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CONVERGENCE OF TANDEM BROWNIAN QUEUES

SERGIO I. LÓPEZ,∗ Universidad Nacional Autónoma de México

Abstract

It is known that in a stationary Brownian queue with both arrival and service processes
equal in law to Brownian motion, the departure process is a Brownian motion, identical
in law to the arrival process: this is the analogue of Burke’s theorem in this context. In
this paper we prove convergence in law to this Brownian motion in a tandem network
of Brownian queues: if we have an arbitrary continuous process, satisfying some mild
conditions, as an initial arrival process and pass it through an infinite tandem network
of queues, the resulting process weakly converges to a Brownian motion. We assume
independent and exponential initial workloads for all queues.
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1. Introduction

In 1956 Burke [3] obtained one fundamental result for queueing theory. The first part of this
result states that given a Poisson arrival process with rate λ < 1, and an independent service
Poisson process with rate 1, which together define an M/M/1 queue, the departure process is
Poisson with parameter λ. The second part states a factorization property: the length of the
queue at any given time is independent of future arrivals and past departures. Several extensions
of this result have followed, see, for example, [4], [5], and [12].

The Brownian queue is a continuous-valued model for a queue, which is indeed the heavy
traffic limit of an M/M/1 queue. We define it as follows. Denote by R : D[0, ∞) →
D[0, ∞) the operator in the space of càdlàg functions (i.e. right-continuous functions whose
discontinuities, if any, are of jump type) given by

R(f )(t) := f (t) − inf
0≤u≤t

{f (u) ∧ 0}, (1)

called Skorokhod reflection mapping, since it solves the Skorokhod problem; see, for
instance, [6, p. 14],). Now, let us denote by D0[0, ∞) the set of functions f ∈ D[0, ∞)

such that f (0) = 0. Given two functions a, s ∈ D0[0, ∞) and some nonnegative number
q0 ≥ 0, we define the departure operator D : D0[0, ∞)2 × [0, ∞) → D0[0, ∞) by

D(a, s, q0)(t) := s(t) + inf
0≤u≤t

{(q0 + a(u) − s(u)) ∧ 0} = (q0 + a − R(q0 + a − s))(t). (2)

See Figure 1 for an illustration of this operator acting on some arbitrary càdlàg functions. Note
that {D(a, s, q0)(t)}t≥0 can be seen as the reflection of the process s downwards at the upper
(time-varying) boundary q0 + a (see, for example, [9, Appendix A]).
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Figure 1: The càdlàg queue.

This mapping provides the definition of the departure process from a fluid queue in the
context of càdlàg functions according to this interpretation: a represents the arrival process, s

the service process, q0 the initial workload of the queue, and D(a, s, q0) the departure process.
Other important processes are the queue length process given by q = R(q0 + a − s), and the
free process defined as q0 + a − s. This is a general way to define a fluid queue; in the case
where a and s are nondecreasing functions, and q0 is some nonnegative number, we have a
storage system in the usual sense.

If a and s are independent Poisson processes, and q0 some nonnegative integer, then we
define the queue length process of a classical queue by

q(t) = q0 + a(t) − s

(∫ t

0
1{q(u)>0} du

)
.

This is the M/M/1 queue and is known to be a continuous-time Markov chain. Since s is a
Poisson process, independent of a and q0, it follows that {q(t), t ≥ 0} is identical in law to

q(t) = q0 + a(t) −
∫ t

0
1{q(u)>0} s(du); (3)

see, for example, [2]. But then

q(t) = q0 + a(t) − s(t) + �(t),

where �(t) = ∫ t

0 1{q(u)=0} s(du) has the property that it is a càdlàg nondecreasing function
starting from �(0) = 0 which increases only at points t such that q(t) = 0. It follows from
Skorokhod’s theorem that

�(t) = − inf
0≤u≤t

{(q(0) + a(u) − s(u)) ∧ 0},

and so the process of (3) is also given by q = R(q0 + a − s). In addition, the process
s − � is nondecreasing. It is the departure process from the M/M/1 queue and it also satisfies
D(a, s, q0) = s − �.

Consider now the special case where a is a standard Brownian motion and s a Brownian
motion with positive drift c and choose the initial workload q0 as a random variable having
the stationary distribution of this fluid queue (namely an exponential random variable with
parameter c; see [6, p. 15]). We assume that a, s, and q0 are independent. This definition
matches the one given by O’Connell and Yor [14] of the stationary version of the Brownian
queue (for positive times), as Norros and Salminen [15] pointed out.

For this model (and further generalizations of functionals of Brownian motion) an analogue
result to Burke’s theorem is presented in [14].

https://doi.org/10.1017/jpr.2016.22 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.22


Convergence of tandem Brownian queues 587

Theorem 1. Let B1
t , B2

t be standard Brownian motions, and E an exponential variable of
parameter c. Assume that all random elements are independent. Then

(i) {Dt }t≥0, defined by Dt := D(B1
t , B2

t + c t, E), has the law of a standard Brownian
motion.

(ii) Define the process {Qt }t≥0 by Qt = R(B1
t − (B2

t + c t) + E). Then {Ds : 0 ≤ s < t}
and Qt are independent.

(Note that her we abuse notation and write D(B1
t , B2

t + c t, E) instead of D({B1
t }t≥0,

{B2
t + c t}t≥0, E).) The proof of this result goes back to [7], in the context of multiclass

stations, and relies on weak convergence arguments or, alternatively, on path properties of the
Brownian motion.

A tandem queueing network is a system of queues where there is an arrival process A1, and a
sequence {Sn}n≥1 of service processes, all independent. The system is defined recursively. The
initial queue is fed from the arrival process A1, and has departures determined by the service
process S1. For n ≥ 2, the arrival process for the nth queue is defined as the departure process
of the (n − 1)th queue and the departures are determined by the service process Sn.

When the initial arrival process has a Poisson law, Burke’s theorem allows us to treat a
tandem system of queues at any fixed time as if the queues acted independently. For example,
take a two-node system of tandem queues, with Poisson(λ) arrivals, λ < 1, Poisson(1) service
processes, all independent, and sample the initial length of each queue from its stationary
measure. Because of the first part of Burke’s theorem, the departure process of the first node
is a Poisson(λ) process. Moreover, due to the second part of Burke’s theorem, the departure
process of the first queue prior to time t is independent of Q1

t , the length of that queue at time t .
Then the length of the second queue at time t , Q2

t , is independent from Q1
t , and it follows

that the invariant measure of the system is a product measure. The factorization property from
Burke’s theorem has thus enabled the analysis of more complex systems.

In the case when the law of the initial arrival process is not Poisson, a natural question is
whether it is possible to prove convergence to the stationary distribution in a tandem system
where the number of queues tends to ∞. Assuming an existence result, Anantharam [1] proved
the uniqueness of a stationary ergodic fixed point for the ·/M/K queue. Next, Mountford and
Prabhakar [13] proved the attractiveness of the Poisson distribution in the class of ergodic
stationary point processes on the line. To obtain this result, they used a coloring coupling
technique based on an argument of Ekhaus and Gray (unpublished, cited by [13]).

For the Brownian case of tandem systems, some advances have been made. Lieshout and
Mandjes [10] calculated the joint distribution of the workload processes in a two-node system
and obtained asymptotic results for the same system in the case of Lévy-driven queues [11].
In this paper we present an analogue of the Mountford–Prabhakar theorem for the following
Brownian queue.

Theorem 2. Let A0 be a process with continuous paths A0(·, ω) : [0, ∞) → R that do not
explode in finite time almost surely (a.s.), and A0(0, ω) ≡ 0. Let {Wn}n∈N be a family of
standard Brownian motions and {En}n∈N a family of exponential random variables with common
parameter c > 0, all independent. We define recursively the sequence of processes

An = D(An−1, Wn + ct, En), n ≥ 1,

where D is the departure operator defined in (2). Then An weakly converges to a Brownian
motion.
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In other words, the departure process of a infinite-node tandem system of Brownian queues
is weakly convergent to a Brownian motion for an initial arrival process belonging to a wide
class of continuous-valued processes, and a particular set of initial conditions for the tandem
queues: all having independent workloads, distributed as the stationary distribution of the
Brownian queue. The coupling used in the ·/M/1 case [13] is no longer suitable and we
introduce an ad hoc coupling technique that takes advantage of simple path properties of the
Brownian motion. This procedure, however, strongly depends on the particular choice of initial
workloads for the queues. We are currently working on a version of Theorem 2 where each
queue is stationary, using a different approach.

For completeness, we present an elementary proof of Theorem 1, using the heavy-traffic
weak limit of the M/M/1 queue, as done in [6], but avoiding the more complex context of
multiclass stations.

2. Burke’s theorem for Brownian queues

Before proving Theorem 1 we state a corollary of Donsker’s theorem.

Lemma 1. Let {P n}n∈N be a sequence of Poisson processes with rate rn > 0. Assume that
rn → r ∈ (0, ∞). Then

P n(nt) − rnnt√
n

w−→ √
rB(t),

where {B(t)}t≥0 is a standard Brownian motion, and ‘
w−→’ denotes weak convergence of pro-

cesses.

Proof. Let P(t) be a Poisson process with intensity 1. Since {P n(t) : t ≥ 0} d={P(rnt) : t ≥
0}, where

d= denotes equality in law, we have

P n(nt) − nrnt√
n

d= P(nrnt) − nrnt√
n

=
(

P((nrn)t) − (nrn)t√
nrn

)√
rn.

The result follows by the functional central limit theorem; see, for example, [16]. �
Proof of Theorem 1. (i) Define λn := 1 − c/

√
n. For n ∈ N large enough such that 0 <

λn < 1, we let {An(t)} be a Poisson process with parameter λn, {S(t)} a Poisson process with
parameter 1, and Gn a geometric random variable with P(Gn = x) = λx

n(1−λn) for x ∈ Z+, all
independent. Consider an M/M/1 queue with arrival process An, service process S, and initial
queue length Gn. According to (3), the queue length process is given by Qn = R(Gn+An−S)

and is a stationary process, i.e. for all t0 > 0, the law of {Qn(t0 + t)}t≥0 is the law of Qn. Next,
consider the scaled processes

Ãn(t) := An(nt) − ntλn√
n

and S̃n(t) := S(nt) − ntλn√
n

= S(nt) − nt√
n

+ ct.

By Lemma 1, {Ãn(t)} converges weakly to a Brownian motion B1 as n → ∞. Also, {S̃n(t)}
converges to B2(t)+ct , where B2 is a Brownian motion. Finally, let G̃n := Gn/

√
n, so that G̃n

converges to an exponential random variable E with parameter c. We may choose B1, B2, and E
independently. Since An, S, Gn are independent, it follows that (Ãn, S̃n, G̃n) converges weakly
to (B1, {B2(t)+ct}t≥0, E). Since R is continuous in the Skorokhod topology (see [16, p. 439]),
the departure operator D is also continuous, as follows by (2). By the continuous mapping
theorem, it follows that D(Ãn(t), S̃n(t), G̃n) converges weakly to D(B1(t), B2(t) + ct, E).
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On the other hand, Dn := D(An, S, Gn) is the departure process of the nth M/M/1 queue. By
Burke’s theorem, Dn is a rate λn Poisson process. So, if we let

D̃n(t) := Dn(nt) − ntλn√
n

,

we obtain, again, by Lemma 1, that D̃n converges weakly to a standard Brownian motion. One
can check directly from (1) and (2) that D̃n = D(Ãn, S̃n, G̃n). Therefore, the weak limit of
D̃n is simultaneously D(B1(t), B2(t)+ct, E) and a standard Brownian motion. It follows that
the law of D(B1(t), B2(t) + ct, E) is a standard Brownian motion.

(ii) Let Q̃n(t) := Qn(nt)/
√

n. From Qn = R(Gn + An − S), it follows that Q̃n = R(G̃n +
Ãn − S̃n). By the same arguments as above, it follows that Qn converges weakly to Q(t) =
R(E + B1(t) − (B2(t) + ct)). In fact, the pair (Q̃n, D̃n) converges weakly to the pair (Q, D).
By the second half of Burke’s theorem, {Dn(s) : 0 ≤ s < t} is independent of Qn(t) and so
{D̃n(s) : 0 ≤ s < t} is independent of Q̃n(t). Since independence is of course preserved in the
limit, it follows that {D(s) : 0 ≤ s < t} is independent of Q(t) as asserted. This completes the
proof. �

3. Convergence of the tandem Brownian queueing network

We will need the following version of the Borel–Cantelli lemma. Its proof can be found in,
for example, [8, p. 131].

Lemma 2. Let (�, F , P) be a probability space, {Fn}n∈N a filtration such that F = ⋃
n∈N

Fn,
and On ∈ Fn for each n ∈ N. Then

{On infinitely often} =
{∑

n∈N

P(On+1 | Fn) = ∞
}

a.s.

We also need a contraction property for D . Denote by ‖·‖[0,T ] the supremum norm on [0, T ].
Lemma 3. Denote the space of continuous real functions that vanish at 0 by C0[0, ∞). Let
a1, a2, s ∈ C0[0, ∞), q0 ≥ 0, and let D(a1, s, q0), D(a2, s, q0), be defined as in (2). Then,
for any T > 0,

‖D(a1, s, q0) − D(a2, s, q0)‖[0,T ] ≤ ‖a1 − a2‖[0,T ].
Proof. We have

‖D(a1, s, q0) − D(a2, s, q0)‖[0,T ]
= sup

0≤t≤T

∣∣∣[st + inf
0≤u≤t

{(q0 + a1
u − su) ∧ 0}

]
−

[
st + inf

0≤u≤t
{(q0 + a2

u − su) ∧ 0}
]∣∣∣

= sup
0≤t≤T

∣∣∣ sup
0≤u≤t

{(q0 + a1
u − su) ∨ 0} − sup

0≤u≤t

{(q0 + a1
u − su) ∨ 0}

∣∣∣
≤ sup

0≤t≤T

|(q0 + a1
t − st ) ∨ 0 − (q0 + a2

t − st ) ∨ 0|

≤ ‖a1 − a2‖[0,T ].

The first inequality follows from the Lipschitz continuity of the supremum mapping with
Lipschitz constant equal to 1 (see, for example, [16, p. 436]), and the second inequality holds
since ‖f + − g+‖[0,T ] ≤ ‖f − g‖[0,T ] for every pair f, g of continuous real functions. �
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Proof of Theorem 2. The proof relies on a coupling argument: we show that if different
arrival processes are run through the same services, the resulting trajectories are eventually
locally coupled. Since we know that there exists a stationary distribution for the system of the
tandem queues, given by Theorem 1, we conclude the result.

Starting with an initial arrival process A0, define the processes An, n ≥ 1, as in the statement
of the theorem. In addition, letting B0 be an independent Brownian motion, define

Bn = D(Bn−1, Wn + ct, En) for all n ≥ 1.

That is, we consider a second system of tandem queues where we replaced A0 by B0 but left
all service processes and initial states intact. This second system is now in a steady state. By
Theorem 1, each Bn is a standard Brownian motion. So, in order to obtain the announced
convergence of the An towards a Brownian motion, it is enough to prove that the trajectories
of An and Bn eventually couple on [0, T ] for all T > 0.

Fix T > 0. The heart of the proof is this: beginning with two different arrival process,
there will be a queue indexed, say n, that will have positive workload during [0, T ]. Then the
departure process from this queue will coincide with the service process on [0, T ]. Since we
are using the same service processes for both systems, the departures of both systems will also
coincide. This coupling persists on all queues following the queue indexed n. This is made
more precise as follows. If

Wn+1
t + ct ≤ En+1 + An

t for all t ∈ [0, T ],
then R(En+1 +An

t − (Wn+1
t +ct)) = En+1 +An

t − (Wn+1
t +ct) for all t ∈ [0, T ], and, hence,

An+1
t = D(An

t , W
n+1
t + ct, En+1)

= En+1 + An
t − R(En+1 + An

t − (Wn+1
t + ct))

= Wn+1
t + ct for all t ∈ [0, T ].

The last argument also works when we replace An
t and An+1

t by Bn
t and Bn+1

t . Define the
events

On := {ω ∈ � : Wn
t + ct − En ≤ min(An−1

t , Bn−1
t ) for all t ∈ [0, T ]}, n ∈ N,

and note that On belongs to the σ -algebra Fn := σ({A0, B0, W i, E i : i ≤ n}) and that On is a
coupling event, that is, if On occurs then An = Bn occurs as well. Since An = Bn on [0, T ]
implies that Ak = Bk on [0, T ] for all k > n, to prove that the paths An and Bn a.s. eventually
couple, by Lemma 2, it is enough to prove that

∞∑
n=1

E(1{On+1} | Fn) = ∞.

Define for n ≥ 0, δn := ‖An − Bn‖[0,T ]. Since process A0 does not explode in finite
time a.s., we have δ0 < ∞ a.s. and, hence,

∞∑
n=1

E(1{On+1} | Fn) =
∞∑

k=1

∞∑
n=1

1{k−1≤δ0<k} E(1{On+1} | Fn)

=
∞∑

k=1

∞∑
n=1

E(1{On+1} 1{k−1≤δ0<k} | Fn)
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because {k − 1 ≤ δ0 < k} ∈ F0 ⊆ Fn. Since both systems have the same services and initial
states, Lemma 3 implies that δn(ω) ≤ δ0(ω) for every ω ∈ �. Therefore,

∞∑
n=1

E(1{On+1} | Fn) =
∞∑

k=1

∞∑
n=1

E(1{On+1} 1{k−1≤δ0<k} 1{δn<k} | Fn).

Note now that {Wn+1
t + ct − En+1 ≤ Bn

t − δn for all t ∈ [0, T ]} ⊆ On+1. Hence,

∞∑
n=1

E(1{On+1} | Fn)

≥
∞∑

k=1

∞∑
n=1

E(1{Wn+1
t +ct−En+1≤Bn

t −δn for all t∈[0,T ]} 1{k−1≤δ0<k} 1{δn<k} | Fn)

≥
∞∑

k=1

∞∑
n=1

E(1{Wn+1
t +ct−En+1≤Bn

t −k for all t∈[0,T ]} 1{k−1≤δ0<k} | Fn)

=
∞∑

k=1

[
1{k−1≤δ0<k}

∞∑
n=1

E(1{Wn+1
t +ct−En+1≤Bn

t −k for all t∈[0,T ]} | Fn)

]
.

Let
Xk

n := E(1{Wn+1
t +ct−En+1≤Bn

t −k for all t∈[0,T ]} | Fn).

By Theorem 1, it follows that Bn is a Brownian motion for all n and so the random variables
{Xk

n}n∈N are identically distributed. Moreover, it holds that the dynamics with respect to
the nth step in the tandem queue are Markovian, in particular, given Bn, the process {Bn +
En+1 − (Wn+1

t + ct) : t ∈ [0, T ]} is independent of the processes {Bk : k < n, Wk : k ≤ n}.
Then it follows that the variables {Xk

n}n∈N are independent. Using elementary properties of a
Brownian motion, it follows that the Xk

n are nonidentically 0 random variables. Therefore, the
sum

∑∞
n=1X

k
n diverges a.s. for all k and this completes the proof. �
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