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We study the structural stability of a problem in a porous medium when the density of

saturating liquid is a nonlinear function of temperature and an internal heat source is present.

We prove a convergence result for the Forchheimer coefficient. That is to say, when λ → 0,

the solution of the non-isothermal flow in a porous medium of the Forchheimer type, see

(1.1), can converge to the solution of the equivalent Darcy type.
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1 Introduction

The question of continuous dependence or convergence of solutions of problems in par-

tial differential equations on coefficients in the equations has been extensively studied in

recent years for a variety of problems. This is sometimes referred to as the question of

structural stability. The concept of structural stability in which the study of continuous

dependence (or convergence) is on changes in the model itself rather than the initial

data. Many references to work of this nature are given in the monograph of Ames

and Straughan [2], which studies the structural stability with respect to changes in the

model itself. This means changes in coefficients in the partial differential equations may

be reflected physically by changes in constitutive parameters. We believe that the math-

ematical analysis of these equations will help to reveal their applicability in physics. On

the other hand, continuous dependence (or convergence) results are important because

of the inevitable error that arises in both numerical computation and physical measure-

ment of data. It is relevant to know the magnitude of the effect of such errors in the

solutions.

The model equations (Brinkman–Darcy–Forchheimer equations) describing flow in

a porous medium are discussed by Nield and Beijan [14] and Straughan [26, 27].

Several papers in the literature have dealt with the Saint-Venant-type spatial decay

results for Brinkman–Darcy–Forchheimer and other equations for porous media (see,

e.g. [5, 9, 16–19, 24, 25]). More recent work on stability and continuous dependence ques-

tions in porous media problems has been carried out by [1, 3, 4, 6–8, 10–13, 16, 20–

23].
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In [28], Straughan investigated the continuous dependence on the heat source for the

momentum equation for flow in a porous saturated material of the Forchheimer type

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui + λ | u | ui = −p,i + giT + hiT
2,

∂ui
∂xi

= 0,

∂T

∂t
+ ui

∂T

∂xi
= ∆T + Q,

(1.1)

where ui is the average fluid velocity in the porous medium, λ is the Forchheimer coefficient,

T is the concentration (or the temperature) and p is the pressure. Here gi(x), hi(x) are

gravity fields, and without loss of generality, we assume gi, hi satisfy | g |� 1, | h |� 1 and

| ∇g |� 1, | ∇h |� 1. Here also ∆ is the Laplacian operator and Q(x, t) is a prescribed heat

source (or sink).

Equations (1.1) hold in the region Ω × [0, τ], where Ω is a bounded, simply connected

and star-shaped domain with boundary ∂Ω in R3, and τ is a given number satisfying

0 � τ < ∞. Associated with (1.1), we impose the boundary conditions

uini = 0, T = l(x, t) (x, t) ∈ ∂Ω × [0, τ], (1.2)

and additionally the concentration is given at t = 0, i.e.

T (x, 0) = T0(x) x ∈ Ω. (1.3)

In [28], Straughan obtained the continuous dependence result on the heat source in

equations (1.1). We continue his work and study another aspect of structural stability. We

will derive the convergence result on the Forchheimer coefficient, λ. We cannot follow the

method presented in [28], because the case when λ → 0 is more difficult to tackle than

the case in [28].

In the present paper, the comma is used to indicate partial differentiation, and the

differentiation with respect to the direction xk is denoted as , k, thus u,i denotes ∂u
∂xi

. The

usual summation convection is employed with repeated Latin subscripts summed from 1

to 3. Hence, ui,i =
∑3

i=1
∂ui
∂xi

, and ‖ · ‖ denotes the norm of L2.

2 A priori bounds for
∫ t

0

∫
Ω

|∇u|2dxdη,
∫
Ω

|u|2dx and
∫ t

0

∫
Ω

|∇T |2dxdη

In the course of producing the result of convergence on the coefficient of (1.1), we find it

easy if we can derive an a priori bound or a maximum principle for the concentration T .

In order to get a bound for T , we divide T into T = T1 + T2, where T1 and T2 satisfy

the following equations respectively:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T1

∂t
+ ui

∂T1

∂xi
= ∆T1,

T1(x, t) = l(x, t) (x, t) ∈ ∂Ω × [0, τ],

T1(x, 0) = T0(x) x ∈ Ω,

(2.1)
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T2

∂t
+ ui

∂T2

∂xi
= ∆T2 + Q,

T2(x, t) = 0 (x, t) ∈ ∂Ω × [0, τ],

T2(x, 0) = 0 x ∈ Ω.

(2.2)

In [15, pp. 432–433], Payne et al. reached the result

sup
[0,τ]

‖T1‖∞ � TM, (2.3)

where

TM = max

{
‖T0‖∞, sup

[0,τ]
l∞

}
,

and l∞ is the maximum of l on ∂Ω.

Now we want an a priori bound or a maximum principle for T2. To this end, we form

the combination ∫ t

0

∫
Ω

T
2p−1
2 (T2,η + uiT2,i − ∆T2 − Q)dxdη = 0.

After some integration by parts, we can then show

∫
Ω

T
2p
2 dx +

2(2p − 1)

p

∫ t

0

∫
Ω

T
p
2,iT

p
2,idxdη = 2p

∫ t

0

∫
Ω

T
2p−1
2 Qdxdη.

Hence, we get

∫
Ω

T
2p
2 dx � (2p − 1)

∫ t

0

∫
Ω

T
2p
2 dxdη + k(p), (2.4)

where k(p) =
∫ τ

0

∫
Ω
Q2pdxdη.

Inequality (2.4) is now integrated and then we take the 1
2p

power to find

(∫ t

0

∫
Ω

T
2p
2 dxdη

) 1
2p

�

(∫ t

0

∫
Ω

e(2p−1)(t−η)k(p)dxdη

) 1
2p

. (2.5)

Let p → ∞ and then (2.5) leads to

sup
[0,τ]

‖T2‖∞ � eτQM, (2.6)

where QM is the maximum value of Q(x, t) in Ω × [0, τ].

Combining (2.3) and (2.6), we obtain

sup
[0,τ]

‖T‖∞ � TM, (2.7)

where TM = TM + eτQm.
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Since our convergence result needs the bounds for
∫ t

0

∫
Ω

|∇u|2dxdη and
∫
Ω

|u|2dx, we

must derive bounds for various norms of ui, T in terms of given data.

Starting with the identity∫
Ω

ui(ui + λ|u|ui + p,i − giT − hiT
2)dx = 0,

and we have

‖u‖2 + 2λ

∫
Ω

|u|3dx � 2

∫
Ω

T 2dx + 2

∫
Ω

T 4dx � 2(TM)2|Ω|(1 + (TM)2). (2.8)

The following argument (2.9)–(2.15) is as in [12]. For completeness, we include it here.

We shall also require a bound for the gradient of ui, and we start with∫
Ω

ui,jui,jdx =

∫
Ω

ui,j(ui,j − uj,i)dx +

∫
Ω

ui,juj,idx. (2.9)

Integrating by parts, and using (1.1)2, we obtain∫
Ω

ui,juj,idx=

∮
∂Ω

ui,jujnids −
∫
Ω

ui,ijujdx =

∮
∂Ω

(uini),jujds −
∮

∂Ω

uiujni,jds

= −
∮

∂Ω

uiujni,jds. (2.10)

If Ω is convex follows that ∮
∂Ω

uiujni,jds � 0.

Thus, for convex Ω, ∫
Ω

ui,juj,idx � 0. (2.11)

For non-convex Ω with boundary of bounded curvature∫
Ω

ui,juj,idx � k0

∮
∂Ω

|u|2ds, (2.12)

where k0 depends on the Gaussian curvature of ∂Ω (see [29]).

In case Ω is non-convex, we may use the Poincaré inequality∮
∂Ω

|u|2ds � k1

∫
Ω

|u|2dx + k2

∫
Ω

|∇u|2dx, (2.13)

where the constant k2 may be small. For instance, if we introduce a vector field qi(x)

satisfying

|qi|, |qi,j | � M x ∈ Ω, qini � q0 > 0 x ∈ ∂Ω, (2.14)
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we have

q0

∮
∂Ω

|u|2ds �

∮
∂Ω

qjnj |u|2ds =

∫
Ω

qj,j |u|2dx + 2

∫
Ω

qjuiui,jdx

� M

{(
1 +

1

ε1

)∫
Ω

|u|2 + ε1

∫
Ω

|∇u|2dx
}
,

where we have used the Schwarz inequality in the final step and ε1 is an arbitrary positive

constant.

Combining (2.9) and (2.11)–(2.13), no matter whether Ω is convex or non-convex, for

k2 sufficiently small, we have∫
Ω

ui,jui,jdx �

∫
Ω

ui,j(ui,j − uj,i)dx + k3

∫
Ω

|u|2dx. (2.15)

Since equation (1.1)1 does not contain the Laplacian, we need a preliminary estimate

for the quantity J which is defined in [23] by

J(t) =

∫
Ω

ui,j(ui,j − uj,i)dx. (2.16)

Using (1.1)–(1.3), we get

J =

∫
Ω

(ui,j − uj,i)[−λ(|u|ui),j − p,ij + (giT ),j − (hiT
2),j]dx

= − λ

∫
Ω

ui,j |u|ui,jdx − λ

∫
Ω

ui,jui
ukuk,j

|u| dx + λ

∮
∂Ω

uj,i|u|uinjds −
∫
Ω

(ui,j − uj,i)gi,jTdx

−
∫
Ω

(ui,j − uj,i)giT,jdx −
∫
Ω

(ui,j − uj,i)hi,jT
2dx − 2

∫
Ω

(ui,j − uj,i)hiTT,jdx. (2.17)

Using the Schwarz inequality, we get for arbitrary ε2

J � −λ

∫
Ω

ui,j |u|ui,jdx − λ

∫
Ω

ui,jui
ukuk,j

|u| dx + λ

∮
∂Ω

uj,i|u|uinjds

+ 4ε2

∫
Ω

(ui,j − uj,i)(ui,j − uj,i)dx +
1

4ε2

∫
Ω

T,jT,jdx +
1

4ε2

∫
Ω

T 2dx +
1

4ε2

∫
Ω

T 4dx

+
(TM)2

ε2

∫
Ω

T,jT,jdx. (2.18)

Note that ∫
Ω

(ui,j − uj,i)(ui,j − uj,i)dx = 2

∫
Ω

(ui,j − uj,i)ui,jdx. (2.19)

Thus, we choose ε2 = 1
16

in (2.18), and obtain

J � −2λ

∫
Ω

ui,j |u|ui,jdx − 2λ

∫
Ω

ui,jui
ukuk,j

|u| dx + 2λ

∮
∂Ω

uj,i|u|uinjds + (8 + (32TM)2)

×
∫
Ω

T,jT,jdx + 8|Ω|(TM)2(1 + (TM)2). (2.20)
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Now, we need to bound
∮

∂Ω
uj,i|u|uinjds. We have∮

∂Ω

uj,i|u|uinjds=

∮
∂Ω

(ujnj),i|u|uids −
∮

∂Ω

ujnj,i|u|uids

= −
∮

∂Ω

ujnj,i|u|uids. (2.21)

If Ω is convex, we can get ∮
∂Ω

uj |u|uinj,ids � 0,

and thus ∮
∂Ω

uj,i|u|uinjds � 0. (2.22)

If Ω is non-convex, we write on ∂Ω that

uj,i =
∂uj
∂n

ni + aαβxi;α
∂uj
∂θβ

,

where θβ are the surface coordinates, aαβ is determined from the surface metric tensor

and xi;α are tangent vectors. Then

∮
∂Ω

|u|uiuj,injds =

∮
∂Ω

|u|uini
∂uj
∂n

njds +

∮
∂Ω

|u|uinjaαβxi;α
∂uj
∂θβ

ds.

The first term on the right is zero due to the boundary conditions, and the second term

may be integrated by parts to find that∮
∂Ω

|u|uiuj,injds=

∮
∂Ω

|u|uiaαβxi;α(njuj);βds −
∮

∂Ω

|u|uiaαβxi;αujn
j
;βds

= −
∮

∂Ω

|u|uiaαβxi;αujn
j
;βds.

Next, by the Gauss–Weingarten relationship n
j
;β = −b

ξ
βx

j
;ξ , where b

ξ
β is determined from

the second fundamental form of the surface, we find that∮
∂Ω

|u|uiuj,injds =

∮
∂Ω

|u|uixi;αujx
j
;ξb

ξαds. (2.23)

From (2.23), we have ∣∣∣∣
∮

∂Ω

∣∣∣∣ u|uiuj,injds| � k4

∮
∂Ω

|u|3ds, (2.24)

where k4 = max∂Ω{|xi;α|2, |bξα|}.
Because Ω is star-shaped, we define

m = min
∂Ω

|xknk| > 0. (2.25)
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We note that from the divergence theorem∮
∂Ω

xknk|u|3ds =

∫
Ω

(xk|u|3),kdx = 3

∫
Ω

|u|3dx + 3

∫
Ω

|u|uiui,jxjdx.

Thus, by using the arithmetic–geometric mean inequality and (2.25), for arbitrary

positive ε3, we have

m

∮
∂Ω

|u|3ds �

(
3 +

3

2ε3

) ∫
Ω

|u|3dx +
3R2ε3

2

∫
Ω

|u|ui,jui,jdx, (2.26)

where R denotes the diameter of the bounded domain Ω.

So

0 =

∮
∂Ω

|u|xjujuinids =

∫
Ω

|u|3dx +

∫
Ω

|u|xjuj,iuidx +

∫
Ω

ukuk,iuiujxj

|u| dx.

Then, by using the arithmetic–geometric mean inequality on this equation, for positive

constants ξ and µ, with ξ + µ < 2,

[2 − (ξ + µ)]

∫
Ω

|u|3dx �
R2

ξ

∫
Ω

|u|ui,jui,jdx +
R2

µ

∫
Ω

ukuk,juiui,j

|u| dx. (2.27)

Hence, employing (2.27) in (2.26),∮
∂Ω

|u|3ds �
k5R

2

m

∫
Ω

|u|ui,jui,jdx + k6R
2

∫
Ω

ukuk,juiui,j

|u| dx, (2.28)

where k5 =
3+ 3

2ε3

ξ[2−(ξ+µ)]
+ 3ε3

2
, k6 =

3+ 3
2ε3

µ[2−(ξ+µ)]
.

Combining (2.20), (2.24) and (2.28), we have

J � 2λ

(
k4k5R

2

m
− 1

) ∫
Ω

|u|ui,jui,jdx + 2λ(k4k6R
2 − 1)

∫
Ω

ukuk,juiui,j

|u| dx

+ (8 + (32TM)2)

∫
Ω

T,jT,jdx + 8|Ω|(TM)2(1 + (TM)2). (2.29)

To make (2.29) useful requires that the geometry of Ω be such that

k4k5R
2 � m, K4k6R

2 � 1.

Thus, from (2.29), we get

J � (8 + (32TM)2)

∫
Ω

T,jT,jdx + 8|Ω|(TM)2(1 + (TM)2). (2.30)

This holds whether Ω is convex or non-convex.

A combination of (2.8), (2.15), (2.16) and (2.30) leads to∫ t

0

∫
Ω

|∇u|2dxdη � (8 + (32TM)2)

∫ t

0

∫
Ω

T,jT,jdxdη + k1(t), (2.31)

where k1(t) = 2k3(T
M)2|Ω|(1 + (TM)2) + 8|Ω|(TM)2(1 + (TM)2).
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If we want to bound
∫ t

0

∫
Ω

|∇u|2dxdη, we need an a priori bound for
∫ t

0

∫
Ω
T,jT,jdxdη.

To this end, we introduce the harmonic function H , which adopts the same boundary

values as T , so we define H by

∆H = 0 (x, t) ∈ Ω × [0, τ], (2.32)

H(x, t) = l(x, t) (x, t) ∈ ∂Ω × [0, τ]. (2.33)

We then form the identity

∫ t

0

∫
Ω

(T − H)(T,η + uiT,i − ∆T − Q)dxdη = 0. (2.34)

Next, we perform several integrations on (2.34) and use the boundary values and

properties of H to see that

0 =
1

2
‖T (t)‖2 − 1

2
‖T (0)‖2 −

∫
Ω

HTdx|η=t +

∫
Ω

H0T0dx|η=t +

∫ t

0

∫
Ω

H,ηTdxdη

−
∫ t

0

∫
Ω

HuiT,idxdη +

∫ t

0

∫
Ω

T,iT,idxdη −
∫ t

0

∮
∂Ω

l
∂H

∂n
dAdη −

∫ t

0

∫
Ω

(T − H)Qdxdη,

(2.35)

where T0, H0 denote T (t)|t=0 and H(t)|t=0.

To handle the cubic term in (2.35), we let lm be the maximum value of l(x, t) on ∂Ω×[0, τ]

(lm is taken to be positive) and then since H is harmonic, we know by the maximum

principle that H � lm. Upon employing the Cauchy–Schwarz and arithmetic–geometric

mean inequalities, we derive

∫ t

0

∫
Ω

HuiT,idxdη � lm

(∫ t

0

‖u‖2dη

) 1
2
(∫ t

0

‖∇T‖2dη

) 1
2

�
1

2

∫ t

0

‖∇T‖2dη

+
1

2
l2m

∫ t

0

‖u‖2dη. (2.36)

Therefore, (2.36) can be rewritten as

∫ t

0

∫
Ω

HuiT,idxdη �
1

2

∫ t

0

‖∇T‖2dη +
1

2
l2mh1(t), (2.37)

where h1(t) = 2(TM)2|Ω|(1 + (TM)2)t.

From the arithmetic–geometric mean inequality it follows that∫
Ω

HTdx �

∫
Ω

H2dx +
1

4

∫
Ω

T 2dx,

−
∫
Ω

H0T0dx �
1

2

∫
Ω

H2
0dx +

1

2

∫
Ω

T 2
0 dx,∫ t

0

∫
Ω

H,ηTdxdη �

∫ t

0

∫
Ω

H2
,ηdxdη +

1

4

∫ t

0

∫
Ω

T 2dxdη,
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0

∫
Ω

HQdxdη �
1

2

∫ t

0

∫
Ω

H2dxdη +
1

2

∫ t

0

∫
Ω

Q2dxdη,∫ t

0

∫
Ω

TQdxdη �

∫ t

0

∫
Ω

Q2dxdη +
1

4

∫ t

0

∫
Ω

T 2dxdη,

and by the use of the Cauchy–Schwarz inequality, one finds

∫ t

0

∮
∂Ω

l
∂H

∂n
dAdη �

(∫ t

0

∮
∂Ω

l2dAdη

) 1
2

×
(∫ t

0

∮
∂Ω

(
∂H

∂n

)2

dAdη

) 1
2

.

We next employ these estimates together with (2.37) in equation (2.35) to arrive at

1

4
‖T (t)‖2 +

1

2

∫ t

0

‖∇T‖2dη � ‖T0‖2 + ‖H‖2 +
1

2
‖H0‖2 +

∫ t

0

‖H,η‖2dη +

∫ t

0

‖H‖2dη

+
3

2

∫ t

0

‖Q‖2dη +

(∫ t

0

∮
∂Ω

l2dAdη

) 1
2

×
(∫ t

0

∮
∂Ω

(
∂H

∂n

)2

dAdη

) 1
2

+
1

2

∫ t

0

‖T‖2dη

+
1

2
l2mh1(t). (2.38)

In order to obtain an a priori estimate, we need to demonstrate that the terms involving

H are bounded by the given data. We will use the following Rellich identity

0 =

∫
Ω

xiH,i∆Hdx.

Using integration by parts, we can find

0 =

∫
Ω

xiH,i∆Hdx = −
∫
Ω

|∇H |2dx −
∫
Ω

xiH,ijH,jdx +

∮
∂Ω

xiH,iH,jnjdA

= −
∫
Ω

|∇H |2dx +
3

2

∫
Ω

H,jH,jdx − 1

2

∮
∂Ω

xiH,jH,jnidA +

∮
∂Ω

xiH,iH,jnjdA.

We can get that

1

2

∫
Ω

|∇H |2dx − 1

2

∮
∂Ω

xiH,jH,jnidA +

∮
∂Ω

xiH,iH,jnjdA = 0. (2.39)

Since

H,i =
∂H

∂n
ni + si∇sH,

where the normal and tangential vectors to ∂Ω are n and s, respectively, and ∇sH is the

tangential derivative, we have

1

2

∮
∂Ω

xiH,jH,jnidA =
1

2

∮
∂Ω

xi
(

∂H

∂n

)2

nidA +
1

2

∮
∂Ω

xi|∇sH |2nidA,∮
∂Ω

xiH,iH,jnjdA =

∮
∂Ω

xi
(

∂H

∂n

)2

nidA +

∮
∂Ω

xisi∇sH
∂H

∂n
dA.
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Thus, (2.39) can be rewritten as

1

2

∫
Ω

|∇H |2dx +
1

2

∮
∂Ω

xi
(

∂H

∂n

)2

nidA =
1

2

∮
∂Ω

xi|∇sH |2nidA −
∮

∂Ω

xisi∇sH
∂H

∂n
dA.

If we assume Ω is star-shaped with respect to the region and set min∂Ω |xini| = m, then

there exist positive constants c1 and c2 such that

∫
Ω

|∇H |2dx + c1

∮
∂Ω

(
∂H

∂n

)2

dA � c2

∮
∂Ω

|∇sH |2dA. (2.40)

Moreover, we have, for any positive eigenvalue of the membrane problem

∆H + λH = 0 x ∈ Ω,

H = h x ∈ ∂Ω.

We have

λ

∫
Ω

H2dx = −
∮

∂Ω

H
∂H

∂n
dA +

∫
Ω

H,iH,idx,

which results in the inequality

∫
Ω

H2dx �
1

2λ

∮
∂Ω

H2dA +
1

2λ

∮
∂Ω

(
∂H

∂n

)2

dA +
1

λ

∫
Ω

H,iH,idx.

In view of (2.40), we obtain

∫
Ω

H2dx � c3

∮
∂Ω

H2dA + c4

∮
∂Ω

|∇sH |2dA, (2.41)

where c3 and c4 are computable constants. Recall that H = l on the boundary of Ω, so

(2.41) shows that
∫
Ω
H2dx is bounded by the data.

By integrating (2.41) with respect to t, we also obtain

∫ t

0

∫
Ω

H2dxdη � c3

∫ t

0

∮
∂Ω

H2dAdη + c4

∫ t

0

∮
∂Ω

|∇sH |2dAdη, (2.42)

and from (2.40), an integration in t gives

c1

∫ t

0

∮
∂Ω

(
∂H

∂n

)2

dAdη � c2

∫ t

0

∮
∂Ω

|∇sH |2dA. (2.43)

Differentiating (2.32) and (2.33) with respect to t, we see that

∆H,t = 0 x ∈ Ω × [0, τ],

H,t = h,t x ∈ ∂Ω × [0, τ].
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Thus, we can obtain a bound for
∫ t

0

∫
Ω
H,ηH,ηdxdη in a similar fashion, leading to the

result ∫ t

0

∫
Ω

H2
,ηdxdη � c5

∫ t

0

∮
∂Ω

H2
,ηdAdη + c6

∫ t

0

∮
∂Ω

|∇sH,η|2dAdη. (2.44)

From (2.38), we can see

‖T (t)‖2 + 2

∫ t

0

‖∇T‖2dη � D1(t) + 2

∫ t

0

∫
Ω

T 2dxdη, (2.45)

where D1(t) denotes the data items in (2.38).

Thus, ∫ t

0

‖∇T‖2dη �
D1(t)

2
+ (TM)2|Ω|t = h3(t). (2.46)

Inserting (2.46) into (2.31), we get∫ t

0

∫
Ω

|∇u|2dxds � h4(t), (2.47)

where h4(t) = (8 + (32TM)2)h3(t) + k1(t).

3 Convergence as the Forchheimer coefficient tends to zero

Now, let (ui, p, T ) be a solution to the boundary initial-value problem for the Forchheimer

equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui + λ | u | ui = −p,i + giT + hiT
2 (x, t) ∈ Ω × [0, τ],

∂ui
∂xi

= 0 (x, t) ∈ Ω × [0, τ],

∂T

∂t
+ ui

∂T

∂xi
= ∆T + Q (x, t) ∈ Ω × [0, τ],

(3.1)

uini = 0, T = l(x, t) (x, t) ∈ ∂Ω × [0, τ], (3.2)

T (x, 0) = T0(x) x ∈ Ω. (3.3)

Furthermore, let (vi, q, S) be a solution to the corresponding Darcy problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vi = −q,i + giS + hiS
2 (x, t) ∈ Ω × [0, τ],

∂vi
∂xi

= 0 (x, t) ∈ Ω × [0, τ],

∂S

∂t
+ vi

∂S

∂xi
= ∆S + Q (x, t) ∈ Ω × [0, τ],

(3.4)

vini = 0, S = l(x, t) (x, t) ∈ ∂Ω × [0, τ], (3.5)

S(x, 0) = T0(x) x ∈ Ω. (3.6)

The object of this section is to demonstrate solutions of (3.1) converge to solutions of

(3.4) as λ → 0.
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We define the difference variables wi, π and θ by

wi = ui − vi, π = p − q, θ = T − S (3.7)

and then (wi, π, θ) satisfies the boundary initial-value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi + λ | u | ui = −π,i + giθ + hi(S + T )θ (x, t) ∈ Ω × [0, τ],

∂wi

∂xi
= 0 (x, t) ∈ Ω × [0, τ],

∂θ

∂t
+ wi

∂T

∂xi
+ vi

∂θ

∂xi
= ∆θ (x, t) ∈ Ω × [0, τ],

(3.8)

wini = θ = 0 (x, t) ∈ ∂Ω × [0, τ], (3.9)

wi(x, 0) = θ(x, 0) = 0 x ∈ Ω. (3.10)

We then multiply (3.8)1 by wi and integrate over Ω to find

‖w‖2 + λ

∫
Ω

|u|uiwidx =

∫
Ω

(giθ + hi(S + T )θ)widx. (3.11)

Using the Schwarz inequality, we obtain

‖w‖2 � (1 + Xm)‖θ‖2 + 2λ

(∫
Ω

|u|4dx
) 1

2
(∫

Ω

wiwidx

) 1
2

, (3.12)

where Xm = 2TM .

We can get the same result as (2.8)

‖v‖2 � 2

∫
Ω

S2dx + 2

∫
Ω

S4dx � 2(TM)2|Ω|(1 + (TM)2). (3.13)

Combining (2.8) and (3.13), we get

‖w‖2 � 2(‖u‖2 + ‖v‖2) � k2, (3.14)

where k = (8(TM)2|Ω|(1 + (TM)2))
1
2 .

Combining (3.12) and (3.14) , we obtain

‖w‖2 � (1 + Xm)‖θ‖2 + 2kλ

(∫
Ω

|u|4dx
) 1

2

. (3.15)

Next, we multiply (3.8)3 by θ and integrate over Ω to find

1

2

d

dt
‖θ‖2 +

∫
Ω

wi

∂T

∂xi
θdx +

∫
Ω

θvi
∂θ

∂xi
dx =

∫
Ω

θ∆θdx,

thus, we have

1

2

d

dt
‖θ‖2 = −

∫
Ω

|∇θ|2dx +

∫
Ω

wiTθ,idx. (3.16)
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Since we have sup[0,τ] |T | � TM , we obtain

d

dt
‖θ‖2 �

(TM)2

2

∫
Ω

w2dx. (3.17)

Combining (3.15) and (3.17), we get

d

dt
‖θ‖2 � Ym‖θ‖2 + (TM)2kλ

(∫
Ω

|u|4dx
) 1

2

, (3.18)

where Ym = 1
2
(1 + Xm)(TM)2.

An integration of (3.18) leads to

‖θ‖2 � (TM)2kλeYmt

∫ t

0

(∫
Ω

|u|4dx
) 1

2

dη. (3.19)

We must give a bound for
∫ t

0

(∫
Ω

|u|4dx
) 1

2 dη.

Using the Ladyzenskaya inequality, or using the result (B.17) in [12] by choosing δ = 1,

we can get

(∫
Ω

|u|4dx
) 1

2

� M

{
5

4
‖u‖2 +

3

4
‖∇u‖2

}
. (3.20)

A combination of (2.8), (2.47) and (3.20) leads to

∫ t

0

(∫
Ω

|u|4dx
) 1

2

dη � k2(t), (3.21)

where k2(t) = 5
2
M(TM)2|Ω|(1 + (TM)2) + 3

4
Mh4(t).

We can obtain

‖θ‖2 � (TM)2kλeYmtk2(t). (3.22)

Inserting (3.21) and (3.22) into (3.15), we have∫ t

0

‖w‖2dη � (1 + Xm)(TM)2kλeYmt

∫ t

0

k2(η)dη + kλk2(t). (3.23)

Inequalities (3.22) and (3.23) demonstrate the convergence of ui to vi, T to S as λ → 0

in the indicated measure.

4 Conclusions

In this paper, we only study the structural stability for the resonant porous penetrative

convection in a bounded domain Ω, and we get the result of convergence of solutions for

the Fochheimer coefficient. Following the method proposed in this paper, we can easily

get the result of continuous dependence for the Fochheimer coefficient. For the case of the

unbounded domain, the method used would be absolutely new, we will consider this case
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in another paper. The study of the structural stability of these equations in an unbounded

domain would be interesting.
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