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Quantitative phase analysis is one of the major applications of X-ray powder diffraction. The essential
principle of quantitative phase analysis is that the diffraction intensity of a component phase in a mix-
ture is proportional to its abundance. Nevertheless, the diffraction intensities of the component phases
cannot be compared with each other directly since the coherent scattering power per unit cell (or
chemical formula) of each component phase is usually different. The coherent scattering power per
unit cell of a crystal is well represented by the sum of the squared structure factors, which cannot
be calculated directly when the crystal structure data is unavailable. Presented here is a way to approx-
imate the coherent scattering power per unit cell based solely on the unit cell parameters and the chem-
ical contents. This approximation is useful when the atomic coordinates for one or more of the phases
in a sample are unavailable. An assessment of the accuracy of the approximation is presented. This
assessment indicates that the approximation will likely be within 10% when X-ray powder diffraction
data is collected over a sufficient portion of the measurable pattern.© The Author(s), 2022. Published
by Cambridge University Press on behalf of International Centre for Diffraction Data.
[doi:10.1017/S0885715621000609]
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I. INTRODUCTION

As a powerful tool for phase identification and quantita-
tive phase analysis (QPA), X-ray powder diffraction has
been extensively applied in both research and industry. The
essential principle for QPA is that the diffraction intensities
of a component phase are proportional to its abundance in
the mixture. Nevertheless, different crystalline phases have
various coherent scattering powers. Therefore, the diffraction
intensities of the component phases in a mixture cannot be
compared with each other directly and then related to the
abundance of a component phase. Indeed, the diffraction
intensities of each phase in the mixture have to be normalized
by its coherent scattering power before it can be related to the
abundance of the corresponding phase.

The structure factor is the amplitude of coherent scattering
from the contents of one unit cell of a crystalline phase. The
intensity of a certain reflection is proportional to the squared
structure factor when experimental parameters, such as
Lorentz-polarization factors, are taken into accounts. Then,
the total coherent scattering power per unit cell of a crystal

can be well represented by the sum of the squared structure
factors over all possible reflections. The structure factor can
be readily calculated when the atomic arrangement in the
unit cell is known:

Fh =
∑

fi(h) exp (i2ph · ri) (1)

where Fh is the structure factor, fi is the atomic scattering fac-
tor of the ith atom in the unit cell, h is the diffraction vector,
and r is the positional vector of the ith atom.

Then, the total coherent scattering power per unit cell of a
certain crystal,

∑
h |Fh|2, can be determined (note that the

multiplicity of reflection is already included in the value of∑
h |Fh|2, as h includes all possible reflection indices, not

just one per symmetrically equivalent group). If the crystal
structure data is available for all the phases in the mixture,
the abundance of each component phase can be deduced
from the observed diffraction intensities normalized by the
total coherent scattering power per unit cell of the correspond-
ing phase.

The crystal structure data is not always available for each
phase in the mixture to be quantitatively analyzed. Many
methods have been developed for QPA, and some of them
can be applied to analyze samples consisting of crystalline
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phases with unknown crystal structures, such as the internal
standard method (Clark and Reynolds, 1936; Alexander and
Klug, 1948) and the spiking method (Copeland and Bragg,
1958). With these methods, one does not need the crystal
structure data of the component phases to deduce the fraction
of each phase from the observed X-ray powder diffraction
data. Nevertheless, additional samples, such as the pure
phase of the target component and the investigated mixtures
spiked with a known amount of the target phase or standard
reference materials, have to be prepared, and each of them
has to be measured with X-ray powder diffraction.
Therefore, the process of QPA based on these methods is
experimentally tedious and time-consuming. A concept of ref-
erence intensity ratio (RIR) has been developed by the Joint
Committee on Powder Diffraction Standards since 1970
(Berry, 1970; Gates-Rector and Blanton, 2019) for “rough
quantitative X-ray diffraction analysis of mixtures.” When a
crystalline phase is mixed with common reference material
(usually corundum) with a weight ratio of 1:1, then the inten-
sity ratio of the strongest reflection of each phase is defined as
RIR. Based on the RIR, Chung (1974a, 1974b) developed the
“matrix flushing theory” and the “adiabatic principle,” which
greatly simplify the process of QPA. If the RIR of each com-
ponent phase in a mixture is known, then the abundance of a
component phase can be derived directly from the X-ray pow-
der diffraction data. Unfortunately, the RIR is not always
available for phases to be quantitatively analyzed. It is espe-
cially true for new phases encountered in research and devel-
opment activities. More importantly, the intensity ratio
between the target phase and the reference material depends
on the specimen preparation and experimental parameters of
the X-ray diffraction data collection. Therefore, samples
affected by preferred orientation are not suitable to be ana-
lyzed with the RIR method since RIRs listed in the ICDD
PDFs are defined for randomly oriented samples. In addition,
the RIR method utilizes only the intensity information of the
strongest reflection, which is very sensitive to the specimen
preparation and experimental parameters of data collection.
In 2006, Scarlett and Madsen proposed a method to quantita-
tively analyze the mixture including partial or no known crys-
tal structures (so-called PONKCS). However, this method is
applicable only for cases where the pure phase of PONKCS
is available, or at least, PONCKS exists as a dominant phase
in the sample. Furthermore, the X-ray powder diffraction pat-
tern of the mixture of PONCKS and reference material has to
be measured to perform quantitative analysis. In recent years,
Toraya (2016, 2017, 2018, 2019) proposed a new method for
QPA, which derives the abundance of the component phase
from the diffraction intensities and the chemical composition
of the target phase. This method enables the QPA for samples
including phases with unknown crystal structures, while no
additional auxiliary samples and diffraction datasets are neces-
sary. In this method, the total coherent scattering power per
unit cell of a component phase was estimated using the prod-
uct of the unit cell volume and the sum of the squared electron
numbers of each atom over the whole unit cell. Namely, the
total coherent scattering power per unit cell was assessed by

∑
h

|Fh|2 =CU
∑N
i=1

n2i (2)

whereC is a proportional constant,U is the unit cell volume, ni
is the electron number of the ith atom in the unit cell, and N is
the total number of atoms in the unit cell.

Unfortunately, Eq. (2) was derived from an assumption
that the peak height of the Patterson function at the
origin can be approximated by the integrated convoluted
electron density of the peak. This assumption has no solid
theoretical foundation or logical proof. Moreover, to
apply Eq. (2) in QPA, the proportional constant C has to be
assumed to be common to, and independent of, the various
component phases in the investigated mixture. Actually,
there is no theoretical evidence for the assumption of “com-
mon C.”

Here, we present a new method to calculate the total
coherent scattering power per unit cell of crystalline phases
with unknown atomic arrangements in the unit cell. All infor-
mation needed to implement the calculation is the unit cell
parameters and the chemical contents of the unit cell, namely,
the species and numbers of atoms in the unit cell. The
approach to quantitatively analyze the abundance of crystal-
line phases with unknown atomic arrangements in the unit
cells has been developed based on our new method for the cal-
culation of the total coherent scattering power of crystals. The
validity of both the method of calculating the total coherent
scattering power per unit cell and the approach of QPA is
verified.

II. THEORY

A. Calculation of the total coherent scattering power per

unit cell of crystals using the unit cell parameters and

the chemical contents of the unit cell

The structure factor, Fh, of a crystal with an electron den-
sity distribution of ρ(r) in its unit cell is the Fourier transform
of ρ(r), namely,

Fh =
∫
U
r(r) exp (i2ph · r)dv (3)

where dv is a volume element of the unit cell at position r.
According to Parseval’s theorem, the integral of the

square of a function f (x) is equivalent to the integral of the
square of the Fourier transform of f (x) (Pollard, 1926;
Hughes, 1965). Applying Parseval’s theorem to Eq. (3),
then we have

1
U

∑
h

|Fh|2 =
∫
U
r2(r)dv (4)

In a crystal, the electron density distribution of a constit-
uent atom will be slightly different from that of a free atom of
the same species because of the formation of chemical bond-
ing. Nevertheless, the difference is so small that it can be
detected only by very accurate X-ray diffraction measure-
ments, and is negligible for routine X-ray diffraction measure-
ments. Thus, for routine X-ray diffraction measurements, the
electron density distribution in the unit cell of a crystal may
be approximately taken as the sum of the electron density of
a series of free atoms, each of which is of the same species
and position as the corresponding constituent atoms in the
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unit cell of the crystal. Namely,

r(r) =
∑N
i=1

ri(ri) (5)

where ρi(ri) is the electron density distribution of a free atom,
which is of the same species and position as the ith constituent
atom in the unit cell.

As the overlap of electron density between adjacent atoms
is negligible, we have

∫
U
r2(r)dv =

∫
U

∑N
i=1

ri(ri)

[ ]2

dv

=
∫
U

∑N
i=1

r2i (ri)dv =
∑N
i=1

∫
U
r2i (ri)dv (6)

Let us consider a hypothetical crystal, which has the same
unit cell as that of the crystal under study. There is only one
atom in the unit cell of the hypothetical crystal, and the only
atom is of the same species as the ith atom in the unit cell
of the crystal under study and located at the origin of the
unit cell of the hypothetical crystal. Then the structure factor
of the hypothetical crystal is given by

Fi,h′ =
∑

fi(h
′) exp (i2ph′ · r′) = fi(h

′) ; fi,h′ (7)

or

Fi,h′ =
∫
U
ri(r

′) exp (i2ph′ · r′)dv (8)

where Fi,h′ is the structure factor of the hypothetical crystal, h
′

and r
′
are the diffraction vector and positional vector of the

hypothetical crystal, respectively, fi(h
′
) is the atomic scatter-

ing factor of the constituent atom of the hypothetical crystal,
and ri(r

′) is the electron density distribution in the unit cell
of the hypothetical crystal.

Applying the Parseval theorem to Eq. (8), then we have

1
U

∑
h′

|Fi,h′ |2 =
∫
U
r2i (r

′)dv (9)

Combining Eqs (7) and (9), we have∫
U
r2i (r

′)dv = 1
U

∑
h′

f 2i,h′ (10)

The only difference between ri(r
′) and ri(ri) is a posi-

tional translation. Then combining Eqs (4), (6), and (10), we
have

∑
h

|Fh|2 =
∑N
i=1

∑
h′

f 2i,h′ (11)

Using Eq. (11), we can calculate the total coherent scatter-
ing power per unit cell of a crystal without knowing the atomic
arrangement in the unit cell. All we need to perform the calcu-
lation are the unit cell parameters and the chemical contents of
the unit cell.

B. Application in the QPA

For X-ray powder diffraction in the Bragg–Brentano
geometry, the intensity of reflection h of the jth component
phase in a mixture consisting of J phases is given by

I j,h = e4

32pm2c4
I0
l3

R
Gj,h

v

2m
vj
U2

j

|Fj,h|2 (12)

where Ij,h is the intensity of reflection h of the jth component
phase, e and m are the charge and mass of an electron, respec-
tively, c is the speed of light, I0 is the intensity of the incident
X-ray beam illuminating the sample, λ is the wavelength of
X-ray, R is the radius of the goniometer of the diffractometer,
μ is the linear absorption coefficient of the sample, v is the vol-
ume of the sample irradiated by the X-ray, vj is the volume
fraction of the jth phase, Gj,h is the Lorentz-polarization factor
corresponding to the reflection h of the jth phase.

For X-ray powder diffraction in the Bragg–Brentano
geometry, we have

Gj,h = 1+ cos22uMcos22u
sin2ucosu(1+ cos22uM)

(13)

where θM is the Bragg angle of the monochromator and θ is the
Bragg angle of the powder diffraction.Gj,h is dependent on the
diffraction angle, and then subsequently dependent indirectly
on the reflection index h.Gj,h can be calculated for each reflec-
tion of the jth phase when its unit cell parameters are known.

If we define a proportionality factor K as

K = e4

32pm2c4
I0
l3

R

v

2m
,

then K is constant for all phases in the sample, and Eq.
(12) is transformed into

I j,h = K
vj
U2

j

G j,h|Fj,h|2 (14)

Then the sum of the diffraction intensity of the jth phase is
given by

∑
h

I j,h =
∑
h

K
vj
U2

j

G j,h|Fj,h|2 (15)

So that the volume fraction of the jth phase can be
derived:

vj =
U2

j

∑
h I j,h/Gj,h

K
∑

h |F j,h|2
(16)

According to Eq. (11), the volume fraction of the jth phase
can also be calculated using the chemical contents of the unit
cell instead of the structure factors:

vj =
U2

j

∑
h I j,h/Gj,h

K
∑N

i=1

∑
h′ f

2
j,i,h′

(17)

where fj,i,h′ is the atomic scattering factor of the ith atom in the
unit cell of the jth phase.
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The volume fraction can be readily converted to the
weight fraction by

wj =
rjvj∑J

j′=1 r j′v j′
=

MjZjvj
Uj∑J

j′=1

Mj′Z j′v j′

Uj′

=

MjZjUj
∑

h (I j,h/Gj,h)∑N
i=1

∑
h′ f

2
j,i,h′∑J

j′=1

Mj′Z j′Uj′
∑

h (I j′,h/Gj′,h)∑N ′
i′=1

∑
h′ f

2
j′,i′,h′

(18)

where wj is the weight fraction of the jth phase, ρj, Mj, and Zj
are the density, the chemical formula weight, and the number
of chemical formula units in the unit cell of the jth component
phase, respectively.

The weight fraction of each crystalline component in the
mixture can be calculated using Eq. (18), while all information
required to perform the calculation is the unit cell parameters
and the chemical contents of the unit cell of each phase in
addition to an X-ray powder diffraction pattern of the mixture.
Neither pure phase of the component, reference materials,
additional auxiliary samples, and diffraction datasets nor
atomic arrangements in the unit cell, or RIR information is
necessary. Of course, if atomic arrangements in the unit cell
are known for some components,

∑
h |Fh|2 in place of∑N

i=1

∑
h′ f

2
i,h′ can be calculated and used in Eq. (18) for

these phases.

III. VALIDATION AND DISCUSSION

A. Consistency between
∑

h |Fh|2 and
∑N

i=1

∑
h′ f

2
i,h′

Theoretically, Eq. (11) is valid only when the overlapped
electron density of adjacent atoms is negligible and all possi-
ble reflections are taken into account. Actually, it is a reason-
able approximation for a regular X-ray diffraction
measurement that the overlapped electron density is negligi-
ble. Nevertheless, only reflections below a certain upper
limit of the diffraction angle can be measured in a practical
X-ray diffraction measurement. To apply Eq. (11) in analyzing
the practical X-ray diffraction data, its validity has to be
checked when only reflections in a limited diffraction angle

range are available. Here we calculated both
∑

h |Fh|2 and∑N
i=1

∑
h′ f

2
i,h′ for several crystalline phases, namely Si,

NaCl, α-Al2O3, Li2CO3, and Ag2Te (Hessite). The crystal
structure data of these phases are obtained from the literature
(Swanson and Fuyat, 1953; Parrish, 1960; Effenberger and
Zemann, 1979; Van Der Lee and De Boer, 1993; Pillet
et al., 2001). The wavelength corresponding to CuKα radia-
tion was assumed and the upper limit of the diffraction
angle (2θ) was set to be 60, 80, 100, 120, and 140°. The cal-
culation of

∑
h |Fh|2 and

∑N
i=1

∑
h′ f

2
i,h′ for Ag2Te and the cor-

responding results are presented in details as Supplementary
Files to illustrate the implementation of our calculations. It is
well known that atoms in a real crystal are vibrating about
their equilibrium positions, and the atomic displacements reduce
the atomic scattering factors in a way described as follows:

fi = fi,0exp −8p2 u2〉〈
sin2u/l2

( ) (19)

where fi,0 is the atomic scattering factor on which the effect of
atomic displacement is not taken into account, and 〈u2〉 is the
mean-squared atomic displacement from the equilibrium
position.

Then both
∑

h |Fh|2 and
∑N

i=1

∑
h′ f

2
i,h′ are affected by the

atomic displacements, and the consistency between them may
also be influenced. We calculated

∑
h |Fh|2 and

∑N
i=1

∑
h′ f

2
i,h′

with the assumption 〈u2〉 = 0 for all atoms, and the ratios of∑N
i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2 are presented in Table I. A discrep-

ancy in the range of 10%–15% was observed between∑
h |Fh|2 and

∑N
i=1

∑
h′ f

2
i,h′ at the upper limit of scattering

angle of 60° for all phases except for NaCl, for which the dis-
crepancy is as low as about 1%. When the upper limit of 2θ
increases to 80° or higher, generally, smaller inconsistencies
between

∑
h |Fh|2 and

∑N
i=1

∑
h′ f

2
i,h′ are observed. The largest

discrepancy, 11.6%, was observed for α-Al2O3 at the upper
limit of 2θ of 120°, while in most cases the discrepancy is
below 10%. As evidenced by the case study,

∑N
i=1

∑
h′ f

2
i,h′

is a reasonable approximation of
∑

h |Fh|2 when a sufficient
number of reflections are taken into account. For a regular
X-ray powder diffraction measurement using CuKα radiation,
an upper limit of 2θ of 80° seems to be adequate for validating
the approximation given in Eq. (11). We also noted that the
ratios of

∑N
i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2 fluctuate with the increase

of the upper limit of 2θ until 140°, rather than converge to

TABLE I.
∑N

i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2 calculated for several crystalline phases with the assumption 8π2〈u2〉 = 0 and 1.5 Å2, respectively.

Phases Space group

∑N
i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2

8π2〈u2〉 (Å2)

Upper limit of 2θ (°)

60 80 100 120 140

Si Fd�3m 0 0.872 1.073 1.025 1.000 0.990
1.5 0.905 1.080 1.041 1.023 1.016

NaCl Fm�3m 0 1.011 1.057 1.112 0.958 1.019
1.5 1.027 1.071 1.097 0.998 1.034

α-Al2O3 R�3c 0 1.117 1.026 1.102 1.116 1.043
1.5 1.239 1.083 1.135 1.142 1.096

Li2CO3 C2/c 0 1.100 1.090 1.066 1.018 1.022
1.5 1.123 1.106 1.092 1.059 1.060

Ag2Te (hessite) P21/c 0 1.149 0.974 1.079 0.999 0.989
1.5 1.146 0.997 1.071 1.019 1.011
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1. This results from the fact that reflections of crystals are dis-
tributed in the observed 2θ range discretely and irregularly. It
is also noteworthy that the ratios of

∑N
i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2

observed for Li2CO3 and α-Al2O3 are always greater than 1,
while the ratios observed for other phases fluctuate around
1. Compared with other phases, Li2CO3 and α-Al2O3 consist
of atoms with a lower average atomic number. It is not clear
yet that this is just an occasional phenomenon or there is reg-
ularity behind it.

B. Effect of atomic displacement parameters on the

consistency

We re-calculated
∑

h |Fh|2 and
∑N

i=1

∑
h′ f

2
i,h′ reported in

Section III.A with the assumption 8π2〈u2〉 = 1.5 Å2 for all
atoms to illustrate the effect of atomic displacement on the
consistency between them. The recalculated ratios of∑N

i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2 were also presented in Table I in

comparison with the results obtained with the assumption
〈u2〉 = 0 Å2. As shown in Table I, generally, the consistency
between

∑
h |Fh|2 and

∑N
i=1

∑
h′ f

2
i,h′ did not improve when

8π2〈u2〉 = 1.5 Å2 was assumed for all atoms. Actually, in
most cases, the ratios of

∑N
i=1

∑
h′ f

2
i,h′/

∑
h |Fh|2 increased

in comparison with their counterparts calculated by assuming
〈u2〉 = 0 Å2. Based on these limited preliminary results, it
seems reasonable to assume 〈u2〉 = 0 Å2 when one calculates∑N

i=1

∑
h′ f

2
i,h′ as an approximation of

∑
h |Fh|2.

C. Quantitative phase analysis

A mixture of Si, NaCl, and α-Al2O3 with the weight ratio
of 1:1:1 was prepared, and the X-ray powder diffraction data
of the mixture was collected using a Bruker D8 Advance dif-
fractometer, which is operated in Bragg–Brentano geometry
and equipped with CuKα irradiation. The powder pattern

was shown in Figure 1. Equation (18) was applied to analyze
the powder diffraction data and derive the weight fractions of
the component phases. The integrated intensity of each reflec-
tion of each component phase, namely Ijh in Eq. (18), was
retrieved from the powder pattern using pattern decomposition
techniques proposed by Le Bail et al. (1988). Although the
experimental data was collected in the 2θ range of 20–125°,
the upper limit of 2θ was set to 80, 100, and 120°, respec-
tively, in the QPA to illustrate the effect of the upper limit
of 2θ on the quality of QPA. The crystal structure data of Si
and NaCl was used to calculate

∑
h |Fh|2, while α-Al2O3

was treated as a phase with unknown atomic arrangements
in the unit cell, and the chemical contents of its unit cell
were used to calculate

∑N
i=1

∑
h′ f

2
i,h′ . All possible reflections

below the upper limit of 2θ were included in the calculation,
and atomic displacements were not taken into account. The
results of the QPAwere presented in Table II. The phase abun-
dance derived with the Fullprof program (Rodríguez-Carvajal,
1993), which implemented the whole profile fitting method
proposed by Rietveld (1969), was also listed in Table II for
comparison. The experimental powder pattern and the input,
out files of the program Fullprof to perform pattern

Figure 1. X-ray powder diffraction pattern of a mixture of Si, NaCl, and α-Al2O3 with the weight ratio of 1:1:1. The vertical axis is in sqrt scale to give greater
clarity to small peaks. Vertical short bars from top to bottom line indicate the Bragg reflection positions of Si, NaCl,and α-Al2O3, respectively.

TABLE II. Results of QPA on a mixture of Si, NaCl, and α-Al2O3 with the
weight ratio of 1:1:1.

Method Upper limit of 2θ (°)

Weight fraction (%)

Si NaCl α-Al2O3

Rietveld 80 34.6 36.2 29.2
100 34.7 35.7 29.6
120 34.0 35.8 30.2

This work 80 36.2 31.7 32.1
100 36.4 31.5 32.1
120 35.3 29.1 35.6
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decomposition or Rietveld refinement were given as
Supplementary Files. In this case study, the quality of QPA
using both methods seems to be comparable, as indicated by
the similar deviations of the derived weight fractions from
the “true” value, 33.3%. Nevertheless, the weight fractions
derived using our method fluctuate with the upper limit of
2θ more greatly than the values obtained with whole profile
fitting techniques. This characteristic reflects the difference
between these two methods in the fundamental: the method
proposed in this study quantifies the weight fraction of the tar-
get phase in a mixture using the sum of integrated intensities
in a certain range of diffraction angle, while the whole profile
fitting technique measures the quantity of a component phase
using the scale factor of the target phase’s profile with the Hill
and Howard (1987) algorithm. The scale factor of the target
phase’ profile, theoretically, will not change with the range
of 2θ, but the sum of the integrated intensities of the target
phase will change greatly with the range of 2θ. In principle,
when sufficient reflections are included in the calculation, the
phase abundance derived with our method will converge to
the “true” value. The example given here indicates that an
X-ray powder diffraction pattern with an upper limit of 2θ =
80° (for CuKα irradiation) seems to be adequate for QPA. In
comparison with the whole profile fitting techniques, the method
proposed here has the advantage that QPA can be performed
when only the unit cell parameters and the chemical contents
of the unit cell are known, and one does not have to know the
atomic arrangements in the unit cells of all component phases.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at
https://doi.org/10.1017/S0885715621000609.
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