]
, on

dx
dt
= c± = u(1− B)±

√
(Bu)2 +D

h
2
. (3.5)

The initial/boundary conditions are h = 1, u = 0 in the lock at t = 0, and u = 0
at the backwall x = 0. The nose, denoted by subscript N, is treated as a jump of
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height hN . At x = xN(t), we apply the extension of Benjamin’s (1968) result to the
present geometry (Marino & Thomas 2009, 2011; Ungarish 2012):

uN = 1
R1/2

Fr(hN/H) h1/2
N ; Fr(a)=

[
2
(1− a2)

1+ a2

(
1− 1

3
a2

)]1/2

. (3.6a,b)

We emphasize that the inviscid SW model is for a general ‘apex-down’ triangle of
width bz, (06 z6H, b> 0). The angle of inclination of the side walls is relevant to
the viscous regime, see below.

The Boussinesq case is obtained by setting R = 1 in the governing equations.
Another simplification, for deep ambient (H > 2, roughly), is the one-layer SW
model, which discards the return flow in the ambient. This is obtained by setting
D=1,B=0 in the governing equations (see Marino & Thomas 2009, 2011; Monaghan
et al. 2009b; Zemach & Ungarish 2013).

The SW model is self-contained and does not use adjustable constants. The
analysis and solution are performed by reliable mathematical tools: the method of
characteristics, similarity techniques and finite-difference codes. Some general insights
for the triangular cross-section can be derived. The theory predicts that there is an
initial ‘slumping’ stage of propagation with constant uN , over a significant distance xS,
which decreases with H. The slumping uN can be obtained analytically, as shown in
Ungarish (2013) and Zemach & Ungarish (2013). For large t, the SW theory predicts
the analytical self-similar solution with xN(t) = 1.694 t4/5 (Monaghan et al. 2009b;
Zemach & Ungarish 2013). In this stage the speed, thickness and the typical inertia
u2

N/xN decay significantly with t. The current becomes prone to viscous influence.
The SW model becomes invalid after the current spreads to a distance xV , where

the viscous forces become influential. The analysis presented in appendix A gives for
the present geometry

xV = 0.32[Re0h0/x0]4/9. (3.7)

Note that the power 4/9 does not depend on the apex angle of the triangle, but the
coefficient 0.32 does.

We keep in mind that the model is based on simplifications. Diffusion of heat and
components (say salt), neglected in the model, occur in real systems over finite time
scales. An order of magnitude analysis demonstrates that the influence of these effects
is like 1/(κRe0); the Schmidt or Prandtl numbers κ are approximately 1 or more in
many cases of interest (κRe0 is also defined as the Péclet number). Therefore, high-
Reynolds-number GCs usually pertain to large-Péclet-number flows, and hence it is
justified to neglect the influence of mass diffusion and heat transfer on the propagation
of the current for x< xV at least. In addition, the interface of a real current develops
local eddies and instabilities, and the head of the current is affected by turbulence and
entrainment. In this context we must rely on studies performed for rectangular currents
(Hallworth et al. 1996; Johnson & Hogg 2013) which demonstrate that these effects
have little influence on the speed of propagation for a significant length of spread of
the current. In view of these considerations, there are good reasons to expect that the
model provides a good approximate description of the GC phenomenon, in the sense
that it reveals the salient features of the flow, points out the governing dimensionless
parameters, predicts the trend of influence of these parameters, provides fairly accurate
values of the speed of propagation and its qualitative changes with time, and provides
an estimate for the range of validity. The answer to the question whether, and how
well, these expectations are fulfilled brings us to the following section.
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xi ti (1 FD) ti (2 FD) ti (3 PD) ti (4 PD) ti (5 PD) ti (6 PD) ti (7 PD)

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.38 2.35 1.89 2.21 2.22 2.07 2.35 2.15
3.68 4.25 3.81 4.04 4.10 3.56 4.08 4.33
4.98 6.30 6.01 6.14 5.99 5.95 6.12 5.57
6.18 8.19 7.89 7.90 7.66 7.44 7.94 7.76
7.68 10.27 10.42 10.31 10.06 9.54 9.51 9.86
9.00 12.31 12.28 12.16 12.21 11.55 11.81 12.04

10.31 14.60 14.79 14.42 13.30 13.78 14.35 14.58
11.54 16.65 16.98 16.58 15.75 15.77 15.58 17.32
12.60 18.28 18.56 18.41 17.36 18.01 17.92 20.12
13.91 20.56 20.77 20.80 20.36 20.56 20.23 24.23
15.32 22.91 23.29 22.58 22.76 23.86 23.10 29.09
16.63 25.40 24.87 25.60 25.18 27.31 26.89 34.79
19.50 30.31 30.39 31.35 33.12 37.46 34.16 52.71
23.10 39.57 38.30 40.11 42.56 53.70 48.38 87.57
26.93 50.68 49.08 51.07 59.14 82.87 69.88 147.35
30.77 66.83 60.77 64.97 82.97 132.65 104.99 248.49
34.62 87.82 75.62 85.25 117.83 222.38 159.87 424.32
37.94 113.65 92.97 106.92 161.52 335.03 237.12 665.23

TABLE 2. Dimensionless experimental propagation measurements.

4. Analysis of experimental data
The preliminary observations are as follows. The experiments are concerned

with dense bottom GCs in a channel of V-shape, or ∇, triangular cross-section
(to be distinguished from the Λ-shaped, or ∆, triangular cross-section). The
density difference, 1 − R, is approximately 5 or 10 %; this can be considered in
the Boussinesq domain. The initial Reynolds number is large in all tested cases
(5× 103 <Re0 < 16× 103), and hence the currents are in the buoyancy-inertial regime
over a significant distance of propagation.

We performed the analysis in dimensionless form, using the scaling introduced
in the previous section. The recorded propagation xN(t) is summarized in table 2,
and figure 3 shows the collapse of the dimensionless data on a log–log plot. The
dimensionless length of the channel is 38.5.

In all of the experiments, we observed an initial propagation with uN = const. This
motion, called the slumping stage, lasts over a significant distance that is at least five
lock-lengths from the gate. The slopes dxN/dt during the slumping and the slumping
distance differ according to the dimensionless height H. After the slumping phase, the
current decelerates.

For GCs of fixed volume released from behind a lock, as in the present case, the
major comparison between theory and experiment is concerned with the slumping
uN . We first note a qualitative agreement: the SW theory predicts that the initial
propagation is with constant speed, and the experiments confirm this prediction, for
all of the tested cases. The novelty is that here the confirmation is for various H; to
the best of the authors’ knowledge, the existence of the slumping stage was confirmed
before only for the full-depth release (Marino & Thomas 2009, 2011; Monaghan et al.
2009b).

The quantitative comparison of the slumping speed uN is shown in figure 4. We
estimated the experimental uN by line fit to sections of xN(t), and finite differences.
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Exp 1 FD
Exp 2 FD
Exp 3 PD
Exp 4 PD
Exp 5 PD
Exp 6 PD
Exp 7 PD
Constant speed slope 
Self-similar slope t (4/5) 
Viscous slope t (2/7)

103

102

101

101 102 103100

FIGURE 3. (Colour online) Log–log plot of dimensionless experimental distance of
propagation (measured from gate) versus dimensionless t, scaled according to § 3.1. The
three stages of propagation can be seen.

Overall, the error of the experimental uN reported here is approximately ±5 %. As
most of our experiments are for H < 2, a significant return flow is expected in the
ambient. Consequently, for our theoretical predictions we used the two-layer SW
model.

The theory predicts an increase of uN with H; the experiments confirm this
prediction. However, the measured points are, consistently, below the SW prediction.
The discrepancy is, typically, 20 %. We nevertheless claim that the experimental results
provide validation to the extension of the SW theory for the triangular cross-section.

We argue that the observed compatibility between the theoretical predictions and
measurements is actually the best agreement that can be expected between the SW
theory and laboratory experiments with currents over a solid bottom. Our reference
is the classical rectangular counterpart. There is ample evidence that in a rectangular
cross-section channel, the SW two-layer theory produces exactly the same agreement–
discrepancy pattern when compared with the experiments; see Rottman & Simpson
(1983), Shin et al. (2004) and Lowe et al. (2005). Consider a specific case: for H= 1,
R= 0.953, the SW prediction is uN = 0.54 while the experimental value of Lowe et al.
(2005) is uN = 0.42 (i.e. −22 % discrepancy). In our case, the SW prediction is 0.77
while the experimental value is 0.63 (i.e. −18 % discrepancy). In other words, the
change of geometry from rectangle to triangle increases both the experimental and
the theoretical values by approximately 50 %; however, in both cases the experiment
is approximately 20 % below the theory. The same trend was detected for the range
of H covered by our experiment. We conclude that the SW theory for the triangular
cross-section provides the same accuracy as in the classical rectangular case.

This brings us to other related questions: (i) what is the reason for this discrepancy;
(ii) what is the value of the SW theory if the predicted speed disagrees 20 % with
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1.0
SW

Experiment

Boussinesq
0.8

0.6

uN

H

0.4

0.2

0
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

FIGURE 4. (Colour online) The experimental and theoretical uN during slumping, as
function of H. The symbols are experimental results: square for R= 0.908 and circle for
R= 0.951. The solid line shows the SW Boussinesq theory; the nearby ∆ and ∇ symbols
show SW non-Boussinesq results for R= 0.908, 0.952, respectively.

experiments; and (iii) is there a practical remedy? For the rectangular cross-section
we answer as follows. (i) Navier–Stokes simulations with free-slip conditions on the
horizontal boundaries of the channel produce GCs whose uN is in good agreement
with the SW predictions (Birman et al. 2005; Rotunno et al. 2011). This seems to
indicate that the friction at the bottom, not accounted for in the SW theory, is the
main reason for speed reduction. (ii) The SW models are a valuable tool for general
predictions and insights. In spite of efforts over several decades, there is no other
self-contained theory for the high-Reynolds-number GC, which predicts correctly the
slumping stage, transition to self-similar stage, and the influence of the governing
parameters in both the Boussinesq and non-Boussinesq domains. Here we see that the
SW formulation also predicts correctly the effect of non-rectangular cross-section. (iii)
The observation that the experimental uN is consistently below the SW predictions
by approximately 20 %, provides a useful indication about the necessary correction
in practical applications. Moreover, the use of a semi-empirical Fr formula, such as
that suggested by Huppert & Simpson (1980) rather than the theoretical Benjamin’s
result improves the agreement with laboratory measurements. We expect that these
answers are also relevant to non-rectangular cross-sections, but the analysis is beyond
our objectives and means. We keep in mind that for our geometry: no Navier–Stokes
simulations are available, neither non-Boussinesq data, and nor a Fr formula of the
Huppert–Simpson type for use in (3.6). The acquirement of this knowledge requires
substantial additional work which must be left for the future.

4.1. End of slumping, self-similar and transition to viscous regime
The SW model predicts that, at some distance xS, the Boussinesq current begins to
decelerate, and eventually enters into a stage of self-similar propagation of the form
xN = 1.694t4/5. The theory also predicts that xS decreases when H increases. At the
removal of the gate, a backward wave propagates into the lock; then is reflected from
the backwall x=0 to the nose. Until this wave reaches the nose, the current propagates
with the initial slumping speed uN . The theoretical waves-characteristics propagate
faster for larger H. Hence, xS becomes shorter when H increases.
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FIGURE 5. (Colour online) End of slumping xS as function of H. The symbols are
experimental results for R = 0.908 (squares) and R = 0.951 (circles). The X is the SW
one-layer Boussinesq model prediction. The dashed line is a free-hand pattern.

Figure 5 presents the experimental results for the distance xS as a function of H.
There is overall agreement with the theoretical expectation and interpretation. We
must keep in mind that this is not a sharply defined variable. The position where
deceleration starts is, at best, determined within the resolution of the interval between
the measurement points, whose dimensionless value is approximately 1.3. In any case,
it is quite clear that xS decreases significantly (from 14 to 6) as H increased from 1
to 2.15.

The exact calculation of xS by the two-layer SW theory requires a sophisticated
calculation which is beyond our objective. However, for H = 2.15, the one-layer SW
theory is a good approximation, and we inserted the corresponding predicted value in
the figure (xS = 7.4, symbol X).

Theoretically, for x� xS the inertial-buoyancy current attains self-similar propagation
xN ∼ t4/5. The log–log plot of the experimental xN versus t, see figure 3 reveals the
4/5 slope, but for only a relatively short distance of propagation. This is because in
our tests the Reynolds numbers are not excessively large, and hence viscous effects
begin to decelerate the ∼t4/5 propagation at a quite moderate distance, xV . Roughly,
xV − xS is less than 10, so that the current can barely develop the self-similar motion
before the viscous influence appears.

The distance of transition to the viscous regime, xV , is shown in figure 6. We define
xV as the position where the inertia dominance ends, because the viscous friction at
the bottom becomes significant. A fully developed viscous current propagates like t2/7

according to an exact solution of the thin-layer viscous equations developed by Takagi
& Huppert (2007). We observed the tendency to this pattern in the log–log xN(t)
plot of the experiments (figure 3). However, the inertia-buoyancy regime ends at the
theoretical ‘point’ where the power of t, or slope on log–log xN(t) plot, changes from
the self-similar 4/5 toward 2/7; this position is not sharp, as shown in figure 3.

The theoretical trend xV =C[Re0h0/x0]4/9 is in good agreement with the experimental
observations. This estimate under-predicts the experimental position of transition by
approximately 5 units, i.e. lock lengths. The discrepancy of xV between theory
and experiment can be attributed to both theoretical and experimental reasons. The
theoretical estimate is based on the overlap of two self-similar solutions of the form
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FIGURE 6. (Colour online) Transition to a viscous regime, xV as function of
[Re0(h0/x0)]4/9 (log–log axes). The symbols are the experiments (with corresponding
numbers). The line is the theoretical (A 6).

xN = Kjtβj , where j represents the inertial and viscous regimes. However, it is well
known that these are asymptotic formulas for t and xN→∞. Actually, the time t in
these formulas admits a ‘virtual origin’ shift, which is negligible only after very long
propagation. Here the asymptotic formula is used for non-large values of t and xN
and, hence, the accuracy of the theoretical xV is low. In the experiments, the detection
of xV is not sharp. However, in spite of this ambiguity, the data indicate a consistent
larger-than-predicted xV for all of the experiments. This suggests that the main reason
for discrepancy is the theoretical estimate, not the experimental error.

4.2. Motion in the lock
The SW theory predicts that after the removal of the gate a wave propagates into
the lock, and is then reflected from the backwall. In particular, for the full-depth
H = 1 case, this is a bore of speed 0.39 and amplitude 0.21 (scaled with h0). In our
experiments the lock domain was inspected from above, but not many details could be
discerned. In the experiment 2 FD (H= 1) a sharp disturbance was seen to propagate
from the gate to the backwall, in 1.5 s, i.e. the backward dimensionless speed is 0.36.
This is in fair agreement with the prediction; however, we could not measure the
amplitude of this wave. After reflection, this wave could no longer be observed from
above. We realized that a more detailed study of the return flow requires a longer
lock, but this could not be performed in the available apparatus.

5. Concluding remarks
We investigated, mostly by experimental means, the motion of high-Reynolds-

number homogeneous, or compositionally-driven, GCs in a horizontal channel with a
V-shaped triangular cross-section. The novelty is that we systematically considered:
(i) the influence of the height-ratio parameter, H; (ii) the slumping distance xS,
over which the speed of propagation uN is constant; and (iii) the distance xV where
transition to the viscous regime occurs. We emphasize that the theoretical models
used in this work contain no adjustable parameters.
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In general, the experiments are consistent with the predictions of the available
theoretical models for this type of geometry, but there are some quantitative
discrepancies. The experiments confirm the existence of the slumping stage with
constant uN for all H, the increase of uN with increasing H, and the decrease of
xS with increasing H. The experiments confirm that the inertia-buoyancy (inviscid)
propagation is restricted to a spread of about [Re0(h0/x0)]4/9, after which transition
occurs to the viscous regime studied by Takagi & Huppert (2007). The experimental
slumping speed is consistently below the SW theory prediction, by approximately
20 %. However, we emphasize that this is exactly the accuracy obtained in the
counterpart standard rectangular-cross-section problem. For a given H, the measured
slumping speed, scaled with (g′h0)

1/2, is larger by approximately 50 % in the triangle
than in the rectangle, in accord with the SW predictions. We therefore claim that
the extension of the theory from the standard to the more complicated cross-section
cases seems to be successful, and it makes sense to use it and invest in its further
testing and development.

We are aware of the fact that realistic GCs in nature and environmental/industrial
circumstances might contain various effects such as interfacial turbulence, mixing
and entrainment; diffusion and heat transfer between the current and ambient fluids.
These effects are expected to be negligible for the range of parameters of and
flow-field variables focused on in the present investigation; moreover, the filtering out
of these small-scale mechanisms renders a more clear-cut insight into the fundamental
governing equations and backbone mechanisms. A solution of the flow field which
takes into account these effects requires careful numerical simulations. Since the
non-rectangular cross-section geometry needs a 3D code, these simulations will
request many CPU hours on powerful computers. To the best of the authors’
knowledge, no such simulations have been performed or are underway although
the state of the art seems ripe for such computations, see Constantinescu (2014)
and Nasr-Azadani & Meiburg (2014). On the other hand, the simplified SW model
provides some essential features of the flow field in insignificant CPU time on a
standard laptop computer. Therefore, in spite of its limitations, the model is, in
our opinion, a useful platform for practical estimates, and further research progress.
The model and its present corroborations against experiments are also expected
to be useful in the debugging and validation process of the future Navier–Stokes
simulation tools. In these contexts, an interesting extension of the SW model and of
the present experiments would be to the class of particle-driven currents; the works of
Bonnecaze et al. (1993), Hogg et al. (2000), Monaghan et al. (2009a) and Mériaux
& Kurz-Besson (2012) are expected to provide helpful insights. Another extension of
practical use will be the incorporation of entrainment effects; here the recent paper
of Johnson & Hogg (2013) provides promising guiding lines.

Finally, we note that in a Boussinesq system a ‘top’ (light) current under a
Λ-shaped roof is the mirror image of the ‘bottom’ (heavy) current in a V-shaped
valley. All our present results carry over to the light current counterpart upon the
change that the boundary z= 0 on which propagation occurs is the top, the coordinate
z and the height (thickness) h are measured downward, and g′ = |1− ρa/ρc|g.
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Supplementary movie
Supplementary movie is available at http://dx.doi.org/10.1017/jfm.2014.396.

Appendix A. Theoretical estimate of the distance of viscous transition xV

Let xV be the distance at which the current changes regime from inertial to viscous.
Suppose that in both regimes a similarity solution is relevant, so that

xN(t)=Kjtβj, (A 1)

where j= I for inertial and j= V for viscous, and the values of Kj and βj are known.
The speed of propagation is

uN = ẋN = βjKjtβj−1 = βjK
1/βj
j x1−1/βj

N , (A 2)

where the t = (xN/K)1/β relationship was used. The variables are scaled as specified
in § 3.1.

If Re0 is sufficiently large (as in our experiments) the regime transition occurs after
the slumping stage is finished, and the current has entered into the inertial self-similar
stage. Thus, the transition from inertial to viscous regimes is between two self-similar
forms. We argue that the transition is smooth and, hence, at this occurrence, both
regimes display the same speed of propagation. We therefore write, for the transition

βIK
1/βI
I x1−1/βI

N = βVK1/βV
V x1−1/βV

N . (A 3)

The value of xN which satisfies this equation is the transition xV . We obtain the explicit
result

xV =
[
βVK1/βV

V /βIK
1/βI
I

]q ; q= βVβI/(βI − βV). (A 4)

We note in passing that the result (A 4) is valid and useful for various cross-section
geometries, provided that Kj, βj are known. Here, for the V-shaped triangle, we use the
solutions of Takagi & Huppert (2007) and Zemach & Ungarish (2013) for the inertial
and viscous regimes, respectively. This provides βI = 4/5, βV = 2/7, KI = 1.694, and

KV = 1.768[PRe0h0/x0]2/7, (A 5)

where m= cot(φ), P= 0.137m2/[2(1+m2)]. Here φ is the angle of the bottom with
the horizontal; see figure 1. Substitution into (A 4) and some algebra yield

xV =C(m)[Re0h0/x0]4/9, (A 6)

where Re0 = (g′h0)
1/2h0/ν. Here C = 1.15P 4/9 depends on φ. In our experiments,

φ = 25◦, C= 0.32.
For a standard rectangular cross-section the estimated transition form inertial to

viscous regimes is given by xV = C1[Re0h0/x0]2/7, where C1 is a constant of order
unity (see Ungarish (2009, Section 2.7) and the references therein). It is interesting to
note that in both cases the relevant Reynolds number is actually Re0h0/x0. It is also
interesting, perhaps even surprising, that the power 4/9 for the triangular case does
not depend on the apex angle. The power of Re0h0/x0 is smaller in the rectangular
case than in the triangular, which implies a shorter xV for a given Re0. This is
surprising, because the impression is that the triangle provides more friction than
the typically wide rectangle. The justification is geometric: in the triangle the height
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(average thickness) of the current of fixed volume decreases like 1/x1/2
N , while in a

rectangle the thickness is like 1/xN . Since the speed of propagation, and the inertia,
are proportional to the thickness, we infer that the rectangular current losses its inertia
against the viscous shear sooner than a triangular current. When the inclination angle
φ increases xV decreases, as could be expected because, for a given volume, the
contact with the sidewalls is enhanced. In the limit φ→ 90◦, C(m) and xV decrease
to zero, because the current is confined in a thin wedge. On the other hand, for
φ → 0 the value C(m) is 0.35; the rectangular case xV is not recovered, because
even in this limit, the current is assumed to be confined in a triangular, wide-wedge,
cross-section.
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