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Abstract For a non-negative and non-trivial real-valued continuous function h on Ω̄ × [0, ∞) such that
h(x, 0) = 0 for all x ∈ Ω, we study the boundary-value problem

Δpu = h(x, u) in Ω,

u = ∞ on ∂Ω,

}
(BVP)

where Ω ⊆ R
N , N � 2, is a bounded smooth domain and Δp := div(|Du|p−2Du) is the p-Laplacian.

This work investigates growth conditions on h(x, t) that would lead to the existence or non-existence of
distributional solutions to (BVP). In a major departure from past works on similar problems, in this
paper we do not impose any special structure on the inhomogeneous term h(x, t), nor do we require any
monotonicity condition on h in the second variable. Furthermore, h(x, t) is allowed to vanish in either
of the variables.
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1. Introduction

Let Ω be a bounded smooth domain in R
N for N � 2, let f : [0,∞) → [0,∞) be

a continuous function with f(0) = 0, and let ω ∈ C(Ω, [0,∞)). The boundary-value
problem

Δu = ω(x)f(u) in Ω,

u = ∞ on ∂Ω,

}
(1.1)

has been investigated extensively. The boundary condition is understood in the sense
that u(x) → ∞ as x → ∂Ω. Solutions of (1.1), when they exist, are referred to as bound-
ary blow-up solutions, explosive solutions or large solutions. It appears that this type
of problem was first considered by Bieberbach in 1916 (see [3]). He studied (1.1) in the
plane (N = 2) with f(t) = exp(t) in order to address a question that arose in mathemat-
ical physics. Later, a geometric problem prompted Radmacher [41] to study the same
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problem in space (N = 3). In their pioneering works, Keller [23] and Osserman [40]
identified a necessary and sufficient condition on a smooth increasing function f(t) for
(1.1) to admit a classical solution in Ω when ω is a positive constant. In the literature this
condition has come to be known as the Keller–Osserman condition. Since then, numerous
existence results for (1.1) have been investigated when f is a smooth increasing function
and the potential ω ∈ C(Ω) is non-negative. For instance, in [24] Lair shows that the
Keller–Osserman condition remains a necessary and sufficient condition for existence of
a solution to (1.1) provided that ω ∈ C(Ω̄, [0,∞)) satisfies the so-called circumferen-
tially positive (or c-positive) condition, namely, if ω(x0) = 0 for some x0 ∈ Ω, then
there is a domain O with x0 ∈ O ⊂⊂ Ω such that ω is positive on the boundary ∂O
(see [25]). In recent years several questions related to (1.1) have been studied. Inves-
tigations on existence, asymptotic boundary behaviour and uniqueness have received
particular attention. Here we mention a few of the works of Bandle and Marcus [1,2],
Dindoš [10], Lazer and McKenna [26, 27], Loewner and Nirenberg [29], Ĉırstea and
Rădulescu [5,6], Garćıa-Milián et al . [14–16], Lair [24], López-Gómez [30–34], Marcus
and Véron [35,36], Matero [37,38], Véron [45,46], Zhang [47], and Zhang et al . [48].
We refer the reader to the monograph [42] for an extensive list of references.

We should mention that extensive work has also been done when the Laplacian in
(1.1) is replaced by other elliptic operators. We cite the works of Du and Guo [11], and
Gladiali and Porru [18] that investigate (1.1) when the Laplace operator is replaced by
the p-Laplace operator, and for equations involving the Monge–Ampère operator we refer
the reader to [19,38], while [22,43] deal with (1.1) with the Laplace operator replaced
by the k-Hessian operator.

Some other important investigations related to problem (1.1) for non-monotonic non-
linearities with special structure are [4,15,30]. Partly motivated by this work, in this
paper we seek to establish the existence of boundary blow-up weak solutions to equations
related to the p-Laplacian. To state the problem, let h : Ω̄ × [0,∞) → [0,∞) be a contin-
uous function. In this work we wish to study some general conditions on h under which
the following boundary-value problem admits a local weak solution u ∈ W 1,p

loc (Ω)∩C(Ω):

Δpu = h(x, u) in Ω,

u = ∞ on ∂Ω.

}
(1.2)

Here, 1 < p < ∞ and Δpu := div(|Du|p−2Du) is the p-Laplacian. We would like to
point out that, unlike the work available in the literature of which we are aware, in
this paper we consider problem (1.2) for a fairly general inhomogeneous term h(x, t).
In particular, we do not require h(x, t) to be monotonic in the second variable, we
allow h(x, t) to vanish in Ω × (0,∞), and no special structure is imposed on h(x, t).
We introduce an appropriate Keller–Osserman-type condition that reduces to the stan-
dard Keller–Osserman condition when the inhomogeneous term has the special form
h(x, t) = ω(x)f(t) for increasing f(t). In the event that h(x, t) = ω(x)f(t), where f(t)
is increasing, the main tool used in the investigation of (1.2) is the comparison principle
(see [7,11,38,39]). While the comparison principle is not available when the inhomogen-
eous term h(x, t) is not monotonic, we develop a useful minimality principle that serves
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as a substitute for the comparison principle. This is motivated by the recent paper [12]
in which Dumont et al . consider the problem of existence of boundary blow-up solutions
to problem (1.1) with ω(x) ≡ 1, but without requiring f to be non-decreasing. In [12]
the authors use a minimality principle as a replacement to the comparison principle.

The paper is organized as follows. In § 2, we will fix some notation, provide some basic
definitions and recall some useful results that will be needed in the paper. In this section
we also develop a minimality principle that will be used as an important tool that serves
as a replacement to the comparison principle in the investigation of the main problem
when h(x, t) is not necessarily monotonic. In § 3 we identify a condition, referred to as
the Keller–Osserman condition on autonomous, but non-monotonic, nonlinearities g(t),
and we use this condition to show existence of boundary blow-up solutions on balls of
arbitrarily small radii. This is a refinement of the standard Keller–Osserman condition
used when g(t) is increasing. In § 4 we introduce a useful condition, called the lower
Keller–Osserman condition, that is useful for studying existence of boundary blow-up
solutions of (1.2) with non-autonomous and non-monotonic inhomogeneous term h(x, t).
In § 5 the upper Keller–Osserman condition on h will be introduced and this will be shown
to be a necessary condition for existence of boundary blow-up solutions to (1.2). In this
section we will introduce yet another condition on the inhomogeneous term h(x, t) that if
satisfied at a boundary point of Ω, is such that problem (1.2) would fail to admit a positive
solution. In § 6 there is a brief discussion of the lower (upper) Keller–Osserman conditions
vis-a-vis the special structure inhomogeneous term h(x, t) = ω(x)f(t). Here f is not
necessarily monotonic. In this case, the lower and upper Keller–Osserman conditions
become comparable and lead to a necessary and sufficient condition on f for problem
(1.2) to admit a positive boundary blow-up solution. Finally, Appendix A provides an
example of a specific inhomogeneous term h(x, t) that is used to illustrate the main
results of the paper. We also use this section to verify some side comments made in the
paper.

2. Preliminaries

We begin by recalling some standard notation. Given p > 1, we set

p′ :=
p

p − 1
and p∗ :=

pN

N − p
if 1 < p < N and p∗ = ∞ otherwise.

Let h : Ω × R → [0,∞) be a Carathéodory function, that is, a function such that x �→
h(x, t) is measurable in Ω for each t ∈ R, and t �→ h(x, t) is continuous on R for almost
every (a.e.) x ∈ Ω. We use Nh to denote the Nemyitskii operator Nhu(x) = h(x, u(x))
for any given measurable function u.

The focus of our investigation in this paper is the following equation:

Δpu = h(x, u) (x ∈ Ω). (2.1)

Solutions of (2.1) will be understood in the distributional sense. To be precise, we recall
the following notion.
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Definition 2.1. We say that u ∈ W 1,p(Ω) ∩ C(Ω) is a weak subsolution of (2.1) in Ω

if Nhu ∈ Lp′
(Ω), and the inequality∫

Ω

|Du|p−2Du · Dϕ � −
∫

Ω

h(x, u)ϕ (2.2)

holds for all ϕ ∈ W 1,p
0 (Ω) with ϕ � 0 in Ω. Likewise, u ∈ W 1,p(Ω) ∩ C(Ω) is called a

weak supersolution in Ω if Nhu ∈ Lp′
(Ω) and the inequality in (2.2) is reversed for all

ϕ ∈ W 1,p
0 (Ω) with ϕ � 0 in Ω. Finally, we say that u is a weak solution of (2.1) in Ω if

and only if u is both a weak subsolution and a weak supersolution of problem (2.1) in Ω.
Given ϑ ∈ W 1,p(Ω), let us consider the boundary-value problem

Δpu = h(x, u) in Ω,

u = ϑ on ∂Ω.

}
(2.3)

A function u ∈ W 1,p(Ω) ∩ C(Ω) is said to be a weak subsolution (supersolution) of
problem (2.3) in Ω if and only if u is a weak subsolution (supersolution) of problem (2.1)
in Ω such that (u − ϑ)+ ∈ W 1,p

0 (Ω) ((u − ϑ)− ∈ W 1,p
0 (Ω)). By a weak solution u of (2.3)

in Ω we mean a function u that is both a weak subsolution and a weak supersolution of
(2.3) in Ω.

A closely related concept that is more convenient in the context of problem (1.2) is
that of a weak local solution. More generally, we say that u is a weak local subsolution
(supersolution or solution) of (2.1) in Ω if and only if u ∈ W 1,p

loc (Ω) ∩ C(Ω) and u is a
weak subsolution (supersolution or solution) of (2.1) in O for every open set O ⊂⊂ Ω.

Finally, we say that u ∈ W 1,p
loc (Ω) ∩ C(Ω) is a weak local solution (subsolution or

supersolution) of problem (1.2) in Ω if and only if u is a weak local solution (subsolution
or supersolution) of (2.1) in Ω such that u = ∞ on ∂Ω.

If u is a subsolution (or a supersolution) of (2.1) in Ω, we indicate this by writing

Δpu � h(x, u) in Ω (or Δpu � h(x, u) in Ω).

Let us now suppose that h satisfies the following condition.

(G) Given a compact interval I ⊆ R, there is a function gI ∈ Lq(Ω) for some q > (p∗)′

such that
|h(x, t)| � gI(x) for a.e. x ∈ Ω and for all t ∈ I.

We recall the following theorem, whose proof can be found in [28].

Theorem 2.2. Let h : Ω ×R → R be a Carathéodory function that satisfies condition
(G), and let ϑ be a given constant. Suppose that u∗ ∈ W 1,p(Ω) is a weak subsolution
of (2.3) in Ω, and that u∗ ∈ W 1,p(Ω) is a weak supersolution of (2.3) in Ω such that
u∗ � u∗ in Ω. Then problem (2.3) admits a minimal weak solution u ∈ W 1,p(Ω) such
that u∗ � u � u∗ in Ω, in the sense that if w is a weak solution of (2.3) such that
u∗ � w � u∗ in Ω, then u � w in Ω.
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We now deduce the following minimality principle from the above theorem.

Theorem 2.3 (minimality principle). Under the assumptions given in Theo-
rem 2.2, there is a weak solution u ∈ W 1,p(Ω) of (2.3) with the following properties.

(i) u∗ � u in Ω.

(ii) Given any subdomain O ⊆ Ω and any weak supersolution w ∈ W 1,p(O) of (2.1) in
O such that u∗ � w in O and u � w on ∂O, we have u � w in O.

(iii) u is unique.

Proof. Let u ∈ W 1,p(Ω) be as given by Theorem 2.2 with u∗ � u � u∗ in Ω. We
will show that u has the property stated in part (ii) and that u is the desired unique
solution, thus completing the proof. To this end, let O ⊆ Ω be a given subdomain and
suppose that w is a weak supersolution of (2.1) in O with the stated properties. Let us
set H(x, t) := max{h(x, t), h0(x, t)}, where

h0(x, t) :=

⎧⎪⎨
⎪⎩

h(x, u∗(x)) if x ∈ O and t < u∗(x),

h(x, t) if x ∈ Ω \ O, or if x ∈ O and u∗(x) � t � w(x),

h(x, w(x)) if x ∈ O and t > w(x).

Let us first note that H is a Carathéodory function that satisfies condition (G). Fur-
thermore, we observe that u∗ is a weak subsolution and u is a weak supersolution of the
Dirichlet problem

Δpz = H(x, z) in Ω,

z = ϑ on ∂Ω.

}
(2.4)

By Theorem 2.2, problem (2.4) admits a solution v in Ω such that u∗ � v � u in
Ω, and in particular, u∗ � v � u∗ in Ω. We wish to show that v � w in O. Note
that 0 � (v − w)+ � (u − w)+ in O and since (u − w)+ ∈ W 1,p

0 (O) it follows that
(v − w)+ ∈ W 1,p

0 (O) (see [20]). Let Q := {x ∈ O : v(x) > w(x)}. Using (v − w)+ as a
test function we see that∫

Q
|Dv|p−2Dv · D(v − w) =

∫
O

|Dv|p−2Dv · D(v − w)+

= −
∫

O
H(x, v)(v − w)+

� −
∫

O
h(x, w)(v − w)+. (2.5)

On the other hand, recalling that Δpw � h(x, w) in O, we find that∫
Q

|Dw|p−2Dw · D(v − w) =
∫

O
|Dw|p−2Dw · D(v − w)+

� −
∫

O
h(x, w)(v − w)+. (2.6)
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Putting (2.5) and (2.6) together, we find that

0 �
∫

Q
(|Dv|p−2Dv − |Dw|p−2Dw) · (Dv − Dw) � 0. (2.7)

The lower bound in (2.6) is a consequence of the following, easily verifiable, inequality:

(|η|p−2η − |ζ|p−2ζ) · (η − ζ) > 0 ∀η, ζ ∈ R
N , η �= ζ. (2.8)

Because of the strict inequality in (2.8) for η �= ζ, we conclude that in fact D(v − w) = 0
almost everywhere on Q. Therefore, D(v − w)+ = 0 almost everywhere in O, so that
(v − w)+ = c for some constant c � 0. Since (v − w)+ ∈ W 1,p

0 (O), it follows that
(v − w)+ = 0 in O, and thus v � w in O. As a consequence u∗ � v � w in O, and hence
we have H(x, v) = h(x, v) in Ω. Therefore, v is actually a solution of problem (2.3) such
that u∗ � v � u∗ in Ω. Since u is a minimal solution, Theorem 2.2 shows that u � v in
Ω. In summary, we find that u = v in Ω. In particular, u = v � w in O, as desired. The
uniqueness of u is clear from part (ii) of the theorem. �

Remark 2.4. Suppose that β1 and β2 are supersolutions of problem (2.3) such that
u∗ � βi in Ω for i = 1, 2. Let u1 and u2 be the minimal solutions of problem (2.3) such
that u∗ � ui � βi in Ω for i = 1, 2 as given in Theorem 2.2. Since u∗ � u2 in Ω and
u1 = u2 on ∂Ω, an application of Theorem 2.3 (ii) with O := Ω shows that u1 � u2 in
Ω. Interchanging the roles of u1 and u2, we also have u2 � u1 in Ω. Therefore, the weak
solution u ∈ W 1,p(Ω) given in Theorem 2.3 depends on the weak subsolution u∗ and the
boundary data ϑ, and not on the choice of the weak supersolution u∗ in Theorem 2.2.
Consequently, we will refer to the unique weak solution u ∈ W 1,p(Ω) of problem (2.3)
that satisfies properties (i) and (ii) of Theorem 2.3 as the minimal weak solution of (2.3)
relative to the subsolution u∗.

The next lemma will be useful in establishing the existence of boundary blow-up solu-
tions of (1.2).

Lemma 2.5. Any locally uniformly bounded sequence {uk} of solutions of (2.1)
in W 1,p(Ω) contains a subsequence that converges locally uniformly to a solution
u ∈ W 1,p

loc (Ω) ∩ C(Ω) of problem (2.1).

Proof. Let {uk} be a locally uniformly bounded sequence of solutions of (2.1). Given
an open set O ⊂⊂ Ω, there is a constant M depending on O such that

‖uk‖L∞(O) � M, k = 1, 2, . . . .

Consequently, there are positive constants α > 0 and C > 0, depending on p, N , M only,
and O (see [8]) such that

|Duk(x)| � C and |Duk(x) − Duk(y)| � C|x − y|α, x, y ∈ O, k = 1, 2, . . . .

By virtue of the Arzelà–Ascoli theorem, we can extract a subsequence, still denoted by
{uk}, such that uk → u and Duk → v for some u ∈ C1,α(O) and v ∈ (Cα(O))N uniformly
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on O. In fact, we have v = Du. Therefore, a Cantor diagonalization argument applied
to an exhaustion {Oj} of Ω with Oj ⊂⊂ Oj+1 ⊂⊂ Ω shows that there is u ∈ C1,α

loc (Ω)
such that uk → u and Duk → Du locally uniformly on Ω. To show that u is a solution of
problem (2.1), we take ϕ ∈ C∞

c (Ω) and set O := supp(ϕ) ⊂⊂ Ω. Let us first recall some
useful inequalities (see [9]) that hold for all ξ, ζ ∈ R

N :

||ξ|p−2ξ − |ζ|p−2ζ| �
{

C|ξ − ζ|(|ξ| + |ζ|)p−2 if p � 2,

C|ξ − ζ|p−1 if 1 < p � 2,
(2.9)

where C is a positive constant independent of ξ and ζ. Using (2.9), it follows that

|Duk|p−2Duk · Dϕ → |Du|p−2Du · Dϕ

uniformly in O. As a consequence of this, and the dominated convergence theorem, we
have

−
∫

O
h(x, u)ϕ = − lim

k→∞

∫
O

h(x, uk)ϕ = lim
k→∞

∫
O

|Duk|p−2Duk · Dϕ

=
∫

O
|Du|p−2Du · Dϕ.

Thus, u ∈ W 1,p
loc (Ω) ∩ C1,α

loc (Ω) is indeed a solution of (2.1) as claimed. �

Let us consider the following boundary-value problem in balls B:

Δpu = g(u) in B,

u = ϑ on ∂B.

}
(2.10)

As a first application of the minimality principle, we prove the existence of a radial
solution to problem (2.10).

Lemma 2.6. Let g : [0,∞) → [0,∞) be any continuous function such that g(0) = 0.
Given any ball B and a constant ϑ > 0, the minimal solution u of problem (2.10) with
respect to the subsolution u∗ = 0 is radial and belongs to C1,α(B) for some 0 < α < 1.

Proof. Without loss of generality, we assume that B is a ball centred at the origin.
Note that u∗ ≡ 0 and u∗ = ϑ are a subsolution and a supersolution of (2.10), respectively.
Let u be the minimal solution of (2.10) with respect to u∗ such that 0 � u � ϑ. Note that,
by [8], we have u ∈ C1,α(B). Let A be any orthogonal matrix and define v(x) = u(Ax).
Then computation shows that

Dv(x) = ATDu(Ax) and v = ϑ on ∂B.
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Given any ϕ ∈ W 1,p
0 (B), let ψ(x) = ϕ(ATx). On using a change of variables, and writing

〈·, ·〉 for the Euclidean inner product, we have∫
B

|Dv|p−2〈Dv,Dϕ〉 =
∫

B

|Du|p−2〈ATDu, Dϕ〉

=
∫

B

|Du|p−2〈Du, ADϕ〉

=
∫

B

|Du|p−2〈Du, Dψ〉 = −
∫

B

g(u)ψ = −
∫

B

g(v)ϕ.

Thus, v is a solution of (2.10) such that u∗ = 0 � v in B. Since v = u on ∂B, by the
minimality principle, we see that u(x) � u(Ax). Likewise, we see that u(x) � u(ATx) in
B. Thus, indeed u(x) = u(Ax) in B, showing that u is radial. �

The minimality principle (Theorem 2.3), and Lemma 2.6 can now be used to establish
the following useful result on existence of a blow-up solution to problem (1.2).

Lemma 2.7. Let Ω ⊆ R
N be a bounded domain and let h ∈ C(Ω × R, [0,∞)) satisfy

condition (G). Let u∗ ∈ W 1,p(Ω) ∩ L∞(Ω) be a weak subsolution of (2.1) in Ω and let
u∗ ∈ W 1,p

loc (Ω) ∩ C(Ω) be a weak local supersolution of (1.2) in Ω such that u∗ � u∗ in
Ω. There is then a minimal weak local solution u ∈ W 1,p

loc (Ω) ∩ C(Ω) of (1.2) such that
u∗ � u � u∗ in Ω, in the sense that if w ∈ W 1,p

loc (Ω) ∩ C(Ω) is any weak local solution of
(1.2) such that u∗ � w, then u � w in Ω. Moreover, if Ω is a ball and h(x, t) := g(t) is
independent of x, where g(0) = 0, then the minimal solution relative to u∗ = 0 is radial.

Proof. Let 
 := ess supΩ u∗ and for each positive integer j we consider the boundary-
value problem

Δpu = h(x, u) in Ω,

u = 
 + j on ∂Ω.

}
(Dj)

For each positive integer j we note that u∗ � wj in Ω̄, where wj := 
 + j, and that wj is
a supersolution of (Dj). By the minimality principle (Theorem 2.3), we pick the minimal
solution uj ∈ W 1,p(Ω) of problem (Dj) relative to u∗, so that u∗ � uj � 
 + j in Ω̄.
Since, for arbitrary and sufficiently small δ > 0, u∗ is a supersolution of problem (Dj)
in {x ∈ Ω : dist(x, ∂Ω) > δ}, by Theorem 2.3 (ii) we conclude that in fact u∗ � uj � u∗

in Ω for any j. Let us now observe that uj+1 is a supersolution of (Dj) such that
u∗ � uj+1 in Ω, and uj � uj+1 on ∂Ω. Since uj is the minimal solution of problem
(Dj) relative to u∗, again using Theorem 2.3 (ii), we conclude that uj � uj+1 in Ω̄.
Thus, we have constructed a non-decreasing sequence {uj} of solutions of problem (2.1)
in W 1,p(Ω) such that u∗ � uj � u∗ in Ω for all j = 1, 2, . . . . By Lemma 2.5, we
conclude that {uj} contains a subsequence that converges locally uniformly to a solution
u ∈ W 1,p

loc (Ω)∩C(Ω). Consequently, we have u∗ � u � u∗ in Ω, and u = ∞ on ∂Ω. Thus,
u ∈ W 1,p

loc (Ω) is a solution of problem (1.2) such that u∗ � u � u∗ in Ω, as asserted. It
remains to show that u is minimal relative to u∗. So, suppose that w ∈ W 1,p

loc (Ω) ∩ C(Ω)
is a weak local solution of (1.2) such that u∗ � w in Ω. Then given any integer j ∈ N,
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there is δj > 0 sufficiently small such that 
 + j � w(x) provided that x ∈ Ω and
dist(x, ∂Ω) < δj . Since uj is a minimal solution of problem (Dj) such that uj � w on
∂Ωδj , we conclude that uj � w in Ω. Therefore, u � w in Ω, as claimed. Finally, suppose
that Ω is a ball and that h is independent of x. Then, by Lemma 2.6, each minimal
solution uj of problem (Dj) is radial, and hence the limit u is radial as well. �

Remark 2.8. In what follows Lemma 2.7 will be used when the inhomogeneous term
h(x, t) satisfies the condition h(x, 0) ≡ 0 in Ω. In this case we take u∗ ≡ 0 as a subsolution
of (2.3) and according to Lemma 2.7 one need only find a non-negative supersolution u∗

of problem (1.2) to deduce existence of a non-negative solution to (1.2).

3. The Keller–Osserman condition and existence on balls

Let us now consider g ∈ C([0,∞), [0,∞)) such that g(0) = 0 and g(c) > 0 for some c > 0.
We define Φ : (0,∞) → (0,∞] by

Φ(t) :=
∫ ∞

t

ds

(p′(G(s) − G(t)))1/p
, where G(t) :=

∫ t

0
g(ζ) dζ. (3.1)

By convention we take Φ(t) = ∞ when the integral diverges or {s ∈ [t, ∞) : G(s) = G(t)}
is a set of positive measure.

We will use the following Keller–Osserman-type condition, hereafter referred to as the
Keller–Osserman condition, on g. See [12]. A related condition appears in many different
contexts, among which we cite the pioneering work of Vazquez [44]:

lim inf
t→∞

Φ(t) = 0. (3.2)

For 1 < p < ∞ the Keller–Osserman condition (3.2) is equivalent to the following
condition:

Φ(t) < ∞ for some t � 0. (3.3)

This was shown to be the case for p = 2 in [12]. In Appendix A we show the equivalence
for 1 < p < ∞.

Remark 3.1. We remark that if g(t) > 0 for t > 0, and g is non-decreasing in (0,∞),
then for any given 1 < p < ∞, conditions (3.2) and (3.3) are both equivalent to the
condition that ∫ ∞

t

1
G(s)1/p

ds < ∞ for some t > 0. (3.4)

We refer the reader to Appendix A for a justification of this statement.

Let us now consider the following boundary blow-up problem in balls:

Δpu = g(u) in B,

u = ∞ on ∂B.

}
(3.5)

Here, B stands for a ball in R
N .

We begin with the following lemma.
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Lemma 3.2. Suppose that g satisfies the Keller–Osserman condition (3.3). There is
an R > 0 such that problem (3.5) admits a non-negative solution v ∈ W 1,p

loc (B) ∩ C1,1(B),
where B = B(x0, R) and x0 ∈ R

N .

Proof. Without loss of generality, we take x0 to be the origin. Since g satisfies the
Keller–Osserman condition, let a > 0 such that Φ(a) < ∞. Let v be the minimal solution
of the following boundary-value problem with respect to the subsolution u∗ = 0:

Δpu = g(u) in B,

u = a on ∂B,

}
(3.6)

where B = B(0, ρ) is a ball of radius ρ centred at the origin. Here ρ > 0 is a fixed positive
real number chosen such that

ρ(p − 1)
N − p

> (p′)1/pΦ(a) (3.7)

if 1 < p < N , but is arbitrary otherwise. By Lemma 2.6, v is a radial function that
belongs to C1,α(B) for some 0 < α < 1. Let w(r) := v(x), where r = |x|. Then w satisfies
the initial-value problem

(rN−1|w′|p−2w′)′ = rN−1g(w(r)), w(0) = v(0), w′(0) = 0, 0 < r < R, (3.8)

where this equation is understood in the weak sense. Here (0, R) is the maximal interval
of existence of the function w. We note that R > ρ and w(ρ) = a. From (3.8) we see that
(see [21, Theorem 3.1.4])

rN−1|w′|p−2w′ =
∫ r

0
tN−1g(w(t)) dt. (3.9)

It follows that w′ > 0. Therefore, we have

w′(r) =
(

r1−N

∫ r

0
tN−1g(w(t)) dt

)1/(p−1)

,

and we note that this implies that v ∈ C1,1(0, R).
As a consequence of (3.8) we see that rN−1(w′)p−1 is non-decreasing, and hence

r(N−1)/(p−1)w′ is non-decreasing. Multiplying (3.9) first by r(N−1)/(p−1)w′(r) and using
the monotonicity of r(N−1)/(p−1)w′ leads to

rp(N−1)/(p−1)(w′(r))p = r(N−1)/(p−1)w′(r)
∫ r

0
tN−1g(w(t)) dt

�
∫ r

0
tp(N−1)/(p−1)g(w(t))w′(t) dt

�
∫ r

ρ

tp(N−1)/(p−1)g(w(t))w′(t) dt

� ρp(N−1)/(p−1)
∫ r

ρ

g(w(t))w′(t) dt

= ρp(N−1)/(p−1)[G(w(r)) − G(w(ρ))].
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Therefore, for any r ∈ (ρ, R) we have the following inequality:

w′(r)
(p′(G(w(r)) − G(w(ρ))))1/p

� 1
(p′)1/p

(
ρ

r

)(N−1)/(p−1)

. (3.10)

Integrating (3.10) on (ρ, r), we find that∫ w(r)

w(ρ)

1
(p′(G(t) − G(w(ρ))))1/p

dt � 1
(p′)1/p

ρ(N−1)/(p−1)
∫ r

ρ

t−(N−1)/(p−1) dt. (3.11)

That is, for any ρ < r < R we have

1
(p′)1/p

ρ(N−1)/(p−1)
∫ r

ρ

t−(N−1)/(p−1) dt �
∫ w(r)

w(ρ)

dt

(p′(G(t) − G(w(ρ))))1/p

�
∫ ∞

w(ρ)

dt

(p′(G(t) − G(w(ρ))))1/p

< Φ(w(ρ))

= Φ(a). (3.12)

Now, suppose that R = ∞. Note that

lim
r→∞

ρ(N−1)/(p−1)

(p′)1/p

∫ r

ρ

t−(N−1)/(p−1) dt =

⎧⎨
⎩

∞ if p � N,
ρ(p − 1)

(p′)1/p(N − p)
if 1 < p < N.

This, together with (3.7) and (3.12), provides the needed contradiction. Therefore, we
conclude that R < ∞, and hence w(R) = ∞ or w′(R) = ∞. In either case, it follows
that w(R) = ∞. To see this, note that if w′(R) = ∞, then we conclude from (3.9)
that w(R) = ∞, for otherwise tN−1g(w(t)) will be bounded in (0, R), and therefore the
integral in (3.9) will be finite. �

Lemma 3.3. Suppose that g satisfies the Keller–Osserman condition (3.3). Then
problem (3.5) admits a weak local solution in balls of arbitrarily small radius.

Proof. Lemma 3.2 shows that problem (3.5) has a solution in some ball. Let

R = inf{ρ > 0: problem (3.5) has a solution in a ball of radius ρ}.

We claim that R = 0. Suppose that R > 0. By the Keller–Osserman condition (3.2), we
choose a > 0 large enough such that

Φ(a) <
1

(p′)1/p

(
R

2

)(N−1)/(p−1) ∫ R

R/2
t−(N−1)/(p−1) dt.

Consider the minimal solution v of problem (3.6) in the ball B(0, R/2) with subsolution
u∗ = 0 and supersolution u∗ = a. The definition of R allows us to extend the solution v

into the ball B(0, R). Let φ(r) := v(x), where r = |x|. Then φ is a solution of

(rN−1|φ′|p−2φ′)′ = rN−1g(φ(r)), φ(0) = v(0), φ′(0) = 0, 0 < r < R.
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We note that φ(R/2) = a. Proceeding as in the proof of Lemma 3.2, inequality (3.12)
shows that

1
(p′)1/p

(
R

2

)(N−1)/(p−1) ∫ R

R/2
t−(N−1)/(p−1) dt � Φ(φ(R/2)) = Φ(a).

However, this contradicts the choice of a, and hence we must have R = 0, as claimed. �

4. The lower Keller–Osserman condition

Remark 4.1. From hereon we will assume, without further mention, that the inhomo-
geneous term h(x, t) in problem (1.2) satisfies the following conditions.

(1) h : Ω̄ × [0,∞) → [0,∞) is continuous and non-trivial.

(2) h(x, 0) ≡ 0 in Ω̄.

We note that h satisfies condition (G). With such a function h we associate a non-
negative function h∗ : [0,∞) → [0,∞) whose growth rate at infinity will provide fairly
general conditions on h that would ensure the existence of a non-negative solution to
problem (1.2). Thus, for each (x, r) ∈ Ω̄ × (0,∞), we define h∗(t; x, r) : [0,∞) → [0,∞)
by

h∗(t; x, r) := min{h(z, t) : z ∈ B̂(x, r)}, (4.1)

where B̂(x, r) := B(x, r) ∩ Ω̄. The following are consequences of the definition (4.1).

(i) h∗(t; x, r) > 0 for some (x, t, r) ∈ Ω̄ × (0,∞) × (0,∞).

(ii) h∗(0; x, r) = 0 for all (x, r) ∈ Ω̄ × (0,∞).

(iii) h∗(t; x, r) is continuous in t ∈ R.

(iv) h∗(t; x, r) is non-increasing in r.

To proceed further we introduce some notation. For (x, r) ∈ Ω̄ × (0,∞) we set

H∗(t; x, r) :=
∫ t

0
h∗(ζ; x, r) dζ ∀t > 0.

In analogy with (3.1), for a given x ∈ Ω̄ such that h∗(τ ; x, r) > 0 for some (τ, r) ∈
(0,∞) × (0,∞) we set

Φ∗(t; x, r) :=
∫ ∞

t

ds

(p′(H∗(s; x, r) − H∗(t; x, r)))1/p
∀t > 0.

Remark 4.2. Since h∗(t; x, r) is non-increasing in r, it should be noted that Φ∗(t; x, r)
is non-decreasing in r. We direct the reader to Appendix A for a proof.

We now give the following definition.
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Definition 4.3. We say that h(x, t) satisfies a lower Keller–Osserman condition at
x0 ∈ Ω̄ if there is r ∈ (0,∞) such that

lim inf
t→∞

Φ∗(t; x0, r) = 0. (4.2)

Recalling the statements just before Remark 3.1, we see that (4.2) is equivalent to

Φ∗(t; x0, r) < ∞ for some t > 0. (4.3)

If h satisfies a lower Keller–Osserman condition at x0, then in view of Remark 4.2 we see
that (4.2) holds for all sufficiently small r > 0.

As an example, we consider h(x, t) := ω(x)tb(x)(1 + cos λt), where ω ∈ C(Ω̄) is non-
negative and non-trivial, b ∈ C(Ω̄) is positive and λ is a constant. Given x0 ∈ Ω such that
ω(x0) > 0 and b(x0) > p − 1, it can be shown that h satisfies a lower Keller–Osserman
condition at x0. The reader is referred to Appendix A for a detailed discussion of this
example.

Remark 4.4. Suppose that h(x, t) > 0 for all (x, t) ∈ Ω̄ × (0,∞) and h(x, t) is non-
decreasing in t for each x ∈ Ω̄. The requirement that h satisfies a lower Keller–Osserman
condition at x0 ∈ Ω̄ is equivalent to∫ ∞

t

ds

H∗(s; x0, r)1/p
< ∞

for some r > 0 and some t > 0. See Remark 3.1.

Theorem 4.5. Suppose that O ⊂⊂ Ω and assume that h satisfies a lower Keller–
Osserman condition at each x ∈ ∂O. Then there is a constant C > 0, independent of ϑ,
such that

0 � uϑ � C in O

for any minimal solution uϑ ∈ W 1,p(Ω) of (2.3) relative to the subsolution u∗ ≡ 0 and
any constant ϑ > 0.

Proof. Let ϑ > 0 be a given constant, and suppose that uϑ is the minimal solution of
(2.3) relative to u∗ ≡ 0. By Lemma 3.3, given z ∈ ∂O there is a ball B(z, rz) ⊆ Ω with
0 < rz � ρz for some sufficiently small ρz > 0 such that the following problem admits a
non-negative solution vz ∈ W 1,p

loc (B(z, rz)) ∩ C(B(z, rz)):

Δpw = h∗(w; z, ρz) in B(z, rz),

w = ∞ on ∂B(z, rz).

Since Δpvz = h∗(vz(x); z, ρz) � h(x, vz(x)) for x ∈ B(z, rz), by the minimality principle
(Theorem 2.3), we see that uϑ � vz on B(z, rz). In particular, uϑ � Mz in the ball
B(z, rz/2), where

Mz := max{vz(x) : x ∈ B(z, rz/2)}.
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From the open cover U := {B(z, rz/2) : z ∈ ∂O} of ∂O we pick a finite subcover

{B(zj , rzj /2) : j = 1, 2, . . . , m}.

Therefore,
uϑ � C on ∂O,

where C := max{Mzj : j = 1, . . . , m}. Since C > 0 is a supersolution of Δpu = h(x, u)
such that uϑ � C on ∂O, again by the minimality principle we see that u∗ � uϑ � C

in O, as claimed. �

In preparation for the statement of our main theorem, we introduce the following
definition.

Definition 4.6. We say that h satisfies a circumferential lower Keller–Osserman con-
dition at x0 ∈ Ω if and only if there is an open set O with x0 ∈ O ⊂⊂ Ω such that h

satisfies a lower Keller–Osserman condition at every x ∈ ∂O.

Remark 4.7. We remark that if h satisfies a lower Keller–Osserman condition at
x0 ∈ Ω, then h satisfies a circumferential lower Keller–Osserman condition at x0 as well.

We are now ready to state and prove our main result on existence of solutions to
problem (1.2). It will be convenient to use the following notation in the theorem and its
proof. Given δ > 0 we will write

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ} and Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}.

Theorem 4.8. Suppose that h satisfies a circumferential lower Keller–Osserman con-
dition at every point of Ωδ for some δ > 0. Then problem (1.2) admits a non-negative
solution u ∈ W 1,p

loc (Ω) ∩ C(Ω).

Proof. For each positive integer k, consider the Dirichlet problem

Δpu = h(x, u) in Ω,

u = k on ∂Ω.

}
(4.4)

For each k, note that u∗ ≡ 0 is a subsolution and u∗ ≡ k is a supersolution of (4.4). Let
uk ∈ W 1,p(Ω) be the minimal solution to (4.4) with respect to u∗, so that 0 � uk � k

for all k. By the minimality principle (Theorem 2.3), we see that uk � uk+1 on Ω̄. We
wish to show that the sequence {uk} is locally uniformly convergent in Ω. For this it
suffices, according to Lemma 2.5, to show that the sequence {uk} is uniformly bounded
in Ωε for each 0 < ε < δ. To this end, first we show that given z ∈ ∂Ωε there are positive
constants rz,ε > 0 and Mz,ε > 0 such that

0 � uk � Mz in B(z, rz,ε) for all k = 1, 2, . . . .

Obviously, we have ∂Ωε ⊆ Ωδ. Let z ∈ ∂Ωε. By hypothesis there is an open set O ⊂⊂ Ω

containing z such that h satisfies a lower Keller–Osserman condition at each x ∈ ∂O. But
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then, by Theorem 4.5, there is a constant Mz,ε, independent of k, such that 0 � uk � Mz,ε

in O. In particular, there is a ball B(z, rz,ε) ⊆ Ω such that 0 � uk � Mz,ε in B(z, rz,ε)
for all k, as claimed.

Therefore, we have shown that given z ∈ ∂Ωε there is a ball B(z, rz,ε) ⊆ Ω and a
positive constant Mz,ε, independent of k, such that

0 � uk � Mz,ε in B(z, rz,ε), k = 1, 2, . . . .

By compactness it follows that there is a constant Mε > 0, independent of k, such that

0 � uk � Mε on ∂Ωε, k = 1, 2, . . . .

By the minimality principle (Theorem 2.3), we see that

0 � uk � Mε in Ωε, k = 1, 2, . . . .

By Lemma 2.5 it follows that the sequence {uk} has a subsequence that converges locally
uniformly to u ∈ W 1,p

loc (Ω)∩C(Ω) such that Δpu = h(x, u) in Ω, in the weak sense. Since
uk � u in Ω, it follows that u(x) → ∞ as x → ∂Ω, as desired. �

The next result shows that under appropriate conditions on the inhomogeneous term
h, problem (1.2) admits infinitely many non-negative solutions. For this, we assume that
there is � > 0 such that

h(x, t) � h(x, t + �) ∀(x, t) ∈ Ω × R. (4.5)

Proposition 4.9. Suppose that h(x, τ) ≡ 0 in Ω for all τ ∈ D, where D is some
unbounded discrete set of positive real numbers, and assume that condition (4.5) holds
for some � > 0. If problem (1.2) has a non-negative solution in W 1,p

loc (Ω) ∩ C(Ω), then
problem (1.2) admits infinitely many non-negative solutions.

Proof. Without loss of generality we assume that � � 1, and let us fix τ1 ∈ D and
x0 ∈ Ω. Suppose that v ∈ W 1,p

loc (Ω) ∩ C(Ω) is a non-negative blow-up solution of (1.2).
Let w1 := τ1 and let v1 := v + j1�, where j1 is the smallest integer greater than or equal
to τ1. We note that w1 is a subsolution of (2.1) and, in view of (4.5), v1 is a supersolution
of (1.2) such that w1 � v1 in Ω. By Lemma 2.7, we find a solution u1 ∈ W 1,p

loc (Ω)∩C(Ω)
of (1.2) such that w1 � u1 � v1 in Ω. Let τ2 ∈ D such that τ2 > u1(x0) and set w2 := τ2

and v2 := v + j2�, where j2 is the smallest positive integer greater than or equal to τ2.
Then w2 is a subsolution of (2.1) and v2 is a supersolution of (1.2) such that w2 � v2.
Again, by Lemma 2.7, we find a solution u2 ∈ W 1,p

loc (Ω)∩C(Ω) of (1.2) with w2 � u2 � v2,
and we note that u1(x0) < u2(x0). We inductively continue in this manner to produce
an infinite number of blow-up solutions uj ∈ W 1,p

loc (Ω)∩C(Ω) of problem (1.2) such that
0 < uj(x0) < uj+1(x0) for j = 1, 2, . . . . �
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To provide an example, let b ∈ C(Ω̄) be positive, and let ω ∈ C(Ω̄) be a non-negative
and non-trivial function. Suppose that b(x) > p − 1 and ω(x) > 0 for all x ∈ ∂Ω. Then,
given any λ ∈ R, the following problem has a non-negative solution u ∈ C(Ω):

Δpu = ω(x)ub(x)(1 + cos(λu(x))) in Ω,

u = ∞ on ∂Ω.

}
(4.6)

This follows from Theorem 4.8, as h(x, t) = ω(x)tb(x)(1 + cos λt) satisfies the circum-
ferential lower Keller–Osserman condition in a neighbourhood, relative to Ω̄, of ∂Ω.
See Appendix A for details. Moreover, Proposition 4.9 shows that problem (4.6) admits
infinitely many non-negative solutions provided that λ �= 0.

5. The upper Keller–Osserman condition

In this section we study some conditions on h that are necessary for problem (1.2) to
admit non-negative solutions. For this we introduce another function associated with h

by a slight modification of the definition of h∗ defined in the previous section.
For each (x, r) ∈ Ω̄ × (0,∞), define h∗(t; x, r) : [0,∞) → [0,∞) by

h∗(t; x, r) := max{h(z, t) : z ∈ B̂(x, r)}.

Again, it follows easily from Remark 4.1 that h∗(t; x, r) > 0 in (0,∞) for some (x, r) ∈
Ω̄ × (0,∞), h∗(0; x, r) = 0 and h∗(t; x, r) is non-decreasing in t > 0, as well as in r > 0.
One can also see that h∗(t; x, r) is continuous in t ∈ R.

For t > 0 we set

H∗(t; x, r) :=
∫ t

0
h∗(ζ; x, r) dζ.

In analogy with (3.1) we let

Φ∗(t; x, r) :=
∫ ∞

t

1
(p′(H∗(s; x, r) − H∗(t; x, r)))1/p

ds.

Remark 5.1. Since h∗(t; x, r) is non-decreasing in r, it follows that Φ∗(t; x, r) is non-
increasing in r.

We now give the following definition.

Definition 5.2. We say that h(x, t) satisfies an upper Keller–Osserman condition at
x0 ∈ Ω̄ if there is r ∈ (0,∞) such that

lim inf
t→∞

Φ∗(t; x0, r) = 0. (5.1)

As noted before, this is equivalent to the following condition:

Φ∗(α; x0, r) < ∞ for some α > 0. (5.2)

If h satisfies an upper Keller–Osserman condition at x0, then in view of Remark 5.1 we
note that condition (5.1) holds for all sufficiently large r > 0.
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It is clear that Φ∗(t; x, r) � Φ∗(t; x, r) for all (t, x, r) ∈ (0,∞) × Ω̄ × (0,∞), and that
equality holds if h(x, t) is independent of x, and is non-decreasing in t. In the latter
case we see that a lower Keller–Osserman and an upper Keller–Osserman condition are
equivalent to the standard Keller–Osserman condition.

The next result shows the necessity of condition (5.2) for problem (1.2) to have non-
negative solutions.

Theorem 5.3. Let B(z, R) ⊆ Ω and suppose that h(x, t) > 0 for some (x, t) ∈
B(z, R) × (0,∞). If problem (1.2) admits a non-negative weak local supersolution in
B(z, R), then there is an α > 0 such that Φ∗(α; z, R) < ∞. Thus, h satisfies an upper
Keller–Osserman condition (5.2) at z.

Proof. Let u ∈ W 1,p
loc (B) ∩ C(B) be a weak local supersolution of (1.2) for some

B := B(z, R) ⊆ Ω. Note that h∗(t; z, R) > 0 for some t > 0. Then we see that u is a
supersolution of

Δpv = h∗(v; z, R) in B,

v = ∞ on ∂B.

}
(5.3)

Lemma 2.7 shows that problem (5.3) admits a minimal radial solution v relative to
u∗ = 0. If we write v(x) := φ(|z − x|), then φ ∈ C1([0, R)) is a distributional solution of

(rN−1|φ′(r)|p−2φ′(r))′ = rN−1h∗(φ(r); z, R), 0 < r < R,

φ(0) = v(z), φ′(0) = 0,

}
(5.4)

in (0, R). Note that φ′ > 0 for 0 < r < R. Multiplying both sides of the equation in (5.4)
by r(N−1)/(p−1)φ′(r) and integrating on (0, r) for 0 < r < R leads to∫ r

0
(tN−1(φ′(t))p−1)′t(N−1)/(p−1)φ′(t) dt =

∫ r

0
tp(N−1)/(p−1)h∗(φ(t); z, R)φ′(t) dt.

Thus,

p − 1
p

(r(N−1)/(p−1)φ′(r))p � rp(N−1)/(p−1)
∫ r

0
h∗(φ(t); z, R)φ′(t) dt

= rp(N−1)/(p−1)
∫ φ(r)

φ(0)
h∗(s; z, R) ds

= rp(N−1)/(p−1)(H∗(φ(t); z, R) − H∗(φ(0); z, R)).

Consequently, we obtain

φ′(r)
(p′(H∗(φ(t); z, R) − H∗(φ(0); z, R)))1/p

� 1, 0 < r < R.

Integrating this last inequality shows that, for 0 < r < R,∫ φ(r)

v(z)

dr

(p′(H∗(t; z, R) − H∗(v(z); z, R)))1/p
� r.

In particular, Φ∗(v(z); z, R) � R. Therefore, h does indeed satisfy an upper Keller–
Osserman condition at z. �
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We record the following immediate corollary.

Corollary 5.4. Suppose that problem (1.2) admits a weak local supersolution in every
ball B ⊆ Ω. Then h satisfies an upper Keller–Osserman condition at every x ∈ Ω for
which h(x, t) > 0 for some t > 0.

Our next result shows that if h(x, t) grows slower than tp−1 at infinity for some x ∈ ∂Ω,
then problem (1.2) does not admit weak local solutions in Ω. To state this more precisely,
let

h◦(t; x, r) := max{h(z, s) : (z, s) ∈ B̂(x, r) × [0, t]}. (5.5)

Then h◦ has similar properties to those of h∗, but in addition h◦(t; x, r) is now non-
decreasing in t. Moreover, it is easily seen that if h(x, t) is non-decreasing in t for each
x ∈ Ω̄, then h∗(t; x, r) = h◦(t; x, r) for all (x, t, r) ∈ Ω̄ × (0,∞) × (0,∞).

The following assumption will be needed to state and prove a non-existence result.

(H) There is a pair (x, r) ∈ Ω̄ × (0,∞) such that∫ ∞

1

1
(h◦(t; x, r))1/(p−1) dt = ∞.

We will say that h satisfies condition (H) at x ∈ Ω̄ if h0(t; x, r) satisfies (H) for some
r > 0. For instance, if h(x, t) = O(tp−1) as t → ∞ for some x ∈ Ω̄, then h satisfies
condition (H) at (x, r) for some r > 0.

Once again, it is easy to see that if condition (H) holds at x ∈ Ω̄ for some r > 0, then
it holds at (x, s) for all 0 < s < r.

We introduce the following function:

β(t) =
1
t

∫ 2t

t

h◦(s; x, r) ds, t > 0.

One can verify that β is a C1 function on (0,∞) with β(0+) = 0, and β(t) > 0 for t > 0.
Note that since h◦(t) := h◦(t; x, r) is non-decreasing, we have

h◦(t) � β(t) � h◦(2t), t > 0. (5.6)

By virtue of the second inequality in (5.6), condition (H) holds for β whenever it holds
for h◦. This remark will be useful in proving the following non-existence result.

Theorem 5.5. Suppose that h satisfies condition (H) for some (x0, r) ∈ ∂Ω × (0,∞).
Then problem (1.2) has no weak local supersolution in Ω.

Proof. Assume to the contrary that problem (1.2) has a weak local supersolution
0 � u ∈ W 1,p

loc (Ω) ∩ C(Ω). Let (x0, r) ∈ ∂Ω × (0,∞) be as in the hypothesis of the
theorem. We assume that r is sufficiently small that u � ε > 0 in ΩB := B(x0, r)∩Ω for
some ε. In view of (5.6), we note that

β(u(x)) � h◦(u(x); x0, r) � h(x, u(x)) (x ∈ ΩB). (5.7)
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We consider the following smooth and increasing function η : [ε, ∞) → [0,∞):

η(t) :=
∫ t

ε

1
(β(s))1/(p−1) ds, t � ε. (5.8)

We set
w(x) := η(u(x)), x ∈ ΩB .

Note that w ∈ W 1,p
loc (ΩB) ∩ C(ΩB). We now claim that Δpw � 1 in ΩB .

To prove the assertion, let ϕ ∈ C∞
c (ΩB) and ϕ � 0 in ΩB . Let us observe that

t → (η′(t))p−1 is smooth and bounded on [ε, ∞). Therefore, (η′(u))p−1 ∈ W 1,p
loc (ΩB)

(see [17, Theorem 7.8]). We now use ζ := (η′(u))p−1ϕ as a test function and, on noting
that η′′ < 0, we have∫

ΩB

|Dw|p−2Dw · Dϕ =
∫

ΩB

|Du|p−2Du · Dζ − (p − 1)
∫

ΩB

|Du|pη′′(u)η′(u)p−2ϕ

�
∫

ΩB

|Du|p−2Du · Dζ

� −
∫

ΩB

h(x, u)(η′(u))p−1ϕ

= −
∫

ΩB

h(x, u)
β(u)

ϕ

� −
∫

ΩB

ϕ, by (5.7).

Thus,
Δpw � 1 in ΩB , (5.9)

as claimed. Recalling that β satisfies condition (H) and u = ∞ on ∂Ω, we see that w = ∞
on B(x0, r) ∩ ∂Ω.

We now proceed to show that the conclusion in (5.9) leads to a contradiction.
Let χ ∈ Cc(B(x0, r)) such that χ ≡ 1 in B(x0, r/3) and χ ≡ 0 on B(x0, r)\B(x0, r/2).

Now let v be the solution of

Δpv = 1 in ΩB ,

v = χ on ∂ΩB .

Recalling (5.9), and employing a standard comparison principle, we note that

kv � w in ΩB ∀k � 1.

By choosing x1 ∈ ΩB such that w(x1) > 0, we see in particular that

kv(x1) � w(x1)

for all k. This is an obvious contradiction. �
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We illustrate the above theorem with a simple example. Let h(x, t) = tb(x), where
b ∈ C(Ω̄, (0,∞)), and consider the problem

Δpu = h(x, u) in Ω,

u = ∞ on ∂Ω.

}
(5.10)

For t � 1 we observe that

h◦(t; x, r) = tmax{b(z) : z∈B̂(x,r)}.

Suppose that b(x0) < p at some point x0 ∈ ∂Ω. Since b ∈ C(Ω̄, (0,∞)), there is an
r0 > 0 such that b(x) � γ < p − 1 on B(x0, r0) ∩ Ω̄. Then h◦(t; x0, r0) � tγ for all t � 1,
and hence condition (H) holds. Therefore, Theorem 5.5 shows that problem (5.10) has
no weak local supersolution. Hence, for problem (5.10) to admit a supersolution it is
necessary that b(x) � p on ∂Ω.

6. The h(x, t) = ω(x)f(t) case

Following Lair [24], we make the following definition.

Definition 6.1. A function ω : Ω → [0,∞) is said to be circumferentially positive (or
just c-positive) if and only if given x0 ∈ Ω with ω(x0) = 0 there is O ⊂⊂ Ω such that
x0 ∈ O and ω(x) > 0 for x ∈ ∂O.

Let us now consider the following singular boundary-value problem:

Δpu = ω(x)f(u) in Ω,

u = ∞ on ∂Ω.

}
(6.1)

Suppose that f(0) = 0 and f(c) > 0 for some c > 0. A simple computation shows that if
x0 ∈ Ω̄ such that ω(x0) > 0, then for a sufficiently small r > 0,

Φ∗(t; x0, r) =
1

(minB̂(x0,r) ω)1/p
Φ(t). (6.2)

Likewise, we have

Φ∗(t; x0, r) =
1

(maxB̂(x0,r) ω)1/p
Φ(t). (6.3)

In both (6.2) and (6.3), Φ is defined as in (3.1) but with g replaced by f . Therefore,
in this situation, the lower and upper Keller–Osserman conditions coincide with the
Keller–Osserman condition (3.2).

The next result is a consequence of Theorems 4.8 and 5.3. The analogue of the following
theorem, in the context of the classical Laplacian operator, was proved in [24] under the
additional assumptions that f(t) > 0 for t > 0, f increasing.
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Theorem 6.2. Suppose that ω ∈ C(Ω̄, [0,∞)) and f : [0,∞) → [0,∞) is a non-trivial
and continuous function such that f(0) = 0.

(i) If ω is c-positive in Ω and f satisfies the Keller–Osserman condition (3.3), then
problem (6.1) admits a non-negative solution u ∈ W 1,p

loc (Ω) ∩ C(Ω).

(ii) If ω is non-trivial on the ball B(z, R) ⊆ Ω and problem (6.1) admits a non-negative
solution u in a ball B(z, R), then f satisfies the Keller–Osserman condition (3.3).

Proof. (i) Suppose first that f satisfies the Keller–Osserman condition (3.3). We
note that if ω(x0) > 0 at some x0 ∈ Ω, then by virtue of (6.2), h(x, t) := ω(x)f(t)
satisfies a lower Keller–Osserman condition at x0. Therefore, it suffices to note that
the c-positivity of ω together with the assumption that f satisfies the Keller–Osserman
condition (3.3) imply that h(x, t) := ω(x)f(t) satisfies the circumferential lower Keller–
Osserman condition at every point of Ωδ for any δ > 0. Therefore, part (i) of the theorem
follows from Theorem 4.8.

(ii) Let us assume that problem (6.1) has a positive solution in a ball B(z, R) ⊆ Ω

for some z ∈ Ω with ω(z) > 0. By Theorem 5.3, h(x, t) = ω(x)f(t) satisfies an upper
Keller–Osserman condition at z ∈ Ω with ω(z) > 0. In fact, we have Φ∗(a; z, r) < ∞ for
some a > 0 and r > 0. But then, according to (6.3), we find that Φ(a) < ∞, where Φ is
as in (3.1) with G replaced by F (t) =

∫ t

0 f(s) ds. That is, f satisfies the Keller–Osserman
condition (3.3). This concludes the proof of the theorem. �

Appendix A.

A.1. An example

Here we look at an example to illustrate some of the main results of the paper. To this
end, let us consider the nonlinearity

h(x, t) = ω(x)tb(x)(1 + cos λt), (A 1)

where b ∈ C(Ω̄) is positive, ω ∈ C(Ω̄) is a non-negative and non-trivial function, and λ

is a constant.

A.1.1. On existence

Let x0 ∈ Ω such that ω(x0) > 0 and b(x0) > p − 1. We show below that h satisfies a
lower Keller–Osserman condition at x0. We will assume that λ �= 0, as the case λ = 0 is
much easier. Let us set

ω∗(x0, r) := min{ω(x) : x ∈ B̂(x0, r)} and b∗(x0, r) := min{b(x) : x ∈ B̂(x0, r)}.

For t � 1 we see that

h∗(t; x0, r) � ω∗(x0, r)tb∗(x0,r)(1 + cos λt). (A 2)
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Without loss of generality, we suppose that λ > 0. We fix r > 0 sufficiently small such
that b∗(x0, r) > p − 1. Let β � λ be an arbitrary positive constant such that cosβ = 1,
and set α := β/λ and γ := (β + π/2)/λ. We observe that∫ γ

α

cos(λs) ds =
1
λ

and γ − α =
π

2λ
.

If α � t � γ, we have ∫ t

α

(1 + cos λs) ds � t − α.

On the other hand, if t > γ, we have∫ t

α

(1 + cos λs) ds = t − α +
sin λt

λ
� t − α − 1

λ
= t − α − 2

π
(γ − α) �

(
1 − 2

π

)
(t − α).

Thus, in any case we have∫ t

α

(1 + cos λs) ds � μ(t − α), t � α, where μ := 1 − 2
π

. (A 3)

Let θ be a fixed positive real number θ and set

γθ = α +
4(θ + 1)

λ
. (A 4)

For t � γθ we have the following chain of inequalities:∫ t

α

sθ(1 + cos λs) ds �
∫ t

α

(s − α)θ(1 + cos λs) ds

=
(t − α)θ+1

θ + 1
+

∫ t

α

(s − α)θ cos λs ds

=
(t − α)θ+1

θ + 1
+

1
λ

(t − α)θ sin λt − θ

λ

∫ t

α

(s − α)θ−1 sin λs ds

� (t − α)θ+1

θ + 1
+

1
λ

(t − α)θ sin λt − 1
λ

(t − α)θ

� (t − α)θ+1

θ + 1
− 2

λ
(t − α)θ

=
(t − α)θ+1

θ + 1
− (γθ − α)

2(θ + 1)
(t − α)θ.

Therefore, using (A 4) in the last inequality above we get the following conclusion. Given
a positive real number θ, there exist positive real numbers γθ and Cθ such that∫ t

α

sθ(1 + cos λs) ds � Cθ(t − α)θ+1 ∀t � γθ. (A 5)

In fact, γθ and Cθ are given by

γθ − α =
4(θ + 1)

λ
, Cθ :=

1
2(θ + 1)

.
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On using (A 2) and (A 3) we find that for any s � α (for simplicity we use b∗ for b∗(x0, r)
and ω∗ for ω∗(x0, r))

H∗(s; x0, r) − H∗(α; x0, r) =
∫ s

α

h∗(z; x0, r) dz

� ω∗α
b∗

∫ s

α

(1 + cos(λz)) dz

� μω∗α
b∗(s − α).

That is,
H∗(s; x0, r) − H∗(α; x0, r) � μω∗α

b∗(s − α) for s � α. (A 6)

Fix ε > 0 small enough such that b∗ − ε > p − 1. On using (A 2) and (A 5) we find that
for any s � γ∗ = α + 4(b∗ − ε + 1)/λ,

H∗(s; x0, r) − H∗(α; x0, r) =
∫ s

α

h∗(z; x0, r) dz

� ω∗α
ε

∫ s

α

zb∗−ε(1 + cos λz) dz

� Cω∗α
ε(s − α)b∗+1−ε. (A 7)

From (A 6) and (A 7) we see that

Φ∗(α; x0, r) =
∫ ∞

α

1
(H∗(s; x0, r) − H∗(α; x0, r))1/p

ds

=
∫ γ∗

α

1
(H∗(s; x0, r) − H∗(α; x0, r))1/p

ds

+
∫ ∞

γ∗

1
(H∗(s; x0, r) − H∗(α; x0, r))1/p

ds

� (μω∗α
b∗)−1/p

∫ γ∗

α

(s − α)−1/p ds

+ C(ω∗α
ε)−1/p

∫ ∞

γ∗

(s − α)(−b∗−1+ε)/p ds

� C(α−b∗/p + α−ε/p).

Here C is a constant independent of α. In conclusion, we have shown that given any
positive real number β � λ such that cos β = 1 and α := β/λ we have

Φ∗(α; x0, r) � C(α−b∗/p + α−ε/p)

with a positive constant C independent of α. Therefore, we see that lim inft→∞ Φ(t) = 0.
That is, condition (4.2) holds at x0. Therefore, if b(x) > p−1 and ω(x) > 0 on Ωδ for some
δ > 0, then Theorem 4.8 shows that problem (1.2), with h(x, t) given as in (A 1), admits a
non-negative solution u ∈ W 1,p

loc (Ω)∩C(Ω). Now let λ �= 0. Then h(x, t) satisfies condition
(4.5) with � = 2π/|λ|. Since h(x, tj) ≡ 0 in Ω for all j, where tj := (2j + 1)π/(2|λ|),
Proposition 4.9 shows that problem (1.2) actually admits infinitely many non-negative
solutions in W 1,p

loc (Ω) ∩ C(Ω).
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A.1.2. On non-existence

Let h be as in (A 1). Then there is a positive constant C such that for t � 1,

h∗(t; x, r) = max{ω(z)tb(z)(1 + cos(λt)) : z ∈ B̂(x, r)} � CtmaxB̂(x,r) b(z). (A 8)

Suppose that b(x0) < p − 1 and ω(x0) > 0 for some x0 ∈ Ω. Then there is a ball
B := B(x0, r) ⊆ Ω such that problem (1.2) has no non-negative weak local supersolution
u in B. To see this we observe that, by continuity, 0 < b(x) � γ < p−1 for all x ∈ B̂(x0, r)
and a sufficiently small r > 0. In view of (A 8) we have

H∗(s; x0, r) − H∗(t; x0, r) =
∫ s

t

h∗(τ ; x0, r) dτ � Csγ+1, s � t � 1,

for some C > 0.
Thus, Φ∗(t; x0, r) = ∞ for all t > 1. Therefore, Theorem 5.3 shows that problem (1.2)

has no non-negative weak local supersolution in W 1,p
loc (B) ∩ C(B).

Now let Ω ⊆ R
N be a bounded domain, and let us assume that 0 < b(x0) < p − 1

and ω(x0) > 0 for some x0 ∈ ∂Ω. Thus, h(x0, t) = O(tp−1) as t → ∞. Moreover,
since ω(x0) > 0, we see that h(x0, τ) > 0 for some τ > 0. Consequently, h satisfies
condition (H) and thus, by Theorem 5.5, we conclude that problem (1.2) has no solution
in W 1,p

loc (Ω) ∩ C(Ω).

A.2. Equivalence of conditions (3.2) and (3.3) for 1 < p < ∞
Our proof of the equivalence is an adaptation of the argument in [12]. Obviously,

condition (3.3) is implied by (3.2). So, let us suppose that condition (3.3) holds for some
t > 0, and show that (3.2) holds as well. We start by noting that (3.3) implies that∫ ∞

t

1
G(s)1/p

ds < ∞. (A 9)

We start with the change of variable ζ = G(s) to rewrite∫ ∞

t

ds

(G(s) − G(t))1/p
=

∫ ∞

G(t)

η(ζ)
(ζ − G(t))1/p

dζ,

where η(ζ) = (G−1)′(ζ). Therefore, we wish to show that

lim inf
τ→∞

∫ ∞

τ

η(ζ)
(ζ − τ)1/p

dζ = 0. (A 10)

Since ζ − τ � ζ � 2(ζ − τ) for all ζ � 2τ > 0, we see that

lim
τ→∞

∫ ∞

2τ

η(ζ)
(ζ − τ)1/p

dτ = 0.

Consequently, in order to establish (A 10), it suffices to show that

lim inf
τ→∞

∫ 2τ

τ

η(ζ)
(ζ − τ)1/p

dζ = 0. (A 11)
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Suppose on the contrary that there is a positive constant C such that

∫ 2τ

τ

η(ζ)
(ζ − τ)1/p

dζ � C for all τ sufficiently large.

Let us make the change of variable ξ = (ζ − τ)1/p′
. Then

∫ 2τ

τ

η(ζ)
(ζ − τ)1/p

dζ = p′
∫ τ1/p′

0
η(ξp′

+ τ) dξ = p′
∫ τ

0
η(ξp′

+ τp′
) dξ. (A 12)

For any sufficiently large R > 0, and fixed 0 < ϑ < 1, we integrate both sides of (A 12)
on the interval ϑRp−1 � τ � Rp−1 to obtain

CRp−1 �
∫ Rp−1

ϑRp−1

∫ τ

0
η(ξp′

+ τp′
) dξ dτ �

∫ Rp−1

ϑRp−1

∫ Rp−1

0
η(ξp′

+ τp′
) dξ dτ. (A 13)

We use the generalized sine function Sp and the generalized cosine function Cp to make
an appropriate change of variable. For a given 0 < p < ∞, the functions Sp and Cp are
defined, respectively, as solutions of

(Ψ(u′))′ + (p − 1)Ψ(u) = 0 (A 14)

such that Sp(0) = 0, S′
p(0) = 1 and Cp(0) = 1, C ′

p(0) = 0. Here Ψ(t) := |t|p−2t for t ∈ R.
Let us denote by πp the number 2π/(p sin(π/p)). We recall some of the basic properties
about these functions (see [13]):

S′
p(t) = Cp(t),

C ′
p(t) = −Sp(t),

|Sp(t)|p + |Cp(t)|p = 1

⎫⎪⎬
⎪⎭ for − 1

2πp < t < 1
2πp,

Sp(t), Cp(t) � 0 for 0 � t � 1
2πp.

We now make the change of variables

ξ = rp−1Ψ(Cp(θ)), τ = rp−1Ψ(Sp(θ)), ϑ1/(p−1)R < r < R, 0 < θ < 1
2πp.

Clearly, we see that
ξp′

+ τp′
= rp.

We estimate the Jacobian of the change of coordinates for r > 0 and 0 < θ < πp/2 as
follows: ∣∣∣∣∂(ξ, τ)

∂(r, θ)

∣∣∣∣ = (p − 1)2r2p−3((Ψ(Sp(θ)))2 + (Ψ(Cp(θ)))2)

� 2(p − 1)2 max{1, ϑ(p−2)/(p−1)}Rp−2rp−1.
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After the change of variables, (A 13) becomes (with constant C independent of R but
possibly differing from line to line)

Rp−1 � CRp−2
∫ πp/2

0

∫ R

ϑ1/(p−1)R

η(rp)rp−1 dr dθ

= CRp−2
∫ πp/2

0

∫ Rp

ϑp/(p−1)Rp

η(ρ) dρ dθ

� CRp−2G−1(Rp).

Thus, we conclude that for some positive constant C, independent of R,

R � CG−1(Rp), R > 0, sufficiently large.

Thus, for s = G−1(Rp) we see that

G(s)1/p � Cs for s > 0, sufficiently large ,

and this contradicts (A 9). Therefore, (A 11) holds, and hence (A 10) must be true. �

A.3. Equivalence of (3.2)–(3.4) for non-decreasing nonlinearity g

Using the fact that g(s) is non-decreasing, one can easily show that for any s � t > 0
the following hold:

G(s) − G(t) � G(s − t) and G(s) − G(t) � g(t)(s − t).

We now use these inequalities as follows. For t > 0,∫ ∞

t

1
(G(s) − G(t))1/p

ds =
∫ 2t

t

1
(G(s) − G(t))1/p

ds +
∫ ∞

2t

1
(G(s) − G(t))1/p

ds

�
∫ 2t

t

1
g(t)1/p(s − t)1/p

ds +
∫ ∞

2t

1
(G(s − t))1/p

ds

=
1

g(t)1/p

∫ t

0

1
s1/p

ds +
∫ ∞

t

1
G(s)1/p

ds

= p′
(

tp/p′

g(t)

)1/p

+
∫ ∞

t

1
G(s)1/p

ds.

Therefore, we have∫ ∞

t

1
G(s)1/p

ds �
∫ ∞

t

1
(G(s) − G(t))1/p

ds � p′
(

tp/p′

g(t)

)1/p

+
∫ ∞

t

1
G(s)1/p

ds.

A.4. Monotonicity of Φ∗(t; x, r) and Φ∗(t; x, r) in r

We show that Φ∗(t; x, r) is non-decreasing in r. Suppose that r1 < r2. Then, from the
definition of h∗, we see that

h∗(ζ; x, r1) � h∗(ζ; x, r2) for ζ > 0.
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Therefore, for s � t > 0 we have

H∗(s; x, r1) − H∗(t; x, r1) =
∫ s

t

h∗(ζ; x, r1) dζ

�
∫ s

t

h∗(ζ; x, r2) dζ

� H∗(s; x, r2) − H∗(t; x, r2).

Consequently, we have Φ∗(t; x, r1) � Φ∗(t; x, r2).
That Φ∗(t; x, r) is non-increasing in r can be shown in a similar manner. �
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46. L. Véron, Large solutions of elliptic equations with strong absorption, in Elliptic and
parabolic problems, Progress in Nonlinear Differential Equations and Their Applications,
Volume 63, pp. 453–464 (Birkhäuser, 2005).
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