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Differential-geometric-control theory represents a mathematically elegant combination of
differential geometry and control theory. Practically, it allows exploitation of nonlinear
interactions between various inputs for the generation of forces in non-intuitive directions.
Since its early developments in the 1970s, the geometric-control theory has not been
duly exploited in the area of fluid mechanics. In this paper, we show the potential of
geometric-control theory in the analysis of fluid flows, exemplifying it as a heuristic
analysis tool for discovery of symmetry-breaking and unconventional force-generation
mechanisms. In particular, we formulate the wing unsteady aerodynamics problem in a
geometric-control framework. To achieve this goal, we develop a reduced-order model for
the unsteady flow over a pitching–plunging wing that is (i) rich enough to capture the main
physical aspects (e.g. nonlinearity of the flow dynamics at large angles of attack and high
frequencies) and (ii) efficient and compact enough to be amenable to the analytic tools of
geometric nonlinear control theory. We then combine tools from geometric-control theory
and averaging to analyse the developed reduced-order dynamical model, which reveals
regimes for lift and thrust enhancement mechanisms. The unsteady Reynolds-averaged
Navier–Stokes equations are simulated to validate the theoretical findings and scrutinize
the underlying physics behind these enhancement mechanisms.

Key words: control theory, general fluid mechanics, vortex interactions

1. Introduction

Unsteady aerodynamics of airfoils subject to oscillatory inputs/controls is a classical
problem in aerodynamics whose history can be traced to Theodorsen (1935). More
recent efforts are concerned with oscillations at large angles of attack, high frequencies
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and/or with large amplitudes (Rival & Tropea 2010; Baik et al. 2012; Cleaver, Wang
& Gursul 2012; Wang & Eldredge 2013; Hemati, Eldredge & Speyer 2014; Ramesh
et al. 2014; Taha, Hajj & Beran 2014; Choi, Colonius & Williams 2015; Chiereghin,
Cleaver & Gursul 2019; Gupta & Ansell 2019). In these studies, the effect of
flow nonlinearities is considerable and sometimes leads to interesting unconventional
force-generation mechanisms via symmetry breaking. In the literature of mathematical
control theory, differential-geometric control has been a very useful tool in analysing
nonlinear dynamical systems; it allows engineers to exploit nonlinear interactions to
generate forces in unactuated directions (Crouch 1984; Murray, Li & Sastry 1994;
Leonard & Krishnaprasad 1995; Walsh & Sastry 1995; Morgansen et al. 2001; Bullo
& Lewis 2004; Taha, Woolsey & Hajj 2015b). Hence, the formulation of unsteady
aerodynamics in a differential-geometric-control framework seems natural, in addition to
being mathematically elegant – this is the overarching goal of this paper: to formulate
the unsteady aerodynamics of an airfoil with oscillatory inputs in a geometric-control
framework. This formulation may help deepen our understanding of the flow nonlinear
mechanisms and provide a clue as to how we can exploit them to achieve performance
that cannot be achieved in a linear, small-angle-of-attack environment. However, this
formulation requires special reduced-order modelling to be amenable to geometric-control
mathematical tools (it is a model-based theory).

The main contribution and focus of this paper is threefold. First, we aim to
develop a physics-based reduced-order model (ROM) of the aerodynamic loads over
a pitching–plunging wing that captures essential unsteady, nonlinear effects at high
angles of attack and high frequencies, yet is represented in a compact form (state space
form) amenable to nonlinear systems theory. Second, we apply differential-geometric
control and averaging to the developed ROM as a heuristic approach to discover
unconventional lift and thrust enhancement mechanisms at high angles of attack. Third,
we perform higher-fidelity computational simulations of the unsteady Reynolds-averaged
Navier–Stokes (URANS) equations to study the flow physics underlying these lift and
thrust enhancement mechanisms.

As may be expected from the above goals, the paper includes tools and language
developed in two separate fields: unsteady aerodynamics and nonlinear control theory.
It is our hope that we bridge a gap between these two disciplines and provide an example
where consolidation between the two is worth pursuing.

1.1. Reduced-order modelling of unsteady aerodynamics
Unsteady aerodynamics of oscillatory wings has a long-standing history since Wagner’s
and Theodorsen’s seminal efforts (Wagner 1925; Theodorsen 1935); its vast literature
(extending over a century) may not be fathomable in a single article. The pioneering
modelling efforts by Wagner (1925), Theodorsen (1935), Von Kármán & Sears (1938)
among others (Küssner 1929; Garrick 1938; Schwarz 1940; Sears 1941; Loewy 1957)
were mainly based on potential flow. They resulted in infinite-dimensional responses for
the unsteady lift dynamics, e.g. step response (Wagner 1925) and frequency response
(Theodorsen 1935). That is, in a dynamical-systems narrative, the lift transfer function has
infinitely many poles (Peters 2008). The need for more compact representations of these
models for structural and/or dynamic coupling (to assess aeroelastic and/or flight dynamic
stability problems) has led to a number of finite-dimensional approximations (Jones 1938,
1945; Vepa 1976; Leishman & Nguyen 1990; Peters, Karunamoorthy & Cao 1995;
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Peters 2008). However, all these models are linear, allowing only small disturbances to
the mean flow.

On the other hand, the available mathematical models for the analysis of unsteady
nonlinear aerodynamics at high angles of attack are not as abundant as the linear ones.
There are some ad hoc models, such as the Beddoes–Leishman dynamic stall model
(Leishman & Beddoes 1989; Leishman & Crouse 1989) and the Goman–Khrabrov model
(Goman & Khrabrov 1994). With the increased research interests in bio-inspired flight,
more vivid research activities on the unsteady aerodynamics at high angles of attack and
low Reynolds numbers have occurred. In particular, several models have been developed
to capture the unsteady, nonlinear effects of the leading-edge vortex on lift dynamics
(Minotti 2002; Jones 2003; Yongliang, Binggang & Huiyang 2003; Pullin & Wang 2004;
Ansari, Żbikowski & Knowles 2006; Wang & Eldredge 2013; Hemati et al. 2014; Ramesh
et al. 2014; Taha et al. 2014; Yan, Taha & Hajj 2014; Li & Wu 2015). However, almost all
of these models are not amenable to nonlinear systems theory analysis; most of them rely
on discrete vortex methods whose size grows with time.

More recently, there have been formal techniques to develop reduced-order models
using dynamic mode decomposition (Rowley et al. 2009; Abraham, De La Torre &
Murphey 2017; Huang & Vaidya 2018) and sparse identification (Brunton, Proctor &
Kutz 2016b). The current approach has a similar spirit to these techniques, however, it
proposes a specific model structure that is particularly suitable for the oscillating airfoil
problem – such a structure is inspired from the classical theory of unsteady aerodynamics
(Von Kármán & Sears 1938). In other words, the proposed model provides an extension
of the classical theory to high angles of attack. That is, the unique aspect of the developed
model lies in (i) capturing unsteady nonlinear characteristics at high angles of attack, and
(ii) its convenience for the application of nonlinear systems analysis tools, in particular
geometric-control theory and averaging.

1.2. Effect of airfoil oscillations on lift and thrust enhancement: symmetry breaking
Earlier interests in studying the dynamic stall phenomenon have triggered numerous
research efforts on the subject (e.g. McCroskey et al. 1982; Carr 1988; Ekaterinaris &
Platzer 1998; Lee & Gerontakos 2004; Andro & Jacquin 2009; Rival & Tropea 2010;
Gupta & Ansell 2019); they studied the phenomenon of unsteady lift increase beyond the
static values when executing a dynamic manoeuvre near stall. More recent reports focused
more on the unsteady flow physics underlying such lift enhancement (Rival & Tropea 2010;
Cleaver et al. 2011, 2012; Baik et al. 2012; Cleaver, Wang & Gursul 2013; Choi et al. 2015;
Chiereghin et al. 2019; Gupta & Ansell 2019).

In general, when applying an oscillatory flow control, the lift and thrust responses will
be oscillatory; their mean values may be expected to match the steady values in the absence
of flow-control oscillations. However, the cycle-averaged forces may be different from the
steady values, indicating a symmetry breaking. There are classical examples such as the
well-known thrust symmetry breaking due to pitching or plunging airfoils at high enough
frequency (Garrick 1937; Sedov 1980; Lighthill 1975; Rozhdestvensky & Ryzhov 2003).
In addition, there are less intuitive, more interesting symmetry breaking mechanisms.
For example, it may be expected that symmetric plunging in a quiescent fluid will not
generate net forces. However, Vandenberghe, Zhang & Childress (2004) and Alben &
Shelley (2005) showed a symmetry breaking if oscillation takes place at a high enough
frequency; the free foil started to move forward, indicating a net thrust force.

Similarly, it may be expected that symmetric plunging (or pitching) oscillations (even
in a moving stream) do not lead to a net-lift force: an extra lift is gained during the
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downstroke and an equal amount of lift is lost during the upstroke, leading to a zero net
lift beyond the steady value corresponding to the mean angle of attack. However, it is
envisaged that symmetry breaking might occur beyond a certain threshold of oscillation
frequency that would lead to a non-zero, net-lift force. Many efforts have been made to
study such a symmetry-breaking mechanism using extensive high-fidelity simulations and
experiments (Rival & Tropea 2010; Baik et al. 2012; Gursul, Cleaver & Wang 2014; Panah
& Buchholz 2014; Rival et al. 2014); but no theoretical efforts have been made in this
regard, simply because of the lack of a rich enough ROM and appropriate analysis tools. In
this paper, we show how the application of combined geometric-control-averaging analysis
tools to the developed ROM can help identifying the key parameters enabling such a
symmetry-breaking mechanism via a systematic analysis. We then distil the underlying
flow physics to better understand the fluid mechanics principles behind such symmetry
breaking, which leads to lift and thrust enhancement.

1.3. Differential-geometric mechanics and control and its application to fluid problems
The mathematical theory of differential-geometric control is concerned with dynamical
systems evolving on curvy spaces, called manifolds. This covers a fairly large class of
mechanical systems (e.g. all systems having rotational degrees of freedom). Adopting
this geometric view for these dynamical systems requires an appropriate mathematical
tool to perform calculus on curvy spaces: differential geometry. One can loosely say that
geometric-control theory is the intersection of differential geometry and control theory
of dynamical systems. Aside from the mathematical elegance of differential geometric
control, it can be quite useful to control engineers in at least the following three ways (i)
it allows motion generation in unactuated directions, by exploiting nonlinear interactions
between two or more inputs; (ii) it allows unconventional force generation via symmetry
breaking due to a fast, oscillatory control; and (iii) unconventional stabilization due to
high-frequency periodic forcing: vibrational control theory.

Since its early developments in the 1970s and 1980s by Roger Brockett
(1972; 1976; 1982; 1983) and Hector Sussmann (1972; 1973; 1987) among others,
the geometric-control theory has been used to reveal interesting nonlinear dynamical
behaviours and motion planning algorithms for spacecraft (rigid body) attitude dynamics
and control (Crouch 1984; Leonard & Krishnaprasad 1995; Walsh & Sastry 1995), robotics
(Murray et al. 1994; Morgansen et al. 2001; Vela, Morgansen & Burdick 2002; Woolsey
& Leonard 2002; Bullo & Lewis 2004) and more recently bio-inspired flight (Taha
et al. 2015b; Tahmasian & Woolsey 2017; Mir et al. 2018; Hassan & Taha 2019). However,
it has not been aptly applied to fluid mechanic systems.

Here, it may be prudent to distinguish between a geometric-mechanics formulation
and a geometric-control one. While both utilize a differential-geometric language to
describe a dynamical system, they are fundamentally different. The former is as old as
the work of Jacobi in the 19th century on geometrization of mechanics (Dugas 1988,
p. 407), which flourished and matured after the development of Riemannian geometry,
to culminate in Einstein’s general relativity. In this formulation, the trajectories of a
dynamical system are seen as straight lines (geodesics) in some curved space (manifold);
e.g. Einstein’s general relativity implies that the trajectories of a planetary orbit are
geodesics in the curved four-dimensional space–time world whose curvature is determined
by gravity. Similarly, there have been several efforts in formulating fluid flows in a
geometric-mechanics framework. For example, Arnold showed that the trajectories of
ideal (inviscid incompressible) fluid particles are geodesics in the curved space of
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volume-preserving diffeomorphisms (Arnold 1966a,b, 1969). The efforts of Marsden
& Weinstein (1983), Holm, Marsden & Ratiu (1998) and Bloch et al. (2000) are also
worth mentioning in this regard. Most of these efforts are nicely summarized in Arnold’s
(2013) and Kambe’s (2009) books. With a similar spirit, there are several efforts made
to construct a Hamiltonian structure for the dynamics of point vortices interacting with
a rigid body in an ideal flow in the two-dimensional case of zero circulation around the
body (Shashikanth et al. 2002; Shashikanth 2005), arbitrary circulation around the body
(Borisov, Mamaev & Ramodanov 2003, 2007), the three-dimensional case (Shashikanth
et al. 2008, 2010; Dritschel & Boatto 2015) and the case of unsteady (time-varying) point
vortices (Hussein et al. 2018).

On the other hand, the differential-geometric-control formulation of dynamical systems
is relatively recent in comparison with geometric mechanics. It started in the 1960s with
Hermann’s seminal efforts (Hermann 1962, 1963). The focus of this formulation is on the
control of general dynamical systems; no Hamiltonian/Lagrangian structure is required,
in contrast to the geometric-mechanics formulation. Also, the objective is to perform
control theoretic analysis such as stability, controllability, observability, motion planning,
etc. While there have been several efforts made for a geometric-mechanics formulation
of fluid flows (particularly ideal fluids), as discussed above, there have been no efforts
made for a geometric-control formulation. Perhaps the closest efforts are those of Kelly,
Kanso and Tallapragada among others (Kelly & Murray 2000; Kanso et al. 2005; Kelly
& Hukkeri 2006; Tallapragada & Kelly 2017; Buzhardt, Fedonyuk & Tallapragada 2018).
However, these interesting efforts were mostly concerned with geometric-control aspects
of locomotion; i.e. interaction of a swimming body with the surrounding flow to propel
itself. So, the main dynamics is that of the body; and simplistic models were used for
the flow dynamics. For example, the early trials by Kelly & Murray (2000) and Kelly &
Hukkeri (2006) completely ignored the flow dynamics and focused on the body motion
subject to an idealized flow control input: quasi-steady vortex strength and location (Kelly
& Murray 2000), and quasi-steady lift force normal to the instantaneous velocity of
the body (Kelly & Hukkeri 2006). Using a different formulation, Kanso et al. (2005)
assumed an ideal flow with zero net circulation around the body (i.e. no vortex shedding).
So, they only accounted for added-mass forces and ignored lift-like forces – the main
concern of Kelly & Hukkeri (2006). On the other hand, while Kelly’s efforts (Kelly &
Xiong 2010; Kelly, Pujari & Xiong 2012; Tallapragada & Kelly 2013, 2017) explicitly
accounted for vortex shedding from the sharp trailing edge, his neat formulation treats
the coupled vortex–body dynamics simultaneously; there is no means (no need) in his
formulation to calculate hydrodynamic loads and their build up dynamics. Also, in the
recent effort of Tallapragada & Kelly (2017), the authors showed that the Kutta condition
is a non-holonomic constraint. Such a constraint is mainly on the body dynamics; i.e. the
effect of the surrounding flow on the body is manifested by a non-holonomic constraint.
In fact, the authors had a series of papers showing similarity between the dynamics of a
swimming hydrofoil and the well-known non-holonomic system of the Chaplygin sleigh
(Fairchild et al. 2011; Pollard, Fedonyuk & Tallapragada 2019).

In contrast to these efforts studying the locomotion of a hydrofoil (Kelly & Murray 2000;
Morgansen et al. 2001; Morgansen, Vela & Burdick 2002; Vela et al. 2002; Kanso
et al. 2005; Kelly & Hukkeri 2006; Tallapragada & Kelly 2017), we focus on the
intrinsic unsteady aerodynamics of a pitching plunging wing. We develop a ROM of
the buildup dynamics of unsteady lift and thrust that is (i) rich enough to capture the
nonlinear effects at high angles of attack and high frequencies – to allow for non-trivial
discoveries; and (ii) simple and compact enough to be amenable to geometric-control
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analysis tools. We then bring the full power of geometric control and averaging to analyse
such a dynamical system, aiming to discover unconventional nonlinear lift and thrust
generation mechanisms. So, in contrast to the elegant geometric-mechanics efforts of
Arnold and Marsden among others (Arnold 1966b, 1969; Marsden & Weinstein 1983;
Holm et al. 1998; Bloch et al. 2000; Shashikanth et al. 2002; Shashikanth 2005; Borisov
et al. 2003, 2007; Shashikanth et al. 2008; Kambe 2009), the current geometric-control
analysis is more practically useful. The main objective is to present to the fluid dynamics
audience how differential-geometric control is a heuristic analysis tool that points to
unconventional and nonlinear mechanisms where one can scrutinize the flow dynamics
using high-fidelity simulation (or experiment) to gain new physical insights.

In the next section, we present some background on how differential-geometric-control
theory can help discover unconventional force generation mechanisms. We then pose
the fluid mechanics problem statement to be tackled in this paper. In § 4, we discuss
the characteristics of a ROM necessary for geometric-control analysis followed by our
development of a geometric-control oriented ROM of the unsteady lift and thrust on a
pitching–plunging wing. In § 5, we apply the proposed geometric control and averaging
analysis to the developed ROM. In § 6, we perform numerical simulations of the URANS
equations to validate the theoretical findings from geometric-control analysis; and to study
the flow physics underlying the unconventional lift and thrust mechanisms suggested by
geometric control. Finally, we provide a discussion in § 7.

2. Background: Lie brackets, periodic excitation and unconventional force
generation

In this section, we present some aspects where geometric-control theory can be beneficial
in the analysis of dynamical systems. Consider the nonlinear, control-affine system

ẋ(t) = f (x(t)) +
m∑

j=1

gj(x(t))uj(t), x ∈ M
n, (2.1)

where x is the state vector evolving on an n-dimensional manifold M
n, f is the drift vector

field (uncontrolled dynamics), gj represent the control vector fields corresponding to the
inputs uj. The main idea is that there can be no direct actuation leading to motion in a
prescribed direction, although specific manipulation of the available actuators/controls
may generate forces in that missed direction. This concept is generally referred to as
anholonomy (Baillieul & Lehman 1996) or geometric phases (Marsden et al. 1991;
Marsden 1997). For example, for driftless systems ( f = 0), one can generate motion
along the vector gk by turning on the control input uk and turning off all other controls.
Geometric-control theory provides additional and non-intuitive directions to move along.
These directions are determined through Lie bracket operations between the different
control vectors. The Lie bracket between the two vectors gj and gk is defined as

[gj, gk] = ∂gk

∂x
gj − ∂gj

∂x
gk. (2.2)

If the Lie bracket [gj, gk] of two input vector fields is linearly independent of the two
generating vectors gj, gk, then the implication is that, through some manipulation of the
corresponding control inputs uj, uk, one can generate motion along a new direction: an
unactuated direction over which there is no direct control authority. This is particularly
useful to recover nonlinear controllability if linear controllability is lost. The motion along
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Figure 1. Numerical simulation of the NASA General Transport Model nonlinear flight dynamic model due
to a 90◦-phased aileron-elevator oscillations vs full aileron deflection near stall – to examine the roll response
to the nonlinear Lie bracket roll mechanism vs the conventional one.

some Lie bracket vector [gj, gk] can be realized by 90◦-phased periodic signals for the
corresponding inputs uj and uk (Murray & Sastry 1993; Liu 1997a,b).

A good example of an unconventional force-generation mechanism due to Lie bracketing
(i.e. nonlinear interactions between control inputs) can be shown by recalling our recent
efforts (Hassan & Taha 2017, 2021). In these efforts, the standard airplane flight dynamics
was written in the form of (2.1). However, we retained all possible nonlinearities
(aerodynamic and inertial) because the proposed differential-geometric-control analysis
thrives on nonlinearities. One of the main features of geometric-control analysis is that
it allows exploitation of nonlinearities rather than obviating them. It was shown that the
Lie bracket between the elevator and aileron control inputs (i.e. pitch and roll control
inputs for an airplane) possesses a much stronger rolling capability near stall in comparison
with the conventional rolling mechanism using ailerons only. Figure 1 shows simulations
over one second of the roll response of the NASA General Transport Model (Kwatny
et al. 2012) near stall due to the nonlinear Lie bracket roll mechanism (i.e. 90◦-phased
sinusoids) in comparison with conventional roll with the maximum aileron deflection
(Hassan & Taha 2021; Taha & Hassan 2021): an order-of-magnitude enhancement in the
roll capability is achieved near stall via this nonlinear mechanism.

When combined with averaging theory, geometric control provides very useful tools for
the analysis of periodically forced systems (Sarychev 2001; Bullo 2002; Vela 2003). It
allows one to capture the higher-order effects due to interactions between periodic forcing
and the system dynamics that are typically ignored by direct averaging (Maggia, Eisa &
Taha 2019). These interactions may lead to force-generation mechanisms via symmetry
breaking at high frequencies (Walsh & Sastry 1995; Marsden 1997). They may also lead to
stabilizing actions: vibrational stabilization. A classical example is the Kapitza pendulum:
an inverted pendulum whose pivot is subjected to vertical oscillations. The well-known
unstable equilibrium of the inverted pendulum gains local asymptotic stability because
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U
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α(t)

ḣ(t)

Figure 2. A schematic diagram for a pitching–plunging airfoil.

of the high-amplitude, high-frequency oscillations of the pivot. The reader is invited to
watch the interesting video in ADCL (2019a) that clearly shows the vibrationally induced
spring action on the Kapitza pendulum. Applying geometric-control-averaging analysis
to the unstable flight dynamics of the hovering hawkmoth, we showed that its natural
high-frequency periodic forcing induces a stabilizing pitch stiffness mechanism that could
not be observed by direct averaging (Taha et al. 2015a, 2020). Indeed, it is an absolutely
stunning design by Nature to make the very instinctive flapping motion of the wings, which
is inevitably needed to produce the lift force that keeps the insect aloft, naturally stabilize
the flight dynamics in a non-intuitive way without feedback (ADCL 2019b).

In fact, there have been several vibrational-stabilization-like concepts in the fluid
mechanics literature, yet without making use of the geometric-control theory and
averaging techniques mentioned above. The efforts of Jovanovic and his colleagues on
turbulence suppression (Lieu, Moarref & Jovanović 2010; Moarref & Jovanović 2010)
and turbulent drag reduction (Moarref & Jovanović 2012) in a channel flow through
open-loop transverse wall oscillations are quite interesting examples that are relevant
to the vibrational control tools mentioned above. Also, the vortex lock-in phenomenon
(Karniadakis & Triantafyllou 1989; Young & Lai 2007) can be viewed as a form of
vibrational stabilization for the Von Kármán vortex street instability.

3. Fluid mechanics problem statement

In this section, we present the fluid mechanics problem statement; the presentation is
made such that the problem would be readily amenable to geometric-control analysis
tools. Consider the problem of a harmonically pitching–plunging wing in the presence
of a free stream U, as shown in figure 2. The pitching angle α (positive pitching up) and
the plunging displacement h (positive downward) are written as

α(t) = α∗ + Aα cos ωt and h(t) = Hb cos (ωt + φ) , (3.1a,b)

where ω is the oscillation frequency, α∗ is the mean pitching angle, Aα is the amplitude of
the pitching angle, H is the amplitude of the plunging displacement h normalized by the
half-chord length b and φ is the phase difference between the two harmonic motions.

There are three objectives in this paper. First, we aim to develop a physics-based model
that can predict the resulting unsteady lift L(t), drag D(t) and separation point xs(t), where
the corresponding coefficients are defined as

CL = L
ρU2b

and CD = D
ρU2b

, (3.2a,b)

where ρ is the fluid density. In this formulation, xs represents the unsteady separation point
as measured from the leading edge and normalized by the chord length; i.e. 0 � xs � 1.

The sought model must be (i) rich enough to capture the important physical
aspects (e.g. nonlinear effects at high angles of attack and high frequencies), to allow
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for non-trivial discoveries; and (ii) simple and compact enough to be amenable to
geometric-control analysis tools; i.e. in the form of (2.1). Therefore, we propose the
following form for the pitching–plunging wing:

ẋ(t) = f (x(t)) + gh(x(t))ḧ(t) + gα(x(t))α̈(t)

y(t) = [L(t) D(t) xs(t)]T = Ψ (x(t)) ,

}
(3.3)

where x is a vector of internal aerodynamic states and y is the vector of output variables
(e.g. lift and drag, and separation point). The vectors gh, gα are the input vector fields
associated with plunging and pitching inputs, respectively. The function Ψ is a nonlinear
function representing the output variables y in terms of the states x.

Accelerations (ḧ, α̈) are selected to be the inputs to facilitate the development of
a proper dynamical-system representation where only direct dependence on inputs is
allowed and not on their derivatives. Note that the aerodynamic loads depend on velocities
and accelerations. Therefore, if velocities or positions were considered as inputs, the
dynamical equations would depend on the derivatives of the inputs, deviating from the
standard form (2.1). It should also be noted that the flow dynamics is indeed linear with
respect to accelerations: Navier–Stokes equations (as well as Newton’s equations) are
linear in accelerations. Finally, it is noteworthy to mention that the above formulation
can be easily extended to account for more inputs; e.g. surging U(t). In this case, the input
term gU(x)U̇(t) would be added to (3.3) with the surging acceleration U̇(t) being the third
control input.

Second, it is required to determine theoretical estimates of the averaged unsteady
lift, drag and location of the separation point due to high-frequency, small-amplitude
oscillations at arbitrary (high) angles of attack. We also assume a high speed U. Therefore,
we have the following scaling argument:

Aα = O(ε), H = O(ε), ω = O(1/ε), U = O(1/ε) ⇒ k = ωb
U

= O(1),

(3.4a–d)
where k is the reduced frequency and ε is a small bookkeeping parameter; e.g. terms
multiplying ε2 can be neglected with respect to those scaled by ε. Then, a
geometric-control-averaging analysis will be applied to determine theoretical estimates
of the cycle-averaged lift C̄L, drag C̄D, and separation point x̄s to the leading order in ε.
They will then be compared with the steady values corresponding to the mean angle of
attack. For example, the cycle-averaged unsteady lift coefficient C̄L will be compared with
the steady lift coefficient CL,s(α

∗) at the mean angle of attack α∗; the difference represents
lift enhancement or deterioration due to symmetry breaking. Also, the cycle-averaged
separation point x̄s will be compared with the steady value x0(α

∗) at the mean angle
of attack; where x0(α) represents the variation of the steady separation point with the
static angle of attack. In this paper, the same oscillation frequency is used for both inputs
(pitching and plunging), which is inherent in almost all averaging theorems and adopted
in most of the unsteady fluid dynamic studies; only few studies have considered different
frequencies for pitching and plunging (Webb, Dong & Ol 2008; Xiao & Liao 2010;
Fenercioglu & Cetiner 2014). Third, the flow field will then be scrutinized, with the help
of computational simulations, to obtain insights into the flow physics underlying these
lift/drag enhancement/deterioration mechanisms.

They can have different frequencies, but averaging will be performed on the slowest
frequency; the faster frequency can be one of its harmonics.
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4. Physics-based reduced-order modelling of unsteady nonlinear aerodynamics

The main challenge precluding the application of geometric-control theory to fluid
dynamics is that the latter is typically an infinite-dimensional system whereas the
former was mainly developed for finite dimensional ones. It should be noted that
there is a version of geometric-control theory for infinite dimensional systems, but
of course with scant analysis tools in comparison with the finite-dimensional version.
A practical geometric-control analysis would not only necessitate a finite-dimensional
system, but also a relatively low-order one. Therefore, it cannot be directly applied to
discretized Navier–Stokes equations where thousands or millions of states are typically
used to describe the system. True reduced-order modelling is indispensable for a proper
geometric-control analysis.

Inspecting the standard model reduction techniques available in the literature, we find
that none of them can provide a satisfactory solution to the problem at hand. Ideally, the
sought ROM should be in the form (2.1). Therefore, the model reduction technique must:

(i) Yield a dynamical system that captures unsteadiness in the flow field. In this regard,
quasi-steady and algebraic models are excluded no matter how accurate they are.
Therefore, a feed forward neural network will not be satisfactory, even if it accurately
captures the input–output map.

(ii) Yield a nonlinear representation. Note that geometric-control tools thrive on
nonlinearities. Therefore, the eigensystem realization algorithm (ERA) (Juang &
Pappa 1985) and dynamic mode decomposition (DMD) (Rowley et al. 2009;
Schmid 2010) will not be satisfactory for this objective because they strictly yield
linear representations.

(iii) Yield an analytical representation; an efficient ‘simulation’ tool is not the objective.
Therefore, the Volterra series representation (Silva 1993; Raveh 2001) is not
satisfactory for this objective, even though it may capture the nonlinear dynamical
(unsteady) behaviour of the system in an efficient way.

In addition to the above absolutely necessary requirements, it is preferred that the
model reduction technique (i) preserves the dynamical features of the system and (ii)
be a data-driven approach that does not necessitate a prior knowledge of the system
dynamical equations. The former may exclude proper orthogonal decomposition (POD)
(Sirovich 1987; Lumley 2007) and the latter would also exclude POD and its balanced
version (BPOD) (Rowley 2005). Also, while the extended DMD (EDMD) (Williams,
Kevrekidis & Rowley 2015) may seem to satisfy all of the above requirements, it is not
clear how it can yield a state space realization from the input–output data. It typically
provides a relation (possibly nonlinear) between the state variables (or outputs), ignoring
the input effects. Table 1 summarizes the pros and cons of each of the common model
reduction techniques with respect to the requirements listed above. The above discussion
indicates that the available standard model reduction techniques may not yield a ROM that
allows proper nonlinear analysis, which invokes novel techniques for model reduction of
fluid dynamics.

Until the sought model reduction technique is developed, a physics-based
(phenomenological) approach is adopted here, which is a cornerstone in the present
analysis. The main challenge is to represent the system in a form amenable to
geometric-control analysis, e.g. the form (2.1). This objective necessitates a model that
is (i) dynamical (i.e. captures unsteadiness), (ii) nonlinear and (iii) compact (i.e. in a
state space form). This task is already very challenging; it has been a chronic problem
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POD BPOD ERA DMD Volterra

Dynamical Features x � � Somewhat �
Nonlinearity � x x EDMD �
Data-Driven x x � � �
Analytical Representation � � � � x
Input-Output Relation � � � x �

Table 1. Comparison between the common model reduction techniques with respect to the listed
requirements for the sought ROM.

in unsteady aerodynamics for a long time. One has to stress that it is the combination of
the above three requirements that makes the problem elusive. For example, a compact
quasi-steady model that captures nonlinear steady effects at high angles of attack can
be easily obtained, but it would not capture unsteadiness. On the other hand, the
unsteady aerodynamics community have developed several infinite-dimensional (e.g.
Theodorsen 1935; Wagner 1925) and finite-dimensional (e.g. Leishman & Nguyen 1990;
Peters 2008) representations of the unsteady lift dynamics, but these models are essentially
linear and do not capture the nonlinear dynamics at large angles of attack. Of course,
the Navier–Stokes equations govern the full unsteady nonlinear flow dynamics but are
not in a compact form that is amenable to dynamical-systems theory in general or
geometric-control theory in particular.

4.1. Lift dynamics
First, we focus on the lift dynamics; from which, we will construct the dynamics
of drag/thrust and the separation point. Second, we follow a feedback linearization
approach (Sastry 1999). In this approach, given a nonlinear dynamical system (2.1), the
following question is addressed: does there exist (nonlinear) transformations z = T (x)

and v = β(x, u) such that the dynamics in the transformed domain is linear: ż = Az + Bv
(Nijmeijer & Van der Schaft 1990)? That is, while the lift (and its dynamics) are essentially
nonlinear with respect to the angle of attack (in the stall regime), does there exist
a nonlinear map v = β(x, α) such that the lift dynamics is linear in v? Interestingly,
although the seminal results of Von Kármán & Sears (1938) were developed approximately
40 years before the concept of feedback linearization (Brockett 1978; Jakubczyk &
Respondek 1980), they can shed some light onto this question. Recall that, in the earlier
efforts of Wagner (1925) and Theodorsen (1935), the authors wrote the main governing
equation (integral equation of wake circulation) in terms of the normal speed of the airfoil

1
2πb

∫ ∞

b
γw(z, t)

√
z + b
z − b

dz = U sin α(t), (4.1)

where b is the half-chord length, U is the forward speed of the airfoil and γw is the strength
of the wake vortex sheet per unit span. Equation (4.1) is an infinite-dimensional linear
dynamical system – represented by an integral equation in the wake circulation γw – whose
input is the airfoil normal speed U sin α(t). This formulation represents an impasse against
generalization to unconventional lift mechanisms; it will always result in the classical lift
coefficient 2π sin α with some transient (dynamics). In contrast, Von Kármán & Sears
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(1938) arrived at a fundamentally different representation of the same dynamical system∫ ∞

b
γw(z, t)

√
z + b
z − b

dz = Γ0(t), (4.2)

where Γ0 is the quasi-steady circulation

Γ0(t) = UbCL,s(α(t)) + b2kα̇ α̇(t), (4.3)

and kα̇ is a coefficient for the rotational circulation, which depends on the hinge location
(Dickinson, Lehmann & Sane 1999). It is well known that the lift dynamics resulting
from the two dynamical systems (4.1)–(4.2) are identical. However, the first formulation is
nonlinear in its input α while the latter is linear in its input Γ0. That is, the nonlinear
transformation (4.3) provides the sought feedback linearization; and Γ0 represents the
new input v. More importantly, the first formulation captures only the conventional lift
mechanism (e.g. 2π sin α) while the latter allows for unconventional (possibly nonlinear)
lift mechanisms. To illustrate this point, recall that in (4.3) for the quasi-steady circulation,
CL,s is the steady lift coefficient, which is a function of the angle of attack. This functional
dependence CL,s(α) is arbitrary, allowing treatment of unconventional lift mechanisms
(e.g. a leading-edge vortex).

The main assumption in the present modelling effort is that the lift dynamics is linear in
the quasi-steady circulation. That is, the circulatory lift can be written as

ẋc(t) = [A]n×nxc(t) + [B]n×1Γ0(t)

LC(t) = ρU {[C]1×nxc(t) + [D]1×1Γ0(t)} ,

}
(4.4)

where xc ∈ R
n represents the internal aerodynamic states used to realize such a linear

dynamical system. The above assumption may not be a severe one given that no limitation
is set on the nonlinear function CL,s(α), the order n of the system (4.4) or its nature
(i.e. stable/unstable); its eigenvalues may even change with the operating condition
(i.e. with the mean angle of attack). In potential flow, such a system can be given by any
suitable finite-dimensional approximation of Wagner or Theodorsen response functions –
and D = 1/2 is the high-frequency gain (Taha & Rezaei 2020).

Since the focus here is to reconstruct the dynamics of the output, the nature (physical
meaning) of the states xc is not important. Note that one can always use a canonical
similarity transformation xc,1 = Txc,2, where T is invertible, to transform between a
given set of states xc,1 to another xc,2; in fact, we have infinitely many of these sets.
While the internal aerodynamic states may not have an obvious physical meaning in many
finite-dimensional approximations of the unsteady lift dynamics, few efforts presented
realizations of the dynamical system (4.4) with states of physical relevance; Peters (2008)
presented his model in terms of the Fourier coefficients/modes of the wake-induced
normal velocity on the airfoil (inflow). In fact, the internal states of any realization of
(4.4) can always be thought of as weighted modes of the wake vorticity.

Given (i) the steady CL,s-α curve corresponding to some unconventional lift mechanism,
and (ii) the airfoil motion represented by U and α(t), this approach provides the unsteady
lift dynamics that captures such an unconventional lift mechanism. Figure 3 shows a
schematic for this procedure. In fact, this approach was successfully adopted to model
the unsteady nonlinear lift dynamics in insect flight (Taha et al. 2014). The model captures
the leading-edge vortex (LEV) nonlinear contribution to lift in an unsteady fashion, relying
on Wang’s empirical formula for the steady lift due to a stabilized LEV: CL,s = A sin 2α

(Wang, Birch & Dickinson 2004), where A is a constant. The unsteady model achieves
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Linear

dynamics

Lc(t)
α(t), U(t)

ρU(t)

Γ0(t)

Airfoil motion
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α

Figure 3. A schematic diagram for the circulatory lift dynamics and its linear dependence on the
quasi-steady circulation.

such a challenging task with a very cheap computational cost and compact form (state
space form).

The non-circulatory lift LNC can be easily modelled linearly in the normal acceleration
a1/2 of the mid-chord point

LNC(t) = mva1/2(t) cos α(t), (4.5)

where mv is the virtual (added) mass, which is given by mv = πρb2 in a potential-flow
setting, and the airfoil normal acceleration is given by

a1/2(t) = d
dt

(
U sin α(t) + ḣ(t) cos α(t) − abα̇(t)

)
, (4.6)

where the hinge location is at a distance ab behind the mid-chord point. The relation
(4.5) would make the output (lift) have a direct dependence on the input (acceleration);
i.e. Ψ would have dependence on the input u as well as the states x. Furthermore, from a
different perspective, our recent efforts indicate that viscosity induces a phase lag between
the normal acceleration and the non-circulatory lift force (Taha & Rezaei 2020). Therefore,
we introduce a first-order lag between the two

τv ẋv(t) + xv(t) = a1/2(t)

LNC(t) = mvxv(t) cos α(t),

}
(4.7)

where τv is the time constant of such a dynamics. That is, the normal acceleration a1/2 does
not impact the non-circulatory lift LNC instantaneously (i.e. through an algebraic relation:
(4.5)). Instead, it affects LNC after passing through a first-order lag whose internal state
is xv .

One must stress that the above modelling approach is not meant to provide
an accurate quantitative assessment of the unsteady nonlinear lift dynamics in the
stall regime. Rather, this modelling approach is conceptual/qualitative. For example,
conceptually, the non-circulatory lift is indeed proportional to the airfoil acceleration, and
the proportionality constant (mv) is not stipulated here; it can take any arbitrary value.
In fact, its value is irrelevant for the intended symbolic analysis; it would rather serve
as a bookkeeping parameter. That is, a resulting term proportional to mv would imply
that it is due to added/virtual mass effects; another term proportional to kα̇ would point
to rotational contributions. Similarly, the steady CL,s-α curve can assume any shape; a
term proportional to dCL,s/dα would point to the role of the lift curve slope, and so
on. Moreover, the dynamics between Γ0 and LC can take an arbitrary order n or nature
(arbitrary A, B, C , D). From this conceptual perspective, the above model is credible for
the ensuing symbolic analysis; the specific values of the model parameters (n, A, B, C , D,
CL,s(α), kα̇ , mv , τv) are irrelevant.

Recall that one can always use a canonical similarity transformation to transform a
given linear system into a special form, we assume without loss of generality (to simplify
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symbolic computations) that the linear model (A, B, C , D) is in the observable canonical
form (Ogata & Yang 1970)

A =

⎡
⎢⎢⎣

0 · · · 0 −a0
1 · 0 −a1
...

. . .
...

...

0 · · · 1 −an−1

⎤
⎥⎥⎦ , B =

⎛
⎜⎜⎝

b0 − bna0
b1 − bna1

...

bn−1 − bnan−1

⎞
⎟⎟⎠ ,

C = [0 . . . 0 1] , D = bn,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.8)

where the coefficients a and b are the coefficients of the denominator and numerator of
the corresponding transfer function

LC

ρUΓ0
(s) = bnsn + bn−1sn−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
. (4.9)

From a dynamical-system perspective, the ratio b0/a0 is the steady-state (DC) gain of the
system: the ratio of the steady-state output (lift) to the input ρUΓ0. Clearly, this is unity
by construction. Therefore, in the ensuing symbolic computations, b0 is taken equal to a0.
Also, D = bn is the high-frequency gain khf of the system.

4.2. Drag/thrust dynamics
Continuing with the conceptual modelling approach, and ignoring the skin friction drag,
the pressure drag is typically given by

D(t) = L(t) tan α(t) − FS(t), (4.10)

where L is the total lift force (L = LC + LNC) and FS is the leading-edge suction
force. Indeed, without leading-edge suction, the resultant force N is normal to the wing
(Schlichting & Truckenbrodt 1979); the lift and drag would be given as N cos α and
N sin α, respectively; i.e. D = L tan α.

The dynamics of the first drag term (L tan α) is automatically linked to the lift dynamics.
Interestingly, the dynamics of the second term (the suction force FS) can also be connected
with the circulatory lift dynamics. Using potential-flow aerodynamics, Garrick (1937)
wrote the suction force as

FS(t) = 2πρb
[
v3/4(t)C(k) − b

2
α̇(t)

]2

, (4.11)

where v3/4 is the airfoil normal speed at the three-quarter chord and C(k) is Theodorsen’s
lift frequency response function (Theodorsen 1935), which is given in terms of the reduced
frequency k as

C(k) = H(2)
1 (k)

H(2)
1 (k) + iH(2)

0 (k)
, (4.12)

where H(m)
n is the Hankel function of the mth kind of order n. Note that the multiplication

v3/4(t)C(k) in (4.11) is traditionally interpreted as the output of the transfer function whose
frequency response is C(k) due to the input signal v3/4; i.e. it is the unsteady version of
v3/4.

To generalize Garrick’s relation (4.11), we replace v3/4 with the quasi-steady circulation
Γ0/(2πb), as done with the lift dynamics above. Moreover, its unsteady version v3/4C(k)
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will be replaced by the unsteady version of Γ0; i.e. the output of the dynamical system
(4.4): Cxc + DΓ0. As such, the suction force is modelled in this conceptual approach as

FS(t) = kSρb
[

Cxc(t) + DΓ0(t)
2πb

− b
2
α̇(t)

]2

, (4.13)

where kS is a coefficient of suction: bookkeeping parameter for suction; its potential-flow
value is kS = 2π.

4.3. Dynamics of the separation point
Unsteady separation is a complex phenomenon whose dynamics is quite difficult to model.
In fact, a mere criterion for unsteady separation is controversial – the common criterion
of vanishing shear is not accurate (Sears 1956). However, as stated above, the intent is not
to develop a quantitative model for accurate prediction, but rather a conceptual model. A
fairly straightforward conceptual model of the dynamics of the separation point is that of
Goman & Khrabrov (1994). Simply, the unsteady separation point xs follows the steady
one x0 (which is a function of the angle of attack) via a simple lag τ1 and a delay τ2

τ1ẋs(t) + xs(t) = x0 (α(t) − τ2α̇(t)) . (4.14)

In this conceptual model, the specific values of τ1, τ2 are irrelevant; the functional
dependence x0(α) is arbitrary. Moreover, to relate the dynamics of separation to the lift
dynamics, we adopt the Kirchhoff steady model, which relates a nonlinear lift coefficient
to separation

CL,s(α) = 2π sin α

(
1 + √

x0(α)

2

)2

. (4.15)

That is, given a steady CL-α curve, CL,s(α), the corresponding variation, x0(α), of the
separation point with the angle of attack can be determined from the Kirchhoff model
(4.15).

4.4. The final dynamical ROM
Applying the above conceptual modelling efforts to a pitching–plunging wing, any
dependence on the angle of attack α would be replaced by the effective angle of
attack: αeff = α + arctan(ḣ/U), where h is positive downward. As such, the quasi-steady
circulation is written as

Γ0(α, α̇, ḣ) = UbCL,s

(
α(t) + arctan

ḣ(t)
U

)
+ b2kα̇ α̇(t). (4.16)

Let us summarize the assumptions behind the developed model:

(i) The dynamics (due to vortex shedding) from the quasi-steady circulation Γ0 (the
input) to the circulatory lift LC (the output) is linear (4.4), but arbitrary.

(ii) The quasi-steady circulation Γ0 is given by (4.16) for a pitching–plunging wing,
where CL,s(α) is the steady lift curve, which depends arbitrarily (nonlinearly) on the
angle of attack α.

(iii) The non-circulatory lift LNC depends linearly on the wing’s normal acceleration at
the half-chord point with a simple lag (4.7).

(iv) The dynamics of the skin friction drag is neglected; hence, the unsteady drag D is
constructed from the unsteady lift L and suction force FS (4.10).
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(v) The unsteady suction force can be determined from the circulatory lift dynamics
(4.13).

(vi) The Goman–Khrabrov model (4.14) of unsteady separation is adopted; and the
steady location x0(α) of the separation point is determined from the arbitrary steady
lift curve CL,s(α) according to the Kirchhoff model (4.15).

Combining all these elements, we write the following ROM of the unsteady nonlinear
aerodynamics of a pitching–plunging wing:

d
dt

⎛
⎜⎜⎜⎜⎜⎝

xc
xv

xs
α

α̇

ḣ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Axc + BΓ0(α, α̇, ḣ)
−1
τv

[
xv + (

U cos α − ḣ sin α
)
α̇
]

−1
τ1

[
xs − x0

(
α + arctan

ḣ
U

− τ2α̇

)]
α̇

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0n×1
ab
τv
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

uα

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0n×1
cos α

τv
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠ uh, (4.17)

which can be written in an abstract form as

ẋ(t) = f (x(t)) + gα(x(t))uα(t) + gh(x(t))uh(t), (4.18)

where x = [xc, xv, xs, α, α̇, ḣ] is the state vector of dimension n + 5, and the control inputs
uα , uh are the pitching and plunging accelerations α̈, ḧ, respectively. The system (4.17) is
exactly in the form (2.1), which is amenable to geometric-control analysis. The output
equation is written as

L(t) = ΨL(x(t)) = ρU
(
Cxc(t) + DΓ0(α, α̇, ḣ)

) + mvxv(t) cos α(t),

D(t) = ΨD(x(t)) = L(t) tan α(t) − kSρb
(

Cxc(t) + DΓ0(α, α̇, ḣ)

2πb
− b

2
α̇(t)

)2

,

xs(t) = Ψs(x(t)) = xs(t).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(4.19)

5. Combined geometric-control-averaging analysis of the unsteady fluid dynamics
problem

There are several types of geometric-control analysis that can be applied to the ROM
(4.18). These include (i) a nonlinear controllability analysis by computing the accessibility
distribution at some point x0 corresponding to some mean angle of attack; (ii) a Fliess
functional expansion (Fliess, Lamnabhi & Lamnabhi-Lagarrigue 1983; Isidori 1995),
which provides the early response of the control-affine system (2.1), equivalently (4.18)
– the reader is referred to the work of Pla Olea (2019) for such an analysis; and (iii)
a combined geometric-control-averaging analysis (e.g. Maggia et al. 2019; Bullo 2002).
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Geometric control of unsteady aerodynamics

In this work, we opt to perform this last type since it provides a constructive technique
to perform rigorous averaging of the system (4.18) when subjected to periodic forcing –
relating properties of the averaged dynamics to the original time-periodic system. Hence,
it will allow identification of enhancement in the mean lift and thrust beyond the steady
values.

Let us introduce time-periodic pitching–plunging

uα = α̈ = ω2Aα cos ωt, uh = ḧ = ω2Hb cos (ωt + φ) , (5.1a,b)

where ω is the oscillation frequency, Aα is the amplitude of the pitching angle (or angle of
attack) α, H is the amplitude of the plunging displacement h normalized by the half-chord
length b and φ is the phase difference between the two harmonic motions. Moreover, a
scaling argument is necessary before applying the averaging theorem. Therefore, we focus
our analysis on low-amplitude, high-frequency airfoil oscillations, flying at a high speed
U

Aα = O(ε), H = O(ε), ω = O(1/ε), U = O(1/ε) ⇒ k = ωb
U

= O(1),

(5.2a–d)
where k is the reduced frequency and ε is a small parameter; e.g. terms multiplying ε2 can
be neglected with respect to those scaled by ε. Substituting the inputs uα , uh from (5.1a,b)
into the system (4.18), and applying this scaling argument, one obtains

ẋ(t) = f (x(t)) + 1
ε

(
Aαgα(x(t)) cos ωt + Hbgh(x(t)) cos(ωt + φ)

)
. (5.3)

This system is a high-amplitude, high-frequency, nonlinear, time-varying system whose
analysis is challenging. First of all, direct averaging of the system (5.3) is futile because
it will completely neglect the effect of pitching–plunging oscillations on the averaged
dynamics; the cosine signal has a zero mean. In fact, averaging must be discreetly and
rigorously performed; the statement by Sanders, Verhulst & Murdock (2007) on the
subtleties of averaging is quite expressive: ‘To many physicists and astronomers averaging
seems to be such a natural procedure that they do not even bother to justify the process.
However, it is important to have a rigorous approximation theory, since it is precisely
the fact that averaging seems so natural that obscures the pitfalls and restrictions of the
method’.

In Appendix A, we list some rigorous mathematical tools for averaging from which we
present below a specific theorem that is especially suited for the averaging analysis of the
above system.

5.1. A special technique for averaging of high-amplitude periodically forced nonlinear
systems

Consider a nonlinear system subjected to a high-frequency, high-amplitude, periodic
forcing in the form

ẋ(t) = f (x(t)) + 1
ε

G
(

x(t),
t
ε

)
. (5.4)
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THEOREM A.1. If G is a T-periodic, zero-mean vector field and both f , G are
continuously differentiable, then the averaged dynamical system corresponding to the
system (A3a,b) is written as

˙̄x(t) = F̄ (x̄(t)), (5.5)

where F̄ (x̄(t)) = (1/T)
∫ T

0 F (x(t), τ ) dτ , and F is the pullback of f along the flow ΦG
t of

the time-varying vector field G.

Using the chronological calculus formulation of Agrachev & Gamkrelidze (1978), Bullo
(2002) showed that, for a time-invariant f and time-varying G, the pullback vector field
F (x(t), t) can be written explicitly in terms of iterated Lie brackets of f and G as

F (x(t), t) = f (x(t)) +
∞∑

k=1

∫ t

0
· · ·

∫ sk−1

0

(
adG(x(t), sk) . . . adG(x(t),s1)f (x)

)
dsk . . . ds1,

(5.6)
where adG f = [G, f ].

5.2. Application to the unsteady fluid dynamics system
In this section, we apply the above averaging theorem to the developed ROM (4.17),
equivalently (4.18) or (5.3). In particular, we use the series (A5) to obtain the pullback
vector field F as

F (x, t) = f (x) + G(x, t), (5.7)

where

G(x, t) =
∑

j=α,h

[gj, f ]
∫ t

0
uj(s1) ds1

+
∑

j=α,h

∑
�=α,h

[gj, [g�, f ]]
∫ t

0

∫ s1

0
uj(s1)u�(s2) ds2 ds1 + . . . (5.8)

As such, the averaged dynamics is written as

d
dt

⎛
⎜⎜⎜⎜⎜⎜⎝

x̄c
x̄v

x̄s
ᾱ
¯̇α
¯̇h

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ax̄c + BΓ0(ᾱ, ¯̇α, ¯̇h)
−1
τv

[
x̄v +

(
U cos ᾱ − ¯̇h sin ᾱ

)
¯̇α
]

−1
τ1

[
x̄s − x0

(
ᾱ + arctan

¯̇h
U

− τ2 ¯̇α
)]

¯̇α
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

Ḡ1→n(ᾱ)

0
Ḡn+2(ᾱ)

0
0
0

⎞
⎟⎟⎟⎟⎟⎠ , (5.9)

where Ḡ1→n are the first n components of the cycle average of the vector field G, and Ḡn+2

is the (n + 2)th-entry. It is found that these components are the only non-zero entries of Ḡ
and that they depend only on the angle of attack.

Having obtained the averaged dynamics (5.9) of the unsteady fluid dynamical
system (4.17), we need to study its equilibrium – the averaging theorem above relates
properties of the original nonlinear time-periodic (NLTP) system to equilibrium of the
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Geometric control of unsteady aerodynamics

averaged dynamics. That is, we set the left-hand side of (5.9) to zero and solve for x∗ that
satisfies the equation; i.e. we have

f (x∗) + Ḡ(x∗) = 0. (5.10)

Noting that the last three components of G are zeros, it implies that equilibria of the last
two states ( ¯̇α, ¯̇h) are automatically satisfied; and equilibrium of the ᾱ-dynamics stipulates
that α̇∗ = 0, which is intuitively expected. This result, in addition to Gn+1 = 0 implies that
equilibrium of x̄v is attained at x∗

v = 0. It remains to solve for x∗
c and x∗

s . Taking ḣ∗ = 0,
leaving α∗ arbitrary (to study the effect of the mean angle of attack) and realizing that the
first n and the n + 2 components of G depend only on α, we obtain

x∗
c = −[A]−1 (Ḡ1→n(α

∗) + UbCL,s(α
∗)B

)
x∗

s = x0(α
∗) + τ1Gn+2(α

∗).

}
(5.11)

Having solved for the equilibrium point x∗ of the averaged dynamics (5.9), we perform
averaging of the output variables (lift, drag and separation point), which are nonlinear
functions of the states x. Due to these nonlinearities, the average of an output function
Ψm(x), m ∈ {L, D, s}, is not simply Ψm(x∗). As a first-order approximation, each state
xi, i ∈ {1, . . . , n + 2}, can be written as xi(t) = x∗

i + Axi cos(ωt + φi). Hence, we expand
each output function Ψm around x∗ in a Taylor series expansion and average over the cycle
to obtain

Ψ̄m = Ψm(x∗) +
n+5∑
i=1

n+5∑
q=1

∂2Ψm

∂xi∂xq

AxiAxq

2
cos(φi − φq) + . . . (5.12)

5.3. Averaged lift
Applying the averaging analysis above to the lift output variable ΨL and normalizing by
ρU2b, we obtain

C̄L = CL,s(α
∗) + 1

4

(
H2k2 + khf A2

α

)
C′′

L,s(α
∗) + O(ε4; mv, Aα), (5.13)

where the infinite series is truncated after O(ε2). The result (5.13) is quite revealing. Recall
that C̄L represents the mean of the unsteady lift coefficient due to the pitching–plunging
inputs (5.1a,b) and CL,s(α

∗) is the (mean) steady lift coefficient at the mean angle of
attack α∗. From a linear system perspective, they may be equal – oscillating the airfoil
around a mean angle of attack results in a periodic lift whose mean corresponds to the
steady lift at the mean angle of attack. As such, the difference between the two would
represent lift enhancement/deficiency. The present analysis implies that, to the leading
order, the lift enhancement due to pitching and/or plunging is proportional to the curvature
C′′

L,s ≡ d2CL,s/dα2 of the steady lift curve. Aerodynamicists typically concern themselves
with the slope C′

L,s of such a curve; perhaps, this is the first time the role of its curvature
has been pointed out. Moreover, the analysis revealed a higher-order pitching contribution
to lift enhancement, which is due to added-mass effects: the last term O(ε4; mv, Aα) is
proportional to Aα and mv .

The above result is quite interesting in the sense that it identifies the role of the curvature
C′′

L,s of the steady lift curve in controlling lift enhancement due to high-frequency,
low-amplitude pitching–plunging. Since C′′

L,s is almost zero in the small-α linear regime,
this result points to potential lift enhancement/deficiency in the stall and post-stall regimes:
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0 5 10 15 20 25 30 35 40 45

0.5

1.0

1.5

CL,s

α

No net effect (CL,s = 0)
′′

Enhancement (CL,s > 0)
′′

Deficiency (CL,s < 0)′′

Figure 4. The curvature C′′
L,s of the steady lift curve controls lift enhancement due to high-frequency,

low-amplitude pitching–plunging. Note that the angles of attack at the peaks and troughs of the CL,s-α curve
change with R. The curve reported here is for R = 500 K for which the angles of attack at the peaks and
troughs are 15◦ and 20◦, respectively. For a smaller R (in the range of 10 000–60 000), they would be smaller
(approximately10◦ and 15◦, respectively).

lift deficiency near the peak(s) in the stall regime; and lift enhancement near the trough in
the post-stall regime, as shown in figure 4. In fact, there have been numerous experimental
and computational studies on the lift dynamics due to pitching and/or plunging in the
stall regime (e.g. Carr 1988; Lee & Gerontakos 2004; Andro & Jacquin 2009; Rival &
Tropea 2010; Cleaver et al. 2011, 2012, 2013; Baik et al. 2012; Choi et al. 2015; Chiereghin
et al. 2019; Gupta & Ansell 2019). However, none of these efforts revealed this role of C′′

L,s.
Focusing on the relevant studies corresponding to small-amplitude, high-frequency

oscillations around the peaks and troughs of the steady lift curve, we find them
corroborating the current result. In fact, as early as the efforts of McCroskey et al. (1982),
one can observe this behaviour. For example, figure 6 of Carr (1988) shows a 4 % lift
deficiency due to pitching around the peak. All other cases were either performed at
large amplitudes or low frequencies. More recently, the efforts of Rival & Tropea (2010)
studying plunging of the SD 7003 airfoil at R = 60 000 around α∗ = 0◦, 5◦, 8◦, 10◦ also
yielded similar results. Inspecting figure 4(a) in their effort, we find little-to-no change
between the mean lift coefficient C̄L and the steady lift coefficient CL,s(α

∗) at the mean
angle of attack in the cases of plunging in the linear regime (α∗ = 0, 5); and a lift decrease
in the cases of plunging near the peak in the stall regime: 26 % in the α∗ = 8◦ case, and
13 % in the α∗ = 10◦ case. Note that the peak of the steady CL,s-α curve is at 10◦ in this
case. In general, the angles of attack at the peaks and troughs of the CL,s-α curve change
with R; they increase when R is increased. Also, the results of Cleaver et al. (2011) are quite
clear in this regard; they performed a plunging experiment of NACA 0012 at R = 10 000
around α∗ = 15◦, which corresponds to the trough of the C̄L-α curve at this value of R
(Chiereghin et al. 2019). They observed significant lift enhancement in these conditions,
which increases with the plunging amplitude, reaching up to 310 % (see figure 11 in their
effort). The same group performed a more comprehensive study (Chiereghin et al. 2019)
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investigating enhancement/deficiency in the mean and amplitude of the unsteady lift on
a plunging NACA 0012 at R = 20 000 with different amplitudes, frequencies and mean
angles of attack. Investigating figure 7 in their effort and confining ourselves to small
amplitudes, one finds: (i) almost no net change in the mean lift coefficient when plunging
in the linear regime at α∗ = 0, 5◦; (ii) a small deficiency in the mean lift coefficient
when plunging at α∗ = 9◦, which is the peak of the C̄L-α curve; and (iii) a significant
enhancement in the mean lift coefficient when plunging at α∗ = 15◦, which is the trough
of the C̄L-α curve. Indeed, these experimental results corroborate the current theoretical
finding on the role of the curvature C′′

L,s of the steady lift curve in controlling lift
enhancement, which will be validated in more detail below using relatively high-fidelity
computational simulations (URANS).

Finally, it should be noted that the efforts of Cleaver et al. (2012, 2013), although
concerned with lift enhancement/deficiency, do not apply here since their observed
bifurcations in the mean lift coefficient were at quite high Strouhal numbers (frequencies).
Note that increasing the frequency (even with keeping the plunging amplitude fixed) leads
to an increase in the effective angle of attack. Therefore, even though the current analysis
and results should be valid for high frequencies, there is a limitation on the frequency in
the plunging case; for a given plunging amplitude, the maximum frequency should be set
to maintain the effective angle of attack within the intended range of C′′

L,s. For example,
Cleaver et al. (2012) interestingly observed a bifurcation in the mean lift coefficient leading
to a significant lift enhancement when plunging at α∗ = 0. However, this behaviour is not
attained until a quite high Strouhal number of 2 (i.e. k = 2π) is reached at H = 0.2, which
corresponds to an effective angle of attack in the range ± arctan kH = ±51.5◦. Clearly,
this is outside the scope of our analysis.

5.4. Averaged drag/thrust
Applying the averaging analysis above to the drag output variable ΨD due to a plunging
input, and normalizing by ρU2b, we obtain

C̄D = CD,s(α
∗) + H2k2

4

[
C′′

L,s tan α − kS

2π2

(
CL,sC′′

L,s + k2
hf C′2

L,s

)]
α=α∗︸ ︷︷ ︸

−χT

+O(ε3), (5.14)

where the infinite series is truncated after O(ε2). The result (5.14) is also quite revealing
in the sense that any difference between C̄D and CD,s(α

∗) would represent either a drag
increase or decrease (i.e. thrust production). The analytical nature of the current study
presents itself here. For example, the last term (−(kSk2

hf /2π2)C′2
L,s) between the square

brackets is negative indicating thrust production, proportional to the lift curve slope
C′

L,s (i.e. active in the linear regime), and proportional to the bookkeeping parameter kS
(i.e. due to suction). Therefore, it represents the classical thrust-production mechanism
in the linear regime due to plunging. In fact, when using potential-flow characteristics:
kS = 2π, C′

L,s = 2π, and recalling that khf is the high-frequency gain of the lift transfer
function (i.e. Theodorsen’s C(k)), this term reduces to Garrick’s potential-flow result on
the mean thrust coefficient CT due to plunging (Garrick 1937; Taha 2018)

CT = πH2k2|C(k)|2. (5.15)

Therefore, the current result represents a high-frequency generalization of Garrick’s
classical result to regimes with an arbitrary lift dynamics (not necessarily governed by
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kS /2π

CL tan α
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Steady characteristics
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α (deg.)
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0
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CL,s

kS  = 2π

kS  = 0

kS(α)

kS(α),
no derivatives

Thrust control parameter χT

χT

(b)(a)

Figure 5. URANS simulations of NACA 0012 at R = 500 K at different static angles of attack along with the
variation of the thrust control parameter χT due to low-amplitude, high-frequency plunging with the mean
angle of attack.

Theodorsen) and unconventional lift mechanisms (not necessarily the classical 2π sin α).
Hence, more contributions are revealed in our result in (5.14) besides Garrick’s. In
particular, the first two terms are quite interesting as they point to a nonlinear thrust
generation mechanism in the stall or post-stall regime where the effect of C′′

L,s is
prominent. The former indicates an increased drag inherited from lift enhancement in
regions of positive curvature and vice versa (i.e. an increase in the resultant normal
aerodynamic force, similar to the findings of Choi et al. 2015). The latter is due to suction
and is opposing to the former: it would provide thrust production in regions of positive
curvature. Since these two contributions are competing, we performed the following study
to assess the role of the curvature C′′

L,s of the lift curve in drag increase or thrust production.
We performed a URANS simulation (detailed below) of a NACA 0012 at R = 500 K at

different static angles of attack to obtain the mean lift and drag coefficients CL,s, CD,s, as
shown in figure 5(a). Indeed, in the absence of leading edge suction, the resultant force
(ignoring skin friction) is normal to the wing surface (Schlichting & Truckenbrodt 1979),
leading to the geometric relation CD = CL tan α between the lift and drag coefficients CL,
CD, which is the case for wings making use of a stabilized LEV such as delta wings
(Polhamus 1966) and insects (Ellington et al. 1996; Dickinson et al. 1999). Note that it has
been usually argued that LEV and leading-edge suction do not coexist (Polhamus 1966;
Ramesh et al. 2014). In fact, the recent concept of the leading-edge suction parameter
(LESP) is mainly based on this hypothesis, which was postulated by Ramesh et al. (2014)
as a criterion for the formation of a LEV: an airfoil can sustain leading-edge suction
up to a certain limit (depending on the geometry and R), and if the LESP exceeds this
maximum value, leading-edge separation will occur (i.e. a LEV will form). Therefore, a
plausible definition of the suction force coefficient CS in terms of the computed lift and
drag coefficients is

CS = CL tan α − (
CD − CD,f

)
, (5.16)

where CD,f is the skin friction drag coefficient. Using the URANS computational results
of CL,s and CD,s, we use (5.16) to determine the suction force coefficient CS, as shown
in figure 5(a).

Figure 5(a) shows a large difference between CL tan α and CD at small angles of
attack, indicating a large suction force over this range. However, this difference attains
a maximum at α = 15◦, supporting the LESP claim: there is a maximum suction force

928 A30-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.826


Geometric control of unsteady aerodynamics

that can be sustained by an airfoil at a given R (Ramesh et al. 2014). Beyond this angle of
attack, figure 5(a) shows that the suction force diminishes as the angle of attack increases in
accordance with previous findings in literature (Usherwood & Ellington 2002; Dickson &
Dickinson 2004; Yan et al. 2014). Moreover, at larger angles of attack (above 20◦), indeed
the behaviour of CL tan α is quite close to CD with an almost constant shift (CD,f ), which
indicates vanishing of the suction force. These results are quite plausible and intuitive.

Focusing on the change in the mean drag due to plunging, we normalize this change by
the effect of kinematics (plunging amplitude) as it appears in (5.14): H2k2. In particular,
we denote the term between square brackets by −χT , and call χT the thrust control
parameter: if it is positive, it indicates drag reduction or thrust production; and if it is
negative, it indicates drag increase. It simply represents the thrust-production capability
due to plunging; if it is larger at condition A than condition B, it implies that more thrust
would be produced at A than B when oscillating by the same effective-angle-of-attack
amplitude: Aαeff = arctan Hk. In fact, the actual thrust coefficient CT would be given from
χT through multiplying by tan2 Aαeff /4.

Normalizing (4.13) by ρU2b, we obtain the following relation between CS and CL:

CS = kS

4π2 C2
L, (5.17)

which can be used to estimate the suction parameter kS from the computed CL and
CD, as shown in figure 5(a). Interestingly, the suction parameter increases beyond its
potential-flow value 2π, although the suction force itself is less than its potential-flow
counterpart 2π sin2 α. In fact, figure 5(a) implies that the parameter kS actually varies
with α; i.e. kS = kS(α). Taking this variation into account in our averaging analysis, we
obtain more contributions to the thrust control parameter χT besides (5.14), due to the
kS-derivatives

�χT = 1
π2 CL,s(α

∗)
[
khf k′

SC′
L + k′′

SCL/4
] |α=α∗ + O(ε3). (5.18)

Equations (5.14), (5.18) imply that χT depends on the mean angle of attack α∗; that is,
the ability to generate thrust from low-amplitude, high-frequency plunging depends on the
mean angle of attack.

Figure 5(b) shows a comparison among several estimates of the χT -variation with
the angle of attack: (i) the total (combined) χT from (5.14), (5.18), which considers
kS = kS(α); (ii) the definition (5.14), ignoring the functional variation of kS with α (i.e. no
kS-derivatives) in the averaging analysis; (iii) a no-suction solution: kS = 0; and (iv) a
full-suction solution considering a constant kS = 2π. The difference between (i) and (ii)
is clearly the effects of kS-derivatives; the difference between (ii) and (iv) represents
the departure of kS from the ideal value 2π (mainly in the stall and post-stall regimes);
the difference between (ii) and (iii) represents the contribution of suction force; and finally
the no-suction solution represents the effect of the curvature C′′

L,s: it is simply −C′′
L,s tan α∗.

This comparison reveals some interesting points. First, at small angles of attack, χT > 0,
mainly due to suction effects; this is the classical thrust-production mechanism in the
linear regime (Garrick 1937). Second, as the angle of attack increases towards stall, there
is a strong effect of suction as implied from the small difference between the full-suction
solution and the (5.14) definition. However, this strong effect of suction is negative, leading
to an increased drag (χT < 0) rather than thrust production. This behaviour is due to the
weak slope C′

L,s and strong negative curvature C′′
L,s of the lift curve near stall, leading to

a positive coefficient of kS in (5.14); i.e. a negative χT . In other words, while the suction
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force is the main thrust generator in the linear regime, it has a negative effect in the stall
regime; the no-suction solution is actually thrust producing in this regime (due to the
negative curvature C′′

L,s), as shown in figure 5(b). Having said that, it must be pointed
out that the effect of kS-derivatives is significant in this range because the suction force
increases at a large rate near stall before dropping. Therefore, the net result still ensures
a thrust-producing capability: χT > 0. Computational validation below confirms these
findings and shows a thrust-producing capability near stall: at angles of attack (14◦) quite
close to the stall angle (15◦). Third, right after stall (the suction force stalls slightly after
the lift), all the factors contribute in the same direction of a drag increase. The suction
force collapses as shown in figure 5(a), which is also observed in the small difference
between the no-suction solution and the (5.14) in figure 5(b). Moreover, this rapid decrease
of the suction force results in a negative contribution of the kS-derivatives: the total χT is
considerably below the (5.14)-definition and the no-suction solution over this range, as
shown in figure 5(b). As a result, the thrust-producing capability is annihilated; a huge rise
in the mean drag coefficient occurs due to plunging in this range, which is validated below
by computational simulations: URANS simulations show that the largest mean drag due
to plunging with k = 0.5, Aαeff = 5◦ over the range 0 � α∗ � 20◦ occurs at α∗ = 16, 17◦,
as will be shown in § 6 below. Finally, figure 5(b) interestingly shows a recovery of χT in
the post-stall regime after the negative peak. This fact is also validated below; the URANS
simulations indeed show a thrust production at α∗ = 18◦ (see figure 14). The comparison
in figure 5(b) implies that this recovery is due to the kS-derivatives; (5.18) suggests that
this behaviour is due to the negative slopes of kS and CL (the first term).

The effect of pitching on the drag dynamics can be studied in a similar way

C̄D = CD,s(α
∗) + A2

α

4

[
2

CL,s tan α + khf C′
L,s

cos2 α
+ khf C′′

L,s tan α+

− kS

2π2

(
khf CL,sC′′

L,s + k2
hf C′2

L,s + k2
[
khf kα̇(khf kα̇ − 2π) + π2

])
− CL,s

π2

(
khf k′

SC′
L,s + k′′

SCL,s/4
)]

α=α∗
+ O(ε3). (5.19)

Equation (5.19) for the pitching effects on drag/thrust production shows similar
terms to plunging effects in (5.14). However, unlike plunging, the effect of reduced
frequency appears explicitly in the thrust control parameter χT mainly through rotational
contributions (proportional to kα̇). Therefore, there are non-zero kinematic effects on
χT due to pitching, as shown in figure 6: the larger the reduced frequency k and the
more backward the pitching axis (smaller kα̇), the larger the thrust-producing capability
(i.e. χT ). However, these effects of kinematics are not observed in the post-stall regime
where the suction force is diminished. Note that (5.19) implies that the k-effects are
associated with suction (i.e. proportional to kS). Another notable difference between
plunging and pitching effects on thrust production is the well-known fact that, unlike
plunging, pure pitching is thrust producing only beyond a certain threshold of frequency
(Garrick 1937): figure 6 shows a drag rise over small α∗ when pitching at k = 1 vs a slight
thrust production when pitching at k = 2. The current results also indicate that the pitching
thrust-production capability increases with the mean angle of attack up to stall. That is,
pitching is significantly more efficient in thrust production near stall than at small angles
of attack. Finally, it should be reported that the coupled pitching–plunging (low-amplitude,
high-frequency) effects are of higher orders in ε than the individual effects.
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Figure 6. Variation of the thrust control parameter χT due to low-amplitude, high-frequency pitching with
the mean angle of attack.

5.5. Averaged separation
Applying the averaging analysis above to the output variable Ψs describing the
chord-normalized location xs of the separation point, we obtain

x̄s = x0(α
∗) + k2

4
x′′

0(α
∗)

[
H2 + A2

ατ̂ 2
2

]
+ O(ε4), (5.20)

where x0(α) is the steady separation point and τ̂2 = Uτ2/b with τ2 being the
Goman–Khrabrov delay (Goman & Khrabrov 1994), as defined in (4.14). The Kirchhoff
model, which relates the steady lift coefficient CL,s to the separation point x0, as given in
(4.15), can be used to estimate the variation of the separation point with the angle of attack
from a given steady lift curve

x0(α) =
(

2

√
CL,s(α)

2π sin α
− 1

)2

. (5.21)

If the flow is fully attached (i.e. x0 = 1), then Kirchhoff’s model results in the classical
potential-flow lift CL,s = 2π sin α; the larger the deviation of CL,s from this classical
relation, the smaller x0 (i.e. earlier separation).

Using the URANS CL,s computations, we use the Kirchhoff model (5.21) to estimate the
variation of separation point x0 with the angle of attack, as shown in figure 7. The figure
also shows the averaged unsteady separation point x̄s due to plunging with Aeff = 5◦. The
current analysis implies that plunging promotes separation in the pre-stall regime, which
is intuitively expected, but provides a significant delay of separation if performed in the
post-stall regime near the trough of the CL,s-α curve.

5.6. Added-mass effects
The above analysis did not reveal any added-mass effects up to O(ε2) because of the
additional lag τv; only higher-order effects will be captured. However, if such a lag is
relaxed (τv = 0), the analysis will reveal some important added-mass effects. For example,
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Figure 7. Variation of the steady separation point x0 with the mean angle of attack along with the mean
unsteady separation point due to plunging with Aeff = 5◦.

pure pitching is found to provide lift enhancement only when the pitch axis is ahead
of the mid-chord (a < 0), while a combined pitching–plunging motion can result in lift
enhancement independent of the hinge location

Δmv C̄L = π

4
μvk2Aα[H sin 2α∗ sin φ − 2aAα sin α∗], (5.22)

where Δmv denotes an added-mass contribution, μv is the mass ratio (μv = mv/πρb2:
added-mass normalized by its potential-flow value) and φ is the phase difference between
the two harmonic motions, as defined in (5.1a,b). It should be noted that this lift
enhancement mechanism due to added mass may not be well known; it is actually a
non-intuitive mechanism in the sense that it is purely inertial, so one might think that
purely harmonic inertial loads may not have net/averaged effects. However, the current
geometric nonlinearities in α promoted such a mechanism. Definitely, it cannot be captured
by a purely linear analysis.

Similarly, pure pitching is found to produce thrust when the pitch axis is ahead of the
mid-chord (a < 0), while a combined pitching–plunging motion can be thrust producing
at any hinge location if the relative phase is set appropriately

Δmv C̄D = −π

2
μvk2Aα[H cos2 α∗ sin φ − aAα cos α∗]. (5.23)

Unlike the lift enhancement mechanism due to added mass, this thrust-production
mechanism is well known (Garrick 1937). In fact, the second term reduces to Garrick’s
potential-flow result on the added-mass contribution when taking the limit to small angles
of attack (cos α∗ → 1) and considering potential-flow characteristics (μv = 1). As shown
in figure 8, the added-mass contributions (when pitching at the quarter-chord) may provide
significant thrust particularly at high frequencies (it varies quadratically with k). Finally, it
should be reported that no net added-mass effects due to pure plunging are observed.
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Figure 8. Added-mass effects on the thrust control parameter χT due to pitching at the quarter-chord at
different reduced frequencies.

6. Computational validation and distillation of the flow physics

In this section we aim to validate some of the theoretical results obtained in the previous
section and illustrate their underlying physics. In particular, we focus on plunging effects
on lift enhancement/deficiency and thrust production. For this purpose, we solve the
URANS equations on a harmonically plunging NACA 0012 airfoil at R = 500 K. We
should acknowledge that URANS may not be the most appropriate solver for validation
in the critical and rich regimes of stall and post-stall as ensemble averaging may fail to
capture chaotic vortex interactions (Lesieur, Métais & Comte 2005, pp. 19–20). However,
there are several factors that may justify such a choice. First, the need to perform many
simulations at this large Reynolds number may preclude a more accurate and detailed
simulation (e.g. DNS or LES). Second, the focus on a two-dimensional case study may
mitigate the issue as it obviates the three-dimensional mechanisms (e.g. vortex stretching)
that promote energy transfer between small and large scales. Third, the focus on global
(integrated) quantities such as lift and drag forces, particularly their cycle-averaged
values, may also justify such a choice. Finally, perhaps most importantly, we do not
seek a quantitative validation; in fact, the above theoretical analysis is not meant to
provide quantitative results, but qualitative behaviours as discussed previously. Therefore,
when the theoretical analysis predicts lift enhancement in some region, we validate such
a qualitative behaviour without scrupulously investigating how much enhancement is
attained.

In fact, it may be prudent here to point out that the sought validation of the theoretical
results, obtained above, may actually be independent of the solver type. To illustrate this
point, recall that the conducted theoretical analysis derives averaged values of unsteady
quantities (e.g. CL, CD) from their steady behaviours. It is precisely this relation that
is being validated. For example, the above theoretical analysis revealed an unsteady lift
enhancement when oscillating over regions of positive curvature of the steady lift curve.
Since the same solver is used in computing both the steady and unsteady characteristics,
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it may make the choice of the solver type a subtle point rather than a core one.
Nevertheless, the solver choice would certainly affect our attempt to explain the underlying
physics behind such a result.

6.1. Computational set-up
All simulations are performed using the ANSYS FLUENT commercial package, while
meshes are generated using the ICEM CFD software. To handle the airfoil plunging
motion, we split the mesh domain (with a C-grid topology) into two different zones: an
inner moving circular zone and a static outer one. The inner zone moves with the airfoil
as a rigid body, while the outer deforms (using the Dynamic Mesh feature in FLUENT) to
accommodate this motion. The inlet semicircle has a 15 chord radius, measured from the
quarter chord, while the downstream extends to 30 chords. The inner circular zone radius
is 7 chords. The meshes of the two zones are generated using Multi Blocking in ICEM
CFD to obtain a two-dimensional quad structured mesh. A grid independence study is
performed to reach a final mesh of 102 000 elements with 420 over a sharp trailing edged
airfoil, 200 over each of the semi-circle inlet, outlet and upper and lower edges. A boundary
layer mesh treatment is implemented with a first layer height of h = 2.15 e-5 chord, which
is half of the value estimated from Schlichting et al. (1960); this choice ensured y+ < 1
for proper turbulence modelling.

The simulations are performed using the pressure-based solver. Turbulence is
modelled using the Menter shear stress transport k-ω SST two-equation complete model
(Menter 1994). The model possesses a good capability in predicting separation, which
is important for the current study. Moreover, it can handle high pressure gradients
in near-wall viscous layers (Wilcox 1998; Pope 2000; Wilcox 2008). The upstream
semi-circle and upper and lower edges are set as velocity inlets; and the downstream edge
is set as a pressure outlet. Finally, a no-slip wall is set for the airfoil surface. A sliding
mesh interface is used between the moving and deforming zone. The airfoil, inner zone
and interface edge motion has a rigid body user defined function written to implement the
motion. The smoothing dynamic mesh method is used to deform the mesh as springs; and
re-meshing is not used because the motion amplitude is relatively small compared with the
domain size. The pressure–velocity coupled scheme is adopted. The second-order upwind
scheme is selected for spatial discretization and a second-order dual time stepping implicit
scheme is adopted for temporal integration with a time step adjusted to ensure 430 steps
per motion cycle; and 20 iterations per time step were adopted to ensure convergence in
the inlet–outlet net-mass residuals. Finally, simulations are performed until periodicity of
the lift coefficient is observed.

6.2. Lift enhancement
The above theoretical analysis, (5.13), revealed the role of the curvature C′′

L,s of the
steady CL,s-α curve in controlling enhancement (or deficiency) in the mean lift due to
low-amplitude, high-frequency oscillations. To validate this finding, we first constructed
the steady CL,s-α curve using the URANS computational set-up discussed above, as shown
in figure 9(a). Below α = 16◦, no vortex shedding is observed at this Reynolds number.
For α > 16◦, the mean values of the steady lift curve are considered for analysis, after
smoothing by cubic splines. According to figure 9(a), the curvature is most negative around
the peak at α = 15◦ and is most positive around the trough at α = 20◦. So, these two
points may be good candidates to test the hypothesis by performing plunging oscillations
around these two mean angles of attack with a high frequency (k = O(1)) and low
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Figure 9. URANS steady CL,s-α curve for NACA 0012 at R = 500 K along with plunging simulations around
α∗ = 0, 15, 20◦ with k = 0.5 and Aαeff = arctan HK = 5◦. (a) CL,s-α∗ curve. (b) Lift enhancement/deficiency.

amplitude (H = O(ε)). There is also another limitation on the plunging amplitude so that
the effective angle of attack αeff = α∗ ± arctan Hk stays within the designated range (of
signed curvature). Therefore, we performed plunging simulations around α∗ = 0, 15, 20◦
with k = 0.5 and Aαeff = arctan Hk = 5◦, as shown in figure 9. The figure shows 40.6 %
enhancement in the mean lift coefficient when plunging around α∗ = 20◦ (i.e. C′′

L,s > 0);
5 % decrease in the mean lift coefficient when plunging around α∗ = 15◦ (i.e. C′′

L,s <

0); and almost no change in the mean lift coefficient when plunging around α∗ = 0◦
(i.e. C′′

L,s = 0), which is in accordance with the theoretical result from the combined
geometric-control-averaging analysis. Indeed, geometric-control theory provides heuristic
tools for discovery of nonlinear force-generation and stabilization mechanisms.

It may be interesting to investigate why this happens. Why does plunging around α∗ =
20◦ provide such a significant lift enhancement while plunging around α∗ = 15◦ with the
same amplitude and frequency results in a lift deficiency instead? To investigate this point,
we show in figure 10 the time history of the unsteady lift coefficient CL along with the
quasi-steady one CL,s(αeff ) for the two cases, and also show snapshots of the vorticity
contours over the cycle for the two cases in figures 11, 13. The following list provides a
chronological description of the airfoil motion during the cycle:

(i) (a) Start at the mid-stroke (i.e. maximum ḣ with αeff = α∗ − Aαeff ).
(ii) (a)–(c) Upward deceleration: until the airfoil reaches the top dead centre after (c) at

t/T = 0.25.
(iii) (c)–(e) Downward acceleration: until the airfoil reaches the mid-stroke point again

after (e) at t/T = 0.5.
(iv) (e)–(g) Downward deceleration: until the airfoil reaches the bottom dead centre after

(g) at t/T = 0.75.
(v) (g)–(i) Upward acceleration: until the airfoil reaches the mid-stroke point after (i) at

t/T = 1.0.

Figures 11, 13 show that, as the airfoil decelerates upward between (a–c), the flow
reattaches. During this phase, there is a trailing-edge vortex (TEV) in the two cases,
although significantly stronger in the 20◦ case. This TEV explains why the unsteady
lift is less than its quasi-steady counterpart during this phase, as shown in figure 10;
this difference is significantly larger in the 20◦ case. It is the classical Wagner wake
deficiency effect (Wagner 1925). As the airfoil moves upward, the TEV gets fainter
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Figure 10. Variations of the unsteady lift coefficients along with the quasi-steady ones over the plunging
cycles around α∗ = 15, 20◦ with k = 0.5 and Aαeff = 5◦. (a) α∗ = 20◦ and (b) α∗ = 15◦.
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Figure 11. Vorticity contours over the plunging cycle around α∗ = 20◦ with k = 0.5 and Aαeff = 5◦.

and fainter, consequently, the unsteady lift gets closer to the quasi-steady behaviour. It
increases at a faster rate in the 20◦ case. In this case, at some early moment in the
downstroke – between (d,e) at t/T � 0.4 – a LEV forms, as shown in figure 11. It then
grows and moves relatively slowly; it remains over the airfoil for a considerable part of
the cycle (approximately a third of the cycle). Therefore, this attached LEV explains the
lift enhancement in the 20◦ case: the CL reaches almost double the quasi-steady value
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Figure 12. LESP variation over the plunging cycle in the two cases of α∗ = 15, 20◦ with k = 0.5 and
Aαeff = 5◦ along with the critical LESP for NACA 0012 at R = 500 K.

specifically during the period (t/T = 0.4–0.7) where the LEV is attached to the airfoil.
On the other hand, this strong LEV is not observed in the 15◦ case, as shown in figure 13,
which answers the posed question. It should be noted that at these large angles of attack
(15◦ or 20◦), whether static or dynamic, there is a continuous flow of small-scale shear
layers separating from the leading edge. However, the current URANS simulation captures
only the large coherent structures.

We then pose another question: Why does a strong LEV form in the 20◦ case and not in
the 15◦ case? Since the question here is about the formation of a LEV as a large coherent
structure (not leading-edge separation in general), the LESP concept (Ramesh et al. 2014)
may be a convenient tool in this case. While the LESP concept was introduced for low
Reynolds number applications, there are some recent efforts to extend it to high Reynolds
number flows (Narsipur et al. 2016). Unlike the low Reynolds number case, the critical
LESP has some kinematic dependence at high Reynolds numbers. In particular, it increases
with k until it reaches a maximum value around k = 0.5. It is found that the critical LESP
for NACA 0012 at a relatively high k (�0.5) ranges from 0.32 at R = 30 000 up to 0.5 at
R = 3 000 000 (Narsipur et al. 2016). Performing a simple interpolation between the two
values, we postulate a 0.35 critical LESP for the current case of R = 500 000. Moreover,
for pure plunging, one can show that the LESP may be approximated as (Ramesh 2020)

LESP(t) = sin α∗ + ḣ(t)
U

C(k), (6.1)

where C(k) is Theodorsen’s lift transfer function. Figure 12 shows the LESP variation
over the plunging cycle in the two cases of α∗ = 15, 20◦ with k = 0.5 and Aαeff = 5◦
along with the LESP critical value (0.35). The figure clearly shows that the LESP in the
20◦ case exceeds the critical value around t/T � 0.31, indicating the formation of a LEV
around this instant, which matches the vorticity snapshots shown in figure 11. On the other
hand, the LESP (equivalently the unsteady effective angle of attack) in the 15◦ is not strong
enough to initiate a LEV.
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Figure 13. Vorticity contours over the plunging cycle around α∗ = 15◦ with k = 0.5 and Aαeff = 5◦.

6.3. Drag reduction/thrust generation
The above theoretical analysis, (5.14), (5.18) and figure 5(b), revealed an interesting
behaviour of the thrust control parameter χT with the mean angle of attack α∗. It shows a
positive χT (i.e. an ability to generate thrust from plunging oscillations) up to the stall
angle of attack beyond which there is a significant rise in the mean drag coefficient
due to the collapse of the suction force. Moreover, the thrust-producing capability is
recovered when increasing the mean angle of attack beyond the stall regime. To validate
these findings, we performed plunging simulations at several mean angles of attack
(α∗ = 0◦, 12◦, 14◦, 15◦, 16◦, 17◦, 18◦) with k = 0.5. For each simulation, we compute the
mean drag coefficient C̄D and use it to estimate the thrust control parameter χT as

χT(α∗) = C̄D − CD,s(α
∗)

H2k2/4
, (6.2)

where CD,s(α
∗) is the mean drag coefficient at a static angle of attack equal to α∗.

Although we do not seek a quantitative validation, the comparison between theoretical
predictions (5.14), (5.18) and the URANS computations, shown in figure 14, is encouraging
– to capture the drag dynamics in the critical stall regime with such an accuracy using the
present simple modelling and analysis is more than satisfactory.
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Figure 14. Validation of the thrust control parameter χT due to plunging against URANS computational
simulations of a plunging NACA 0012 with k = 0.5 at R = 500 K.

7. Discussion

Before concluding this paper, it may be judicious to discuss how this simple theoretical
modelling and analysis could capture such nonlinear dynamical behaviours of the lift and
drag near stall. There are several points worthy of discussion in this regard. First, the main
– perhaps the only – modelling assumption in this work is that the lift output is dictated by
the quasi-steady circulation (or lift) through a linear dynamical system. This assumption is
not far from truth even in the stall regime. What the first part of this assumption entails is
that when the airfoil experiences a step change in the angle of attack, the lift goes through
some transient response, but finally settles on the steady value. If there is no periodic
vortex shedding, this behaviour is indeed correct; the lift attains an equilibrium point
dictated by the steady behaviour. Even with a periodic vortex shedding, the behaviour
still holds, although the lift attains a periodic orbit instead. Nevertheless, such oscillatory
behaviour is captured in the stability (eigenvalues) of the linear dynamical system between
the quasi-steady circulation and the unsteady lift: stable in the former case of no vortex
shedding and unstable (or critically stable) in the latter case of periodic vortex shedding.
Therefore, the lift output is indeed governed by the quasi-steady circulation (or lift). The
only remaining issue would be questioning the linearity of such a dynamical system.
To discuss this point, we recall that there are two types of nonlinearities: nonlinearity
of the input–output map (e.g. a nonlinear relation between α as an input and CL as
an output), and nonlinearity of the underlying dynamical system (i.e. nonlinearity in
the states constituting such a dynamical system). The former is indeed captured in the
proposed model. As for the latter, if the system is feedback linearizable, then there exists
a nonlinear transformation that renders the dynamical system a linear form. Therefore,
we assume to work directly with the transformed states – since the state variables are
arbitrary in the present formulation. Moreover, even if such a transformation does not
exist (i.e. the system is not feedback linearizable), the nonlinear system may still be
represented by a linear form in a larger space – by adding more state (see the work
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of Sassano & Astolfi 2016). In other words, it may have a finite-dimensional Koopman
invariant subspace (Brunton et al. 2016a). Since the order of the linear dynamical system
relating quasi-steady circulation to unsteady lift in our ROM is arbitrary, it implies that
our formulation includes all of the above scenarios. Finally, even if the lift dynamics is
different from all of the above cases, confining our analysis to small amplitudes might
justify the linearity assumption, stressing that we assume linearity between quasi-steady
circulation (or lift) and unsteady lift – not between lift and angle of attack. Indeed, the
angle of attack is a state variable and it appears nonlinearly in the developed ROM. So,
in conclusion, the modelling strategy is wide enough to allow for unconventional lift
mechanisms and an arbitrary lift dynamics. In fact, it obviates assuming a specific form
and leaves it open. After all, it is a high-fidelity-informed theoretical model; the model is
driven by high-fidelity steady lift and drag characteristics.

The second point is regarding the combined geometric-control-averaging analysis. It
should be noted that the averaging theorem guarantees that the response x(t) of the
time-periodic system and that of the averaged system are close only over a finite time
horizon: x(t) − x̄(t) = O(ε) ∀t ∈ [0, σ/ε] (see Appendix A), which cannot be used to
draw conclusions about the steady-state mean values of the unsteady lift and drag forces
from the averaged system. We can only guarantee closeness between x(t) and x̄(t) over
an infinite horizon if the averaged dynamics has an exponentially stable fixed point. Only
in this case, we can draw conclusions about the steady-state mean values of lift and drag
from equilibria of the averaged dynamics. However, near stall, where we have periodic
vortex shedding, the lift dynamics is essentially unstable or critically stable (eigenvalues
on the imaginary axis), so we certainly lose exponential stability. This issue forms an
impasse against the goal of the proposed analysis. However, luckily, when the unstable
lift dynamics experiences periodic forcing with high enough frequency – and amplitudes
(of the acceleration inputs) are also scaled with frequency – there is a strong chance
for stabilization: vibrational stabilization (Meerkov 1980; Baillieul & Lehman 1996;
Sarychev 2001; Taha et al. 2015a; Tahmasian & Woolsey 2017; Hassan & Taha 2019;
Maggia et al. 2019; Taha et al. 2020). As a result, the lift natural oscillations will be
suppressed; lift will oscillate at the forcing frequency. This behaviour is exactly the lock-in
phenomenon (Karniadakis & Triantafyllou 1989; Young & Lai 2007). In other words, the
vortex lock-in phenomenon is nothing but a vibrational stabilization of the lift dynamics.
In this case where the averaged dynamics is stabilized, the proposed averaging analysis is
conclusive. Therefore, the proposed geometric-control-averaging analysis is mainly valid
when lock-in occurs.

Figure 15 shows the spectrum of the unsteady lift due to plunging around 20◦ with
k = 0.5 and Aαeff = 5◦. It also shows the spectrum of the lift variations at a static α = 20◦
(i.e. due to shedding). The shedding frequency is not present at all in the unsteady lift due
to plunging: only the forcing frequency and its harmonics. Clearly, the plunging motion
suppressed the natural vortex shedding, leading to lock-in. Finally, it may be important to
point out that the order n and the nature of the states xc constituting the linear dynamical
system between the quasi-steady circulation Γ0 and the circulatory lift LC were irrelevant
in this particular averaging analysis; the resulting averaged responses in (5.13), (5.14),
(5.19) and (5.20) were found to be independent of n and the entries of A, B, C and
D defining the xc-dynamics; only the high-frequency gain khf was important. Since the
focus was only on the steady-state-averaged output behaviour due to high-frequency input
oscillations, the transient response – which is dictated by n and the xc-dynamics – is
irrelevant as long as it is exponentially stable as discussed above. It is then intuitively
expected to observe the importance of the high-frequency gain khf . However, if some
other nonlinear analysis is pursued, n and xc-dynamics may play an instrumental role.
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Figure 15. Frequency spectrum of the unsteady lift due to plunging around 20◦ with k = 0.5 and Aαeff = 5◦,
along with spectrum of the lift on the static airfoil at the same angle of attack.

For example, if one wishes to capture resonance effects between forcing and natural
shedding, which may lead to interesting lift and thrust enhancement mechanisms, one must
identify the xc-dynamics from computational simulations of the unsteady lift response at
static angles of attack. In particular, the variations of the eigenvalues with the angle of
attack must be incorporated. Then, a nonlinear systems analysis tool such as the method of
multiple scales (Nayfeh 1973; Nayfeh & Mook 1979; Nayfeh & Balachandran 2004) may
capture such a resonance effect.

8. Conclusion

This paper represents one of the first attempts to apply differential-geometric-control
theory directly to an unsteady fluid dynamic system. We started by showing how
geometric-control theory can be useful for a fluid dynamicist in (i) exploiting nonlinear
interactions between control inputs to generate forces (or motion) in unactuated directions;
(ii) suggesting symmetry-breaking mechanisms via high-frequency oscillatory control;
and (iii) vibrational stabilization: stabilization via high-frequency oscillatory control.
However, geometric-control theory – similar to typical nonlinear systems analysis tools
– stipulates special forms for the dynamical system under study. Clearly, direct application
of the theory to Navier–Stokes equations is not possible, hence the need for reduced-order
modelling. The sought ROM must be (a) dynamical/unsteady (in the form of a differential
equation), (b) nonlinear – the theory thrives on nonlinearities and (c) analytical; we do not
seek an efficient simulation tool – rather, an analytical model to perform an analytical
study (symbolic computations). It is found that none of the standard reduced-order
modelling techniques available in the literature (e.g. POD, BPOD, ERA, DMD, EDMD,
Volterra, neural networks, . . . ) can satisfy these essential requirements to enable true
nonlinear analysis of a fluid dynamic system. In this paper, we overcome this hurdle
by adopting a physics-based (phenomenological) modelling approach. We developed a
geometric-control oriented ROM for the unsteady aerodynamics of a pitching–plunging
wing that is (i) rich enough to capture the main physical aspects (e.g. nonlinearity of
the flow dynamics at large angles of attack and high frequencies) and (ii) efficient and
compact enough to be amenable to the analytic tools of geometric nonlinear control theory.
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The analytical ROM of the unsteady lift and drag forces is informed by high-fidelity
simulations at static angles of attack.

Applying geometric control and averaging analysis to the developed ROM, several
interesting lift and drag mechanisms are revealed for low-amplitude, high-frequency
oscillations. First, the curvature of the steady lift curve at the mean angle of attack controls
lift enhancement/deficiency: the mean lift coefficient will increase when oscillating
around regions of positive curvature (near the trough in the post-stall regime) and
decrease when oscillating around regions of negative curvature (near the peak in the
stall regime). Validation using URANS is in a good agreement with this theoretical
finding, confirming that geometric-control theory is a heuristic tool for discovery. While
the proposed theoretical analysis may not provide quantitative predictions, it points to
regions of interesting mechanisms where one can perform higher-fidelity simulations to
study the underlying physics. The URANS simulations revealed a strong attached LEV
when oscillating around the trough of the lift curve, which does not form when oscillating
around the peak. Hence, it explains the reason behind lift enhancement in the former case.
The LESP concept confirms that the kinematics in this case (around the trough; i.e. larger
values of the effective angle of attack) are strong enough to make the LESP exceed its
critical value for this airfoil at the designated Reynolds number (500 K), explaining the
formation of a LEV – in contrast to the former case (around the peak; i.e. smaller values
of the effective angle of attack). The analysis also revealed a nonlinear lift enhancement
mechanism due to added-mass effects that is not well documented in literature.

As for the drag/thrust, the current analysis captured the classical thrust production
mechanism due to suction in the linear regime. In addition, it showed a huge drop in
the suction force immediately after lift stall, which annihilated the thrust-production
capability due to low-amplitude, high-frequency oscillations; there is a huge rise in the
mean drag over this regime. Interestingly, the thrust-production capability is recovered in
the post-stall regime. These behaviours are validated using URANS simulations; in fact,
the validation shows a good quantitative agreement between computational simulations
and theoretical predictions in this regard.

Supplementary movies. Simulation movies for results shown in figures 11 and 13 are available here.
Supplementary movies are available at https://doi.org/10.1017/jfm.2021.826.
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Appendix A. Formal averaging techniques

A.1. The averaging theorem
THEOREM A.1. Consider the nonlinear, time-periodic (NLTP) system

ẋ(t) = εX (x(t), t), (A1)

where ε is a small perturbation scaling parameter, and X is a T-periodic vector field in t.
The averaged dynamical system corresponding to (A1) is then written as

˙̄x(t) = εX̄ (x̄(t)), (A2)

where X̄ (x̄(t)) = (1/T)
∫ T

0 X (x(t), τ ) dτ . According to the averaging theorem
(Khalil 2002; Sanders et al. 2007):

(i) If x(0) − x̄(0) = O(ε), then there exist σ > 0 and ε∗ > 0 such that x(t) − x̄(t) =
O(ε) ∀t ∈ [0, σ/ε] and ∀ε ∈ [0,ε∗].

(ii) If x∗ is an exponentially stable equilibrium point of (A2) and if ‖x(0) − x∗‖ < r for
some r > 0, then x(t) − x̄(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, the system
(A1) has a unique, exponentially stable, T-periodic solution xT(t) with the property
‖xT(t) − x∗‖ � κε for some κ .

Thus, the averaging theorem allows conversion of a non-autonomous system (time
varying) into an autonomous (time-invariant) system. As such, if the equilibrium state of
the NLTP system is represented by a periodic orbit xT(t), it reduces to a fixed point x∗ of
the averaged dynamics. Moreover, if this fixed point is stable, the averaging theorem will
guarantee that the periodic response of the NLTP system is orbiting in close proximity to
such a point. Hence, one can draw conclusions for the original NLTP system by analysing
the simpler (time-invariant) averaged dynamics.

The main issue here is that the unsteady aerodynamic system (5.3) is not directly
amenable to the averaging theorem above; it is not exactly in the form (A1). Specifically,
it is not a weakly forced system whose vector field is scaled by ε (see a full discussion
on this issue in the work of Maggia et al. 2019). Rather, it is forced by high-amplitude,
high-frequency, periodic forcing. Note that while the airfoil oscillatory motion (α, h)
is of small amplitude, the inputs uα , uh are of large amplitude O(1/ε) because they
are proportional to the accelerations. A remedy can be achieved by decoupling the
high-amplitude part (proportional to 1/ε) from the rest of the dynamics, which invokes
the nonlinear variation of constants formula (Agrachev & Gamkrelidze 1978; Bullo 2002).

A.2. The nonlinear variation of constants (VOC) formula
The nonlinear VOC formula is a useful tool for decoupling vector fields of different
magnitudes and/or time scales. In particular, it is instrumental for our analysis when the
concerned nonlinear system is subjected to high-amplitude periodic forcing. Consider a
nonlinear system subjected to a high-frequency, high-amplitude, periodic forcing in the
form

ẋ(t) = f (x(t)) + 1
ε

G
(

x(t),
t
ε

)
, x(0) = x0. (A3a,b)

If the time-varying vector field G is periodic in its second argument t, the system (A3a,b)
is not directly amenable to averaging, i.e. is not in the form of (A1), because f and G
are not of the same order. The VOC formula allows separation of the system (A3a,b)
into two companion systems, each of which is amenable to averaging, perhaps after time
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scaling. The VOC formula implies (Agrachev & Gamkrelidze 1978; Bullo 2002; Bullo &
Lewis 2004; Taha et al. 2015b; Hassan & Taha 2019)

ż(t) = F (z(t), t), z(0) = x0

ẋ(t) = 1
ε

G(x(t), t), x(0) = z(t),

⎫⎬
⎭ (A4)

where F (x(t), t) is the pullback of the vector field f along the flow ΦG
t of the time-varying

vector field G. This process makes each of the two systems in (A4) (i.e. the z-dynamics
and x-dynamics) directly amenable to the averaging theorem (after time scaling τ = ωt,
τ = ω2t, respectively). However, the pullback vector field F in the VOC formula requires
computation of flow maps (i.e. solution of part of the differential equation), which
may not be analytically tractable for complex systems. Luckily, using the chronological
calculus formulation of Agrachev & Gamkrelidze (1978), Bullo (2002) showed that, for
a time-invariant f and time-varying G, the pullback vector field F (x(t), t) can be written
explicitly in terms of iterated Lie brackets of f and G as

F (x(t), t) = f (x(t)) +
∞∑

k=1

t∫
0

· · ·
sk−1∫
0

(
adG(x(t),sk) . . . adG(x(t), s1)f (x)

)
dsk . . . ds1, (A5)

where adG f = [G, f ].

A.3. Averaging of high-amplitude periodically forced nonlinear systems
The unsteady aerodynamic system (5.3) is subject to a high-amplitude, high-frequency
periodic forcing; i.e. in the form (A3a,b). Therefore, applying the VOC formula before
averaging is necessary to perform proper averaging analysis of the system. The advantage
of the VOC formula is that it makes each of the two systems in (A4) individually amenable
to the averaging theorem. That is, we have

˙̄z(t) = 1
T

∫ T

0
F (z̄, t) dt, z̄(0) = x0

˙̄x(t) = 1
T

∫ T

0

1
ε

G(x̄, t) dt, x̄(0) = z̄(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A6)

Moreover, the time-periodic forcing vector field (1/ε)G(x, t) = gα(x)uα(t) + gh(x)uh(t)
is of zero mean (uα , uh are zero-mean harmonic functions). Hence, averaging after
applying the VOC implies

x̄(t) = z̄(t), ˙̄z = F̄ (z̄). (A7a,b)

Hence, one can obtain the averaged dynamics of the original system (A3a,b) just by
averaging the pullback vector field F (x(t), t). Doing so, Theorem A.1 is extended below
to high-frequency, high-amplitude, periodically forced systems in the form of (A3a,b).
Finally, it is interesting to note that the use of the VOC formula before averaging can be
traced back to Lagrange in his analysis of the perturbed two-body problem (see Sanders
et al. 2007, pp. 181–184).

THEOREM A.2 (Theorem A in the manuscript). Consider a NLTP system subject
to a high-frequency, high-amplitude, periodic forcing (A3a,b). Assuming that G is a
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T-periodic, zero-mean vector field and both f , G are continuously differentiable, the
averaged dynamical system corresponding to the system (A3a,b) is written as

˙̄x(t) = F̄ (x̄(t)), (A8)

where F̄ (x̄(t)) = (1/T)
∫ T

0 F (x(t), τ ) dτ , and F is the pullback of f along the flow ΦG
t of

the time-varying vector field G as given in (A5). Moreover

(i) If x̄(0) = x(0), then there exist σ > 0 and ε∗ > 0 such that x(t) − x̄(t) = O(ε) ∀t ∈
[0, σ/ε] and ∀ε ∈ [0,ε∗].

(ii) If x∗ is an exponentially stable equilibrium point of (A8) and if ‖x(0) − x∗‖ < r
for some r > 0, then x(t) − x̄(t) = O(ε) ∀t > 0 and ∀ε ∈ [0,ε∗]. Moreover, there
exists an ε1 > 0 such that ∀ε ∈ [0,ε1], the system (A3a,b) has a unique, εT-periodic,
locally asymptotically stable trajectory that takes values in an open ball of radius
O(1) centred at x∗.

The main difference between Theorem A.1 (direct averaging) and Theorem A.2 (VOC
and averaging) is that the former guarantees a periodic orbit that is O(ε) around the
corresponding fixed point of the averaged dynamics, while the latter allows for larger
variations O(1) from the fixed point. Therefore, the application of the VOC formula
is essential in analysing the unsteady aerodynamics of a pitching–plunging wing near
stall where larger variations from the mean are encountered. It should be emphasized
that Theorem A.1 is not a viable option in this case as direct averaging would yield
trivial results when applied to the system (5.3); i.e. it would neglect the entire effects
of the pitching–plunging oscillations (represented by the vector field G) on the averaged
dynamics.
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