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Ion and water are transported by electroconvection near permselective membranes,
resulting in complex phenomena associated with the flow–fines interaction. Sheltering
the flow chaos by the shear flow is a common strategy in plasma fluids and has recently
been successfully applied to control ionic fluids. The paper herein reveals the critical
selection of shear velocity regarding the fluid from a chaotic to a steady state through
numerical and theoretical analyses. For the shear sheltering, the dimensionless Debye
length λD with varying channel height is introduced to achieve a comprehensive discussion
of the factors and laws affecting the shear vortex state. Based on an analysis of the vortex
driving mechanism, the scaling of the slip velocity us ∼ (λ−1

D �φ4)1/3 is recommended
as the critical selection factor for the steady and chaotic state under a fixed shear flow
velocity, which involves the dimensionless Debye length λD and voltage difference �φ.
Furthermore, for ionic fluid control by shear flow, a critical shear velocity UHPC is
proposed to distinguish the electroconvective flow from a chaotic state to a steady state.
When the shear flow velocity UHP > UHPC, the shear flow shelters chaos, and the scaling
law is also recommended for the regulation of the critical shear flow velocity UHPC jointly
by λD and �φ. The analysis is confirmed by direct numerical simulation and existing
experimental data (J. Fluid Mech, vol. 813, 2017, pp. 799–823). This work provides
a more comprehensive physical insight for shear sheltering and affects the design of
electromembrane microfluidics.
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1. Introduction

Electroconvective flow (ECF) (Rubinstein & Zaltzman 2000) is one of the paradigmatical
flows in fluid physics, following the Taylor–Couette flow (Huisman et al. 2013), the
Rayleigh–Benard flow (Ahlers, Grossmann & Lohse 2009), the pipe flow (Kühnen et al.
2018), etc. To date, there are three possible explanations for the physical mechanism
of ECF. One is the non-equilibrium ECF (Zaltzman & Rubinstein 2007) related to the
extended space charge (ESC) layer, the other is the equilibrium ECF (Rubinstein &
Zaltzman 2015; Aboelkassem 2019; Tripathi, Narla & Aboelkassem 2020; Xu et al. 2020)
related to the electric double layer and the last is the ECF related to charge injection (Guan,
Riley & Novosselov 2020; Luo et al. 2020; Su et al. 2020). The non-equilibrium ECF
associated with the ESC layer, which is typically triggered in electrochemical systems
embedded with cation-selective membranes, is considered here, as shown in figure 1. Since
the cation-selective membrane is composed of negatively charged nanopore structures,
the pore walls attract cations and repel anions, realizing the function of cation-selective
permeation. Once the applied voltage reaches a certain threshold, the electrolyte solution
forms a steep ion concentration gradient at the interface of the ion-selective membrane,
which is the so-called ion concentration polarization (Rubinstein & Zaltzman 2000). Since
the first experimental observation in 2008 (Rubinstein et al. 2008), the non-equilibrium
ECF related to the ESC layer has been studied extensively due to its relevance for
desalination (Kim et al. 2010; Liu, Zhou & Shi 2020a) and preconcentration (Ouyang et al.
2018). Non-equilibrium ECFs usually have three typical flow states. When the voltage
is low, the flow field in the channel shows typical pressure-flow characteristics. Upon a
further increase in voltage, a steady vortex array is formed on the membranes (Liu, Zhou &
Shi 2020b), which is the so-called overlimiting behaviour. As the voltage increases again,
the steady vortex is broken, forming a chaotic ECF (Druzgalski & Mani 2016; Nikonenko
et al. 2016; Mani & Wang 2020).

For non-shear ECFs, physicists have carried out a series of studies on the statistical
characteristics, bifurcation behaviour, spatiotemporal dynamics, buoyancy effects and
electrolyte effects. For the statistical characteristics of non-shear ECFs, Druzgalski,
Andersen & Mani (2013) and Davidson, Andersen & Mani (2014) found that under high
voltage, chaotic vortices appear near the ion selective membranes, which is similar to
turbulent transport. Their results show that the chaotic micro-vortex can eject positive and
negative free charges into the bulk, forming a completely chaotic multilayer structure with
a broadband energy spectrum. When the voltage is cyclically loaded, the ECF presents
supercritical bifurcation and subcritical bifurcation. To understand its bifurcation type,
Demekhin, Nikitin & Shelistov (2013) and Shelistov, Demekhin & Ganchenko (2014),
by linear analysis and direct numerical simulation (DNS), revealed that it is determined
by the hydrodynamic coupling coefficient. Subsequently, Pham et al. (2012) revealed the
physical mechanism of subcritical bifurcation based on DNS and found that the transverse
electric field and pressure gradient can maintain the vortex under a voltage lower than
the critical value. Yossifon & Chang (2008) studied the intermittent vortex depletion
layer on the membrane surface in a slow AC field, showing self-similar diffusion growth.
Furthermore, Demekhin, Shelistov & Polyanskikh (2011) found that the chaotic vortex
under high voltage prevented the self-similar growth of the diffusion layer and established
a wavenumber selection principle. However, these electrochemical systems inherently
involve changes in fluid density set by the salt concentration. Once the characteristic
length of the system reaches a certain threshold, the concentration-dependent buoyancy
effect cannot be ignored. Karatay et al. (2016) numerically predicted the coupling effect
between the buoyant force and the electrostatic force and found that the flow characteristics
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Figure 1. Effect of the voltage difference of the system on the fluid state. (a) Flow pattern at different voltages
(Kwak et al. 2017). Increasing the voltage difference of the system causes the fluid to transition from a steady
ECF to a chaotic one. Attractors (Kwak et al. 2017) of fluorescence intensity in a time-delay phase space
[FI′(t), FI′(t + τ)] under (b) low voltage difference and (c) high voltage difference, where τ is the time delay.
The visualization of vortices can be achieved by adding small amounts of fluorescent dyes, as the intensity
of fluorescent dyes weakens with decreasing local ion concentration. The drop in ion concentration in the ion
depletion region is visualized as a dark region, so the state of the vortex can be quantitatively analysed by
detecting the intensity change in the dark region of the fluorescent dye. (d) Simulation model, which consists
of two permselective membranes as well as electrolytes. A vortex depletion zone is formed near the bottom
membranes under a vertical electric field.

are similar to the large-scale circulation (Wei & Xia 2013; Wei & Ahlers 2016; Hasan &
Gross 2020, 2021) in the Rayleigh–Bénard flow when the buoyant force destabilizes the
flow. This coupling effect between the buoyancy and ECF was subsequently confirmed by
experiments (de Valenca et al. 2017). In many natural scenarios, fluids can also be of the
non-Newtonian type, which usually occurs in Li-ion batteries. Li, Archer & Koch (2019)
studied the ECF in viscoelastic electrolyte through numerical simulation and found that
polymer stretching and shrinking can enhance flow chaos. In addition, these studies found
that current oscillations depend on the chaotic fluctuations of vortices (Druzgalski et al.
2013; Mani & Wang 2020).

Under the effect of shear flow, the vortex rolls out of the channel with the shear flow,
forming a shear ECF. Kwak et al. (2013b) found that the shear velocity ŨHP and voltage
difference �φ̃ can jointly regulate the vortex height. Shi & Liu (2018) and Shi (2021)
further discussed the length-dependent effect of the vortex height and found that the
characteristic length of the channel can achieve a high-precision simulation of vortex
height. Kang & Kwak (2020) found that adjusting the voltage and shear flow velocity
can realize the switching of polygonal, transverse and longitudinal rolls. However, linear
overlimiting behaviour has been observed by experiments (Kwak et al. 2013b; Kang &
Kwak 2020) and simulations (Shi & Liu 2018). Liu et al. (2020b) subsequently revealed
the balance mechanism of convective flux and electrostatic flux and derived the linear law
of ion transport efficiency, which can be used to explain the linear overlimiting behaviour.
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If the voltage difference of the system is very high, the overlap of vortices can cause
the incomplete desalination zone to shrink along the inlet, and the shrinkage law can be
described by the scaling (�φ̃2/ŨHP)−1 (Liu, Zhou & Shi 2020c). This overlap of vortices
apparently determines the upper limit of the overlimiting current, which is consistent
with experimental observations (Kwak et al. 2013a). Sheltering chaos by shear flow is
a common method in plasma fluids and has recently been successfully applied to control
the ECF state (Kwak, Pham & Han 2017). Sheared by the horizontal Hagen–Poiseuille
flow, the flow chaos of the ECF can be suppressed, which is called shear sheltering. The
strength of shear sheltering is dominated by the shear velocity, and the shear sheltering
effect strengthens as the shear velocity ŨHP increases. For the first time, it was found
that the flow state can be identified by the critical vortex height, and the scaling of the
vortex height satisfies (�φ̃2/ŨHP)1/3 in terms of the voltage difference and shear velocity
(Kwak et al. 2013b). Combining scaling and experiments, the phase diagram of the flow
regime regulated by the flow velocity and voltage has also been reported (Kwak et al.
2017). For convenience, we extracted the results of previous experiments (Kwak et al.
2017). Figure 1(a) shows that the voltage difference has a significant enhancement effect
on the flow chaos, which is characterized by the attractors in a time-delay phase space.
The curves in figures 1(b) and 1(c) clearly show that increasing the voltage difference can
realize the transition from a steady state to a chaotic state.

For the shear sheltering, this paper extends the previous analysis (Kwak et al. 2017)
and shows that a dimensionless parameter (the dimensionless Debye length λD regulated
by the channel height) can significantly modulate the shear ECF state, enabling a more
comprehensive study on the state selection of shear ECFs. Herein, a new scaling law
is found for the critical shear velocity with the dimensionless Debye length and the
dimensionless voltage difference. For small λD, moderate voltages can cause massively
small-scale vortices to be ejected near the permselective membranes, triggering flow
chaos. By exploring the parameter space spanned by the dimensional Debye length λD,
shear velocity UHP and voltage difference �φ, a comprehensive analysis of the factors and
laws affecting the fluid state is achieved. Based on theoretical analysis and direct numerical
simulations, we find that the steady and chaotic states can be distinguished by the critical
slip velocity in a certain shear flow scenario. For ionic fluid control by shear sheltering,
the shear flow velocity can achieve the transition of flow from a chaotic to steady state
(Kwak et al. 2013b, 2017; Liu et al. 2020c). By performing balance analysis on the vortex
driving mechanism, the scaling law of the critical shear flow velocity UHPC for switching
between the chaotic state and the steady state is obtained, which is jointly regulated by the
dimensional Debye length λD and voltage difference �φ.

2. Theoretical analysis

Non-equilibrium ECF governs the transport of ions, mass, electric potential and
momentum on multiple scales. To quantitatively understand the critical selection of shear
sheltering in ECF from chaotic to steady state, the following relevant theoretical analysis
is performed next in this paper.

2.1. Problem description and basic equations
We consider a symmetric binary electrolyte between two cation permselective membranes
subject to the applied voltage and the shear flow. Figure 1(d) schematically plots the stable
vortex at the edge of the ESC layer, where the non-equilibrium ECF governs the transport,
voltage and momentum on multiple scales. The shear ECF can be described using the
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Poisson–Nernst–Planck (PNP) and incompressible Navier–Stokes (NS) equations. The
PNP-NS equations are given in dimensional form:

∂̃ c̃±
∂̃ t̃

= ∇̃ · J̃±, (2.1)

J̃± = D̃±∇̃c̃± ± D̃±c̃±∇̃φ̃

φ̃0
− Ũ c̃±, (2.2)

ε̃0ε̃r∇̃2φ̃ = (c̃− − c̃+)F̃, (2.3)

ρ̃0
∂Ũ
∂ t̃

+ ρ̃0Ũ · ∇̃Ũ + F̌(c̃− − c̃+)∇̃φ̃ = −∇̃P̃ + μ̃∇̃2Ũ, (2.4)

∇̃ · Ũ = 0, (2.5)

where c̃+ and c̃− denote the concentrations of cations and anions, respectively, and
J̃± represent the flux of cations and anions, respectively; t̃ represent the time; D̃+ and
D̃− is the diffusion coefficients of cations and anions, respectively; φ̃ is the electric
potential; φ̃0 = k̃BT̃/z̃ẽ represents the thermal voltage, where T̃ is the temperature, k̃B
is the Boltzmann’s constant, z̃ is the valence and ẽ is the elementary charge; ε̃0 is the
vacuum permittivity, ε̃r is the relative permittivity constant and F̃ is Faraday’s constant.
For the NS equations, ρ̃0 is the density of the fluid, Ũ is the fluid velocity, P̃ is the
pressure and μ̃ is the dynamic viscosity. Note that the non-equilibrium ECF occurs on
length scales that are orders of magnitude smaller than macroscopic flows, belonging to
the low-Reynolds-number and high-Schmidt-number flows. Therefore, the incompressible
Navier–Stokes equation can be further simplified to the Stokes equation. Please refer to
Appendix A for details.

To facilitate the solution of the PNP-Stokes equations, this paper adopts the
dimensionless form of the governing equations. We scale dimensionless spatial
coordinates by the channel height l̃0, dimensionless time by the diffusion time t̃0 = l̃20/D̃0,
dimensionless concentration by bulk concentration c̃0, dimensionless pressure by the
osmotic pressure P̃0 = μ̃D̃0/l̃20, dimensionless velocity by the diffusion velocity Ũ0 =
D̃0/l̃0 and dimensionless voltage by the thermal voltage φ̃0. Here, D̃0 is the average
diffusion coefficient of the ions. The nonlinear coupled equations in dimensionless form
read:

∂c±
∂t

= ∇ · J±, (2.1’)

J± = ∇c± ± c±∇φ − Uc±, (2.2’)

∇2φ = c− − c+
λ2

D
, (2.3’)

∇2U = −κ0∇2φ∇φ + ∇P, (2.4’)

∇ · U = 0, (2.5’)

in which c+, c−, t, J±, φ, U = (u, v) and P are the dimensionless cation concentration,
dimensionless anion concentration, dimensionless time, dimensionless fluxes of
cations/anions, dimensionless electric potential, dimensionless velocity and dimensionless
hydrodynamic pressure, respectively. Here, u and v are the components of dimensionless
velocity in the x and y directions, respectively.
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In this study, the three significant dimensionless parameters are the dimensionless Debye
length, the dimensionless voltage difference and the dimensionless averaged flow velocity

λD =
√

ε̃0ε̃rk̃BT̃/[(z̃ẽ)2c̃0]/l̃0, �φ and UHP. (2.6a–c)

Here, λD denotes the ratio between the dimensional Debye length
√

ε̃0ε̃rk̃BT̃/[(z̃ẽ)2c̃0]
and l̃0, where ε̃0 is the vacuum permittivity and ε̃r is the relative permittivity constant.
Generally, the pores of an ion-selective membrane are in contact with an aqueous
solution, and the interfacial chemistry causes the pore walls to carry a certain number
of negative charges. The electrostatic attraction of the pore wall causes the pore wall
to attract cations and repel anions and then forms a thin non-zero charge layer on the
nanometre scale near the pore surface of the ion-selective membrane, which is called
the electric double layer (EDL) (Mani & Wang 2020). The dimensionless Debye length
λD is mainly regulated by the combined ion concentration c̃0 and the channel height
l̃0. For the fixed concentration, the characteristic height of the system can be in a wide
range, O(1 µm) ≤ l̃0 ≤ O(1000 µm). Therefore, the dimensionless Debye length can be
in the range of 10−6 ≤ λD ≤ 10−2 (Mani & Wang 2020). Here, �φ describes the voltage
difference between the upper and lower ends of the membranes, which is the most essential
factor to trigger the ECF; UHP is the average value of the shear flow velocity at the inlet,
which describes the strength of shear sheltering. The remaining dimensionless parameter
is the hydrodynamic coupling constant κ0 = φ̃2

0 ε̃0ε̃r/(η̃D̃0), which describes the influence
of the diffusion coefficient and fluid viscosity in the electrolyte on the ECF. For salt
solutions, κ0 is usually a fixed constant of 0.5, which is widely used in ECF studies
(Druzgalski et al. 2013; Davidson et al. 2014; Druzgalski & Mani 2016; Mani & Wang
2020).

2.2. Dimensionless boundary conditions
To obtain solutions for (2.1’)–(2.5’), the corresponding boundary conditions are necessary.
For the top cation permselective membranes at y = 1, we have

cm = c+ = 2, J− · n = 0, φ = �φ, U = 0. (2.7a–d)

Here, n is the unit normal vector of the boundary. The first term in (2.7a–d), the
Dirichlet boundary condition (cm = c+ = 2), can lead to a solution containing a steep
gradient near the cation permselective membranes, forming a depletion layer (Rubinstein
& Shtilman 1979). Due to the electrostatic attraction of cations, porous nanostructures
within cation-selective membranes result in the membrane surface generally maintaining
a fixed cation concentration higher than the bulk concentration value. For simplicity,
many physicists have introduced the boundary condition of a fixed dimensionless cation
concentration at the membrane surface as cm = 2 (Demekhin et al. 2013; Druzgalski et al.
2013; Rubinstein et al. 2008). We also added the discussion on the different values of fixed
cation concentration, and the results show that the effect can be ignored. Please refer to
Appendix B. The second term in (2.7a–d) ensures that the anion flux is zero. The third
term in (2.7a–d) is the voltage at the top cation membranes, which is to start the ECF. The
last item is the well-known no-slip velocity boundary condition.
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Similarly, for the bottom cation permselective membrane at y = 0, the corresponding
boundary conditions are

cm = c+ = 2, J− · n = 0, φ = 0, U = 0. (2.8a–d)

For the inlet boundary at x = 0, we use the following boundary conditions of fixed ion
concentration and pressure flow

c± = 1, u = 6UHPy(1 − y). (2.9a,b)

For the outlet boundary at x = 3, we adopt the outflow boundary condition since both
ion and fluid flow out of the channel,

∇c± · n = 0, ∇U · n = 0. (2.10a,b)

2.3. Critical selection of shear sheltering
It is well known that the vortex roll is triggered by the electroosmotic slip velocity us
at the edge of the ESC layer. Therefore, analysis of the slip velocity is expected to yield
a quantitative understanding of fluid state selection. A previous study (Druzgalski et al.
2013) has implied that the increase in slip velocity can promote the overall growth of
the vortex, forming a steady vortex. If the slip velocity further increases and reaches a
threshold, the fluid transitions from a steady state to a chaotic state. Subsequently, the
critical slip velocity can be used to distinguish the flow states, which is confirmed by
DNS. Therefore, the critical slip velocity is recommended as the direct cause of the fluid
state. The Stokes equation in the non-equilibrium double layer can be simplified to the
following form (Rubinstein & Zaltzman 2001)

∂2u
∂y2 ∼ 1

2
∂

∂x

(
∂φ

∂y

)2

−
(

∂

∂y
∂φ

∂y

)
∂φ

∂x
for 0 ≤ y ≤ yESC. (2.11)

The non-equilibrium double layer carries a high non-zero space charge density distribution
within it, which is also called the ESC layer (Rubinstein & Zaltzman 2001; Mani & Wang
2020). Here, u denotes the velocity distribution inside the ESC layer (0 ≤ y ≤ yESC) and
yESC is the length of the ESC layer; see figure 2(a). In (2.11), the first term on the right-hand
side, 1

2 (∂/∂x)(∂φ/∂y)2, describes the contribution of the pressure driving force to the slip
velocity, while the second term, −((∂/∂y)(∂φ/∂y))(∂φ/∂x), describes the contribution
of the electrostatic driving force within the ESC layer to the slip velocity. However, the
effect of κ0 on the slip velocity can be neglected because κ0 of the salt solution is a fixed
constant of 0.5 (Druzgalski et al. 2013; Davidson et al. 2014; Druzgalski & Mani 2016;
Mani & Wang 2020).

To obtain the expression of the velocity by integrating (2.11) twice, the solution of φ

must be analysed first. With the one-dimensional (1-D) quiescent steady-state solutions
for the electric field, the PNP equation can be transformed into a nonlinear ordinary
differential equation (Rubinstein & Zaltzman 2001; Zaltzman & Rubinstein 2007),

λ2
D

d2E
dy2 = 1

2
E3 + j( y − yESC)E + λDj, (2.12)

where the normalized electric field E denotes −λD(dφ/dy), and the current j is defined
as dc+/dy + c+(dφ/dy). The physical parameters satisfy E = O(1/λD) and d/dy = O(1)
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Figure 2. ESC structure and velocity distribution. (a) Schematic diagram of the model for the ESC layer,
where the slip velocity is defined as the velocity at the edge of the ESC layer, as shown by the blue line.
(b) ESC layer structure at different voltages and dimensionless Debye layer lengths. The vicinity of the
membrane–solution interface is in a 1-D quasi-steady state and is occupied by the ESC layer. This thickness
exceeds its dimensionless Debye layer length by 2–3 orders of magnitude. (c) Scaling behaviour of the
‘convex peak’ in the ESC layer. Using scaling laws yESC ∼ λ2/3

D �φ2/3j−1/3 and c+ − c− ∼ λ2/3
D �φ1/3j−1/3,

the scattered ‘convex peaks’ in the ESC layer fold at one point.

with reference to the dimensionless Debye layer length λD. Then, (2.12) turns into the
cubic algebraic equation (Demekhin et al. 2015)

0 ∼ 1
2 E3 + j( y − yESC)E = E[ 1

2 E2 + j( y − yESC)] for 0 ≤ y ≤ yESC. (2.13)

The ESC layer carries a non-negative high electric field. Then, the solution of (2.13)
is 1

2 E2 + j( y − yESC) ∼ 0, yielding E2 ∼ 2j(yESC − y). Using E = −λD(dφ/dy), the
leading solution of E in the ESC layer is

λ2
D

(
dφ

dy

)2

∼ 2j(yESC − y) for 0 ≤ y ≤ yESC. (2.14)

Equation (2.14) can also be obtained from (2.12) by the asymptotic expansion of

E = −λD
dφ

dy
= −

√
2j(yESC − y) − λD

2(yESC − y)
+ · · · (2.15)

(Rubinstein & Zaltzman 2001). In the ESC layer, the leading solution of E is λD(dφ/dy) ∼√
2j(yESC − y), which is consistent with the dimensional analysis. Equation (2.14) can

effectively analyse the electric field distribution within the ESC layer, which is widely
adopted by many studies (Rubinstein & Zaltzman 2001; Zaltzman & Rubinstein 2007;
Demekhin et al. 2015). Integrating (2.14), one can obtain the leading solution of the voltage
distribution inside the ESC layer,

φ ∼ 2
√

2
3
λ−1

D j1/2[y3/2
ESC − (yESC − y)3/2] for 0 ≤ y ≤ yESC. (2.16)

To obtain the expression of the velocity, bringing (2.16) into (2.11) yields

∂2u
∂y

∼ λ−2
D (yESC − y)

∂j
∂x

+ λ−2
D j

∂yESC

∂x
− 1

3
λ−2

D (yESC − y)
∂j
∂x

− λ−2
D j

∂yESC

∂x

+1
3

1√
yESC − y

λ−2
D y

3
2
ESC

∂j
∂x

+ λ−2
D j

y
1
2
ESC√

yESC − y
∂yESC

∂x
for 0 ≤ y ≤ yESC.

(2.17)
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In (2.17), λ−2
D (yESC − y)(∂j/∂x) + λ−2

D j(∂yESC/∂x) is derived from the pressure driving
force 1

2 (∂/∂x)(∂φ/∂y)2, while the last four terms at the right end of (2.17) are derived from
the electrostatic driving force −((∂/∂y)(∂φ/∂y))(∂φ/∂x). Simplifying (2.17), we have

∂2u
∂y2 ∼ 2

3
λ−2

D (yESC − y)
∂j
∂x

+ 1
3

1√
yESC − y

λ−2
D y3/2

ESC
∂j
∂x

+λ−2
D j

y1/2
ESC√

yESC − y
∂yESC

∂x
for 0 ≤ y ≤ yESC.

(2.18)

In (2.18), the contribution of the pressure driving force to the slip velocity is offset
by the contribution of part of the volume force, resulting in the pressure driving force
dominant term 2

3λ
−2
D (yESC − y)(∂j/∂x). Similarly, the contribution of the electrostatic

driving force to the slip velocity is offset by part of the pressure driving force, resulting in
the electrostatic driving force dominant term

1
3

1√
yESC − y

λ−2
D y3/2

ESC
∂j
∂x

+ λ−2
D j

y1/2
ESC√

yESC − y
∂yESC

∂x
. (2.19)

By integrating (2.18) twice and applying the boundary conditions ∂u/∂y = 0 for y = yESC
and u = 0 for y = 0, we have

us = u( y = yESC) ∼ −1
9
λ−2

D y3
ESC

∂j
∂x

− 4
9
λ−2

D y3
ESC

∂j
∂x

− 4
3
λ−2

D jy2
ESC

∂yESC

∂x
. (2.20)

Here, the slip velocity at the edge of the ESC layer is denoted by us.
Further analysis is needed to obtain a concise form of the scaling law of us. Assuming

that the voltage at the ESC layer is φESC, and using φ( y = yESC) − φ( y = 0) = φESC, the
leading solution can be obtained for the length of the ESC layer,

yESC ∼
3√9
2
λ

2/3
D φ

2/3
ESCj−1/3 ∼ λ2/3

D �φ2/3j−1/3. (2.21)

To confirm the validity of the above analysis of the length of the ESC layer, we
assume that the voltage φESC at the edge of the ESC layer is approximately equal
to the anode voltage �φ. Therefore, the scaling of the length of the ESC layer can
be expressed as yESC ∼ λ2/3

D �φ2/3j−1/3, where j can be calculated from the current
density. In figure 2(b), by identifying the location of the ‘convex peak’, the length
of the ESC layer can be obtained. The charge density of the ‘convex peak’ is also
analysed. In the electrically neutral region, the ion concentration decreases linearly, and
we can obtain c+ ∼ j( y − yESC). For the ESC layer, the anion concentration is almost 0,
yielding c+ − c− ∼ λ2

D(d2φ/dy2) ∼ λ2
D�φ/( y − yESC)2. Considering c+ − c− ∼ c+ in

the ESC layer, one has c+ − c− ∼ c+ ∼ λ2
D�φ/(c+/j)2. One can obtain the scaling of the

charge density, c+ − c− ∼ λ2/3
D �φ1/3j−1/3. Using scalings c+ − c− ∼ λ2/3

D �φ1/3j−1/3

and yESC ∼ λ2/3
D �φ2/3j−1/3, the scattered ‘convex peaks’ collapse at one point, as shown

in figure 2(c). The above analysis confirms the validity of the low-order approximation,
which allows the analysis of the velocity at the edge of the ESC layer.

Using yESC ∼ (
3√9/2)λ

2/3
D φ

2/3
ESCj−1/3 yields

us ∼ −1
8
φ2

ESCj−1 ∂j
∂x

− φESC
∂φESC

∂x
. (2.22)

The above analysis allows one to more clearly understand the physical meaning of the
slip velocity us. The first term −1

8φ2
ESCj−1(∂j/∂x) of (2.22) is contributed mainly by the
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pressure driving force ∇P, whereas the second term −φESC(∂φESC/∂x) is contributed
mainly by the electrostatic driving force ∇2φ∇φ. Therefore, the slip velocity us depends
on the joint contribution of the pressure driving force ∇P and the electrostatic driving
force ∇2φ∇φ within the ESC layer.

To obtain the scaling form of (2.22), the following three assumptions are adopted (Kwak
et al. 2017): (i) the slip velocity of the ESC edge is equal to the outermost vortex velocity
of the ECF; (ii) the vortex is a hemisphere, that is, the vortex width is substantially
equal to the vortex height and (iii) the voltage φESC at the ESC edge is �φ. A previous
study showed that the ion flux satisfies the relation j ≈ ∂c+/∂y (Rubinstein & Zaltzman
2000), so j−1(∂j/∂x) can be further simplified as j−1(∂j/∂x) ≈ (∂2c+/∂x∂y)/(∂c+/∂y).
Using a first-order approximation 1/∂x ∼ 1/∂y ∼ 1/δ0, (∂2c+/∂x∂y)/(∂c+/∂y) can be
further simplified as∼1/δ0, where the depletion layer thickness δ0 can be identified
by a given vortex height dEC. Furthermore, the slip velocity can be estimated by
us ∼ �φ2(1/δ0) (Kwak et al. 2017), which is proven to be valid for analysing the slip
velocity of non-shear flows (Liu et al. 2020b). However, for the shear shielding case,
the slip velocity is dominated by the shear flow velocity. Considering that the vortex
height and shear velocity satisfy the scaling, the vortex height satisfies δ ∼ δ0U−1/3

HP
(Kwak et al. 2017; Nakayama et al. 2017), and a modified first-order approximation
(1/∂x ∼ 1/∂y ∼ 1/δ/U−1/3

HP ) with the shear flow is used. Referring to the existing scaling
d̃EC/l̃0 = C̃ · �φ̃2/3Ũ−1/3

HP (Kwak et al. 2013b), a more reasonable scaling d̃EC/l̃0 =
C̃1 · �Ẽ2/3Ũ−1/3

HP is recommended for the length-dependent effect (Shi & Liu 2018),
where both C̃ and C̃1 are the dimensional fitting coefficients, and �Ẽ = �φ̃/l̃0 is the
average external electric field. Based on the dimensionless references, one can obtain that
d̃EC/l̃0 = C̃1φ̃

2/3
0 D̃−1/3

0 l̃−1/3
0 (�φ̃/φ̃0)

2/3(ŨHP/D̃0/l̃0)−1/3. For the case of the constant
dimensional Debye length and given permselective membranes, the length-dependent
effect is essentially determined by the dimensionless Debye length effect (Mani & Wang
2020). Further, one can get dEC ∼ λ1/3

D �φ2/3U−1/3
HP to consider the length-dependent

λD effect, where the dimensionless fitting coefficient is C1 = C̃1(φ̃0/λ̃D)2/3(D̃0/λ̃D)−1/3.
Then, (2.22) can be converted into a universal scaling,

us ∼ U−1/3
HP (−1

8�φ2d−1
EC − �φ2d−1

EC) ∼ (λ−1
D �φ4)1/3. (2.23)

Scaling (2.23) implies that the slip velocity is mainly contributed by φESC(∂φESC/∂x) ∼
�φ2d−1

EC , which may be important for the flow analysis. More importantly, one can
understand the dimensionless Debye length λD mismatch leading to the slope mismatch
problem of vortex growth in simulation and experiment; please refer to figure 2 in Kwak
et al. (2013b) or figure 3 in Shi & Liu (2018). Scaling (2.23) demonstrates that the driving
force for slip velocity originates from the electrostatic force at the edge of the ESC layer,
which is discussed in detail in Appendix C.

Scaling (2.23) indicates that the slip velocity is not only regulated by the well-known
voltage difference �φ but also affected by the dimensionless Debye length λD. Combined
with figure 2, the dimensionless Debye layer length λD describes the effect of the ESC
layer thickness (adjusted by λD) on the slip velocity, and �φ describes the effect of
the external voltage. Our analysis also implies that the flow state is controlled jointly by
the dimensionless voltage difference �φ and the dimensionless Debye length λD. In the
discussion section, we will confirm that reducing the dimensionless Debye length λD can
enhance flow chaos.

For fluid controlled by shear flow, increasing the shear flow velocity UHP can lead to
a transition from a chaotic to a steady-state fluid, which is called shear sheltering (Kwak
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et al. 2017). To quantitatively understand how shear sheltering regulates chaotic and steady
states, the criterion of the strong-shear limit (εs = us/δyuy) is adopted (Terry 2000; Kwak
et al. 2017). The equivalent scaling form of the strong-shear limit is us = εsδyuy ∼ δyuy.
Here, us is the electro-osmotic slip velocity of the vortex; δy is the region away from the
flow shear, which is scaled by the critical vortex boundary layer thickness δc and uy is
the mean flow shear, which is scaled by UHP/(1 − δc). Consequently, the critical selection
between chaotic and steady states can be described as

uy ∼ us/δc. (2.24)

Scaling (2.24) establishes a balance relation between the average intensity of shear flow
velocity uy and the average intensity of slip velocity us/δc at critical vortex height δc. A
previous study (Kwak et al. 2017) suggested that the critical selection of the flow state
is determined by the critical vortex height δc. Therefore, the scaling of the critical shear
velocity UHPC between the chaotic state and the steady state can be expressed as

UHPC ∼ 1 − δc

δc
us ∼ (λ−1

D �φ4)1/3. (2.25)

Scaling (2.25) is the core result for the critical selection of shear sheltering, revealing
the joint regulation of the dimensionless Debye length λD and the dimensionless voltage
difference �φ to the critical shear velocity UHPC. When the shear flow velocity UHP
reaches above a critical shear flow velocity UHPC, the flow chaos is suppressed. However,
when the shear flow velocity is below a critical shear flow velocity UHPC, the flow is
chaotic. Then, the fluid state in parameter space (λD, �φ, and UHP) is explored by DNS
to achieve a comprehensive analysis of the flow state.

3. Discussion

For simplicity, a non-equilibrium ECF with symmetric and binary (z± = ±1) electrolytes
of equal diffusivities (D± = 1) is studied here. The key dimensionless parameters selected
are 10−6 ≤ λD ≤ 10−2, 240 ≤ UHP ≤ 1000 and 0 ≤ �φ ≤ 120. We consider the case of
the given bulk concentration where the value of λD can span several orders of magnitude,
which is caused by the channel height O(10)[µm] ≤ l̃0 ≤ O(1000)[µm] (Shi & Liu 2018;
Mani & Wang 2020).

To confirm the above theoretical analysis, we numerically explored the parameter
space spanned by the dimensional Debye length λD, voltage difference �φ and shear
velocity UHP to determine the accuracy of our scaling. Equations (2.1’)–(2.5’) and the
corresponding boundary conditions (2.7)–(2.10) are solved based on the finite element
method in the two-dimensional (2-D) rectangular domain. To accurately capture the
fine changes in various physical quantities in the vortex near the cation permselective
membrane, a large number of quadrilateral grids are arranged in the EDL O(λD) and ESC
layers O(λ

2/3
D ). The simulation time is O(0.1), at which time the non-equilibrium ECF

has fully developed. In our simulation, the time step is selected as O(10−7) to ensure
convergence in the transient calculation. For more finite element details, please refer to
our previous work (Shi & Liu 2018; Liu et al. 2020c; Xu et al. 2020).

3.1. Debye layer effect for the shear vortex state
In figure 3, we plot the effect of different dimensionless Debye lengths λD on the flow
state under a fixed voltage difference �φ = 40. Upon decreasing the dimensionless
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Figure 3. Effect of the dimensionless parameter λD on the fluid state. (a) Surface instantaneous snapshots
show the fully developed salt concentration for various λD. The blue colours show the ion enrichment
regime emerging from the top cation permselective membranes, while the red colours show the depletion
vortices formations near the bottom cation permselective membranes. (b) Instantaneous velocity profiles at the
monitoring points (x, y) = (2.5, yESC) for various λD. (c) Slip velocity attractors in a time-delay phase space.
As the dimensionless Debye length λD decreases, the velocity fluctuation of the ESC layer becomes more
chaotic, indicating that λD can significantly regulate the flow state. The local small-scale vortices ds need to be
magnified several times for viewing. Here, �φ = 40 and UHP = 240.

Debye length λD, massive small-scale vortices are ejected near the cation permselective
membrane, forming an irregular concentration boundary layer structure. These figures
imply that the flow chaos is not only affected by the well-known voltage difference �φ

but is also significantly modulated by the dimensionless factor λD. The periodic-to-chaotic
transition is determined from the delay-time phase diagram, which has been successfully
used to identify the flow states (Kwak et al. 2017). To quantitatively describe fluid chaos,
velocity attractors are adopted in a time-delay phase space. The velocity spatiotemporal
fluctuation curves at a point (x, y) = (2.5, yESC) at the edge of the ESC layer and the slip
velocity attractors [u(t + τ), u(τ )] in a time-delay phase space are presented in figures 2(b)
and 2(c), respectively. Here, τ is the time delay. These attractors clearly reveal that
reducing λD can cause the flow to move from a steady state to a chaotic state.

At the small dimensionless Debye length λD scenario, we identify a distinct transitional
pathway to the chaotic state that does not feature the conventional chaos bursts (Kwak
et al. 2017) and instead proceeds via the characteristics of the ESC layer. Physically,
decreasing the dimensionless Debye length can weaken the ESC layer thickness (λ

2/3
D )

and enhance the electrostatic driving force (∇2φ∇φ ∼ φ2/d3
EC), resulting in small-scale

vortices erupting. These small-scale vortices interact in a complicated manner through the
shear flow, which eventually leads to fluid chaos. As a result, the slip velocity increases
with decreasing dimensionless Debye length λD. Consequently, a transition to flow chaos
can occur via two distinctly different pathways, namely, (i) through increasing the voltage
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difference �φ (Kwak et al. 2013a,b, 2017) and (ii) through decreasing the dimensionless
Debye length λD (see figure 3). This implies that the fluid state is regulated by the
combination of voltage difference �φ and dimensionless Debye length λD at a fixed shear
flow velocity. Even though the pathways to the chaotic state can be different, there may
be a universal criterion, the critical slip velocity of the vortex. Next, for a fixed shear flow
velocity scenario, based on the DNS and scaling, we explore how the dimensionless Debye
length λD and voltage difference �φ jointly regulate the flow state and slip velocity.

3.2. Slip velocity for the shear vortex
For a microfluidic system with permselective membranes, the critical factor of the flow
state is recommended at a fixed shear flow velocity scenario. Our analysis has shown that
increasing the voltage difference �φ or decreasing the dimensionless Debye length λD can
enhance the chaos and slip velocity. It is well known that the slip velocity us at the edge of
the ESC layer is the most basic driving factor that drives the vortex to roll. Consequently,
the slip velocity us is expected to yield a quantitative understanding of the selection of the
flow state. Using the scaling (λ−1

D �φ4)1/3, we found that the scattered data in figure 4(b)
all collapse on a straight line,

us = α · (λ−1
D �φ4)1/3. (3.1)

Here, the theoretical analysis is performed for the configuration with a fixed shear flow
velocity UHP = 240. In this scenario, the fitting coefficient α is 0.12. Figure 4(a) supports
the reliability of our scaling analysis. Further analysis of the slip velocity shows that
the selection of the flow state can be distinguished by the critical value of slip velocity
ucri, and its value is approximately 210. The increase in the slip velocity can promote the
overall growth of the vortex, forming a steady vortex structure with a regular charge layer,
as shown in figure 4(b). With this fixed shear flow velocity, however, the slip velocity
further reached a critical value (∼210), the vortex became overwhelmed, and an irregular
charge layer structure was formed. From this perspective, the critical slip velocity ucri is
recommended as the critical selection factor for the steady and chaotic states. Based on
the scaling us ∼ (λ−1

D �φ4)1/3, a lower voltage difference �φ is required in the smaller λD
scenario for the chaotic state.

Based on the above numerical analysis, the slip velocity is recommended as a key factor
for the critical selection of the flow state. Using the critical value of slip velocity ucri,
the instability phase diagram related to λD and �φ is obtained (see figure 5a). In the
scenario of a fixed shear flow, once the input parameters (λD and �φ) of the system
are above the critical line, the flow is chaotic. Our DNS data support this analysis (see
figure 5b). Consequently, for a larger λD, a higher voltage difference is required for the
flow to maintain the chaotic state since the driving force −∇2φ∇φ + ∇P of the ESC layer
is smaller. From the perspective of the slip velocity, a larger slip velocity can lead to the
onset of the chaotic state.

For real electrochemical systems, scaling (3.1) can be rewritten as an alternative form,
ũs ∼ l̃1/3

0 �φ̃4/3, which is jointly regulated by the key physical parameters of the system
input. Increasing the channel height l̃0 and voltage difference �φ̃ can enhance the
instability. In fact, the channel height l̃0 and the voltage difference �φ̃ can span several
orders of magnitude, such as O(10)[µm] < l̃0 < O(103)[µm] and O(10)[mV] < �φ̃ <

O(103)[mV]. More generally, voltage difference regulation is the most common strategy
for enhancing flow chaos, appearing in many ECF studies (Demekhin et al. 2013; Kwak
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Figure 4. Slip velocity scaling. (a) Slip velocity of the vortex plotted against the scaling factor (λ−1
D �φ4)1/3.

The data points are all extracted from figure 5(b). Here, the slip velocity us is defined as the time average
us = (1/(t1 − t0))

∫ t1
t0

√
u2 + v2 dt of the velocity at the edge of the ESC layer, where t0 is the initial time and

t1 is the cut-off time after the EC flow is fully developed. (b) Snapshot plots show the ESC layer superimposed
with streamlines. In the scenario of high slip velocity, the area corresponding to the red streamline at the
edge of ESC layer (need to be enlarged to view), the membrane surface ejects the chaotic multilayer charge
boundary layer structure. However, the slip velocity is below the critical slip velocity, forming a steady flow,
which corresponds to the streamlined blue area in the bottom picture of figure 4(b). Here, UHP = 240.
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Figure 5. Joint regulation of the flow state and slip velocity by λD and �φ. (a) Critical selection of ECF from
steady to chaotic state for phase diagram replotted in dimensionless numbers: �φ versus λD. The black curve
is expressed as the critical line, �φ = (ucri/α)3/4λ

1/4
D , which is calculated by scaling (3.1). For a larger λD, a

larger voltage difference ∇φ can reach the chaotic state. (b) Effect of �φ and λD on the slip velocity. The blue
dashed line marks the slip velocity threshold, above which the flow is chaotic. Here, UHP = 240.

et al. 2013b, 2017; Shelistov et al. 2014). Controlling the flow state is conducive to guiding
the design of desalination systems and electrodeposition.

3.3. Critical shear velocity for the shear sheltering
For fluid control, applying external shear flow is a common method to suppress flow chaos
and has recently been successfully used to control the ECF state (Kwak et al. 2017). In
this section, the results of § 3.2 are further extended to describe the critical parameter
values of the flow state under various shear flow velocities. In figure 6(a), we plot the flow
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Figure 6. Shear sheltering. Surface instantaneous snapshots show the cation concentration field and flow field
structure for different shear flow velocities. Increasing the shear flow velocity can shelter chaos, whereas
increasing the voltage difference can enhance chaos. Flow states are identified by slip velocity attractors; see
Appendix D. (b) Balance mechanism of velocity average intensity. (c) Linear relation between the shear flow
velocity and the slip velocity. Here, λD = 10−3.

patterns at different shear flow velocities. Increasing the shear velocity UHP, the chaotic
vortex is suppressed by the shear flow, forming a regular oblique structure. For larger
shear flow velocities, a large voltage difference is required to trigger flow chaos, as shown
in figure 6(a).

Based on the shear limit criterion (Terry 2000; Kwak et al. 2017), the critical
balance relation UHPC/(1 − δc) ∼ us/δc between the average intensity of the shear flow
velocity and the average intensity of the vortex slip velocity is obtained (see figure 6b).
Consequently, the critical shear velocity and slip velocity satisfy an approximately linear
relation UHPC ∼ ((1 − δc)/δc)us but are disturbed by the prefactor coefficient (1 − δc)/δc.
However, previous studies suggested that the steady state and chaotic state can be
distinguished by the critical thickness δc of the vortex boundary layer, and its value is 0.309
(Kwak et al. 2017). This indicates that δc is basically fixed for shear sheltering. Ignoring
the disturbance prefactor coefficient (1 − δc)/δc, a simple linear scaling (UHPC ∼ us)
is obtained (see figure 6c). This approximately linear scaling is confirmed by DNS.
Consequently, the chaotic state is characterized by high slip velocity, which indicates that
a larger shear velocity is required to shelter chaos. By exploring the shear velocity and
slip velocity under the parameter space (λD, �φ and UHP), one can further understand the
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0

Figure 7. Critical shear velocity for shear sheltering. Critical selection of ECF from steady to chaotic state
for phase diagram replotted in dimensionless numbers: (λ−1

D �φ4)1/3 versus UHP. The dimensionless Debye
layer length λD describes the effect of the ESC length (regulated by the dimensionless Debye layer length)
on the flow state, �φ depicts the effect of the voltage difference and the shear velocity UHP characterizes
the shear shielding. For convenience, two regional colours are used to distinguish the flow state. The chaotic
state is maintained by the large slip velocity, and a larger shear flow velocity is required to suppress the chaos.
Here, we extracted all experimental data (Kwak et al. 2017) under the dimensionless Debye length λD = 10−6

with various shear flow velocities [UHP = 207(2.5 µl/min), UHP = 414(5 µl/min), UHP = 828(10 µl/min)

and UHP = 1656(20 µl/min)].

critical shear velocity required for chaos suppression. Please refer to Appendix C for more
details.

Based on the above theory and numerical analysis, the fluid state is adjusted by the
dimensional Debye length λD, shear velocity UHP and voltage difference �φ. As the
scaling factor (λ−1

D Δφ4)1/3 increases, the fluid state is dominated by electrostatic force,
and fluid chaos is enhanced. However, increasing the shear velocity, the flow is dominated
by the pressure flow, and the flow chaos is suppressed. Using the scaling relation UHPC ∼
us, a universal phase diagram for shear sheltering can be obtained. Hence, one can obtain
the scaling of the critical shear velocity,

UHPC = c · (λ−1
D �φ4)1/3 + ξ. (3.2)

For a given dimensional Debye length, the present parameter space (10−6 ≤ λD ≤ 10−2,
240 ≤ UHP ≤ 1000 and 0 ≤ �φ ≤ 120), the fitting coefficients are c = 0.56 and ξ =
912.87. Finally, the data in figures 4–6 and experimental data (Kwak et al. 2017) are
replotted in the phase diagram composed of (λ−1

D �φ4)1/3 and UHP. In figure 7, the two
states of the flow are successfully distinguished by a theoretical straight line. This analysis
is supported by DNS data and experimental data (Kwak et al. 2017). In addition, note
that an effective voltage difference �φ = γ ϕ was introduced in multilayer electrodialysis,
where �φ is the voltage difference between the membrane, ϕ is the total voltage in
multilayer electrodialysis and γ describes the resistance effect in multilayer electrodialysis.
Therefore, the coefficient γ is assumed to be 0.042 to consider the effective voltage
difference caused by the resistance effect of multilayer electrodialysis. Once the shear flow
velocity UHP > UHPC, the shear flow shelters the chaos. However, when UHP < UHPC, the
electrostatic force destabilizes the steady flow.
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4. Conclusion

In summary, for a given dimensional Debye length scenario, this work investigates
the critical selection between the steady state and chaotic state in an overlimiting
electrodialysis channel embedded with two permselective membranes. The main
conclusions are as follows.

(i) The theoretical analysis shows that the flow state is adjusted by a new dimensionless
factor, the channel height-dependent λD. In the overlimiting state, shear ECF usually
has two states, including a stable state and a chaotic state. Decreasing λD can
enhance the electrostatic driving force, and many small-scale vortices are ejected
near the membrane, resulting in a chaotic state.

(ii) In the scenario of fixed shear flow velocity, the scaling analysis and DNS find that the
slip velocity is the direct cause of the switching between the stable and chaotic states.
Based on the scaling law of critical slip velocity, the distinction between steady and
chaotic states can be achieved.

(iii) For ionic fluid control by shear sheltering, the critical shear velocity relation UHPC =
c(λ−1

D �φ4)1/3 + ξ is obtained. When the shear flow velocity is above the critical
shear velocity UHPC, the shear flow shelters the chaotic fluctuations, resulting in the
transition of the flow from the chaotic state to the steady state. Existing experimental
data (Kwak et al. 2017) and our DNS results support the analysis.

These results allow one to quantitatively understand the fluid state and velocity
statistics in the ECF and provide optimization guidance for the performance design of
electromembrane microfluidic systems, such as desalination (Chuang et al. 2020), mixing
(Guan, Yang & Wu 2021), preconcentration (Qiu et al. 2019), charge injection (Guan &
Novosselov 2019) and electrodeposition (Chen et al. 2016; Zheng et al. 2020). In addition,
our scaling analysis is performed on the case with the fixed dimensional Debye length,
which is a limitation of the hypothetical scenario. Just for the non-shear electroosmotic
flow, the effects of bulk concentration on the mixing efficiency (Peng & Li 2015), flow
pattern (Aboelkassem 2019; Tripathi et al. 2020) and enrichment efficiency (Ouyang et al.
2018) are investigated. Similarly, the concentration effect of the shear electroconvective
flow may be interesting, and the experimental and theoretical studies on it deserve to be
conducted in the future.
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Appendix A. Stokes flow for electrokinetic microfluidics

ECF belongs to the low-Re-number flow, and the analysis of fluids based on the Stokes
equation is a widely used simplified scheme (Davidson et al. 2014; Druzgalski & Mani
2016; Liu et al. 2020c; Mani & Wang 2020). The Stokes equation is adopted for the
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flow analysis in this paper. The corresponding simplification process is as follows. The
dimensional form of the momentum equation is

ρ̃0
∂Ũ
∂ t̃

+ ρ0Ũ · ∇̃Ũ = −∇̃P̃ + μ̃∇̃2Ũ + F̃(c̃− − c̃+)∇̃φ̃. (A1)

To numerically solve these equations, the governing equations should be converted to
the dimensionless form. Based on the dimensionless references in the main text, one can
obtain the following dimensionless form of the Navier–Stokes equation,

1
Sc

∂U
∂t

+ ReU · ∇U = −∇2U + ∇P − κ0∇2φ∇φ. (A2)

Here, Sc = μ̃/ρ̃0D̃ is the Schmidt number and Re = Ũ0 l̃0ρ̃0/μ̃ is the Reynolds number.
The definitions of the remaining parameters and symbols are listed in the main text.

Here, a simplified NS equation is used in the simulation. By ignoring the first two terms
((1/Sc)(∂U/∂t) + ReU · ∇U) in (A2), it can be simplified to the Stokes equation,

∇2U = −κ0∇2φ∇φ + ∇P. (A3)

The non-equilibrium ECF belongs to low-Reynolds-number and high-Schmidt-number
flows. Therefore, the first two items ((1/Sc)(∂U/∂t) + ReU · ∇U) in (A3) can be ignored
in this study. By referring to the magnitude of the experimental parameters of the
electrodynamic microfluidic device (Kwak et al. 2017), the magnitude of the Re number
and the Schmidt number of the ECF can be calculated as follows.

Re = Ũ0
l̃0ρ̃0

μ̃
=

10−9
[

m2

s

]

500 [mm]
· 500 [mm] ·

103
[

kg
m3

]

10−3 [Pa · s]
= 0.001

Sc = μ̃

ρ̃0D̃0
= 10−3 [Pa · s]

103
[

kg
m3

]
· 10−9

[
m2

s

] = 1000

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A4)

To further confirm that this simplified theory is reasonable, the comparison of the
numerical simulation results of the flow field structure is given based on the Navier–Stokes
equation (A2) and the simplified Stokes equation (A3), as shown in figure 8. From the
streamline (black line) and ion concentration distribution in figure 8, the Stokes equation
(A3) can well capture the flow behaviour.

Appendix B. Effect of membrane concentration on the slip velocity

For simplicity, many physicists have introduced the boundary condition of a fixed
dimensionless cation concentration at the membrane surface as cm = 2 (Rubinstein et al.
2008; Demekhin et al. 2013; Druzgalski et al. 2013). The boundary condition of different
given values of the membrane concentration is also considered in ECF (Green 2020). Here,
the effect of different values of membrane concentration cm on the ECF is discussed.
Through DNS, the effect of membrane concentration on flow is analysed, including the
flow pattern, slip velocity and extended space charge layer. In figure 9, although the
spatiotemporal evolution of the flow pattern is modulated by the membrane concentration,
the spatiotemporal average of the vortex slip velocity has not yet been affected. In figure 9,
although the spatiotemporal evolution of the flow pattern is modulated by the membrane
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Figure 8. Snapshots of the dimensionless salt concentration with flow streamlines superposed for λ = 5 ×
10−4. (a) DNS results based on the NS-PNP model; (b) DNS based on the Stokes-PNP model.
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Figure 9. Effect of membrane concentration on flow. (a) Effect of membrane concentration on the flow pattern
at �φ = 60. (b) Average slip velocity at different membrane concentrations and voltage differences. (c) ESC
layer distribution at different membrane concentrations. Here, λD = 10−3 and UHP = 240.

concentration cm, the average of the vortex slip velocity has not yet been affected. Since
the slip velocity of the vortex originates from the electrostatic force at the edge of the
ESC layer, it does not depend on the external shear flow. Therefore, the slip velocity of the
vortex is closely related to the thickness of the ESC layer. In figure 9(c), the distribution
of the ECS layer at different membrane concentrations is analysed. It is shown that the
thickness of the ESC layer is independent of the membrane concentration cm, which
implies that the slip velocity is independent of the membrane concentration under the
situation of statistical stationarity (see figure 9b). However, the membrane concentration
only modulates the value of the charge density in the EDL, which leads to some differences
in the spatiotemporal evolution of the vortex pattern. Our scaling shows that the ESC layer
thickness satisfies the scaling relation, λ2/3

D φ
2/3
ESCj−1/3. This indicates that the membrane

concentration is independent of the ESC thickness, and therefore, the time average of the
slip velocity is independent of the membrane concentration, as shown in figure 9(b).

Appendix C. Analysis of the shear velocity and slip velocity

Figure 10(a) presents the flow patterns under two sets of shear velocities, the
spatiotemporal fluctuations of the slip velocity and the slip velocity attractors. It is shown
that the time averaging of slip velocity is almost independent of shear flow but that vortex
height and velocity fluctuations can be adjusted. Therefore, an increase in shear flow
velocity can suppress the flow disturbance but hardly affect the spatiotemporal average of
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Figure 10. Effect of shear velocity on flow. Shear flow velocity modulates (a) flow pattern, (b) spatiotemporal
fluctuations and (c) velocity attractors. Here, λD = 10−3 and �φ = 60.
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Figure 11. Slip velocity for (a) UHP = 240, (b) UHP = 600 and (c) UHP = 800. An increase in shear flow
velocity results in a higher onset voltage of flow chaos. Here, λD = 10−3.

the slip velocity, since the slip velocity originates from the electrostatic force at the edge
of the expanding space charge layer, rather than the external shear flow. In figure 10(b),
the time-averaged speeds are 260 and 265, and this slight change can be ignored.

We also count the slip velocities at various shear flow velocities, as shown in figure 11.
As the shear flow velocity increases, the critical voltage for triggering the chaotic state is
higher. For a fixed shear flow velocity, the critical slip velocity required for the chaotic
state is universal. When the shear flow velocity is set to 240, a critical slip velocity (∼210)
is required to trigger flow chaos; see figure 11(a). As discussed in the main text, the slip
velocity is also affected by the dimensionless Debye layer length. Although reducing the
dimensionless Debye layer length can enhance the slip velocity and flow chaos, the slip
velocity required for the flow to enter the chaotic state is universal, at approximately 210;
see figures 3 and 4. In figure 11, the shear flow velocity increases further, and the onset
voltage of the flow chaos increases. Once the shear ECF is dominated by electrostatic
forces, the electrostatic force destabilizes the steady flow.

The scaling (3.1) suggests that the slip velocity is regulated by the dimensionless Debye
layer length λD. The scaling coefficient α = 0.12 is confirmed to be independent of the
shear flow velocity. In figure 13(a), we analyse the effect of shear flow velocity on slip
velocity for the dimensionless Debye layer length (λD = 5 × 10−4) scenario. For the larger
shear flow velocity scenario UHP = 1000, there is a slight change in the slip velocity. Using
the scaling 0.12(λ−1

D �φ4)1/3, it is found that the scattered data in figures 11 and 12(a) all
collapse on a straight line, as shown in figure 12(b). These analyses show that in the present
parameter space, 0.12(λ−1

D �φ4)1/3 can basically reveal the evolution law of slip velocity.
That is, the fitting coefficient α = 0.12 is independent of the shear velocity.
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Figure 12. Slip velocity. (a) Effect of �φ and λD on the slip velocity. (b) Scaling behaviour of the slip velocity.
The slip velocity of the vortex is plotted against the scaling 0.12(λ−1

D �φ4)1/3, which shows that the coefficient
α = 0.12 is independent of the shear flow velocity UHP in the present parameter space.
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Figure 13. Slip velocity attractors in a time-delay phase space for (a) UHP = 240, (b) UHP = 800 and (c)
UHP = 1000. Based on these delay time phase diagrams, the flow state of figure 6(a) in the main text is
determined. Here, λD = 10−3.

Appendix D. The attractors in a time-delay phase space

To identify the flow states in figure 13(a), the attractors in a time-delay phase space (Kwak
et al. 2017) are used. By analysing the attractor of slip velocity to identify the transition
from chaotic to stable flow, one can quantitatively describe how the transition from chaotic
sequence to periodic sequence of slip velocity is caused by shear flow. The time series of
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slip velocities are recorded to fix a point at the edge of the ESC layer, and delay time
phase diagrams of these time series are plotted to determine the flow state of figure 6(a),
as shown in figure 13.
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