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Abstract

Probit-based models relating a proportional response
variable to a temporal explanatory variable, assuming
that the times to response are normally distributed
within the population, have been used in seed biology
for describing the rate of loss of viability during seed
ageing and the progress of germination over time
in response to environmental signals (e.g. water,
temperature). These models may be expressed as
generalized linear models (GLMs) with a probit
(cumulative normal distribution) link function, and,
using GLM fitting procedures in current statistical
software, parameters of these models are efficiently
estimated while taking into account the binomial error
distribution of the dependent variable. The fitted
parameters can then be used to calculate the
‘traditional’ model parameters, such as the hydro- or
hydrothermal time constant, the mean or median
response of the seeds (e.g. mean time to death,
median base water potential), and the standard
deviation of the normal distribution of that response.
Furthermore, through consideration of the deviance
and residuals, performing model evaluation and
modification can lead to improved understanding of
the underlying physiological/ecological processes.
However, fitting a binomial GLM is not appropriate for
the cumulative count data often collected from
germination studies, as successive observations are
not independent, and time-to-event/survival analysis
should be considered instead. This review discusses
well-known probit-based models, providing advice on

how to collect appropriate data and fit the models
to those data, and gives an overview of alternative
analysis approaches to improve understanding of the
underlying mechanisms of seed dormancy and
germination behaviour.
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Introduction

Many experiments in seed biology involve counting
the numbers of seeds that respond, usually in terms of
germination, after different periods of time. Germina-
tion is carried out under a range of fixed environmen-
tal conditions, often involving control of temperature,
moisture content or chemical concentration. The aim of
these experiments is generally to determine the total
level of germination (as a proportion of seeds sown)
and/or the rate of germination, to increase the
understanding of these environmental stimuli on the
underlying physiological mechanisms and hence
allow prediction of germination behaviour and the
identification of optimal conditions.

In studies of the impact of storage on seed viability,
experiments are conducted with samples of seeds
stored for different periods of time in a range of
storage conditions (temperature, moisture content).
The total germination, after a fixed length germination
test (ISTA, 2013) or until germination ceases, is then
determined as a proportion of the number of seeds
sown for all of these samples, and these data are then
analysed as a function of the continuous variables:
storage period, temperature and moisture content.
In contrast, research on the impact of environmental
conditions on the progress of germination in a
population of seeds will involve repeated observation
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of a sample of seeds in each of a range of conditions,
recording the cumulative germination at each obser-
vation time. These data are then analysed to model the
impact of the conditions on the rate of germination
and/or final proportion of germinated seeds. These
two scenarios might be seen as producing similar data,
and the data are often treated as if they are the
same, but while the data generated from a storage
experiment are from independent samples at different
times, the cumulative counts recorded during the
progress of germination are not independent, as the
germination at any one observation time cannot be
lower than that at the previous observation time. This
means that, statistically, these data need to be analysed
using different approaches.

Probit analysis was originally used to model
the pattern of deaths in a population of insects
exposed to different concentrations of insecticide
(Bliss, 1935; Finney, 1971). For a given concentration,
there were two possible outcomes for each individual
insect; it either survived or it died. The response
variable, the number of dead insects out of those given
a particular concentration of insecticide, was therefore
assumed to follow a binomial distribution. However,
the relationship for the proportion of insect deaths in
response to the logarithm of insecticide concentration
was sigmoidal in shape, so that a simple linear
regression model was not appropriate. By converting
the proportion of dead insects to probit values, in effect
assuming that the concentrations of insecticide
required to kill individual insects followed a normal
distribution, a linear relationship was observed and a
standard regression approach could therefore be used
to describe the response of the population to increasing
insecticide concentration. Fitting a straight line to
probit-transformed proportion data is the basis of
probit analysis, a particular type of model in the
broader category of models known as Generalized
Linear Models (GLM; McCullagh and Nelder, 1989).

For each individual seed in a stored sample, there
are also two possible outcomes in a germination test;
each seed will either germinate or not germinate prior
to the end of the test. Hence the response variable, the
number of germinating seeds out of those tested, can
also be assumed to follow a binomial distribution. In
early analyses in seed research, assuming that the time
to loss of viability in a population of seeds follows a
normal distribution under constant environmental
conditions, the proportions of germinated seeds were
similarly transformed to probit values and a weighted
regression approach taken to describe the pattern of
loss of ability to germinate. Using current statistical
software for probit analysis,

. it is no longer necessary to transform percentage
germination values to probits before fitting a
regression line;

. it is now normal to work with a scale that, while
referred to as probits, reflects the number of normal
equivalent deviates (NED) about the mean (i.e. a
scale of negative and positive values where 50%
corresponds to 0 probits); previously, a positive
probit scale was used by adding 5 to the NED scale;

. it is easy to model the effects of multiple
explanatory variables (e.g. time, temperature
and moisture content) simultaneously using GLM
fitting procedures;

. model evaluation can be readily carried out since
residuals and residual plots can be generated
automatically.

Probit analysis has now been used successfully
to describe seed survival curves in the form of the
‘improved viability equation’ (Ellis and Roberts, 1980a, b).
This equation can be used to estimate the viability
of seeds in hermetic storage (seeds stored inside a
container with a limited volume of air and an air-tight
seal), at constant moisture content and temperature,
and can therefore aid the management of stored seeds
(e.g. Ellis and Hong, 2007; Demir et al., 2009).

The transformation of the proportion of germinated
seeds to probits has also been used to describe
germination progress curves over time at different
temperatures (‘thermal time’) (e.g. Garcia-Huidobro
et al., 1982; Covell et al., 1986), under conditions
of water stress (e.g. Bradford and Somasco, 1994;
Bradford, 1995; Kebreab and Murdoch, 1999b) or
oxygen stress (Bradford et al., 2008; Boddy et al., 2012),
or in response to dormancy breaking treatments (e.g.
Kebreab and Murdoch, 1999a; Gianinetti and Cohn,
2007; Zuk-Gołaszewska et al., 2007; Bradford et al.,
2008; Thomas et al., 2010) and experimental storage
(Bradford et al., 1993). However, in most cases these
data are not obtained from independent samples
at successive observation times, and so the key
assumption of independent observations for
standard regression analysis approaches, including
probit analysis and other GLMs, is not satisfied
(McCullagh and Nelder, 1989; McNair et al., 2012;
Sokal and Rohlf, 2012).

An alternative approach used to describe a binary
response variable, where data are collected as
cumulative counts over time, is to model the time to
response for each individual in the sample. Such
approaches are often referred to as survival analysis
(Cox and Oakes, 1984), as applications are often
concerned with, for example, the failure time of
machine components in industrial processes, time to
death or recovery of patients in a clinical trial, or the
time to completion of a specified task in psychological
experimentation. Data might be collected as the failure
time of each individual, as the number of individuals
failing in each time interval or the cumulative number
of individuals who have failed by each observation
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time. Common models developed and applied widely
in a medical context include the semi-parametric
Cox proportional hazard and accelerated life
models. Parametric approaches involve the fitting of
probability distribution functions, such as the normal
or Weibull, to the non-cumulative counts in each
observation interval.

Sequential observations of the number of germi-
nated seeds in a germination test have the same
characteristics; each seed will germinate at a particular
time, with data often recorded as the cumulative
number of germinated seeds at each observation
time, easily re-expressed as the number of germinated
seeds between pairs of successive observation
times. However, time-to-response/survival analysis
approaches have not yet been widely applied in seed
biology (McNair et al., 2012; Manso et al., 2013),
although methods for fitting such models are
now available in many statistical packages (e.g. Ritz
et al., 2013).

This review sets out to provide practical advice
on the appropriate use of both of these analysis
approaches (probit analysis, time-to-response/
survival analysis) in seed biology. The review includes
comments about the design of studies to generate
data that are suitable for each approach, and identifies
examples of both appropriate and inappropriate
applications.

Statistical modelling approaches

Generalized Linear Models and probit analysis

In statistical terms, a linear model (LM) is one in
which a response variable, Y, depends on one or more
explanatory variables, X1, X2,. . ., Xp, through a single
multiplicative parameter associated with each variable
(i.e. the contribution of each explanatory variable to
the response is obtained by multiplying the value of
the variable by the respective parameter value). Simple
linear regression analysis fits the simplest form of LM,
where there is just one explanatory variable, and the
model can be described by the equation

yi ¼ b0 þ b1xi þ 1i ð1Þ

where yi is the ith value of the response variable, xi

is the corresponding value of the explanatory variable,
b0 is the value of the response variable when the
explanatory variable has value zero (the intercept), b1

is the multiplicative parameter for the explanatory
variable, and the random component of the model,
the error term, 1i, is assumed to follow a normal
distribution with mean 0 and variance s2. Hence, the
expectation of observation yi given the value of the

explanatory variable, xi,

Eðyi xij Þ ¼ mi ¼ b0 þ b1xi : ð2Þ

Multiple linear regression analysis extends this to
include more than one explanatory variable, with the
LM described by the equation

yi ¼ b0 þ b1xi1 þ . . .þ bpxip þ 1i ð3Þ

and the expected value of observation yi, given the
values of the p explanatory variables,

Eðyi xi1. . .xip

�� �
¼ mi ¼ b0 þ b1xi1 þ . . .þ bPxip : ð4Þ

For a linear model, estimation of the parameters
bo; . . .;bp (p $ 1) is achieved by minimizing the sum
of the squared differences between observed and fitted
values (the residual sum of squares) using the least
squares algorithm (Sokal and Rohlf, 2012).

GLMs provide a relaxation of the assumption about
the distribution of the errors following a normal
distribution, a key element of the LM. This allows the
use of other distributions in the exponential family,
including the binomial distribution that is commonly
associated with data in the form of proportions based
on counts. In a GLM there is still a variable, h, now
known as the ‘predictor’, that depends on one or more
explanatory variables according to a linear relation-
ship, such that the expected value of the predictor,
given the values of the p explanatory variables,

Eðhi xi1. . .xip

�� �
¼ b0 þ b1xi1 þ . . .þ bPxip : ð5Þ

The predictor is then related to the response
variable through a ‘link’ function, g(.), such that
g(mi) ¼ hi. In the case of probit analysis, an example
of a GLM used for modelling proportions arising from
a binomial response variable, the link function was
originally the inverse of the cumulative normal
distribution function, F21. Applying the inverse link
transformation to the predictor then allows that the
expected proportion of successes, mi can take any value
between 0 and 1:

mi ¼ F hi

� �
¼ F b0 þ b1xi1 þ . . .þ bpxip

� �
: ð6Þ

The implementation of the inverse cumulative
normal distribution (probit) link function implies
that the values of the explanatory variable at which
individuals respond follow a normal distribution.
Applying the inverse cumulative normal distribution
function, F21, to mi is essentially equivalent to carrying
out a ‘probit transformation’ whereby proportions are
‘manually’ converted to probits (Fig. 1) prior to fitting
a linear relationship, though in fitting a GLM
the transformation is applied within the model rather
than to the data. The probit linear predictor, hi, can
theoretically take any value between 21 and þ1;
however, in probit transformation tables, the range of
the probit linear predictor scale is typically given as
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between 23.719 (proportion of successes ¼ 0.0001)
and þ3.719 (proportion of successes ¼ 0.9999).
Historically, for computational ease, values were
coded by addition of 5 (i.e. to lie between 1.281 and
8.719), making the range entirely positive. Using the
former range, scale units may be called probits or
normal equivalent deviates (NED); with the positive
range, the units are invariably called probits.

Derived from the binomial distribution, the
variance of a proportion, p, (given by np(1–p), where
n is the sample size) depends on the mean (given by
np) and hence the process of fitting a probit GLM
(equation 6) is weighted, with a higher weighting
coefficient (smaller weight) for expected probit values

that are closer to 0 NED, the middle of the response
range (Fig. 1C). The actual weighting depends on both
this weighting coefficient and the number of individ-
uals used to determine the proportion of successes; the
weight increases as n increases. Probit analysis
therefore requires data on both the number of
successes and the number of individuals tested.

To fit a GLM, statistical software uses an iterative
process of parameter value setting (with initial
parameter values estimated from the observed data),
until there is convergence, where further changes in
the parameter values do not improve the likelihood
of obtaining the observed set of data, given the error
associated with those observations (maximum
likelihood estimation; McCullagh and Nelder, 1989).
This process is exactly equivalent to the least squares
algorithm where errors are assumed to follow a
normal distribution. In equations (5) and (6), the
parameter b0 is the intercept value on the probit
scale and the other parameters, b1,. . .,bp, describe the
effect of the p explanatory variables on the probit
proportion response. The reciprocals of these
multiplicative parameters are then estimates of the
standard deviations of the normal distribution of
the process being followed in response to each
explanatory variable.

For a linear model, the importance of each
explanatory variable is assessed by calculating the
change in the residual sum of squares when adding or
dropping the variable from the model, with statistical
significance determined by an F-test as summarized
using analysis of variance (ANOVA). For a GLM, the
importance of each explanatory variable can be
similarly assessed by calculating the change in the
residual deviance, equivalent to the difference in the
likelihood of the data given the models with and
without the explanatory variable of interest. This is
summarized in an analysis of deviance, with the
statistical significance associated with the inclusion
of each explanatory variable determined by a chi-
squared test if the errors follow a binomial distribution.
If the errors are larger than is expected for a binomial
distribution (known as over-dispersion), statistical
significance is determined using an approximate
F-test (McCullagh and Nelder, 1989).

The pattern of departure of the observed values
from a fitted model can be used to evaluate the
goodness of fit of that model. For a linear model the
errors can be estimated from the fitted model by
calculating the raw residuals, ri ¼ yi 2 mi (where mi is
the fitted value), which are then standardized by
dividing by their standard deviation. Plotting these
standardized residuals against the fitted values of the
response variable will then show any systematic
departure of the observed data from the fitted model.
Further plots of the standardized residuals allow
visual assessment of the conformity to distributional
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Figure 1. The normal distribution and probit analysis. In the
case of the seed viability equation in which ‘dose’ is the
period of time in storage, there is a normal distribution of
seed deaths over time (A) giving rise to a negative
cumulative normal distribution where y is the proportion
of viable seeds within the population (ability to germinate; B).
Transforming y to the linear predictor h using the
cumulative normal distribution function, i.e. by plotting
germination against time using the probit scale shown at the
top of (A), the curve becomes linear (C). Also shown in (A) is
the mean (m) and standard deviation (s) of the normal
distribution and in (C) the probability scale for the
proportion of viable seeds in the population and the
weighting coefficient for the expected probit value. More
weight is given to probit values close to 0.
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assumptions. For a GLM, the calculated standardized
residuals have to also take into account that the
standard deviation of a proportion varies; deviance
and Pearson residuals are suggested to provide
appropriate correction (Pierce and Schafer, 1986;
McCullagh and Nelder, 1989) and can then be used
similarly for model evaluation.

The use of the term ‘probit analysis’ has been
broadened to cover any GLM that assumes a binomial
error distribution and an appropriate link function
(other commonly used functions are the logit and
complementary log-log) that assumes a different
distribution for the values of the explanatory variable
at which individuals respond. These models may also
be known as logit or logistic regression analysis and
applied to analyse data from experiments with non-
continuous explanatory variables (such as from an
experiment with a factorial treatment structure).
Where the design of an experiment is more complex,
it may be necessary to apply a Generalized Linear
Mixed Model (GLMM) analysis (Lee et al., 2006; Bolker
et al., 2009).

Time to response models and survival analysis

Where the proportions of seeds responding (germinat-
ing) are collected as cumulative counts from a single
sample, rather than as counts from independent
(separate) samples, at each observation time, then the
standard GLM assumption of independent obser-
vations is not satisfied and an alternative form of
analysis should be used. In an extreme case of such
data it might be possible to observe the exact time
of response (germination) of each individual seed,
providing a set of observations of the time to response.
A more likely scenario, however, is that each sample
will be observed at regular intervals (e.g. every 12 or
24 h, depending on the overall rate of response) so that
the observed data are actually the numbers of seeds
responding in each period of time. While the exact
time of response for each individual is not known in
this scenario, the data do provide information about
the distribution of times to response, and should be
analysed on this basis, rather than as the cumulative
number (or proportion) responding.

With data in the form of either the individual times
to response or the number of responses in each
successive period of time, then the method of survival
analysis, widely used in medical research and
industrial applications, would be appropriate. Various
models for the distribution of survival times (corre-
sponding to the germination times) for individuals in a
population have been proposed and are widely used
(Cox and Oakes, 1984). These models include the
exponential distribution, gamma distribution, Weibull
distribution, log-normal distribution and log-logistic

distribution. In the language of survival analysis, the
survivor function represents the probability that
the time to response (survival or germination) for an
individual will exceed any given time (essentially the
complement of the cumulative distribution function),
with an associated probability density function given
by, for example, one of the distributions identified
above. Models are then often expressed in terms of
the hazard function, also referred to as the age-specific
failure rate. This is effectively the probability of
response at any given point in time, given that
response has not yet occurred. Associated with this
hazard function is the integrated hazard, also referred to
as the cumulative hazard as it is an accumulation of
the hazard (the probability of response) over time.
Formulae for these different functions can be derived
for each of the distributions identified above, the
exponential distribution providing the simplest form
of hazard function with the hazard remaining
constant, reflecting the so-called ‘lack of memory’
property of the exponential distribution.

A common issue, particularly in medical trials,
is that of right-censored observations – where
individuals drop out of the study before reaching the
defined endpoint. For seed germination, where a study
might be stopped after some pre-defined period of
time, this concept relates to seeds that have not
germinated by that pre-determined time. Of course,
without further experimentation, such as viability
testing under ideal conditions, it is impossible to know
whether these non-germinated seeds have not yet
reached their germination time or are unable to ever
germinate. The issue of censoring in seed germination
studies is somewhat different to that encountered in
other applications of survival analysis, as censoring
will generally be related to the maximum observation
time. If the proportion of censored observations is
large, then choice of the survivor function (underlying
distribution of times to response) may have a
significant impact on any summary statistics (such as
the mean germination time or time to 50% germina-
tion) subsequently estimated from the fitted model.

A further form of censoring, extremely common for
the data that are collected in germination studies, is
interval censoring. As identified above, this is when
it is known that the response occurred after one
observation time and before a later observation time,
so that the data record the number of responses
between each pair of successive observation times, but
the exact time at which the response occurred is not
known. Clearly this introduces more uncertainty into
the estimation of model parameters.

Survival models are generally fitted using a
maximum likelihood approach, where the likelihood
function is made more complicated by the need to
consider censored observations. Rather than being
able to consider the probability associated with each
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individual time to response, we have to consider
the probability of response times within an interval
(for interval censored data) or being greater than the
maximum observation time (for right-censored data).
Of course, identifying an appropriate survivor
function to fit to the data is an important first step.
Knowledge of the shapes of survivor functions can be
combined with empirical estimates of the hazard at
different observation times to aid in this identification.
The Kaplan–Meier estimator (Kaplan and Meier,
1958), or product limit estimator, provides an estimate
of the survivor function as the product of the
probabilities of survival (non-germination) across
all prior observation times. Here the probability of
survival is simply calculated as the number of
individuals surviving prior to the observation time as
a proportion of the number of individuals just prior to
that time. This is probably more easily understood
when considering interval censored data: the prob-
ability of survival at the end of each interval is the
number of survivors at the end of the interval as a
proportion of the number of survivors at the start of
the interval. The empirical hazard for each time-point
can also be calculated in this way and compared with
the expected pattern for different distribution models.

Where there are multiple treatments to be con-
sidered (e.g. different species or cultivars or tempera-
tures or water potentials, in seed germination studies),
a number of approaches have been developed within
survival analysis for comparing the survival responses
under these different conditions. These include the
accelerated life model, in which the time to a particular
level of survival in one treatment is a constant multiple
of the time in another treatment, and the proportional
hazards model, in which the hazard function for
one treatment is a constant multiple of the hazard for
another treatment. Of course, the form that these
relationships take will depend on the particular form
of distribution chosen for the survivor function, and,
again, plotting of empirical estimates of the survival or
hazard functions, as described above, will help in the
identification of an appropriate approach to compare
treatments. While this approach is usually considered
for qualitative treatment sets, the same approach
can be extended to cope with quantitative treatment
factors, such as dose or temperature.

Where data are only available in terms of the
number of seeds that have germinated in successive
intervals of time, an alternative analysis approach is to
directly model the distribution of times to germination
based on these grouped counts. This approach requires
the use of a general (non-linear) regression/
optimization approach, directly comparing the
observed counts in each interval with the predicted
counts according to some (statistical) distribution
model, and using an optimization process to find
the parameter values that most closely match the

predicted counts to the observed counts. The modelling
process assumes a multinomial distribution for the
counts of germination events in the set of observed
intervals, and can be fitted using either a generalized
least squares approach or a maximum likelihood
approach (the preferred approach; see Hunter et al.,
1984; Brain and Butler, 1988; and others). This approach
allows almost any distribution function to be used to
describe the observed distribution of germination
counts and enables distributions to be fitted simul-
taneously to responses for multiple treatments by
allowing the parameters of the distribution to be
expressed as functions of the treatments (e.g. tempera-
ture or water potential), something that is much more
difficult within the survival analysis approach (but for
one approach, see Manso et al., 2013).

Seed biology applications

Loss of ability to germinate

Using data from cereal seed storage and by plotting
percentage germination on a probability scale (the
equivalent of converting percentage values into
probits; Fig. 1), it was observed that the distribution
of seed deaths over time in storage (in a constant
environment) is approximately normal (the distri-
bution may be slightly skewed when there is very
rapid loss of viability) (Roberts, 1960). This finding,
together with consideration of the effect of moisture
content and temperature on the half-viability period
(the time for viability to fall to 50%, p50), led to the first
version of the seed viability equation for describing
seed survival curves in a given (constant) storage
environment.

Expressing the Ellis and Roberts (1980a) improved
viability equation as a GLM, the proportion of seeds, y,
that have the ability to germinate after a given period
of storage is given by

y ¼ F vð Þ ¼ F Ki 2
1

s

� �
p

� �
: ð7Þ

The link function, F21, is the inverse of the
cumulative normal distribution function; the linear
predictor is designated by v (probit viability); and the
explanatory variable by p (period of storage under
constant conditions). More familiarly, this may be
expressed in probits as

v ¼ Ki 2
p

s
ð8Þ

The parameters to be estimated through probit
analysis are the theoretical viability of the seeds when
they are placed into storage, Ki (‘b0’ in equation 6) and
the parameter describing the effect of storage period
on germination, 2s21 (‘b1’ in equation 6). In this
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model, s is the standard deviation of the normal
distribution of seed deaths in time (Fig. 1A), i.e. the
period of time for viability to fall by 1 probit (Fig. 1C).
Data are entered as columns of storage period, number
of seeds that germinate and number of seeds sown. It
does not matter if the number of seeds sown after
different periods of storage varies; for example, if
seeds are aged in packets and there happens to be a
few more seeds in some packets compared with others,
it might be better to sow all the seeds from each packet
anyway, rather than risk any non-random selection
when taking seeds from the packet. Nor does it matter
whether the seeds from each packet are sown as one lot
(e.g. in one Petri dish) or multiple lots (in multiple
Petri dishes), though the total germination across
multiple Petri dishes from the same packet should be
recorded as a single observation. Where replicate
packets are available for a particular treatment, then
the data from each packet should be recorded
separately (i.e. three replicate packets results in three
separate estimates of the proportion germinated
for that treatment).

As well as providing estimates for Ki and s, the
probit analysis procedure can generate an estimate
(and the standard error of that estimate) of the time for
viability to fall to 50% ( p50), or indeed any other ‘lethal
dose’. The p50 is both the mean and median for the
normal distribution of times to seed death. Where
initial viability is less than 50%, or the final viability is
greater than 50%, the p50 will be estimated from the
extrapolation of the fitted model. This will lead to a
negative estimate of p50 in the former case. The
viability in probits is 0 when there is 50% germination.
Hence,

0 ¼ Ki 2
p50

s
ð9Þ

and p50 ¼ Ki £ s. Estimates of p50 from probit analysis
of seed storage data have been used to compare the
longevity of different seed-lots (e.g. Hay et al., 2006) or
of seeds from different species (e.g. Zewdie and Ellis,
1991; Probert et al., 2009). It should be emphasized that
p50 takes into account possible variation in both Ki and
s between seed-lots; it is not a direct measure of the
rate of (probit) viability loss but also reflects the initial
quality of the seeds. For broad comparisons of relative
seed longevity, across species for example, it may be
preferable to control for variation in initial seed quality
that may be due to, for example, differences in seed
maturity or processing, by only using seed-lots
with similar initial germination, as adopted by Probert
et al. (2009), or to use s as the measure of relative
seed longevity.

In special cases, apparent when the observed
survival curve is asymmetric, a proportion of the
seeds placed into storage are not part of the ageing
population and it may be appropriate to include an

additional ‘control viability’ parameter, Cv, for esti-
mation in the probit analysis (Mead and Gray, 1999):

y ¼ Cv £F vð Þ ¼ Cv £F Ki 2
1

s

� �
p

� �
: ð10Þ

When Cv ¼ 1, all the seeds are part of the ageing
population; when Cv , 1, there are two classes of dead
seeds, those that were part of the ageing population at
p ¼ 0 and have already lost viability, which is reflected in
low Ki, and those that were not part of the ageing
population of seeds but were ‘non-respondents’ forsome
other reason. For example, in theory, if a consistent
proportion of seeds remained dormant throughout a
storage experiment, Cv would be , 1. Cv therefore
estimates the size of the responding ageing population
as a proportion of the total population. This additional
parameter has been found to be particularly useful in
modelling the survival curves of seeds that have been
pre-aged, primed and then returned to storage, where
there were significant proportions of seeds that were
non-responders (Butler et al., 2009; Wood and Hay, 2010).

Ellis and Roberts (1980a, b) went on to describe
how the value of s varied depending on the moisture
content, m% fresh weight, and temperature, t8C,
during storage. Through a series of regression analyses
of s against moisture content and temperature, the
following equation was derived:

log10s ¼ KE 2 CW log 10m 2 CHt 2 CQt2: ð11Þ

Combining equations (10) and (11),

y ¼ Cv £F vð Þ

¼ Cv £F Ki 2
1

10KE2CW log 10m2CHt2CQt 2

� �
p

� �
:

ð12Þ

Using current statistical software it is possible
to determine all the unknown parameters in this
equation through a ‘one-step’ analysis of the data from
multiple storage environments (Hay et al., 2003; Demir
et al., 2011; Crawford et al., 2013): Ki as the GLM b0

parameter; KE, CW, CH, and CQ as part of the estimation
of the GLM b1 parameter, 2s21; and Cv as the
responding proportion of the population. For example,
in GenStat (VSN International, UK) this is done using the
FITNONLINEAR directive (Payne et al., 2011). Data are
entered as columns of storage temperature, storage
moisture content, storage period, number of seeds that
germinate and number of seeds sown. As discussed by
Hay et al. (2003), this one-step approach takes into
account all the variability in the data and it is not
necessary to have a complete factorial design whereby
seeds are stored at all combinations of target moisture
contents and temperatures. It is also possible to test
statistically whether or not any or all of the parameters
vary between seed-lots or, for example, whether the
parameters CH and CQ differ from the so-called
‘universal values’ (Dickie et al., 1990), as was found
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using this one-step approach for two ecotypes of
Arabidopsis thaliana L. (Hay et al., 2003).

As discussed elsewhere (Pritchard and Dickie, 2003),
probit-based modelling of seed survival curves is not
always favoured. Alternative models that have been
considered include the Gompertz equation (Bernal-
Lugo and Leopold, 1998), Avrami kinetics (Walters,
1998; Walters et al., 2005) and others (Hundertmark et al.,
2011), fitted to germination proportion data. Indeed,
there are many equations that describe a sigmoidal
curve. In contrast to probit analysis, however, such
models do not take into account the binomial errors
associated with measuring percentage germination,
and therefore may not apply the appropriate weighting
to different observations in estimating the model
parameters. The binomial error assumption could be
combined with these alternative models by identifying
appropriately shaped link functions. For example, the
asymmetric curve described by the Gompertz equation
can be approximated within a binomial GLM by using
the complementary log-log link function. Where an
appropriate link function can be identified, modifi-
cations of the ‘one-step’ analysis approach developed
by Hay et al. (2003) will provide parameter estimates
that take full account of the binomial error structure
of the germination count data, and the effects on
the viability response of different environmental
storage treatments.

Seed germination progress curves

As previously identified, the data in germination
studies are usually recorded as cumulative
proportions of germinated seeds for each sample at
successive observation times. Although these data do
not satisfy the usual assumption of independence
associated with regression analysis against a continu-
ous explanatory variable, cumulative proportions
have often been transformed to probits prior to linear
regression analysis, or probit analysis applied to the
cumulative counts (from which the proportions have
been derived). If experiments were designed so that
successive observations were made on independent
samples of seed, then these analysis approaches
would be entirely valid. This would require
considerably more seeds than used in current
practice, so, for example, in a study looking at the
effects of different temperatures on seed germination,
a separate sample of seeds would need to be sown at
each temperature for each planned observation time
(i.e. each Petri dish of seeds would be observed once
and then discarded). It would then be possible to
follow a probit analysis approach to the fitting of
germination progress models, for example, thermal
time, hydrotime, hydrothermal time and other
threshold-based models.

Bradford (1995) acknowledged that ‘. . . proper
application of probit analysis requires that the samples
at each time point be independent (Finney, 1971)’, but
concluded that the observed germination data would
be the same whether collected from dependent or
independent samples, and therefore that the probit
analysis approach was valid. However, failure to take
into account the non-independence of successive
cumulative counts results in an underestimation of
the underlying error, such that differences between
treatments will be more likely to appear statistically
significant (Hunter et al., 1984). Although often we
do not appear to be directly interested in tests of
differences in parameter values between treatments
(but rather in identifying the best-fitting model), the
simultaneous fitting of models across different
environmental conditions does involve the compari-
son of the (probit) slope and intercept parameters
between treatments when modelling these parameters
as functions of the environmental conditions, and
hence some formal assessment of these differences.
Further, assessment of the need to add an extra
parameter to the model effectively involves the
assessment of whether that extra parameter is different
from zero. In addition to the underestimation of the
error, there is evidence (Mesgaran et al., 2013, online
appendix C) that model fitting to cumulative data
results in an overestimation of the cumulative
germination at any time-point relative to the ‘correct’
model fitting to non-cumulative counts, probably as a
result of the cumulative errors associated with the
cumulative count data.

The ideal probit analysis fitting process for these
germination progress models is described below for a
range of different model scenarios, assuming that the
data are collected from independent samples at the
different observation times (to illustrate the theoretical
approach, though the example data used are generally
based on cumulative observations). However, given that
non-independent cumulative data are more commonly
collected, appropriate alternative approaches, based on
time-to-response or survival models, are then ident-
ified, allowing the application of a wide range of
distribution functions for the times to germination (not
just the normal distribution). Hunter et al. (1984) appear
to be the first to have developed such a model for the
distribution of times to germination rather than for the
cumulative germination to a particular time-point.
Their model is based on assuming that these times
followed a normal distribution, possibly after some
suitable transformation.

Germination over time

The cumulative germination time course for
a population of non-dormant seeds often follows
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a broadly sigmoidal shape, so that it might be a
natural assumption that the times to germination
follow a normal distribution (Janssen, 1973) and so
could be modelled using the cumulative normal
distribution curve. However, the germination pro-
gress curves are often not symmetrical, since the rate
of increase in cumulative germination slows over
time; a variety of other models (e.g. logistic curve,
four-parameter Hill function) and/or cumulative
statistical distribution curves (e.g. Weibull, log-
normal, negative exponential) have therefore been
used to describe germination progress (Scott et al.,
1984; Dumur et al., 1990; Roman et al., 1999; O’Neill
et al., 2004; El-Kassaby et al., 2008). This asymmetry
has also been accommodated by plotting the
germination proportion against the logarithm (Scott
and Jones, 1985; Dahal et al., 1990) or reciprocal
(Campbell and Sorensen, 1979) of the period of time
from sowing, enabling the fitting of a cumulative
normal distribution curve with a positive (not
shown) or negative (Fig. 2) slope, respectively.

Where the explanatory variable (e.g. time to
germination, logarithm of time to germination,
reciprocal of time to germination) is assumed to follow
a normal distribution, then a probit analysis approach
would be appropriate, with the respective GLMs
expressed as

g ¼ F g
� �

¼ F b0 þ b1p
� �

ð13aÞ

g ¼ F g
� �

¼ F b0 þ b1 ln ðpÞ
� �

ð13bÞ

g ¼ F g
� �

¼ F b0 2 b1p21
� �

ð13cÞ

where g is germination as a proportion of the seeds
sown; g is the linear predictor, i.e. germination in
probits; b0 is the maximum germination in probits;
and b1 describes the rate of increase (13a,b) or
decrease (13c) in probit germination as the explana-
tory variable ( p, ln( p) or p21) increases. The reciprocal
of time from sowing is often referred to as
‘germination rate’ (GR), although here it will
generally be referred to as p21 (inverse of the period
of time from sowing) since it is not a true rate
(i.e. number of additional seeds that germinated over
a unit of time). Data are entered as before – the
explanatory variable, number of seeds that germinate
and number of seeds that are sown. Interpretation of
the fitted model in terms of the distribution of times
to germination for individual seeds is not straightfor-
ward for the latter two models. The analysis can
estimate the value of the explanatory variable
associated with achieving 50% germination; the time
associated with achieving 50% germination can easily
be obtained from this value, but this is not the mean
time to germination, since the time to germination is
not normally distributed (the distribution is not even

symmetric, as illustrated in Fig. 2 with p21 as the
explanatory variable). Rather, it is correctly referred
to as the median germination time. Other percentiles
of the germination time distribution can be similarly
estimated from the fitted model.

Thermal time

The effect of temperature on seed germination has long
been of interest. Seeds of different species germinate
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Figure 2. The use of probit analysis to describe germination
progress curves. The cumulative proportion of seeds
germinating, plotted (A) against period of time from sowing,
p; and (B) against p21 (bottom axis) and p (top axis, reciprocal
scale). Note that in (B) the curve has become symmetrical
about 50%. Transforming the proportion of seeds that
germinate to probit values results in a linear relationship
with p21 (C). Also shown in (C) is the probability scale for the
proportion of seeds that germinate.
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over different temperature ranges, as exemplified by
experiments using thermal gradient plates (e.g. Ellis
et al., 1983; Chejara et al., 2008; Zhang et al., 2013).
So-called ‘cardinal temperatures’ have been defined
as the minimum or base temperature, Tmin or Tb,
below which no seeds germinate; the maximum or
ceiling temperature, Tmax or Tc, above which no
seeds germinate; and either a single optimum
temperature, Topt, or an optimum temperature range
where maximum percentage germination is observed
(e.g. Garcia-Huidobro et al., 1982; Ellis et al., 1986;
Shafii and Price, 2001; Hardegree, 2006; Naylor, 2007;
Zhang et al., 2013).

At sub-optimal temperatures, between Tb and Topt,
the rate of germination increases with temperature.
This has been described in terms of the accumulated
thermal time, uT(g), above Tb required for a specified
percentage, g, of the population to germinate. This can
be expressed using the equation

GRg ¼
1

pg
¼

T 2 TbðgÞ

u T g
� � ð14Þ

where GRg (indicating ‘germination rate’) is the
reciprocal of the period of time, p, to reach g%
germination, T is the constant temperature to which
the seeds are exposed and Tb(g) is the base
temperature for the germination of the gth percentile
of the population (Garcia-Huidobro et al., 1982).

The base temperature, Tb, has typically been
determined through linear regression analysis of
GR (hereafter referred to as p21(g); see above) against
temperature, for a single value of g% germination
(usually 50%) or for a range of values of g (e.g. 10,
20,. . ., 90). The values of p21(g) are generally estimated
through interpolation of germination progress curves
(e.g. Covell et al., 1986). Using a range of values of g,
Garcia-Huidobro et al. (1982) found that Tb varied by a
few degrees within a seed-lot of pearl millet. Others,
including Covell et al. (1986), Ellis et al. (1986, 1987),
Dahal et al. (1990) and Crauford et al. (1996), noting that
regression lines for different percentiles appeared to
converge, constrained the regression lines to have the
same intercept on the temperature (horizontal) axis.
While other authors (Garcia-Huidobro et al., 1982;
Kebreab and Murdoch, 1999b) report some variation in
values of Tb within seed populations, almost all
studies of seed germination based on thermal time
assume a single value of Tb for the entire seed
population, often with verification of this assumption
by plotting p21(g) against temperature for different
values of g.

Having determined a constant value of Tb by
constraining the regression lines of p21(g) against
temperature, for g ¼ 10, 20, 30,. . ., 90% germination,
Ellis et al. (1986) found that there was a sigmoidal
relationship between cumulative percentage

germination and thermal time, p · (T – Tb); they
concluded that the amount of thermal time individual
seeds needed to accumulate in order to germinate
followed a normal distribution. Hence, taking these
two assumptions (i) constant Tb and (ii) a normal
distribution of thermal time for germination, equation
(14) can be expressed as a GLM:

g ¼ F g
� �

¼ F b0 þ b1 p T 2 Tbð Þ
� �� �

: ð15Þ

In this model, the parameters to be determined
are b0, the initial germination in probits and b1 which
describes the rate of increase in probit germination as
the explanatory variable, in this case, thermal time
(above Tb) increases. The reciprocal of b1 is the
standard deviation of the distribution of thermal times
to germination. This parameter is known as the
thermal time constant, uT. In this GLM, Tb is also
unknown but can be estimated within the probit
analysis. This may not be possible through standard
software GLM menus (which require the specification
of explanatory variable values); however, it may
be possible using statistical software programming
languages. For example, in GenStat, as with fitting the
combined viability equation (equation 12), this
is possible using the FITNONLINEAR directive, as
demonstrated (Fig. 3) for germination data for seeds of
faba bean (Vicia faba L.) cv. Sutton taken from Ellis et al.
(1987). In that paper, the mean Tb (for g ¼ 10, 20, 30, 40,
50, 60, 70, 80 and 90% germination) was estimated
(by going up in steps of 0.58C) as 23.08C; the estimate
using GenStat to fit equation (15) was 23.708C
(SE 0.372). Further, there was a significant (P , 0.001)
reduction in the residual deviance when a ‘Cv’ (control
viability) parameter was also included in the GLM to
estimate the maximum level of viability:

g ¼ Cv £F g
� �

¼ Cv £F b0 þ b1 p T 2 Tbð Þ
� �� �

: ð16Þ

This equation is perhaps easier to comprehend
in toto than equation (14), in which the percentage
germination, g, can take any value (0–100). Fitting
equation (16) to the data as a GLM is done in a single
step; there is no interpolation of germination progress
curves to determine the time for germination to reach,
for example, 10, 20, 30,. . .%. Further, this approach
does not rely on ‘manual’ setting and adjustment of Tb

values and assessment of the residual sum of squares.
Most importantly, this method of analysis takes into
account all the raw data and the inherent variability
(error distribution) in that data.

Hydrotime

Following on from the concept of thermal time above
a base temperature, Tb, for germination, described by
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Garcia-Huidobro et al. (1982), Gummerson (1986)
proposed a model describing the effect of water
potential on germination. In this ‘hydrotime’ model,
the base water potential, cb, was assumed to vary
between individual seeds within the population, again
following a normal distribution. Gummerson (1986)
and others have usually defined the hydrotime model,
at a single constant temperature, using the equation:

GRg ¼
1

pg
¼

c2 cbðgÞ

uH
ð17Þ

where GRg is the ‘germination rate’ as before;
c is water potential and cb(g) is the minimum water
potential for % germination, g; and uH is the
‘hydrotime constant’, assumed to be the same for all
seeds (Bradford, 1990, 2002; Bradford and Still, 2004;
Golaszewski and Bochenek, 2008). Since the model
assumes that the variation in cb between individual
seeds within the population follows a normal
distribution, there is a linear relationship between
probit germination and cb. A further implication of
this equation is that seeds with a value of cb that is less
negative than c will have a germination rate that is
negative, and therefore germination will not occur.
This is in contrast to the thermal time model described
above, in which Tb is assumed constant for all seeds
within the population and where, therefore, it is
expected that all seeds will eventually germinate once
they have spent enough time at temperatures above Tb

(Bradford, 1995). The procedure that has been adopted
for determining cb is an adaptation of the method Ellis
et al. (1987) used to determine Tb; linear regression
analysis is carried out for probit germination against
(c–uH p21) with the value of uH adjusted until
the residual sum of squares (RSS) is minimized
(Fig. 4C–G). Since it uses probit germination as the
dependent variable, this method has been termed
‘repeated probit analyses’ (e.g. Dahal and Bradford,
1990). The median base water potential for germina-
tion, cb(50) is where probit germination ¼ 0 and the
standard deviation of the distribution of cb, scb, is
the inverse of the slope of the linear relationship. For
the data for primed lettuce seeds shown in Fig. 4 (from
Bradford and Still, 2004), using this method of model
fitting, uH ¼ 15.5, cb(50) ¼ 20.8 MPa and scb ¼ 0.23.

The hydrotime model may also be expressed as
a GLM (Golaszewski and Bochenek, 2008) and the
hydrotime parameters estimated more simply using
probit analysis directly. The GLM for the hydrotime
model has the form:

g ¼ F g
� �

¼ F b0 þ b1cþ b2p21
� �

: ð18Þ

Expressing the hydrotime model in this form
identifies an implicit assumption that, at constant
water potential, it is the reciprocal of time to
germination ( p21) that is normally distributed, rather
than time to germination ( p). This is consistent with
one of the approaches suggested above for modelling
germination as a function of time where the
cumulative germination curves are asymmetric
(Fig. 2B–C).

To fit the hydrotime model as a GLM (equation 18),
the data are entered as before, as the number of seeds
that germinated and the number of seeds sown for
the dependent variable, g, and with two explanatory
variables, c and p21. The probit analysis will provide
estimates for the three unknown parameters in the
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Figure 3. Thermal time probit analysis modelling of faba
bean germination data taken from figure 1 in Ellis et al.
(1987). (A) Approximate raw data for the progress of seed
germination over time at the temperatures indicated,
showing the fitted germination progress curves using the
published thermal time model parameters (solid lines) and
the results of using the FITNONLINEAR directive in GenStat
to fit the GLM with the inclusion of the Cv parameter
(equation 16) (dashed lines). There were significant decreases
in the residual deviance when parameters were estimated in
the GLM rather than set at the published values (F3,65 ¼ 22.7,
P , 0.001) and when the Cv parameter was then included
(F1,64 ¼ 13.26, P , 0.001). Parameter estimates: b0 ¼ 26.13
(SE 0.462), b1 ¼ 0.042 (SE 0.0034), Tb ¼ 24.03 (SE 0.367) and
Cv ¼ 0.921 (SE 0.0204). (B) The same data plotted against
thermal time calculated using the fitted model (with Cv).

Modelling germination response to continuous variables 175

https://doi.org/10.1017/S096025851400021X Published online by Cambridge University Press

https://doi.org/10.1017/S096025851400021X


GLM from which it is possible to calculate the familiar
hydrotime parameters: uH ¼ 2b2/b1, cb(50) ¼ 2b0/
b1 and scb ¼ 1/b1. This was done for the Bradford
and Still (2004) lettuce seed data, using the ‘Modelling
of binomial proportions’ routine in the GLM menu of
GenStat 13 and assuming 100 seeds were sown at each
water potential. For primed seeds the fitted model
gave estimates for b0, b1 and b2 of 3.49 (SE 0.163), 4.39
(SE 0.230) and 268.7 (SE 3.19), respectively; it follows
that uH ¼ 15.65; cb(50) ¼ 20.79 and scb ¼ 0.23 (Table 1
and Fig. 5). The discrepancy in parameter values, most
notably for uH, reflects the different weights associated
with observations in the different analysis approaches.

By including seed-lot treatments as factors in the
analysis, it is also possible to determine whether b0, b1

and b2 differ significantly between those seed-lot
treatments by analysis of the residual deviance (in the
situation where the data are assumed to be indepen-
dent). For example, for the lettuce seed data, there was
a significant increase in the residual deviance when
all three model parameters (b0, b1 and b2) were not
allowed to vary between primed and control seeds
(P , 0.001; Table 1, Fig. 5). Fitting the hydrotime model

to the lettuce data with seed-lot treatment as a factor
showed that priming increased the rate of germination
(decreased uH (¼ 2b2/b1)) and increased the variation
between individual seeds in their response to water
stress, although there was no change in cb(50)
(¼ 2b0/b1). As well as priming, other treatments
may alter the hydrotime model parameters; for
example, Zuk-Gołaszewska et al. (2007) concluded
that breaking physical dormancy through scarification
significantly decreased uH for seeds of red clover, while
cb(50) and scb were relatively unchanged. However,
since uH is dependent on two of the GLM parameters,
b1 and b2, and cb(50) and scb also vary if there is
change in b1, this is not easy to test specifically through
a process of allowing individual parameters to vary
with treatment (e.g. priming or scarification) in the
GLM. The parameter b0 is an estimate of the
maximum germination that could be achieved by
the seed-lot. This is not usually estimated when fitting
is done by linear regression analysis of probit
germination against (c – uHp21) for different values
of uH. Estimates of b0 . 3.00 (Table 1) are equivalent to
maximum germination greater than 99.87%.
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Figure 4. Hydrotime modelling of data given for primed and non-primed (‘control’) seeds of lettuce in Bradford and Still (2004).
The data presented in that publication, plotted in (A) and (B), give the times for germination to reach 10, 20,. . ., 80 and 90%, rather
than raw data following the progress of seed germination (i.e. involves interpolation of germination progress curves). The
recommended procedure for hydrotime model fitting involves repeated probit analyses (Ellis et al., 1987) whereby linear
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RSS is least when uH ¼ 15.5 (to 1 dp; E), cb(50) ¼ 20.8 MPa (solid line arrow) and scb ¼ 0.23 (the inverse of the slope or, as
shown by the difference between the dashed and solid line arrows, the change in c for germination to increase by 1 probit).
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Using probit analysis to fit the GLM described by
equation (16) assumes that uH is constant for all seeds
in the population; this is generally accepted to be the
case (Gummerson, 1986; Bradford, 1990, 1995, 2002;
Kebreab and Murdoch, 1999b). However, the validity
of this assumption could be considered by comparing
the fit of this standard model (equation 18) with that
including an additional interaction term:

g ¼ F g
� �

¼ F b0 þ b1cþ b2p21 þ b3c�p21
� �

: ð19Þ

Including this interaction term, as well as the seed-
lot factor, to analyse the lettuce data (i.e. fitting
equation 19 to the primed and control data simul-
taneously) resulted in further reductions in the
residual deviance (Table 1, Fig. 5). Formal model
testing would allow the assessment of whether this
more complex model provides a better fit to the data,
but the implication that uH varies within the seed-lots
needs careful thought about the mechanistic interpret-
ation of this more complex model. Implementation
of the hydrotime model as a GLM thus allows the
exploration of a wider range of potential models to
describe the observed data, although care is needed in
the derivation of the traditional hydrotime model
parameters and in the interpretation of the underlying
biology for any more complex models so derived.

Hydrothermal time

Gummerson (1986) also considered the combined
effect of temperature and water potential on the rate
of germination of sugar beet seeds, using the thermal
time theory of Garcia-Huidobro et al. (1982) as a
starting point (equation 14). Mirroring the form of this
thermal time equation, but with water potential
replacing temperature, and using thermal time rather
than time, Gummerson (1986) defined:

1

uTðgÞ
¼

c2 cbðgÞ

uHT
ð20Þ

where uHT is the ‘hydrothermal time’ constant, the
accumulated period of time spent at water potentials
above the base water potential and temperatures
above the base temperature required for germination
of the gth percentile of the population. Combining
equation (14) and equation (20), the hydrothermal time
constant can then be expressed as:

uHT ¼ T 2 Tbð Þ £ c2 cb g
� �� �

£ pg ð21Þ

where T and c are temperature and water potential,
respectively; Tb is the base temperature for g%
germination, cb is the base water potential and pg is
the period of time from sowing for g% germination
(Gummerson, 1986; Dahal et al., 1993; Dahal andT
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Bradford, 1994). In equation (21), uHT and Tb are
assumed to be constant for all seeds within a seed-lot,
while cb is allowed to vary. Gummerson (1986) stated
that ‘. . . a normal distribution is the most likely
description. . .’ of the distribution of base water
potentials within a seed-lot.

This derivation of hydrothermal time identifies
key differences in the underlying assumptions for the
thermal time and hydrotime models. In the thermal
time model, it is the thermal time to germination that is
allowed to vary with the base temperature fixed, while
in the hydrotime model the hydrotime to germination
is fixed with the base water potential allowed to vary.
A comparison of the GLM parameterizations of the
thermal time (equation 15) and hydrotime (equation
18) models highlights this difference in how time is
included: in the first case probit germination changes
linearly with time and in the second linearly with the
reciprocal of time. Similarly, equation (20), expressing
1/u T as a function of water potential, is different to
the equivalent equation for hydrotime (equation 17),
in which 1/pg is expressed as a function of water
potential. Finally, combining equations (14) and (20)
with the assumption that base water potential follows
a normal distribution within a seed-lot, means that the
assumption made by some (e.g. Ellis et al., 1986, 1987)
that thermal time to germination follows a normal
distribution, cannot be true. In fact, the implication is
that the reciprocal of thermal time to germination
follows a normal distribution, supporting observations
(e.g. Campbell and Sorenson, 1979; Scott and Jones,
1985; Dahal et al., 1990) that thermal time to
germination often follows a skewed (e.g. log-normal,
inverse normal) rather than a symmetric (e.g. normal)
distribution at a constant water potential.

The hydrothermal time model has been applied
widely and, again, the repeated probit analyses
method has been the preferred approach to first fit
the thermal time and hydrotime models separately,

and then the combined hydrothermal time model to
estimate the hydrothermal time parameters, uHT, Tb,
cb(50) and scb (e.g. Dahal and Bradford, 1994;
Alvarado and Bradford, 2005; Graziani and Steinmaus,
2009; Zambrano-Navea et al., 2013). Rowse and Finch-
Savage (2003) used the same, repeated probit analyses
method to fit an extended hydrothermal time model
that incorporates modifications to the base water
potential distribution at supra-optimal temperatures
to model the reduction in germination rate observed at
these temperatures.

As with the earlier models, the hydrothermal time
model may also be fitted as a GLM:

g ¼ F g
� �

¼ F b0 þ b1cþ b2 p T 2 Tbð Þ
� �21

h i
ð22Þ

and the hydrothermal time constant, uHT, calculated as
2b2/b1. This parameterization emphasizes that it is
the reciprocal of thermal time, ( p(T – Tb))21, that is
assumed to be normally distributed, and not thermal
time. Again, the parameter b0 is an estimate of the
maximum germination which would not otherwise be
estimated. Since Tb is unknown, as for the thermal time
model, this GLM would have to be fitted through non-
linear model fitting. Bloomberg et al. (2009) fitted a
hydrothermal time model to germination data for
Pinus radiata (D. Don) at sub-optimal temperatures
using the ‘nls’ function in the statistical software R,
but transformed the percentage germination to probit
germination values (i.e. fitted a LM to probit values)
rather than fitting a GLM directly. Re-analysing the
P. radiata data using the FITNONLINEAR directive in
GenStat 13, there were significant improvements
(reduction in overall residual deviance) when the
model is fitted as a GLM compared with the stepped
approach, as determined by setting the values of b0,
b1 and b2 as 2cb(50)/scb, 1/scb and 2uHT/scb,
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Figure 5. Using probit analysis to directly fit the hydrotime model to the lettuce seed germination data from Bradford and Still
(2004) shown in Fig. 4A, B. The solid fitted lines show the results of independent fitting of the model for primed and control seeds
(equation 18; Table 1). Fits were improved by including an interaction term, i.e. allowing uH to vary (equation 19; dashed lines).
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respectively, using the values published in Bloomberg
et al. (2009) (Table 2). Further improvements were
gained by adding a Cv (control viability) parameter to
the model to estimate the maximum level of germina-
tion, as can be seen from the reduction in overall
residual deviance (Table 2) and the fitted curves that,
for many combinations of temperature and water
potential, are closer to the observed data (Fig. 6).

Bloomberg et al. (2009) and Watt et al. (2010)
emphasized the importance of model criticism and
improvement to enhance our understanding of the
underlying physiological processes in seeds. Another
advantage of fitting the hydrothermal time model as a
GLM is that standardized residuals can be automati-
cally generated. The plot of these standardized
residuals from the GLM fitted using the P. radiata
parameters (model 1) determined by Bloomberg et al.
(2009) also shows evidence of curvature (Fig. 6E). This
curvature in the residual plot was much less apparent
when the hydrothermal time model was fitted as a
GLM with parameters allowed to vary (Fig. 6J),
although when the residuals are plotted for each
treatment combination (temperature £ water poten-
tial), there is still evidence of systematic deviation
between observed and fitted values which varies
between treatments (as can also be seen in Fig. 6F–I).
Curvature in residual plots may result from changes in
seed germinability during the germination time
course, with a consequent change in hydrothermal
time model parameters. Bloomberg et al. (2009)
modified the model for P. radiata to take into account
an upward shift in cb with increasing time to
germination. Similarly, Kebreab and Murdoch
(1999b) found that there were interactions between
temperature and c such that cb(50) varied depending
on temperature and Tb varied depending on c.

Other ‘threshold models’

The thermal time, hydrotime and hydrothermal
time models are examples of what have been termed
‘threshold models’, described by Bradford (2005) as
being ‘. . . based on the concept that the magnitude or
speed of a biological response is proportional to the
difference between the level of a signal input and the
threshold sensitivity for that input’. For these models
this description is perhaps too simplistic as there are
two threshold components: the base level of the input
(i.e. base temperature or base water potential) above
which germination processes within a seed can
commence, and the amount of accumulated time
(e.g. thermal-, hydro- or hydrothermal time) above
these base levels required for germination of that seed
to be completed. Thus, if the signal input for a seed is
below the base level, the germination process will not
commence; if the base level varies within a population, T
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such as is assumed in the hydrotime model, then the
proportion of seeds within a seed-lot that will
germinate will also vary. Further, as the signal level
increases above the base level, the progress towards
germination is accelerated. It is worth reiterating that
in the thermal time model it is the accumulated
thermal time (above a fixed threshold, Tb) required to
complete germination that varies within a seed-lot,
while in the hydrotime model the accumulated
hydrotime required for germination is fixed, but the
base water potential varies within the population, as a
function of germination percentile (g).

Threshold models have also been used to describe
the effects of other variables that either slow the rate
of germination and/or reduce the final proportion
of seeds that germinate or accelerate the rate of
germination and/or increase the proportion of seeds
that germinate, where the thresholds (base level
and/or accumulated time) are assumed to follow a
normal distribution. For example, instead of water
stress, Bradford et al. (1993) considered the effect of
experimental storage on the progress of seed germina-
tion for lettuce seeds, thereby combining the normal
distribution of seed deaths over time as incorporated
in the seed viability equation (Ellis and Roberts, 1980a)
with the normal distribution of seed germination
over p21. The GLM for this model would therefore
take the form

g ¼ F g
� �

¼ F b0 þ b1pES þ b2p21
GT

� �
ð23Þ

where pES refers to the period of time in experimental
storage and pGT refers to the period of time in the
germination test. Here pES is the signal input to the

threshold model with each seed having a base storage
period (assumed to follow a normal distribution) after
which they no longer have the ability to germinate.
Where pES is less than the base storage period for a
seed, the time to germination, pGT, will decrease as the
difference between the signal input, pES, and the base
storage period increases. Hence, both b1 and b2 should
have negative estimates, so that the relationships
between the GLM parameters and the conventional
threshold model parameters (as identified above for
the hydrotime model) indicate that uage (the ageing
time constant) should take negative values (also
inferred by equation 4 in Bradford et al., 1993).

Using probit analysis in statistical software, the
germination response to alternative/multiple expla-
natory variables, where the response to each variable is
expected to follow a normal distribution (either with
or without transformation), can be as easily evaluated
as a simple or multiple linear regression model; for
example, to model the germination response to three
explanatory variables [ p21, c (as for the hydrotime
model) and log(abscisic acid concentration)], as
described by Ni and Bradford (1992). Explanatory
variables with a potentially positive effect on the
germination of dormant seeds, which could likewise
be incorporated into the probit GLM, include, as
continuous variables, (log) gibberellic acid concen-
tration (Ni and Bradford, 1993), after-ripening period
(Gianinetti and Cohn, 2007; Chantre et al., 2009) and
after-ripening thermal time (Bazin et al., 2011), or as
qualitative treatments, exposure to heat or smoke
relative to an untreated control (Thomas et al., 2010).
Kebreab and Murdoch (1999a) considered the effects
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of loss of primary dormancy, induction of secondary
dormancy and loss of viability for seeds of Orabanche
aegyptiaca Pers., O. cernua Loefl. and O. crenata Forsk.,
but this model is not a typical threshold model as it
does not include the accumulated period of time
required to achieve different levels of germination. In
constructing models with more explanatory variables,
it may be necessary to consider interacting effects
where such interactions have a justifiable biological
interpretation. It should also be noted that more data
are of course required in order to fit the increased
number of parameters required by these models.
Experiments designed with a complete factorial
treatment structure will ensure that these interaction
effects can be fully estimated.

Survival analysis methods and analysing the
distributions of times to response

As identified above, it is generally not appropriate
to analyse the cumulative germination curve data
collected in germination studies using probit analysis
(within the GLM framework) because the observed
germination counts at successive time-points are not
independent. While alternative analysis methods,
including the concept of survival analysis and the
fitting of statistical distribution functions to obser-
vations of times to germination, have been explored
(e.g. Scott et al., 1984), these methods have not been
applied widely or routinely in seed germination
studies (McNair et al., 2012; Manso et al., 2013; Ritz
et al., 2013). This may be, in part, due to the
nomenclature used to describe these models: germina-
tion studies are concerned with the time to evidence of
life, not with the time to death (or failure), so the idea
of using survival analysis may not seem compatible.
Further, studies tend to be focused on recording the
number of seeds that have germinated (by a particular
time), rather than on the actual times of germination
for individual seeds. This again suggests that these
methods would not be appropriate, since they appear
to be concerned with analysis of data in the form of
times. Conversely, survival analysis methods are not
appropriate for analysing data from seed survival
studies as it is never known when each individual seed
dies (Hay et al., 2010) and assessment of viability after
periods of storage can only be made through
destructive testing (i.e. a germination test) of indepen-
dent samples of multiple seeds.

More recently, there have been several publications
concerned with the application of survival analysis
approaches to seed germination data, as reviewed by
McNair et al. (2012). Onofri et al. (2010) considered a
range of Accelerated Failure Time (AFT) models
(similar to the accelerated life models described briefly
earlier) to describe germination responses for four

different weed species, based on the initial calculation
of a non-parametric Kaplan–Meier estimator of the
probability of germination at any point in time. This is
calculated as a function of the number of seeds that
have germinated in each time interval prior to that
point in time, and the number of seeds that were
available to germinate at the end of the preceding
interval (Cox and Oakes, 1984). The AFT approach
allows consideration of a range of statistical distri-
bution functions for the times to germination of seeds
in a seed-lot, including the exponential, Weibull, log-
normal and log-logistic, and allows comparison of the
responses for different seed-lots through estimation of
an ‘acceleration factor’ that summarizes the relative
germination rates of the seed-lots, but assumes a
common shape of response (i.e. a common form of
statistical distribution). Other survival analysis
approaches include the semi-parametric Cox pro-
portional hazards model and the non-parametric
actuarial life table method (Cox and Oakes, 1984).
While these methods can provide a good description of
observed germination responses, how well they can be
used in a predictive capacity for data sets collected
across a wide range of environmental conditions, as in
the threshold models described above, is not clear.
However, Manso et al. (2013) demonstrated one
approach where the hazard function is modelled as
the product of non-linear functions of a set of potential
explanatory variables, although it is not immediately
clear how this then relates to the existing thermal,
hydro- and hydrothermal-time models. As already
identified, another issue for the application of survival
analysis models to seed germination data is that
conventional survival analyses will include censored
observations for individuals who have survived to the
end of the study period. With seed germination
studies, as mentioned previously, it is often unknown
whether seeds that have not germinated at the end of
the study are still viable, and so it is difficult to know
how to include these seeds in the data analysis.

The alternative approach to analysing time to
response data is to model the distribution of times
directly, based on the numbers of seeds germinating in
a series of observation intervals. An initial development
of such an approach was described by Hunter et al.
(1984) based on the assumption that the times to
germination followed a normal distribution, possibly
after some transformation of the time variable, and
including a further parameter to estimate the
proportion of the seed-lot that was viable (with the
further assumption that the non-viable seeds were not
part of the normal distribution of times to germination).
A similar approach was applied by O’Neill et al. (2004)
with a focus on using the inverse normal distribution to
describe times to germination for perennial ryegrass.
In both cases the approach uses a maximum likelihood
method to fit the chosen distribution function to the
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observed germination counts in each interval, essen-
tially by predicting the cumulative germination count
at the start and end of each interval and thus obtaining
the predicted count for that interval.

Hence, the hydrothermal time model could be
implemented with the common assumption that the
base water potentials within a seed-lot follow a normal
distribution, that germination progress is a function of
accumulated hydrothermal time above the base water
potential and base temperature, and, as a consequence
of the assumption regarding the distribution of base
water potentials within a seed-lot, that germination
events in thermal time follow an inverse normal
distribution. Here the data would be arranged as
the number of seeds germinating in each time interval
for each of a number of combinations of constant
temperatures and water potentials. The maximum
likelihood estimation process starts with initial
estimates of all of the model parameters and then
uses an iterative optimization process to search the
parameter space for the combination of parameters
that produces predictions that most closely match the
observed responses in each time interval for each
combination of treatments. An implementation of this
approach (available from the second author), for the
modified version of the hydrothermal time model
proposed by Rowse and Finch-Savage (2003), using the
generalized regression facilities in GenStat (VSN
International), includes expressions to calculate the
base water potentials for the percentile of the seed-lot
to have germinated at the start and end of each time
interval, based on the assumption that these values
follow a normal distribution, to estimate the overall
proportion viability of the seed-lot (assumed to be
constant across all treatment combinations) and to
calculate the (constant) base temperature and hydro-
thermal time constant, and hence predict the number
of seeds that should germinate in each time interval.

The major benefit of this approach is in the
flexibility it allows in the choice of models to describe
observed germination responses. Mesgaran et al.
(2013) consider a range of statistical distribution
functions to describe the distribution of base water
potentials within a seed-lot, and the consequent
cumulative distribution functions for percentage
germination as a function of time and water potential.
The proposed models include a number of the
distributions identified earlier as being considered as
possible models for the distribution of failure times
within the survival analysis approach – the Weibull
distribution, log-normal distribution, log-logistic dis-
tribution and gamma distribution – as well as the
inverse normal distribution. While they acknowledge
the need to use a maximum likelihood approach to fit
these models to their observed data, and the lack
of independence between germination counts at
consecutive observation times, their results appear

still to be based on fitting the cumulative distribution
functions to the observed cumulative germination
data, despite an acknowledgement and demonstration
(in their online supplementary material) of the bias in
the parameter estimates and underestimation of the
standard errors associated with these biased par-
ameter estimates. An earlier study (Watt et al., 2010)
compared the use of normal and Weibull models for
the distributions of base water potentials within a
seed-lot in fitting the hydrothermal time model to
germination data for two species [P. radiata and
Buddleja davidii (Franch.)]. Again, however, despite
using a non-linear regression approach, they fit
cumulative distribution functions to the cumulative
germination counts and so are likely to be introducing
the same bias and underestimation of errors as are
identified above.

Watt et al. (2010, 2011) and Mesgaran et al. (2013)
suggest that some alternative to the assumption that
base water potentials follow a normal distribution
provides a better fit to the observed (cumulative)
germination data, suggesting either the Weibull or the
log-logistic distribution. Both distributions have
skewed probability density functions, which are not
too dissimilar in shape to the probability density
function for the inverse normal distribution. Therefore
the adoption of these alternative forms of distribution
for the base water potentials within a seed-lot in a
hydrothermal time model might overcome the
contradiction caused by the assumptions made by
Gummerson (1986) and others in the original devel-
opment of the hydrothermal time model, about the
distributions of the thermal time to germination and
base water potentials.

A commonly stated barrier (e.g. Mesgaran et al.,
2013) to the fitting of models to non-cumulative
germination counts rather than cumulative germina-
tion counts is the inaccessibility of approaches to fit
such models within modern computer packages. Yet
such an approach was implemented by Hunter et al.
(1984) nearly 30 years ago and O’Neill et al. (2004)
described the implementation of such an approach
within the commercially available statistical comput-
ing package GenStat nearly 10 years ago, based on the
development of the GenStat function CUMDIST by
Brain and Butler (1988). Recent papers (e.g. Watt et al.,
2010, 2011; Mesgaran et al., 2013) describe the use of
standard non-linear regression modelling routines to
fit these cumulative models, usually requiring the
specification of the form of the model using a number
of expressions. The extension of this approach to
define a model for the difference between two
cumulative counts (i.e. at the start and end of each
observed time period) should be straightforward
using such non-linear regression modelling routines,
as described above for the Rowse and Finch-Savage
(2003) model.
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Having adopted this more general modelling
approach to the analysis of germination progress
curves, the development of more complex models
should be possible, to incorporate an even wider range
of stimuli. This more general approach allows access
to a much wider range of model forms for the
distribution of base water potentials within the
existing hydrothermal time model framework. This
modelling approach could also allow the redevelop-
ment of a hydrothermal time model in which the
impacts of temperature and water potential are not so
closely linked, possibly also allowing the formal
inclusion of some form of interaction between the
effects of temperature and water potential, should that
be appropriate. Of course, these further developments
should be firmly grounded in a biological (mechan-
istic) understanding of the processes involved, rather
than just based on the best fitting model from a
statistical perspective, but this more general modelling
approach does then allow the comparison of models
with a range of different assumptions and structures.

Conclusions

Clearly, probit-based models have been useful for
understanding seed physiological and ecological
processes. However, the method of ‘probit analysis’
has often involved data interpolation, transformation
to probit values and/or violation of the model
assumption of independent observations, in particular
when modelling the progress of germination within a
seed-lot. Nonetheless, it is only through such data
exploration and the making of assumptions about seed
behaviour that these models have been derived in the
first place. If experiments are designed appropriately,
fitting such models through a GLM procedure in
statistical software will provide more accurate and
unbiased estimates of parameters, taking into account
the error distribution of the raw data, within a fraction
of the time it takes with the stepwise approach of
repeated probit analyses, and through a single model-
fitting step, avoiding the potential introduction of
rounding errors from multiple-step analyses. GLM
fitting is readily available in most statistical software
packages and model evaluation is also facilitated
through the generation and plotting of residuals. There
may be some fluctuation in the levels of germination
between independent samples at adjacent times. This
between-sample variability should not be ‘cleaned’
(e.g. removed or averaged) when fitting the GLM
(in contrast, for cumulative data, taking a survival
analysis approach, these data would be removed). By
expressing these seed biology models within the GLM
framework, it is hoped that they will become more
accessible and that it will be easier to understand the
equations involved. Where resources are limited and it

is not possible to conduct an experiment in such a way
that observations at successive times are made on
independent samples of seeds, survival analysis or the
direct fitting of models to describe the distribution of
times to response (germination) are more appropriate
approaches. It is clear that there is a broader under-
standing of the importance of accounting for the
correlated structure imposed by the cumulative counts
collected in germination studies, and survival analysis
is starting to gather interest amongst seed researchers
across diverse fields of application. The next stage must
be the incorporation of multiple, potentially interacting,
explanatory variables into these models, such as have
been suggested by Manso et al. (2013) within survival
analysis, with a careful consideration of the biological
interpretation associated with the different ways in
which multiple explanatory variables are included
within the different modelling approaches.
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