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The maritime radiobeacon differential GNSS service in Europe has recently been reor-
ganised with the aim of having at least two of the 162 stations serve each critical coastal

location. Maritime administrations have now set specifications for the availability and con-
tinuity of the service. The paper analyses these requirements, noting incompatibilities be-
tween them. It proposes a method of predicting the performance of beacons, employing

IALA standards. This takes into account each beacon’s own availability, and propagation
factors that include groundwave signal attenuation, interference, and skywave fading at
night. Availability, continuity and coverage maps produced by the new programs are pres-

ented in the paper.
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1. INTRODUCTION. Differential Global Satellite Navigation Systems
(DGNSS) employ the principle that the main sources of error in satellite navigation
are consistent over substantial geographical areas. These errors can be corrected by
using reference stations at known locations to measure the pseudorange errors of
the signals received from the satellites. The reference stations then transmit correc-
tions to users’ receivers, which adjust their position measurements accordingly. The
advantages of DGNSS are improved accuracy and enhanced integrity.

One of the oldest radio aids-to-navigation technologies, the marine radiobeacon, is
widely employed to transmit DGNSS corrections for maritime users (Enge and
Olsen, 1990; Enge and Ruane, 1986). In Europe and North America, several DGNSS
beacons can generally be received simultaneously (IALA, 1999–1). This greatly en-
hances signal availability and continuity for the user.

IMO resolutions stipulate the minimum signal availability and continuity that
should be provided at critical, and also at less critical, locations. This paper considers
those requirements, together with other sources of availability and continuity speci-
fications. We then take software designed to plot the coverage and performance of
DGNSS radiobeacons (Last, Grant and Ward, 2001) and extend it to map the lo-
cations at which both individual beacons, and groups of beacons, meet these service
standards. The diagrams presented in this paper are examples of the use of this
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technique. The sets of beacons they illustrate are not necessarily precisely the same as
those currently in operation.

2. DEFINITIONS OF AVAILABILITY. Availability is the percentage of
time for which a signal at a location is usable. Being usable means meeting mini-
mum criteria for coverage set out by the International Telecommunication Union
(ITU) (ITU, 1997). In Europe, these criteria are that the field strength must be not
less than 20 dBmV/m (or a higher figure specified by the national administration),
and the signal-to-noise ratio (SNR) not less than 7 dB. In addition, no interfering
signal may exceed a specified protection ratio that depends on the frequency
separation between the signals from the interferer and beacon.

Included in these criteria are both deterministic and stochastic factors. The de-
terministic elements are the strengths of the groundwave-propagated signals received
from the reference station and from any interfering stations. These strengths are
constant and can be estimated using ITU data. The stochastic elements – those whose
values exhibit random variations – are the strengths of the skywave components of
the signals from the reference station and possible interfering stations, and also at-
mospheric noise. ITU data lets us predict at any time and place both their mean
values and the magnitudes of their variations. For example, we customarily estimate
the atmospheric noise level not exceeded 95% of the time (ITU, 1999).

The first task is to establish the signal availability requirement. We have reviewed
the following documents : relevant current resolutions of the IMO (IMO, 2001; IMO,
2002); documents from the International Association for Marine Aids to Navigation
and Lighthouse Authorities (IALA) (IALA, 2001), including changes IALA has
proposed to IMO resolution A.815 (IALA, 2000) ; the current US Federal Radio-
navigation Plan (FRP) (USDoD/USDoT, 2001), and United States Coast Guard
(USCG) documentation (USCG, 1993) (both only strictly applicable within the US);
and recent proposals for changes to IMO documentation from the European Mari-
time Radionavigation Forum (EMRF) (EMRF, 2001).

Table 1 summarises the factors that each document takes into account in deter-
mining availability. Thus, all sources include the availability of the reference station
(Ref Station). Most sources also include the deterministic and stochastic factors

Table 1. Comparison of signal availability definitions.

Document

Includes
Availability

requirementRef station Environment

IMO (860) „ „ 99.8% Everywhere

IALA (815) „ X 99.8% Critical areas

99.5% All other areas

IALA (Guide) „ „ None Specified

IALA (Draft Guide) „ „ 99.8% Critical areas

99.5% All other areas

FRP „ „ 99.9% Critical areas

99.7% All other areas

USCG „ „ 99.9% Everywhere

EMRF (App) „ „ 99.8% Everywhere
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listed above that characterise the environment in which the receiver operates (En-
vironment). These factors are not always identified explicitly, however. Rather, the
document will simply state, or imply, that the availability specification it proposes
applies across the whole of the beacon’s coverage. Clearly, this must include the
regions lying out along the coverage boundary where the field strength and signal-to-
noise ratio are at their lowest due to the effects of the environment factors. We de-
cided to incorporate both the reference station and environmental factors into our
availability model, thus complying with the requirements of the most demanding
specifications.

The Availability Requirement column of Table 1 shows the considerable variation
in the numerical values specified in the various documents. IMO, USCG and EMRF
set a single value, applicable everywhere. We chose, however, to employ the IALA
definition, which is a development of the requirements specified in IMO Resolution
A.815(19). IALA have two requirements : 99.8% availability in high risk areas, and
99.5% in areas of lower risk served by just a single beacon. An amendment to the
high-risk requirement is required when dealing with US radiobeacons, since the US
specification is tighter.

3. ESTIMATING BEACON AVAILABILITY. In an environment in
which a number of factors are stochastic, availability is probabilistic. However, al-
though several of the documents cited give examples of such calculations, none of
those examples takes fully into account all deterministic and stochastic factors. We
decided, therefore, to develop new software to calculate availability values. This
will operate in accordance with our decisions both to take reference station and en-
vironmental factors into account and to employ availability criteria of 99.8% or
99.5%.

The stochastic events with which we are concerned are the beacon’s own periods
off-air, a rise in atmospheric noise, a rise in skywave-borne interference, and self-
fading. All deterministic events have already been taken into account in predicting
the coverage ; since we estimate availability within the coverage area only, they do not
affect the results.

Clearly, we require a statistical approach to model the effects of multiple stochastic
elements. Poppe has shown that skywave field strength has a Gaussian probability
distribution (Poppe, 1995). She provides data from which the mean and standard
deviation values of the skywave components of both the wanted beacon and any
interfering signals can be calculated. In a similar way, the means and standard de-
viations of the atmospheric noise can be obtained from ITU noise data (ITU, 1999).
Atmospheric noise, however, has a two-sided distribution: both sides are approxi-
mately Gaussian, albeit with different standard deviation values. Since we are
interested solely in the case where excessive noise causes loss of availability, we need
to take into account one side of the distribution only. Thus, we can treat atmospheric
noise as being Gaussian, with a single standard deviation value.

Poppe has also computed the effect of self-fading on the resulting field strength of a
beacon. She developed a technique for calculating this effect given a known ratio
between skywave and groundwave signal strengths. Nominally, the 95% fading curve
is employed when predicting coverage. However, by calculating the difference in
the fading between this 95%-ile curve and the 50%-ile curve (Dfade), the standard
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deviation can be estimated. Assuming a Gaussian distribution, the following equation
applies :

s=
Dfade

1�65 , (1)

where s is the standard deviation, Dfade the difference between the 95% and 50%
curves, and 1.65 is the constant that relates the 95% and standard deviation of a
Gaussian distribution.

By using the mean and standard deviation values of both the wanted beacon’s
skywave signal and the atmospheric noise, the probability of the SNR exceeding the
7 dB minimum can be calculated. In the same way, we can compute the probability of
the signal-to-interference ratio (SIR) exceeding its protection ratio from knowledge
of the mean and standard deviation of the strongest interferer’s skywave signal.

Let Xs be the strength of the beacon signal and Xn be the strength of the atmos-
pheric noise. As explained above, both Xs and Xn are normally distributed random
variables, i.e., Xs�N(ms, s

2
s) and Xn�N(mn, s

2
n). In our method, a new random vari-

able b is defined to be the strength of the signal after taking out the atmospheric noise,
i.e., b=XsxXn. The new variable b is also normally distributed with mean msxmn and
variance s2

s+s2
n ; b�N(msxmn, s

2
s+s2

n). Therefore, to estimate the probability that b
exceeds a specified constant c (the SIR or SNR floor), we use

Pr (boc)=1xW
cx(msxmn)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
s+s2

n

p
 !

, (2)

where W is the standard normal cumulative distribution function, given by:

W(z)=
Zz

x1

1ffiffiffiffiffiffi
2p

p e
xt2

2 dt: (3)

Using this equation at each location, the probabilities of exceeding the SNR and SIR
floors are calculated, and thus the beacon’s service availability.

The beacon’s own on-air availability is normally monitored and recorded by the
administration responsible for it. In this paper, we will employ an example value of
99.5% suggested by IALA (IALA, 2001). The three probabilities of failure (beacon,
fading and noise) are then combined using:

Availsignal=
Yn
i=1

(1xP(event i occurring)), (4)

where P(event i occurring) is the probability of occurrence of each of n events, three in
this case. The use of this equation gives us a single availability figure. Note that close
to the beacon where its field strength is greatest events related to propagation have
relatively little effect and Availsignal is virtually the same as the beacon’s own avail-
ability.

In locations at which more than one beacon provides coverage simultaneously,
having a choice of beacon results in greatly enhanced availability, provided the fail-
ures of the various candidates are independent. We have demonstrated by means of a
measurement programme that the various failure mechanisms are indeed essentially
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uncorrelated (Grant, 2002). The final availability figure at such locations is therefore :

Availability=
Yn
i=1

(1xAvailsignali ), (5)

where Availsignali is the availability of the signal from beacon i and n is the number of
beacons providing simultaneous coverage.

4. THE TWO-YEAR STANDARD. The IALA specification requires avail-
ability to be measured over a two-year period. The IALA example figure for the
beacon’s own availability, 99.5%, makes no distinction between day and night op-
eration. However, we have chosen to build into our model the assumption that
scheduled maintenance is carried out by day only, as is generally the case in prac-
tice. Thus, although the overall beacon availability remains at 99.5%, the daytime
value falls to 99.3% while the night-time value rises to 99.6%. Conducting sched-
uled maintenance by day results in a significantly higher overall availability since it
increases the availability of the beacon itself at night, the time when availability is
more likely to be lost to propagation factors. Figures 1 and 2 present the results ob-
tained using these assumptions. Figure 1 shows the daytime availability provided by
the 16 beacons of the United Kingdom and Ireland. Across the whole of this light
grey region – i.e. all coastal waters – the higher availability requirement of 99.8%
over two years has been met. Figure 2 shows the corresponding night-time plot.
The radiobeacons’ coverage areas are now reduced by self-fading, interference, and
an increase in atmospheric noise, but do benefit from the higher on-air availabity of
the beacon itself. Again, areas coloured light grey receive a service for 99.8% of the
time. In areas coloured dark grey, the lower 99.5% requirement has been met. We
see that the majority of coastal regions still enjoy the higher availability at night,
while most of the remainder get the lower standard.

Now we wish to combine these two plots into a single availability plot. We have
estimated that, across the European Maritime Area (EMA), the average percentage
of the two-year period when daytime radio conditions apply is 43%; night-time
conditions apply for the other 57%. We thus combine the day and night availability
figures, weighting each in accordance with these percentages, to create two-year
availability results for the 16 beacons of the United Kingdom and Ireland. Figure 3
shows the result. Much to the delight of the system’s administrators, the majority of
the coastal regions enjoy a service that meets the 99.8%, 2-year, standard. Most other
regions get a service that meet the lower 99.5% standard. Where this standard does
not appear to be met, it is in fact achieved once the additional beacons on the conti-
nent are taken into account. The model was now employed to calculate the two-year
availability of the service provided by all 162 beacons of the EMA (Figure 4). Again,
the majority of coastal areas are provided with a service available 99.8% of the time.
This includes the important coastal areas of the North Sea, the English Channel and
the north coast of the Mediterranean Sea. The majority of the remaining coastal
regions get a service that meets the lower 99.5% requirement.

5. DEFINITIONS OF CONTINUITY. The authorities who specify avail-
ability standards also set criteria for continuity, as summarised in Table 2. Again,
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there are substantial differences between their requirements! IMO sets a single conti-
nuity figure, applicable everywhere and at all times. IALA and EMRF require
99.97% in high-risk areas, and 99.85% for areas of lower risk and single beacon
coverage. However, an exception to this is IALA’s proposal for revision of the
IMO resolution A.815, which agrees with that IMO resolution. The FRP standard
for continuity (they call it reliability) is that the number of outages per site will be
less than 500 in one million hours of operation (USDoD/USDoT, 2001). As a conti-
nuity requirement this is vague, since there is no indication as to the minimum
duration of an outage. Similarly, the USCG specifies the reliability of the system
in terms of a number of manoeuvres of different durations, and the corresponding
numbers of outages allowed per million hours. But, again, no indication is given to
what constitutes an outage.

Figure 1. Daytime service availability provided by the 16 beacons of the United Kingdom

and Ireland. Light grey=99.8%, Dark grey=99.5%.
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In our judgement it is appropriate to employ the 99.97% and 99.85% IALA values :
they are world values, rather than US national ones, and they represent the latest
development of the IMO requirements. IALA also make it clear that they calculate
continuity over three hours, as opposed to 1 year or 1 million hours (IALA, 2000).
Since continuity is to do with providing guidance for the whole of a manoeuvre such
as port entry or docking, this 3-hour definition appears appropriate, given that such
manoeuvres typically take three hours or less (IALA, 2001).

As with availability, stochastic factors are the only ones that affect continuity.
These are the beacon service, atmospheric noise, self-fading, and skywave-borne
interference.

Figure 2. Night-time service availability provided by the 16 beacons of the United Kingdom and

Ireland. Light grey=99.8%, Dark grey=99.5%.
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Figure 3. Two-year service availability provided by the 16 beacons of the United Kingdom and

Ireland. Light grey=99.8%, Dark grey=99.5%.

Figure 4. Two-year service availability provided by the 162 beacons of the EMA. Light

grey=99.8%, Dark grey=99.5%.
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6. BEACON CONTINUITY. A beacon’s continuity may be calculated in
accordance with a method given in the IALA guidelines (IALA, 1999–2):

continuity=1x
CTI

MTBF

� �
, (6)

where CTI is the continuity time interval (three hours in this case), and MTBF the
mean time between failures, in hours. When calculating beacon continuity, it is as-
sumed that there are no scheduled outages within the duration of the manoeuvre.
This assumption is based on the fact that scheduled outages are announced in
advance. Thus, no manoeuvre that depends critically on the system should be
commenced if the system is forecast to be unavailable for any part of its duration.
Continuity failure occurs where a manoeuvre has been commenced and then cannot
be completed because the system fails. Using the example from (IALA, 2001) and
assuming the lowest beacon on-air availability of 99.5%, the corresponding MTBF
calculated would be approximately 1946 hrs. This number would be the same under
either day or night conditions. From this we calculate a beacon continuity of 99.85%.

As with availability, the probability of a failure due to a rise in atmospheric noise,
skywave interference or self-fading decreases the closer the receiver is to the
beacon. Continuity thus behaves in the same way: near the beacon, the beacon’s own
continuity dominates.

6.1. Atmospheric noise. Calculating the effect of atmospheric noise on continuity
is difficult. Even knowing the standard deviation and mean value of atmospheric
noise does not tell us about its effect on continuity. We can establish the percentage of
time for which atmospheric noise will cause the signal to be unavailable, but we have
no information regarding the distribution of the failures in time. For example, we do
not know the MTBF. Thus, we cannot use this information directly to compute the
effect of atmospheric noise on continuity. A different approach is required.

Table 2. Continuity specifications and periods.

Document

Continuity

requirement

Calculation

period

IMO (860) o99.97% Everywhere 1 year

IMO (815) o99.97% Everywhere 1 year

IALA (815) o99.97% High risk areas

o99.85% All other areas

3 hours

IALA (Guide) o99.97% Everywhere 1 year

IALA (Draft Guide) o99.97% High risk areas

o99.85% All other areas

3 hours

EMRF (App) o99.97% Port areas

o99.85% Coastal areas

3 hours

EMRF (815) o99.97% High risk areas

o99.85% All other areas

3 hours

FRP The number of outages per site will be less than

500 in one million hours of operation

USCG Manoeuvre Category: Reliability

<140 s: 2000 Outages/Mh

140–280 s: 1000 Outages/Mh

280–560 s: 50 Outages/Mh
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Atmospheric noise consists of two parts : random spikes of relatively high intensity,
and continuous background noise of lower intensity. It is the high-intensity random
spikes that predominately disrupt the service. To calculate their effect on continuity,
one needs a measure of the mean time between spikes and thus of the relationship
between MTBF of the message and SNR. To measure these factors with a high level
of confidence would require data to be measured over a long period. No such set of
data appears ever to have been recorded. However, indirect evidence is available from
Poppe’s research (Poppe, 1995). Poppe studied atmospheric noise extensively and
recorded the variation of word error rate (WER) with SNR shown in Figure 5. Poppe
obtained this data in a quiet location using a transmitter (with negligible propagation
effects) and a conventional differential beacon receiver. Noise was true off-air atmos-
pheric noise. Her measurements show a fairly high probability of word error at an
SNR of 7 dB, the ITU threshold, whereas in practice receivers work reliably at this
SNR. However, once SNR had risen by just 2 dB, to 9 dB, Poppe’s errors had become
rare. Thus, Poppe’s results appear sufficiently accurate to give us a reasonable esti-
mate of the effects of atmospheric noise on continuity. We can use Poppe’s word error
rate (WER) data to calculate the probability of the service’s becoming unavailable
due to noise. The probability of a single message’s being received is :

Pr (success)=[1xPr (word error)]W, (7)

where Pr means probability, and W is the number of words in the message (7 in the
case of a Type 9-3 message). Figure 6 plots this probability of message success against
the signal-to-noise ratio.

Now let us consider the probability of missing successive messages. With Selective
Availability (SA) set to zero, the failure criterion is now set by the maximum time-to-
alarm of 10 s (Grant and Last, 2001). Since each Type 9-3 message takes 2.1 s to
transmit, it would be necessary to miss four messages in succession for a failure to
occur. The probability of this happening can be calculated using the results from
Figure 6:

Pr(failure)=(1xPr(success))4: (8)

Figure 5. Probability of word error as a function of SNR.
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Figure 7 plots this probability against signal-to-noise ratio. The probability appears
to be extremely low in areas where the SNR is greater than 9 dB. We have already
established that Poppe’s 9 dB is roughly equivalent to the ITU minimum SNR of
7 dB. Thus, we now know the probability of missing four successive messages and
failing to meet the time-to-alarm criterion; this gives us the probability of continuity
failure we required.

6.2. Skywave interference. Like atmospheric noise, skywave interference can
affect the continuity of the signal. Simple measures of statistical distribution are
again of no use in estimating continuity, since we need to know the time between
failures and we lack data records from which to compute MTBFs. In practice, such
measurements would be very difficult to make, since it would be necessary to dis-
tinguish between the effects of skywave interfering signals and those of atmospheric
noise. The approach we take is to assume that, at a given SNR, the probability of
an error due to the noise being skywave interference is the same as if the noise
were atmospheric noise. This allows us to employ again the atmospheric noise

Figure 6. Probability of receiving a single message successfully as a function of SNR.

Figure 7. Probability of alarm failure as function of SNR.
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continuity/SNR relationship (Figure 7). Given the rapid change of error rate over just
a few dB of SNR, this approximation is likely to give acceptable results.

In the case of skywave interference, however, the lowest SNR value that will ever
be encountered within the coverage area is 15 dB, the edge-of-coverage limit. Thus,
whilst there is undoubtedly a finite probability of message failure due to skywave
interference, it will be extremely small, and insignificant in comparison with the other
stochastic factors. The result of our analysis, therefore, has been to demonstrate that
we do not need to take skywave interference into account in computing continuity.

6.3. Self-fading. Self-fading, due to the interaction between the deterministic
groundwave signal and the stochastic skywave signal, gives a stochastic result. We are
again interested in the time interval between occasions when it disrupts the service.
Once more, the experimental data to establish the relationship is not available. We
have adopted the following method of allowing for the effect of signal fading on
continuity. When calculating the SNR and SIR values used to determine the conti-
nuity figure, we employ the reduced beacon field caused by fading. The value we use is
the strength exceeded 95% of the time (Poppe, 1995). This 95%-ile figure is, of
course, the same value as is used to establish the outer edge of the beacon’s coverage.

7. CONTINUITY RESULTS. Figures 8 and 9 show the continuity results,
calculated using the method developed in Section 6, for the 16 beacons of the

Figure 8. Daytime 3-hour service continuity for the 16 beacons of the UK and Ireland. Light

grey=99.97% (critical areas requirement met), Dark grey=99.85% (other areas requirement

met).
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United Kingdom and Ireland. The conventions used in the figures are the same as
for availability : light grey shows where beacons provide the higher level of service
continuity (99.97%) and dark grey the lower standard (99.85%). Meeting the higher
standard requires at least two beacons to provide coverage simultaneously. Just a
single beacon is sufficient to meet the lower standard.

Figure 8 shows that by day, as with availability, meeting the higher continuity
requirement is not a problem. In all coastal and inland locations, sufficient beacons
provide simultaneous coverage to allow the 99.97% requirement to be easily met.

At night, in contrast, with the reduction of beacons’ coverage areas due to
self-fading and the rise in skywave interference and atmospheric noise, we see
substantial shrinkage of the areas in which both the standards are met (Figure 9).
Thus, fewer coastal areas receive a 99.97% continuity service. However, in all other
coastal regions the lower 99.85% is achieved.

Figures 10 and 11 show the daytime and night-time continuity results, respectively,
for the whole EMA. Again, by day, all coastal regions enjoy the higher 99.97%

Figure 9. Night-time 3-hour service continuity for the 16 beacons of the UK and Ireland. Light

grey=99.97% (critical areas requirement met), Dark grey=99.85% (other areas requirement

met).
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continuity requirement. Figure 11 shows the now familiar night-time reduction. But
in most coastal regions the 99.97% standard is achieved, with the other areas getting
the lower-standard service.

8. SERVICE STANDARDS. The service standards we have now calculated
at each location include three different sets of limiting factors: coverage criteria,
availability standards and continuity standards. For a service to be satisfactory, all
three must be met. Taking the 16 beacons of the United Kingdom and Ireland, we
have compared the new continuity results with the availability results computed
earlier. We found that everywhere the service met the availability requirement, it
also met the continuity one, but not vice versa ; that is, availability criteria are the
more stringent of the two. Thus, the areas in which all three criteria are met are the
same as those shown in the availability plots, Figures 1 and 3. We conclude that, by
day, all coastal regions of the EMA are provided with a service that meets the
higher of two sets of standards for coverage, availability and continuity. By night

Figure 10. Day-time 3-hour service continuity provided by the many beacons of the EMA. Light

grey=99.97% (critical areas requirement met), Dark grey=99.85% (other areas requirement

met).

Figure 11. Night-time 3-hour service continuity provided by the many beacons of the EMA.

Light grey=99.97% (critical areas requirement met), Dark grey=99.85% (other areas require-

ment met).
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(Figure 12), when coverage areas are reduced, the majority of coastal regions are
still provided with a service that meets all the more stringent requirements. In
those regions where these conditions are not met, the service nevertheless meets the
requirements for areas of low-risk and single beacon coverage.

9. CONCLUSIONS. This paper has demonstrated the processes involved in
predicting the availability and continuity of a maritime radiobeacon DGNSS ser-
vice. It has shown that predicting availability is a complex process involving many
elements. A novel approach is described and employed for the first time. It com-
bines statistically the mean and standard deviation values of the various stochastic
elements in order to calculate the availability of each beacon and of the overall ser-
vice provided by multiple beacons. This approach employs data on the statistical
distributions of atmospheric noise and skywave interference from referenced

Figure 12. Night-time service meets coverage, availability and continuity requirements. Light

grey=99.97% (critical areas requirement met), Dark grey=99.85% (other areas requirement

met).
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material. A quantitative understanding of the effect of self-fading has been derived
by expanding the work of Poppe.

Then, for the first time continuity has been analysed. We see that the same events
that affect availability, affect continuity. Each of these events has been examined.
Without knowing, or being able to calculate, anMTBF for each SNR, it is impossible
to calculate precisely its effects on continuity. But an alternative approach has been
pioneered, based on the work of Poppe. Her research has shown us the dependence of
word error rate (WER) on signal-to-noise ratio. From this we have developed a way
of estimating the probability, for a particular SNR, of missing a message. We then
define a failure as not receiving four consecutive messages. Using this approach we
have calculated the probability of such a failure and hence its effect on continuity, as a
function of SNR. This has been done for atmospheric noise and the process repeated
for skywave interference. However, the latter is shown to have a negligible effect of
continuity. Self-fading is taken into account by employing the night-time 95%-ile
field strength values in determining SNR and SIR ratios. In this way, continuity
values are estimated and the results for Europe compared with the international
standards.

For the first time, it is now possible for administrations, service providers and other
bodies to establish and plot those areas within which the marine radiobeacon
DGNSS service meets all the standards: coverage, availability and continuity. The
results show where beacons should provide a safe and reliable service.
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