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Abstract. We argue against Foreman’s proposal to settle the continuum hypothesis and other
classical independent questions via the adoption of generic large cardinal axioms.

Shortly after proving that the set of all real numbers has a strictly larger cardinality than
the set of integers, Cantor conjectured his Continuum Hypothesis (CH): that there is no
set of a size strictly in between that of the integers and the real numbers [1]. A resolution
of CH was the first problem on Hilbert’s famous list presented in 1900 [19]. Godel made
a major advance by constructing a model of the Zermelo—Fraenkel (ZF) axioms for set
theory in which the Axiom of Choice and CH both hold, starting from a model of ZF. This
showed that the axiom system ZF, if consistent on its own, could not disprove Choice, and
that ZF with Choice (ZFC), a system which suffices to formalize the methods of ordinary
mathematics, could not disprove CH [16]. It remained unknown at the time whether models
of ZFC could be found in which CH was false, but Godel began to suspect that this was
possible, and hence that CH could not be settled on the basis of the normal methods of
mathematics. Godel remained hopeful, however, that new mathematical axioms known as
“large cardinals” might be able to give a definitive answer on CH [17].

The independence of CH from ZFC was finally solved by Cohen’s invention of the
method of forcing [2]. Cohen’s method showed that ZFC could not prove CH either, and in
fact could not put any kind of bound on the possible number of cardinals between the sizes
of the integers and the reals. Lévy and Solovay further developed the forcing machinery,
and noticed that it also destroyed Godel’s hopes for large cardinals. Forcing allowed one to
manipulate the cardinal value of the set of reals, passing from one model of ZFC to another
giving a different answer on CH, without disturbing any large cardinals in the process [22].

This was not the last word on CH from the community of set theorists. Several programs
to develop acceptable axioms that settle CH have been put forward. Matthew Foreman has
suggested a solution to CH via axioms called “generic large cardinals.” Our goal here is
to critically examine Foreman’s proposal. First, we describe the goals these axioms are
supposed to meet and the kinds of considerations in their favor, highlighting the claim
that the favorable considerations for traditional large cardinals transfer to the generic ones.
Second, we discuss many technical difficulties in accommodating generic large cardinals
in a single axiomatic framework, and present some new “mutual inconsistency results” that
raise troubles for the program. Third, we examine the considerations in favor of traditional
large cardinals and argue that they do not have the same import for the generic variety.
Finally, we consider an alternative take on these kinds of axioms that seems to avoid the
technical difficulties, but sacrifices some of the original goals of the program.
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§1. Foreman’s program. In accord with Godel [17], Foreman regards CH as a le-
gitimate and important mathematical problem, despite its independence from ZFC. In
Foreman’s view, such problems may be resolved by the adoption of new axioms, a method
which is in line with the historical practice of mathematics, as “whatever process led to the
acceptance of ZFC as an axiomatization for mathematics (despite its controversial begin-
nings) may lead to other assumptions that settle, or partially settle most of the problems
we are interested in” [11].

Of course, the everyday mathematical work of performing calculations and proving
theorems is not the same kind of thing as making a commitment to a new axiom. So how
does one assess axiom candidates? Foreman lays out two categories of evidence, which
he calls “primary considerations” and ‘““secondary considerations” [12]. Roughly, primary
considerations have to do with the conceptual content of the axioms, while secondary
considerations have to do with various utilitarian features of the theories they generate.
Included among these features is completeness, the effectiveness of the axiom system
at answering questions. We will not dispute the claim that generic large cardinals fare
particularly well with respect to many secondary considerations. Indeed, they are able
to settle several classical questions about relatively small cardinals, including CH, and
they have many of the same implications for descriptive set theory as conventional large
cardinals.!

What Foreman describes as primary considerations seems to be closely linked to “in-
trinsic justifications,”® but perhaps also include considerations of “naturalness” that may
not count as justifications in the sense of valid arguments for conclusions. Gddel suggests
something along these lines, saying that large cardinals are “axioms which are only the
natural continuation of the series of those set up so far” [17]. Foreman argues that the
primary considerations for traditional large cardinals transfer to the generic large cardinals.
Since many set theorists accept large cardinals as intrinsically justified or natural, the
implication is that they should therefore view generic large cardinals in the same way.
Our aim in this article is to argue against this transference claim, without attempting a
thorough analysis of the underlying notion of “primary consideration.” We will first argue
that the transference claim leads to unwelcome consequences, and then critically examine
whether some of the well-known primary considerations for traditional large cardinals do
indeed apply equally to generic ones.

Foreman describes large cardinals as “a successful axiom system” [12]. With regard
to primary considerations in their favor, Foreman says little in [12] beyond noting the
“sociological fact that the dominant view among those actively searching for true axioms
that extend ZFC is that Large Cardinal axioms are true.” This is reminiscent of an argument
for the Axiom of Choice made by Zermelo, who noted that “it is applied without hesitation
everywhere in mathematical deduction” [29]. In other words, specialists in the relevant
fields demonstrate in their mode of working that the principles in question are natural or
intuitive. Foreman says the generic large cardinals are “straightforward generalizations of
conventional large cardinals,” and that the “evidence for large cardinals, when suitably
viewed, does not distinguish between conventional large cardinals and generic large cardi-
nals” [12]. Indeed, Foreman gives a characterization of generic large cardinals that includes
many conventional large cardinals as special cases.

1 See [13], Section 5.8.
2 See [23].
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A key mathematical difference between the conventional and generic large cardinals is
the mutual inconsistency phenomenon observed with the generic variety. There are pairs
of generic large cardinal axioms that contradict one another. In some cases, both members
of the pair are known to be consistent relative to conventional large cardinals. Since the
conventional large cardinals form a directed order in strength, such phenomena are not
possible for the conventional large cardinals that have been studied. If a pair of them were
to be inconsistent with each other, then a single large cardinal axiom would be inconsistent
by itself. This is because for any finite collection S of large cardinal axioms, one only
needs to look a bit further up the hierarchy to find an axiom which implies the existence of
a model satisfying all statements in S.3

What are we to make of this situation? If we are seeking to adopt a new axiom system
to resolve independent questions, we certainly should not adopt an inconsistent one. Ac-
cording to Foreman [13], “While the counterexample to mutual consistency is certainly
very troubling, it may not be fatal to the program of looking to generalized large cardinals
for true extensions of ZFC.” He states that “the ‘mutual inconsistency phenomenon’ seems
rare,” and that the important question is, “which generalized large cardinals are true.” In
other words, he predicts that a deeper understanding of the situation will yield reasons to
accept some generic large cardinals as axioms and reject others.

A straightforward acceptance of the transference claim immediately leads us into prob-
lems. For if everything worthy of the name “generic large cardinal” is as deserving of
axiomhood as conventional large cardinals, then we have several equally deserving axiom
candidates, which cannot be adopted simultaneously. We cannot accept a simple principle
such as “generic large cardinal axioms are true,” and we seem to be left with no alternative
principle that favors some generic large cardinals over others. But perhaps the primary
considerations in favor of conventional large cardinals do not legitimately apply to some
hypotheses we currently call “generic large cardinals.” If the mutual inconsistency phe-
nomenon is indeed quite rare, then it becomes plausible that a more refined understanding
of the considerations in favor of conventional and generic large cardinals may resolve
the problem by guiding us to a choice between conflicting axioms, perhaps by informing
a scheme for what counts as a generic large cardinal axiom that excludes problematic
cases. This could be guided by new mathematical information, as Kunen’s proof of the
nonexistence of “Reinhardt cardinals” led to a maturation of the large cardinal theory rather
than its collapse [25]. However, we aim to show in the next section, by collecting some
known results and presenting some new ones, that the phenomenon may be unsettlingly
common, and hence the prospects for the program may be bleak.

§2. Inconsistencies. Without attempting a comprehensive definition, Foreman in [11]
characterizes generic large cardinals as axioms that “assert the existence of an elementary
embedding j : V — M, where M is a transitive model, where j is definable in a forcing
extension of the universe V[G].” Conventional large cardinals (at least those of sufficiently
high strength) fit the same description, except that they do not allow j to be generated by
forcing.

3 1t should be noted that this is not a meta-theorem about an abstract notion of large cardinals,
but more of an empirical fact about the axioms that have been studied. Indeed, there is no
generally accepted formal definition of what a large cardinal is, though there is certainly enough
resemblance and coherence between the extant axioms to warrant the use of a general term.
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With no restrictions on the hypotheses of this kind that one may consider as axiom can-
didates, we quickly run into inconsistencies. For example, there is a relationship between
the kind of forcing used to generate the embedding j and the possible critical point of j.
The kind of forcing employed can dictate the allowable critical points, and a stipulation
of a certain critical point can restrict the class of employable forcings. If we stipulate the
critical point to be a successor cardinal, then this cardinal must be collapsed by the forcing,
since if x = u™ is the least ordinal moved by j: V — M,then M =y <« <j(k) = ut.
If we stipulate the forcing to have the countable chain condition, then the critical point
must be weakly inaccessible and at most the value of the continuum.* Since some generic
large cardinals imply the continuum is not so large, we immediately get some mutual
inconsistencies.

A less obvious restriction on generic embeddings occurs near singular cardinals. Since
any forcing generating an elementary embedding with critical point a successor cardinal
x = u must collapse x to have the same cardinality as x, the best chain condition one
can get for the forcing is the xT-c.c., and thus the minimal possible size of the forcing is
x. The former property is equivalent to the existence of a x ™ -saturated normal ideal on x,
and the latter a x-dense normal ideal on x. These objects are the combinatorial surrogates
for the kinds of generic embeddings they generate, in analogy to the countably complete
ultrafilters on various sets associated to various kinds of conventional large cardinal em-
beddings. These objects are often referred to by the abridged names, “saturated ideal” and
“dense ideal” on «.

A dense ideal on w is known to be equiconsistent with infinitely many Woodin cardinals
[28], and for a general successor of a regular cardinal, a model can be obtained from an
almost-huge cardinal [6]. Foreman [8] obtained a model of ZFC in which every successor
cardinal carries a saturated ideal, and therefore a natural question is whether one can obtain
the stronger property of a dense ideal on x, where « is the successor a singular cardi-
nal. In [6], the author showed that this contradicts the generalized continuum hypothesis
(GCH). Using a lesser-known forcing lemma, we easily obtain a contradiction without
GCH:

LEMMA 1 (Sakai [24]). If P is a partial order of size k, where k is a regular cardinal,
then P forces cf(k) = |k|.

COROLLARY 2. If«x is the successor of a singular cardinal, then there is no dense ideal
onk.

Proof. Suppose u is singular, x = ™, and there is a dense ideal on k. Letj : V. — M C
V[G] be a generic embedding arising from forcing with the ideal. The critical point of j is
x and M* N V[G] C M. By elementarity and the closure of M, |x| = u and cf(x) < g in
V[G]. This contradicts Sakai’s Lemma since G is generic for a forcing of size . (]

Deeper restrictions on generic elementary embeddings come from work regarding the
canonical nonstationary ideal on a regular cardinal x, denoted NS,. Work of Gitik and
Shelah [15] shows that is not possible for NS, to be saturated unless x = N, which is
consistent relative to a Woodin cardinal [28]. For various restricted versions of this, the
relative consistency is open—for example, the statement that NSy, restricted to ordinals of
cofinality N; is N3-saturated. However, Foreman and Magidor [14] proved that if there are
sufficient conventional large cardinals in the background, then the above statement about

4 See [20] or [21].
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NSy, contradicts the Ny-saturation of NSy, . In particular, these hypotheses give different
answers regarding whether a counterexample to CH exists in the inner model L(R).

With regard to the inconsistencies involving the nonstationary ideal, Foreman has a
response. He characterizes the Nj-saturation of NSy, as “an anomaly that does not fit the
general situation” [13], suggesting that a clearer picture of the mathematical situation may
lead to a refined formulation of the notion of “generic large cardinal” that does not allow
this contradiction to go through. This leads Foreman to an “informal working definition”
of a generic large cardinal hypothesis as an assertion of the forceability of an elementary
embedding j : N — M for transitive structures N and M, with three paramters:

(1) Where j sends the ordinals.
(2) How big N and M are.
(3) The nature of the forcing.

As he states, “This mechanism appears to define away the anomaly of NS,,,,” since there
is no place in this framework for asserting that the generic embedding is related to a
particular definable ideal. He clarifies that by “the nature of the forcing,” he means its
isomorphism type as a boolean algebra. The assertion, “such-and-such isomorphism type
can be represented as such-and-such,” is not a permitted part of a generic large cardinal
hypothesis.

This informal defintion does not have enough information to exclude inconsistent cases,
as Foreman notes that “one cannot adjust these parameters arbitrarily.” As mentioned
above, there is an interplay between axes (1) and (3). There are obvious interplays between
(1) and (2), as making N and M “larger” tends to introduce more absoluteness and thus
restrict the action of j. There are also limitations regarding (2) analogous to Kunen’s in-
consistency.’ Nonetheless, one might reasonably hope that we can specify some consistent
general framework that captures most of the instances of generic large cardinals that have
been studied.

Whatever underlying concept motivates Foreman’s working definition, it does appear
that there are instances of generic large cardinals falling under the concept that are mutually
contradictory. Foreman mentions two examples that he finds troubling. The first example
shows that the following “particularly attractive sounding axiom” asserting the existence
of a family of ideals is false: “For all N,-c.c. Boolean algebras B of cardinality less
than or equal to 2“2 that collapse w1, there is a normal fine ideal / on [w>]”! such that
P([w2]*)/I =B”

If we substitute B = Col(w, w), then we can prove CH,° and that there is also an ideal
J on w; such that P(w)/J = Col(w, w1). These two hypotheses together prove a certain
partition property P.” If we substitute B = Col(w, <>), then from this hypothesis we can
prove —P. Although the existence of any N,-saturated normal ideal on [w7]®! is not known
to be consistent relative to large cardinals, Foreman notes that the same argument can be
carried out on the basis of the conjunction of CH with two weaker ideal hypotheses known
to be individually consistent (with GCH) relative to conventional large cardinals.®

5 See [13], Section 6.2.
6 See [13], Section 5.3.

7 P asserts that whenever we have a coloring of the rectangle wy x @ in countably many colors,
there are sets A C @, and B C w1, both uncountable, such that the coloring is constant on A x B.

8 These are a dense ideal on o1 and a normal ideal on [1]®! with associated forcing Col(w, <41),
for some inaccessible 4.
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In [5], the author generalized this result as follows, allowing us to drop the hypothesis
of CH from the original case:

THEOREM 3. Suppose k is a successor cardinal, there is a k-complete, k-dense ideal on
K, and A > K is a cardinal.

(1) If 4 is a successor cardinal, there is no normal ideal on [A]* whose associated
forcing is A-absolutely J.-c.c. and uniformly J.-dense.

(2) If 2 is a limit cardinal, then there is no At -saturated normal ideal on [1]*.

Although we will not repeat here the definitions of A-absolutely A-c.c. and uniformly -
dense, we note the conjunction of these properties covers a broad class of partial orders
that includes Col(u, <4) when 1 is regular and A<# = A. If a proponent of generic
large cardinals as axioms is troubled by the more specific inconsistency, then certainly
this generalization should be all the more disconcerting, as so many more pairs of generic
large cardinals are ruled out. In particular, dense ideals on successor cardinals are incon-
sistent with any reasonably saturated ideal which collapses an inaccessible to be that same
successor. As noted in [5], stronger properties of ideals that generically map successor to
inaccessible cardinals can rule out even saturated ideals on those successor cardinals.

After discussing the above mutual inconsistency phenomenon in [13], Foreman defined
a particularly strong notion of “minimally generically n-huge” as an example of a type of
generic large cardinal axiom:

DEFINITION 4. For finite n > 0, a cardinal k = u™ is minimally generically n-huge iff

there is a normal, fine, k-complete ideal I on Z = [K"’”]"H_1 such that P(Z)/I has a dense
set isomorphic to Col(u, k).

If we additionally assume that x<# < x™", then whenever G C P(Z)/I is generic,
there is an elementary embedding j : V — M C V[G] such that M is closed under
xH-sequences from V[G], and (k") = xT"*! for all m < n. Since Col(u, ) actually
collapses x <# to u, and (x*)" is a cardinal in V[G], we must have in this context that
k <* = Kk, meaning that the forcing associated to the ideal is of minimal possible density,
and is in fact uniquely characterized as the u-closed partial order of this density with
these collapsing effects.” Furthermore, a deeper theorem of Foreman shows that in the
case 4 = w, the hypothesis implies CH and in fact GCH up to x .10 Using a simple trick,
we can draw the same conclusion for larger values of z.!!

Along these lines, it is natural to define a cardinal k = u™ to be minimally generically
almost-huge if there is a k-complete ideal / on x such that P(x)/I has a dense set isomor-
phic to Col(u, ). A standard projection argument shows that if x = u™, kx<# = K, k is
minimally generically n-huge, and 0 < m < n, then x is minimally generically m-huge
and minimally generically almost-huge.

As [13] went to press, Woodin showed in an unpublished note that it is inconsistent for
1 to be minimally generically 3-huge while 3 is minimally generically 1-huge. Woodin’s
argument was somewhat specific to the cardinals involved. We prove below the following
generalization of his result using a different argument.

9 See [3], Section 14.
10 See [13], Theorem 5.9.

I gee [6], Corollary 3.4. If x = ,u"" and there is a k-complete, normal, x-dense ideal on Z but
2% > k, then we can collapse u to @ and preserve all of these properties, getting a model that is
ruled out by Foreman’s Theorem.
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THEOREM 5. Suppose k¥ = ut and n > 2. Then the following are mutually
inconsistent:

(1) x is minimally generically n-huge.
(2) For somem, 0 < m < n, there is an ideal I on k" such that P(kx™™)/I is forcing-
equivalent to a k-closed partial order.?

The second hypothesis includes the case that " is minimally generically almost-huge,
but is much weaker, and in fact equiconsistent with a measurable cardinal.'> The second
hypothesis also implies that (x 7"~ 1)# = k7"~ gince otherwise, a generic embedding
arising from / would stretch an enumeration of P, (k1) to reveal new elements in the
generic extension. But a x-closed partial order does not add any <x-sequences of ordinals.
A fortiori, k<* < x™™, and so by the prior remarks, the two hypotheses together imply
GCH holds on the interval [, x1"].

The theorem shows that degrees of minimal generic hugeness on nearby successor
cardinals contradict one another. It will follow from a more general lemma that is a bit
clumsier to state. Before beginning the argument, we gather some notions and facts we
will need:

DEFINITION 6 (Hamkins [18]). A partial order P has the x-approximation property when
forall X € 'V and all P-names Y, if it is forced that Y Nx € V for all x € Py (X)V, then it
is forced that Y N X € V.

DEFINITION 7 (Usuba [27]). A partial order has the strong k-c.c. if it has the k-c.c. and
forcing with it adds no cofinal branches to x-Suslin trees.

We note two ways of guaranteeing that P has the strong x-c.c.: P has the y-c.c. for some
i < x,or P x Pis k-c.c. The latter follows easily if |P| < x. The following result of
Usuba [27] improves results of Hamkins, Mitchell, and Unger:

THEOREM 8 (Usuba). Suppose « is a regular cardinal, P is a nontrivial k-c.c. partial
order, and Q is a P-name for a k-closed partial order. Then P« Q has the k-approximation
property if and only if P has the strong x-c.c.

The next lemma implies Theorem 5. As noted above, the hypotheses of Theorem 5
imply GCH on the interval [u, x%"], and thus the hypotheses of the next lemma are
satisfied with P = Col(u, k), k = ko, k1 = kT, 2o = "1 and 1; = ™.

LEMMA 9. Suppose there are regular cardinals kg, k1, Ao, A1 such that /10<i° = Ao and
Ko < Ao. Suppose P is a strongly k1 -c.c. nontrivial partial order such that whenever G C P
is generic, there is an elementary embedding j : V — M C V[G] with:

(1) j(xo) = x1.
(2) j(do) = 41
(3) M is closed under iT-sequencesfrom VIG].

12 With minor modifications to the arguments, “x-closed” can be weakened to “x-strategically-
closed.”

13 For example, if we force with Col(u, <x), where x is measurable, then the ideal / generated by
the dual of a normal ultrafilter &/ on x has the property that P(x)/I has a dense set isomorphic
to Col(u, <jz4(x)). For the reverse direction, such an ideal is precipitous, which implies that x is
measurable in an inner model.
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Then there is no /18' -complete ideal I on lg whose associated forcing is equivalent to a
Ko-closed partial order'*

Proof. Supposej: V — M C V[G]is a generic elementary embedding as hypothesized.
By the closure of M and the chain condition, ; is regular in V[G], and j(A$) = (A])V1¢! =
Y.

Since V |E /10</10 = Ao, it follows that V = /lf’l' = ;. For otherwise, in V there
is a surjection f : (41154 = A7, which would be in M by the closure of M. But by
elementarity, M |= ifi‘ = 1. Therefore, then by the well-known result of Specker [26],
there is a /11+—Aronszajn treeT € V.

Suppose I is as hypothesized. M = j(I) is a /If-complete ideal on if whose associated
forcing is equivalent to a xj-closed partial order. By the closure of M, this is true in V[G]
as well. If we force with P(if) /j(I) over V[G], then we get an elementary embedding
i : V[G] — N with critical point /1?'. We have i(T) | (AT)V = T, and a branch through T
can be found by looking below a node in i(7) at level (/IT)V. Therefore, by forcing with
P« P([f)/j(]), we obtain a new set b C T such that for every x € Py, MY, bNxeV.
This is a failure of x|-approximation, in contradiction to Usuba’s Theorem. O

In summary, many pairs of seemingly natural candidates for generic large cardinal ax-
ioms turn out to contradict one another. A fixed successor cardinal cannot be generically
large in certain different ways at the same time, where the nature of the forcing producing
the generic embedding varies. A canonical notion of minimal generic n-hugeness cannot
hold simultaneously on nearby successor cardinals. The pervasiveness of such examples,
combined with the absence of any apparent salient difference between conflicting hypothe-
ses, lowers hopes for a single consistent template for such axioms. We are thus compelled
to scrutinize the possible primary considerations in favor of these principles.

§3. Weight of the evidence. Do the primary considerations for conventional large
cardinals really apply equally to generic large cardinals? The key difference between con-
ventional and generic large cardinals is the admissibility of forcing to construct a nontrivial
elementary embedding of V into a transitive class. On its face, this involves the introduction
of an object G ¢ V to form a larger model V[G] in which the embedding can be defined.
If the axioms of set theory are meant to describe what is true in the universe of sets V, this
seems curious. Generic large cardinals would seem to be principles about local regions
of a set-theoretic multiverse. Indeed, Foreman states in [11] that a generic large cardinal
hypothesis “allows one to state ‘symmetry principles’ that can hold in a generic extension
of the universe.” Foreman makes no attempt to dress the motivating picture for generic
large cardinals in a formalism that avoids reference to extensions of the universe, other
than to say that the forceability of generic embeddings is equivalent to the existence of
ideals in V with certain properties. But it is clearly the formulation in terms of generic
embeddings, rather than combinatorial properties of ideals, that is the source of motivation
for these principles. Putting aside for the moment general worries about the relationship of
generic embeddings to multiversism, let us examine several of the primary considerations
for large cardinals, and assess whether they apply to the generic variety.

14 1¢ kKo = Ao, we may drop the cardinal arithmetic assumption, as the existence of a k0+ -complete
ideal on K(;r whose associated forcing is equivalent to a x(-closed partial order implies K0< K0 — k.
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3.1. Arguments from authority. In [12], Foreman largely avoids stating what primary
considerations in favor of large cardinals there are, opting instead to argue simply that
they exist. He cites the fact that many expert set theorists treat large cardinal assumptions
“as if they were true,” which he says shows they “have intuitions about the veridicality of
the axioms.” Moreover, these intuitions are “educated,” and may be likened to the refined
judgments of professional wine tasters, in the sense that one has reason to trust the experts’
opinions even if it is difficult for nonexperts to inspect the basis for the judgments. !>

However, the evidentiary picture is not so similar with generic large cardinals. Foreman
acknowledges as much, noting that “the generic large cardinals are much less studied
than conventional large cardinals, and so it is hard to supply the same kind of historical
or sociological evidence for intuitive content of the large cardinals.” We may also add
that there are not many set theorists who appear to regard generic large cardinal prin-
ciples as axiomatically true. Foreman’s aim in his several philosophical writings about
generic large cardinals is to prescribe these as axioms to an audience that includes the
community of set theorists, rather than to describe an existing consensus. Even if a con-
sensus among experts about propositions in their field of expertise counts as evidence in
favor of those propositions, this kind of evidence is presently lacking for generic large
cardinals.

3.2. Generalization. One motivating idea for many conventional large cardinals, dis-
cussed, for example, in [25], is that the many properties of w that are the result of the gap
between the finite and infinite should generalize to higher infinities, displaying a similarly
vast difference in size between varieties of infinite sets. Insofar as such considerations are
about sheer relative size, they do not seem to apply to generic large cardinals, where the
focus is on accessible cardinals such as the R,, for finite n. On the other hand, generic large
cardinals do indeed generalize the previously-studied large cardinals by introducing the
possibility of elementary embeddings generated by forcing. There does not appear to be a
Jjustification lurking here as to why these kinds of generalizations should be true, but we
grant that they may appear natural. However, the feeling of naturalness may be mitigated
in the face of other compelling facts, such as in the case of Reinhardt cardinals. We believe
that the mathematical facts laid out in the previous section play a similar role. As Foreman
points out in [12], evolutions of views of what is natural in mathematics occur quite often,
such as with the discovery of continuous but nowhere differentiable functions or sets of
reals that are not Lebesgue-measurable.

3.3. Reflection and resemblance. In [11], Foreman asserts that a hypothesis that a
small cardinal is generically large “allows these cardinals to have similar reflection and re-
semblance properties as posited by large cardinal axioms on highly inaccessible cardinals.”
These ideas appear in [25] as motivating principles for conventional large cardinals. The
idea of reflection is that the mathematical universe is vast enough that it cannot be charac-
terized by properties that hold in it, and instead these properties must already be satisfied
by robust set-sized approximations to it, such as rank-initial segments V,,. Furthermore,
this phenomenon should itself reflect, so that many V,, have their properties reflected by
smaller V. The idea of resemblance is that, for the same kinds of reasons, many levels of
the cumulative hierarchy, or many members of various other classes, should resemble one
another, perhaps via mechanisms such as elementary embeddings. An example of a precise

15 Of course, it is somewhat controversial that such connoisseurs are really tracking some objective
facts.
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implementation of this idea is Vopé€nka’s Principle, which says that for any proper class of
structures in the same language, there exists an elementary embedding from one member
of the class into another.

Many kinds of generic large cardinals entail the reflection of various properties, and the
reflection that one gets from a generic embedding is indeed a key component of many
arguments involving these objects, as many examples in [13] show. Also, the embeddings
themselves may be viewed as kinds of resemblance properties. However, there are limita-
tions. The I1; statement that x is a cardinal fails to reflect on a final segment of o < x if x
is a successor cardinal. Furthermore, there is a very simple sense in which the X,, for finite
n do not resemble one another; each has a relatively simple definition.

Thus, the typical cardinals one considers as generically large cannot enjoy the kind of
full-fledged reflection and resemblance that is possible at conventional large cardinals.
These observations can be seen as manifestations of the fact that the “symmetry” which
appears via a generic embedding does not occur in V but in an outer model. The idea that
the mathematical universe has structures too rich to be pinned down by such-and-such
kinds of properties does not seem to motivate the generic largeness of small cardinals.
There are plenty of resources for describing low levels of the cumulative hierarchy. The
resemblance between low-rank objects exhibited by generic a embedding only appears by
changing the background universe and thus changing the properties of some objects. While
a principle asserting the occurrence of this kind of phenomenon may be well motivated, it
is not motivated by the same ideas that are commonly put forward for conventional large
cardinals.

§4. Multiversism. The motivating picture for generic large cardinals is ostensibly
about the relationship of V to a generic extension V[G]. This is in itself a big difference
with conventional large cardinals, which are all unambiguously about one universe V. We
would like to suggest a way of saving generic large cardinals as axiomatic principles of a
sort, in a way that embraces this difference. The cost, however, is that we give up on using
generic large cardinals to arrive at final answers to classical independent questions like CH.

Perhaps, to the working set theorist, generic embeddings have some intuitive appeal
as first principles. But because of mutual inconsistencies, it is difficult if not impossible
to treat them as axiom candidates in the normal sense. Given that they have their most
appealing formulation in terms of a relationship between several models of set theory, it
may be in their own spirit to state them in a way that allows the domain of the elementary
embedding to vary. (To be fair, this possibility is already hinted at in Foreman’s “informal
working definition,” but it doesn’t seem to have been seriously explored.)

One way of making sense of this is in the context of a pluralist approach to set-theoretic
ontology. This is the view that there is not a single correct mathematical universe, but a
multiverse of many equally valid universes. Not all universe-existence hypotheses have
equal status. For example, questions such as whether there are universes realizing various
assignments of values to positions in the Cichon diagram,'® or in which R, is a Jénsson
cardinal,!” are considered open questions in set theory to be settled on the basis of the
existence of models of ZFC (plus conventional large cardinals). Generic large cardinal
principles may be formulated as existence principles for the multiverse. For example,

16 See, for example, [7].
17 See [4].
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instead of asserting conjunctions ruled out by Theorem 5, we could assert that there is
a universe V7 in which @ is minimally generically 2-huge, and another V; in which w; is
minimally generically 1-huge. A very similar approach that maintains a commitment to a
single correct universe V could be to formulate generic large cardinal axioms as asserting
the existence of inner models of V' C V, along with generic objects G over V', generating
generic embeddingsj: V — M C V/[G] C V.

A potential utility to this approach is that it introduces more methods for tackling con-
sistency problems. A multiverse approach to generic large cardinal principles may provide
a collection of well-motivated starting points for solutions to consistency questions that
may not at present be answerable by other means. The use of a conventional large cardinal
assumption to prove the consistency of a theory T is generally regarded as progress on (if
not a complete solution to) the question of whether 7T is consistent. Of course, reducing
the strength of the large cardinal assumption employed, or eliminating the use of large
cardinals altogether, is a better result. If 7 can be shown equiconsistent with ZFC plus a
large cardinal, then, as seems to be universally agreed, this is the best one can say about
the consistency of 7. In [9], Foreman gives some examples of questions about graph theory
and algebra that can be settled on the basis of generic large cardinal assumptions. The
consistency of those particular assumptions is currently not known to follow from conven-
tional large cardinals, as is the case with several other generic large cardinal hypotheses.
Though it may be preferable to prove consistency from conventional large cardinals, it is
certainly of some value to find an argument from other reasonable hypotheses. Another
example whose history nicely bolsters this epistemic picture is described in [10]. Woodin
first showed how to construct a uniform, countably complete, w;-dense ideal on w;, an
object whose existence has many combinatorial consequences, from the assumption that
both w; and w, are minimally generically almost-huge. Foreman later showed the consis-
tency of such an object assuming the consistency of ZFC with a huge cardinal (a type of
conventional large cardinal).

It would be desirable to subsume these universe-existence hypotheses under one general
principle about the nature of the set-theoretic multiverse. Since investigations of consis-
tency must often start from some strong assumptions, it would be valuable to have a general
account of what starting assumptions are appropriate. However, this is likely to be at least
as difficult as unifying the conventional large cardinals under a single formal framework.
Thus we leave this task for future work.
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