
Math. Struct. in Comp. Science (2008), vol. 18, pp. 325–371. c© 2008 Cambridge University Press

doi:10.1017/S0960129507006536 Printed in the United Kingdom

Observational interpretation of Casl specifications

MICHEL BIDOIT†, DONALD SANNELLA‡ and

ANDRZEJ TARLECKI§

†Laboratoire Spécification et Vérification, CNRS & ENS de Cachan, France

Website: www.lsv.ens-cachan.fr/~bidoit/
‡Laboratory for Foundations of Computer Science, University of Edinburgh, United Kingdom

Website: homepages.inf.ed.ac.uk/dts/
§Institute of Informatics, Warsaw University, and

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Website: www.mimuw.edu.pl/~tarlecki/

Received 12 September 2006; revised 15 June 2007

We explore the way in which the refinement of individual ‘local’ components of a

specification relates to the development of a ‘global’ system from a specification of

requirements. The observational interpretation of specifications and refinements adds

expressive power and flexibility, but introduces some subtle problems. Our study of these

issues is carried out in the context of Casl architectural specifications. We introduce a

definition of observational equivalence for Casl models, leading to an observational

semantics for architectural specifications for which we prove important properties. Overall,

this fulfills the long-standing goal of complementing the standard semantics of Casl

specifications with an observational view that supports observational refinement of

specifications in combination with Casl-style architectural design.

1. Introduction

There has been a great deal of work in the algebraic specification tradition on formalising

the rather intuitive and appealing idea of program development by stepwise refine-

ment, including Ehrig et al. (1982), Ganzinger (1983), Schoett (1987) and Sannella and

Tarlecki (1988b); for a survey, see Ehrig and Kreowski (1999). There are many issues

that make this a difficult problem, and some of them are rather subtle, one example

being the relationship between specification structure and program structure, and another

being the trade-off between the expressive power of a specification formalism and the ease

of reasoning about specifications. Significant complications result when ‘observational’ or

‘behavioural’ aspects of specifications are considered, whereby the definition of correctness

takes into account only the results of those computations that can be directly observed.

An overview covering most of our own contributions is Sannella and Tarlecki (1997) –

for more recent work addressing the problem of how to prove correctness of refinement

steps, see Bidoit and Hennicker (1998) and Bidoit and Hennicker (2006), for the design

of a convenient formalism for writing specifications, see Bidoit et al. (2002a), Astesiano

et al. (2002) and CoFI (2004), and for applications to data refinement in typed λ-calculus,

see Honsell et al. (2000).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 326

A new angle we explore here is the ‘global’ effect of refining individual ‘local’ components

of a specification. This involves a well-known technique from algebraic specification,

namely the use of pushouts of signatures and amalgamation of models to build large

systems by composition of separate interrelated components. The situation becomes

considerably more subtle when the observational interpretation of specifications and

refinements is brought into the picture.

Part of the answer has already been provided, the main references being Schoett’s thesis

Schoett (1987) and Schoett (1990), and our own work on formal development in the

Extended ML framework (Sannella and Tarlecki 1989); the general ideas go back at

least to Hoare (1972). We take another look at these issues here, in the context of the

Casl specification formalism (Astesiano et al. 2002; CoFI 2004) and, in particular, its

architectural specifications (Bidoit et al. 2002a). Architectural specifications, for describing

the modular structure of software systems, are probably the most novel feature of Casl. We

view them here as a means of making complex refinement steps by defining a construction

for building the overall system from implementations of individually specified units; these

may include parametrised units that contribute to this construction.

This paper combines and expands on previous work that was reported on in Bidoit et

al. (2002a; 2002b; 2004), Baumeister et al. (2004) and Schröder et al. (2005). It interweaves

three strands. The first strand (Sections 2 and 5) recalls the basic semantic concepts

of Casl and introduces observational equivalence for Casl models and the induced

observational interpretation of Casl basic and structured specifications. In contrast to

Bidoit et al. (2002b), true Casl models are considered rather than standard many-sorted

total algebras.

A second strand (Sections 3 and 6) explores the use of local constructions in an

arbitrary global context, and its interaction with an observational view of requirements

specifications. In particular, the stability and observational correctness of constructions

on Casl models are treated, and practical local criteria to establish both properties are

formulated.

The final strand (Sections 4 and 7) provides a careful analysis of the semantics of

Casl architectural specifications, taking account of the fact that amalgamability is not

ensured for Casl models and linking with the other strands to provide such specifications

with an observational semantics. Key invariant properties of the semantics are precisely

formulated and proved.

Due to space considerations, we do not deal with full-blown Casl as defined in

Mosses (2004), but the addition of unit definitions to the treatment in Bidoit et al. (2002b)

together with a proper account of dependencies between units means that the extension

to full Casl would be routine. The analysis of invariants linking the static semantics and

model semantics of architectural specifications in Section 4 provides an essential insight

into the semantics of full Casl that was implicit in Baumeister et al. (2004); this reiterates

Schröder et al. (2005, Theorem 2) and provides a basis for an analogous treatment of the

observational case in Section 7.

An orthogonal view of the structure of this paper is that Sections 2–4 present a standard

treatment of Casl basic and structured specifications, local constructions and their use

in a global context, and Casl architectural specifications; a comprehensive observational

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 327

treatment is then given in Sections 5–7. An example in Section 8, based on one in Bidoit

et al. (2004), provides a concrete illustration of some of the points that arise.

Overall, this fulfills the long-standing goal of complementing the standard semantics

of Casl specifications (Baumeister et al. 2004) with an observational view that supports

observational refinement of specifications in combination with Casl-style architectural

design.

2. Casl Institution and Specifications

A basic assumption underpinning algebraic specification and derived approaches to

software specification and development is that programs are modelled as algebras (of some

kind) with their ‘types’ captured by algebraic signatures (again, adapted as appropriate).

Then specifications include axioms describing the required properties. This leads to quite

a flexible framework, which can be tuned as desired to cope with various programming

features of interest by selecting the appropriate variation of algebra, signature and axiom.

This flexibility has been formalised using the notion of an institution (Goguen and

Burstall 1992) and related work on the theory of specifications and formal program

development (Sannella and Tarlecki 1988a; Sannella and Tarlecki 1997; Bidoit and

Hennicker 1993).

Recall that an institution defines a notion of signature together with, for any signature Σ,

a set of Σ-sentences, a class of Σ-models equipped with homomorphisms, and a satisfaction

relation between Σ-models and Σ-sentences. Moreover, signatures come equipped with

signature morphisms, forming a category. Any signature morphism induces a translation

of sentences and a translation of models (the latter going in the opposite direction to

the morphism). All this can be expressed very concisely using the language of category

theory: we require a category Sig, a functor Sen : Sig → Set, a (contravariant) functor

Mod : Sigop → Cat, and a family of binary relations 〈|=Σ ⊆ |Mod(Σ)| × Sen(Σ)〉
Σ∈|Sign|.

The only semantic requirement is that when we change signatures using a signature

morphism, the induced translations of sentences and of models preserve the satisfaction

relation.

By now it is standard to base work on specification languages and formal program

development on the notion of an institution, so that a clear separation between logic-

dependent details and general logic-independent aspects of the work can be achieved. We

follow this below, recalling the logical system of Casl (Bidoit and Mosses 2004).

Casl is an algebraic specification language for describing Casl models: many-sorted

algebras with subsorts, partial and total operations, and predicates. Casl models are

classified by Casl signatures, which give sort names (with their subsorting relation),

partial and total operation names, and predicate names, together with profiles of operations

and predicates. In Casl models, subsorts and supersorts are linked by implicit subsort

embeddings that are required to compose with each other and to be compatible with

operations and predicates with the same names.

Recalling (and slightly simplifying) some technical detail from Baumeister et al. (2004),

a Casl signature is a tuple Σ = (S,TF ,PF , P ,�), where S is a set of sort names,

TF = 〈TFws〉ws∈S+ and PF = 〈PFws〉ws∈S+ are, respectively, families of total and partial

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 328

operation names indexed by their profiles (which consist of their arity w ∈ S∗ and result

sort s ∈ S), P = 〈Pw〉w∈S∗ is a family of predicate names, indexed by their arities, and �
is a subsorting preorder on S (a relation that is reflexive and transitive). For simplicity,

we bluntly assume that no overloading is allowed, that is, that all the sets in TF , PF

and P are mutually disjoint†. We write f: s1 × · · · × sn → s when s1, . . . , sn, s ∈ S and

f ∈ TF s1 ...sns; similar notation is used for partial operation names and predicate symbols.

If n = 0, then f is a constant and we write f: s. For Casl signatures Σ = (S,TF ,PF , P ,�)

and Σ′ = (S ′,TF ′,PF ′, P ′,�′), a morphism between them, written σ : Σ → Σ′, maps: sort

names in S to sort names in S ′ so that the subsorting preorder is preserved; operation

names in TF ∪ PF to operation names in TF ′ ∪ PF ′ so that their totality and profiles are

preserved; and predicate names in P to predicate names in P ′ so that their arities are

preserved. This yields a category Sig of Casl signatures and their morphisms with the

obvious identities and component-wise composition.

Given a Casl signature Σ = (S,TF ,PF , P ,�), we define its expansion to a many-sorted

signature Σ# that retains the set of sorts S and includes the operation and predicate names

from TF , PF and P , adding for all s � s′ in Σ, a new total operation name ems�s′
: s → s′

for subsort embedding, a new partial operation name pr s�s′
: s′ → s for subsort projection,

and a new predicate name ins�s′
: s′ for subsort membership. Note that ()# extends to

signature morphisms in an obvious way.

Now, a Casl model over the Casl signature Σ = (S,TF ,PF , P ,�) is a structure M over

the signature Σ#, which consists of

— a carrier set |M|s for each sort s ∈ S ,

— a (partial) function fM: |M|s1 × · · · × |M|sn → |M|s for each of the operation names

f: s1 × · · · × sn → s in Σ# (with fM being total for total operation names f), and

— a relation pM ⊆ |M|s1 × · · · × |M|sn for each predicate name p: s1 × · · · × sn,

such that for all s � s′ in Σ

— the subsort embedding ems�s′

M : |M|s → |M|s′ is injective,

— the subsort projection pr s�s′

M : |M|s′ → |M|s is defined exactly on the image of ems�s′

M as

its inverse, and

— the subsort membership predicate ins�s′

M ⊆ |M|s′ holds exactly on the image of ems�s′

M .

Moreover, we require that ems�s
M is the identity for s ∈ S , and that the embeddings

compose, that is, if s � s′ � s′′, then ems�s′′

M is the composition of ems�s′

M and ems′�s′′

M .

This yields the class of Casl Σ-models, which form a category Mod(Σ) with homo-

morphisms between Σ#-structures defined as usual, as maps that preserve predicates as

well as the definedness and values of operations. A homomorphism is strong if it also

reflects the predicates and the definedness of operations. Given a Casl Σ-model M, a

submodel is any Casl Σ-model N with carriers of N included in those of M such that

† This assumption is unrealistic in practical examples, especially when subsorting is involved; Casl deals with

this properly, and only imposes a considerably weaker version of this restriction. However, the issues arising

are irrelevant for the topics discussed in this paper.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 329

the inclusion function |N| ↪→ |M| is a strong homomorphism, cf. closed subalgebras in

Burmeister (1986).

As expected, kernels of homomorphisms between Casl models are congruences:

equivalence relations on model carriers closed under operations when defined in the

model (this also applies to the subsort embeddings and projections). Kernels of strong

homomorphisms are strong congruences: these are congruences that, in addition, preserve

predicates and definedness of operations. Given any Casl Σ-model M and congruence

on it, the quotient of M by
 is defined as the quotient of M as a Σ#-structure by
; it is

easy to check that the usual definition yields a Σ#-structure that is a Casl Σ-model, and

that the natural quotient homomorphism is strong whenever the congruence
 is strong.

Any Casl signature morphism σ: Σ → Σ′ determines a reduct functor from Mod(Σ′) to

Mod(Σ), where for any Σ′-model M ′ ∈ |Mod(Σ′)|, its reduct M ′
σ ∈ |Mod(Σ)| is defined as

the σ#-reduct of the (Σ′)#-structure M ′: any sort, operation or predicate name ν in Σ# gets

the same interpretation in M ′
σ as σ#(ν) has in M ′, and similarly for homomorphisms,

and for arbitrary relations between carriers of Casl models. This completes the definition

of a functor Mod : Sigop → Cat.

It is easy to check that the category Sig of Casl signatures is (finitely) cocomplete,

with colimits of diagrams given in the expected, component-wise way. Note in particular

that the subsort preorder in the colimit signature is the transitive closure of the union of

the images of the subsort preorders of the signatures in the diagram under the colimit

injections. We will assume that some standard construction of pushouts in Sig is given.

Colimits in Sig offer a rudimentary way of putting together Casl signatures and

basic specifications over them (see below), very much as in the standard algebraic

framework (Ehrig and Mahr 1985). When it comes to model theory, however, things

are more difficult, since Casl does not ensure that the amalgamation property holds.

Definition 2.1 (Amalgamation). A pushout in the category of Casl signatures

Σ

Σ1

Σ′

Σ′
1

�
γ

�
ι

�ι′

�
γ′

ensures amalgamability if for all models M1 ∈ |Mod(Σ1)| and M ′ ∈ |Mod(Σ′)| such that

M1 γ = M ′
ι, there exists a unique model M ′

1 ∈ |Mod(Σ′
1)| such that M ′

1 ι′ = M1 and

M ′
1 γ′ = M ′. We sometimes write M1⊕M ′ for such a unique M ′

1 and call it the amalgamation

of M1 and M ′ when the pushout is clear from the context.

When the signature morphism ι is given and the pushout as above ensures amalgamability,

we will refer to the morphism γ as admissible (cf. Definition 3.3 below).

It is worth stressing that pushouts of Casl signature morphisms between signatures

with no proper subsorts (that is, the subsorting preorders are identities) always ensure

amalgamability. The potential problems are caused by the built-in requirements of

uniqueness and composability of subsort embeddings in Casl models. The simplest

example of a pushout that does not ensure amalgamability is when Σ contains just two

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 330

sorts, and both Σ1 and Σ′ expand Σ by adding a new subsort relationship between

the two sorts. The pushout signature then coincides with Σ1 = Σ′ (and so allows for

one subsort embedding between the two sorts), and two models over Σ1 and Σ′ with

common Σ-reduct amalgamate only if they happen to share the same subsort embedding.

Perhaps surprisingly, the problem of whether a pushout (or more generally, a colimit)

ensures amalgamability is in general undecidable, but a number of effective algorithms

to determine this in various practically relevant cases can be given. However, we do not

know any easy syntactic condition that would ensure amalgamability without excluding

some cases that naturally arise in practical specifications. For instance, requiring that ι

and γ in the diagram above do not introduce new subsorting relationships between sorts

from Σ is not sufficient. To see this, consider Σ with just two independent sorts, Σ1 and

Σ′ that add, respectively, a new common subsort and a new common supersort for them.

Then the resulting pushout does not ensure amalgamability. See Schröder et al. (2001),

Klin et al. (2001) and Schröder et al. (2005) for further examples and a more complete

study of amalgamability in Casl. Here, we just guard any use of amalgamation with a

requirement that the relevant pushout ensures amalgamability.

In the framework of Casl, if a pushout ensures amalgamability (of Casl models, as

above), it also ensures amalgamability of homomorphisms.

Lemma 2.2. Suppose that the following pushout

Σ

Σ1

Σ′

Σ′
1

�
γ

�
ι

�ι′

�
γ′

ensures amalgamability. Then for all homomorphisms h1:M1 → N1 in Mod(Σ1) and

h′:M ′ → N ′ in Mod(Σ′) such that h1 γ = h′
ι there exists a unique homomorphism

h′
1:M

′
1 → N ′

1 in Mod(Σ′
1) such that h′

1 ι′ = h1 and h′
1 γ′ = h′. Moreover, h′

1 is strong if both

h1 and h′ are strong.

Proof. Let M ′
1 = M1 ⊕ M ′ and N ′

1 = N1 ⊕ N ′ (they are well defined, since the pushout

ensures amalgamability). For each sort s1 in Σ1, put (h′
1)ι′(s1) = (h1)s1 ; for each sort s′ in

Σ′, put (h′
1)γ′(s′) = (h′)s′ . By the construction of pushouts in Sig, this yields a well-defined

family of functions (h′
1)s: |M ′

1|s → |N ′
1|s for sorts s in Σ′

1. The required compatibility

with the predicates and operations of the form (ι′)#(f1), for f1 in Σ#
1 , follows from

the compatibility of h1 with the predicates and operations in Σ#
1 ; and similarly for the

predicates and operations of the form (γ′)#(f′) for f′ in (Σ′)#. Consider then a subsort

embedding in (Σ′
1)

#. Since the subsort relation in Σ′
1 is the transitive closure of the union

of the images of the subsort relations in Σ1 and Σ′ under ι′ and γ′, respectively, the

embedding is a composition of embedding operations of the forms considered above –

so compatibility follows by an easy induction. The same argument applies for subsort

projections in Σ′
1, and then for the subsort membership predicates (which are defined as

the domains of the corresponding subsort projections).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 331

Given a Casl signature Σ, we assume the usual definition of a first-order formula

(with quantification and the usual logical connectives) built over atomic formulae, which

include strong and existential equalities, definedness formulae and predicate applications,

over the many-sorted signature Σ#, and its satisfaction in a Σ#-structure. Adding so-

called generation constraints as special, non-first-order sentences yields the set of Casl

Σ-sentences, written Sen(Σ). Given a Casl signature morphism σ: Σ → Σ′, the translation

of any Σ-sentence ϕ ∈ Sen(Σ) is defined as usual, and we write it as σ(ϕ), see Baumeister

et al. (2004). This defines a functor Sen : Sig → Set.

As usual for first-order logic, satisfaction is defined for the more general case of

formulae with free variables; we write M[v] |=Σ ϕ to state that the Σ-formula ϕ with

free variables in a set X holds in the Σ-model M under the valuation v:X → |M|. The

signature subscript in |=Σ is usually left implicit. The notation (t)M[v] is used to denote the

value of a term t with variables in X in the model M under the valuation v:X → |M|;
this may be undefined when the term involves partial operations. Satisfaction of formulae

and evaluation of terms only depend on the valuation of their free variables. We drop

the valuation v in this notation for closed terms (terms with no variables) and sentences

(formulae with no free variables). The satisfaction of sentences is preserved under signature

morphisms: for any σ: Σ → Σ′, M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ), we have

M ′
σ |= ϕ ⇐⇒ M ′ |= σ(ϕ) .

We consider Casl formulae built over the usual algebraic terms only, so, in particular,

Casl conditional terms are excluded (they can be easily eliminated in formulae anyway,

see CoFI (2004)).

We introduce a more general form of conditional terms, as follows, but without allowing

them in formulae. Given a Casl signature Σ, a conditional term of sort s with variables

in X is of the form c = 〈(φi, ti)〉i�0, where for i � 0, φi are formulae with variables in

X, and ti are terms of sort s with variables in X. Given a Σ-model M and a valuation

v:X → |M|, the value cM[v] of such a conditional term c is (tk)M[v] for the least k � 0 such

that M[v] |= φk , or is undefined if no such k � 0 exists. Note that the infinitary unfolding

of any recursive definition can be captured by such a conditional term. Therefore we use

these conditional terms to model arbitrary computations, even though they go well beyond

what programming languages offer: arbitrary formulae are used as conditions without

regard to decidability, the sequence of conditions and terms need not even be recursively

enumerable, and so on. Some of this generality will be excluded by requirements arising

from the discussion in Sections 5 and 6.1.

We use these conditional terms to generalise derived signature morphisms (Goguen

et al. 1978). A derived signature morphism δ: Σ → Σ′ maps the partial operation sym-

bols f: s1 × . . . × sn → s in Σ to conditional Σ′-terms of sort δ(s) with the variables

{x1: δ(s1), . . . , xn: δ(sn)}. Evidently, such a derived signature morphism δ: Σ → Σ′ still

determines a reduct function δ mapping Σ′-models to Σ-models. In general, this does

not extend to a reduct functor between model categories, since values of conditional terms

with arbitrary conditions need not be preserved by homomorphisms (but see the comment

following Lemma 5.5).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 332

The basic level of Casl includes declarations to introduce components of signatures

and axioms to give properties that characterise models of a specification. Consequently,

a basic Casl specification SP amounts to a definition of a signature Σ and a set of

axioms Φ ⊆ Sen(Σ). It denotes the class [[SP]] ⊆ |Mod(Σ)| of SP -models, which are those

Σ-models that satisfy all the axioms in Φ:

[[SP]] = {M ∈ |Mod(Σ)| | M |= Φ} .

Apart from basic specifications as above, Casl provides ways of building complex

specifications out of simpler ones by means of various structuring constructs. These include

translation, hiding, union, and both free and loose forms of extension. Generic specifications

and their instantiations with pushout-style semantics (Burstall and Goguen 1980; Ehrig

and Mahr 1985) are also provided. Structured specifications built using these constructs

are given a compositional semantics where each specification SP determines a signature

Sig[SP] and a class [[SP]] ⊆ |Mod(Sig[SP])| of models. Most of the details, given in

Baumeister et al. (2004), are irrelevant for the purposes of this paper. It is enough to know

that for any specification SP and signature morphism σ: Sig(SP) → Σ′, we write SP with σ

for the translation of SP along σ, with semantics given by Sig[SP with σ] = Σ′ and

[[SP with σ]] = {M ′ ∈ |Mod(Σ′)| | M ′
σ ∈ [[SP]]}, and for any two specifications SP1 and

SP2 with common signature, we write SP1 and SP2 for their union, with semantics given

by Sig[SP1 and SP2] = Sig[SP1] = Sig[SP2] and [[SP1 and SP2]] = [[SP1]] ∩ [[SP2]].

Note that union in Casl generalises this by allowing Sig[SP1] �= Sig[SP2].

3. Software components and their correctness

The intended use of Casl, as of any such specification formalism, is to specify programs.

Each Casl specification should determine a class of programs that correctly realise the

specified requirements. To fit this into the formal view of Casl specifications, programs

must be written in a programming language having a semantics that assigns to each

program its denotation as a Casl model†. Then each program P determines a Casl

signature Sig[P] and a model [[P]] ∈ |Mod(Sig[P])|. Any specification SP is then a

description of its admissible realisations: a program P is a (correct) realisation of SP if

Sig[P] = Sig[SP] and [[P]] ∈ [[SP]].

We will now consider component-based systems, that is, systems obtained by assembling

components, rather than ‘monolithic’ programs. We take a rather restrictive view of

components, namely software components (understood as pieces of code) in contrast with

system components (understood as self-contained processors with their own hardware and

software interacting with each other and the environment by exchanging messages across

linking interfaces). However, our view is consistent with the best accepted definition in

† This may be rather indirect, and in general involves a non-trivial abstraction step. It has not yet been

attempted for any real programming language, but see (Schröder and Mossakowski 2002) for an outline

of how this could be done for Haskell. See also the pre-Casl work on Extended ML (Kahrs et al. 1997),

and see Larch (Guttag and Horning 1993) for another attempt to link a specification language with various

programming languages.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 333

the software industry, see Szyperski (1998): a (software) component is an independently-

deployable unit of composition with contractually specified interfaces and fully explicit

context dependencies.

To capture this, we will assume that a software component ∆P determines a ‘parameter’

signature, say Σ, corresponding to the symbols required by the component, and a ‘result’

signature, say Σ′, corresponding to the symbols provided by the component, together with

a signature morphism ι: Σ → Σ′ relating the ‘parameter’ signature to the ‘result’ signature.

In this way ι: Σ → Σ′ corresponds to the (syntactic part of the) interface of the software

component.

Then the software component ∆P determines a function F = [[∆P]] from Casl Σ-

models to Casl Σ′-models. This function may be partial, see below. When assembled

with (applied to) a sub-system P (determining a Casl signature Sig[P] = Σ and a model

[[P]] ∈ |Mod(Σ)|), the software component ∆P ‘extends’ P to a larger system, say ∆P (P),

with signature Sig[∆P (P)] = Σ′, determining a Casl model [[∆P (P)]] ∈ |Mod(Σ′)|. It is

intuitively clear that the software component ‘preserves’ the sub-system it is applied to,

so [[∆P (P)]] ι = [[P]].

Thus a software component ∆P determines a semantic object F called a local con-

struction according to the definition below. Since software components preserve their

arguments, we assume that such constructions are persistent: the argument of a construc-

tion is always fully included in its result, without modification† – note that this assumption

holds for all constructions that can be declared and specified in Casl, see Section 4. In

fact, we generalise Casl somewhat by considering arbitrary signature morphisms rather

than just inclusions.

Definition 3.1 (Local construction). Given a signature morphism ι: Σ → Σ′, a local

construction along ι is a persistent partial function F: |Mod(Σ)| ⇀ |Mod(Σ′)| (for each

M ∈ dom(F), F(M) ι = M). We write Mod(Σ
ι−→Σ′) for the class of all local constructions

along ι.

We will not dwell here on how particular local constructions are defined. Free functor

semantics for parametrised specifications is one way to proceed, with the persistency

requirement giving rise to additional proof obligations (Ehrig and Mahr 1985). Perhaps

closer to ordinary programming, any ‘definitional’ derived signature morphism δ: Σ′ → Σ

that defines Σ′-components in terms of Σ-components naturally gives rise to a local

construction, since the induced reduct function δ: |Mod(Σ)| → |Mod(Σ′)| is a local

construction along a signature morphism ι: Σ → Σ′ whenever ι;δ = idΣ
‡.

Of course, we are interested in specifications of software components, that is, in

‘semantic’ specifications of the parameter required by the component and of its result

† Otherwise we would have to indicate explicitly any ‘sharing’ between the argument and result of each

construction, and explain how such sharing is preserved by the various ways of putting together constructions,

as was painfully spelled out in Sannella and Tarlecki (1989). If necessary, superfluous components of models

constructed using persistent constructions can be discarded at the end using the reduct along a signature

inclusion.
‡ The composition of derived signature morphisms can be defined in the obvious way, and equality of two

derived signature morphisms is understood here semantically.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 334

(and not just in the ‘syntactic’ specification of its interface given by ι: Σ → Σ′). Thus, in

our algebraic setting, we will specify a software component by a pair of specifications SP

and SP ′, written SP
ι−→SP ′, where SP specifies the symbols and the properties required

of them by the component, SP ′ specifies the symbols and the properties provided by

the component, together with a signature morphism ι: Sig[SP] → Sig[SP ′] relating the

parameter signature to the result signature. Indeed, we require ι to be a specification

morphism ι: SP → SP ′, that is, for all M ′ ∈ [[SP ′]], M ′
ι ∈ [[SP]]. This amounts to

demanding that the result specification SP ′ includes the properties of the parameter

required by the parameter specification SP . The fact that the result actually has those

properties is guaranteed by the persistency of the local construction.

The following definition states when a local construction F , determined by a software

component ∆P , is a correct realisation of a given component specification. (We refer to

this as literal correctness by contrast with the observational correctness of Definition 6.9

given later.)

Definition 3.2 (Literal correctness). A local construction F along ι: Sig[SP] → Sig[SP ′]

is literally correct with respect to SP and SP ′ if for all models M ∈ [[SP]], we have

M ∈ dom(F) and F(M) ∈ [[SP ′]]. We write [[SP
ι−→SP ′]] for the class of all local

constructions along ι that are literally correct with respect to SP and SP ′.

Hence, to realise the component specification SP
ι−→SP ′, we should provide a software

component ∆P that extends any realisation P of SP to a realisation P ′ = ∆P (P) of SP ′.

The basic semantic property required is that for all programs P such that [[P]] ∈ [[SP]],

∆P (P) is a program that extends P and realises SP ′ (semantically, [[∆P (P)]] ι = [[P]] and

[[∆P (P)]] ∈ [[SP ′]]). This amounts to requiring that the partial function F ∈ Mod(Σ
ι−→Σ′)

determined by ∆P preserves its argument whenever it is defined, that it is defined on (at

least) all models in [[SP]]†, and that it yields a result in [[SP ′]] when applied to a model

in [[SP]].

There is a crucial difference here between monolithic self-contained programs and

software components: while monolithic programs are modelled as Casl models, software

components are modelled as (possibly partial) functions mapping Casl models of the

parameter specification SP to Casl models of the result specification SP ′.

The next important idea is that when assembling components, in general, a given

component will not be applied to a sub-system providing exactly what is required by the

component, but will be applied to a sub-system providing at least, and, in general, more

than is required.

Technically, this means that we need to look at constructions that map Σ-models to

Σ′-models, but applied to parts cut out of ‘larger’ ΣG-models, where this ‘cutting out’ is

given as the reduct with respect to a signature morphism γ: Σ → ΣG that fits the local

argument signature into its global context.

† Intuitively, ∆P (P) is ‘statically’ well formed if P has the correct signature, but needs to be defined only for

arguments that realise SP .

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 335

Throughout the rest of the paper we will repeatedly refer to the signatures and

morphisms in the following pushout diagram:

Σ

ΣG

Σ′

Σ′
G

�
γ

�
ι

�ι′

�
γ′

where the local construction is along the bottom of the diagram, ‘cutting out’ its argument

from a larger model uses the signature morphism on the left, and the resulting global

construction is along the top.

Definition 3.3 (Admissibility and global construction). Given a local construction F along

a signature morphism ι: Σ → Σ′, a morphism γ: Σ → ΣG fitting Σ into a ‘global’ signature

ΣG is admissible if the pushout of ι and γ above ensures amalgamability. Then, for any ΣG-

model G ∈ |Mod(ΣG)|, we define the global result FG(G) of applying F to G by reference

to the pushout diagram above, using the amalgamation property: if G γ ∈ dom(F), then

FG(G) = G ⊕ F(G γ), otherwise FG(G) is undefined.

This determines a global construction FG: |Mod(ΣG)| ⇀ |Mod(Σ′
G)|, which is persistent

along ι′: ΣG → Σ′
G.

This way of ‘lifting’ a persistent function to a larger context through a ‘fitting morphism ’

using signature pushout and amalgamation is well established in the algebraic specification

tradition, and goes back at least to ‘parametrised specifications’ with free functor semantics,

see Ehrig and Mahr (1985). The extra requirement here is that only admissible fitting

morphisms are permitted, turning amalgamability into a (static) requirement for correct

application of a local construction in a given context, which is to be discharged using the

machinery of Schröder et al. (2001), Klin et al. (2001) and Schröder et al. (2005).

Then an obvious issue is whether a software component that realises a component

specification SP
ι−→SP ′, when combined with a sub-system that realises a specification

SPG, actually provides a system that realises a given specification SP ′
G. The corresponding

correctness condition is provided by the following theorem.

Theorem 3.4. If we are given a local construction F ∈ [[SP
ι−→SP ′]], a specification SPG

with admissible fitting morphism γ: Sig[SP] → Sig[SPG], and a specification SP ′
G with

Sig[SP ′
G] = Σ′

G, then the induced global construction FG along ι′: ΣG → Σ′
G is literally

correct with respect to SPG and SP ′
G, that is, FG ∈ [[SPG

ι′−→SP ′
G]], provided

— [[SPG]] ⊆ [[SP with γ]], and

— [[(SP ′ with γ′) and (SPG with ι′)]] ⊆ [[SP ′
G]].

Proof. Let G ∈ [[SPG]]. Then G γ ∈ [[SP]], so G γ ∈ dom(F) and F(G γ) ∈ [[SP ′]].

Consequently, FG(G) ∈ [[SP ′ with γ′]] ∩ [[SPG with ι′]].

Informally, this directly captures a ‘bottom-up’ process of building component-based

systems, whereby we start with SPG, a specification of a ‘global’ assembly of components

built so far, find a local construction (a component) F ∈ [[SP
ι−→SP ′]] with a fitting

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 336

morphism γ that satisfies the first condition, and define SP ′
G such that the second condition

is satisfied (for example, by simply taking SP ′
G = (SP ′ with γ′) and (SPG with ι′)), thus

obtaining a specification of the global assembly of components with the new component

built using F added. When proceeding ‘top-down’, we start with the global requirements

specification SP ′
G. To use a local construction (a component) F ∈ [[SP

ι−→SP ′]], we

have to decide which part of the requirements it is going to implement by providing a

signature morphism γ′: Sig[SP ′] → Sig[SP ′
G], then we construct the ‘pushout complement’

γ: Sig[SP] → ΣG, ι′: ΣG → Sig[SP ′
G] for ι and γ′, and finally devise a specification SPG

with Sig[SPG] = ΣG such that both conditions are satisfied. Then SPG is the requirements

specification for the components that remain to be implemented.

4. Architectural specifications

Using local constructions for global implementations of specifications, we have moved

only one step away from a monolithic global view of specifications and constructions

used to implement them. The notion of an architectural specification (Bidoit et al. 2002a)

as introduced for Casl takes us much further. An architectural specification prescribes a

decomposition of the task of implementing a requirements specification into a number of

subtasks to implement specifications of ‘modular components’ (called units) of the system

under development. The units may be parametrised, and then we can identify them with

local constructions; non-parametrised units are just models. Another essential part of an

architectural specification is a prescription of how the units, once developed, are to be put

together using a few simple operators. One of these is the application of a parametrised

unit, which corresponds exactly to the lifting of a local construction to a larger context

studied above. Thus, an architectural specification may be thought of as a definition of

a complex construction to be used in a top-down development process to implement

a requirements specification by a number of specifications (of non-parametrised units),

where the construction uses a number of specified local constructions that are to be

developed as well.

For the sake of readability, we will discuss here a simplified version of Casl architectural

specifications, with a limited (but representative) number of constructs, based on a version

used in Schröder et al. (2001; 2005); a generalisation to full architectural specifications

(including unit renaming, units with multiple parameters, local unit definitions, etc.)

would be tedious but rather straightforward, except perhaps for the ‘unguarded import’

mechanism, see Hoffman (2001). Our version of architectural specifications is defined as

follows.

Architectural specifications: ASP ::= arch spec UDD+ result T ;

UDD ::= Dcl | Dfn

An architectural specification consists of a (non-empty) list of unit declarations or

definitions followed by a unit result term.

Unit declarations: Dcl ::= U : SP | U : SP1
ι−→SP2

A unit declaration introduces a unit name with its type, which is either a specification

or a specification of a parametrised unit, determined by a specification of its parameter

and its result that extends the parameter via a signature morphism ι.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 337

Unit definitions: Dfn ::= U = T

A unit definition introduces a (non-parametrised) unit and gives its value by a unit

term.

Unit terms: T ::= U | reduce T by σ | U [T fit γ] | T1 and T2

A unit term is either a (non-parametrised) unit name, or a unit restricted with respect

to a signature morphism, or a unit application with an argument that fits via a

signature morphism γ, or an amalgamation of units.

Following the semantics of full Casl (see Baumeister et al. (2004); see also Schröder

et al. (2001) and Schröder et al. (2005)), we give the semantics of this Casl fragment in

two stages: first we give its extended static semantics† and then its literal model semantics.

(We refer to this as the literal model semantics by contrast with the observational model

semantics of Section 7.)

For the extended static semantics we need a concept of static context, which carries

signatures for the units declared or defined within an architectural specification, together

with information on their mutual dependencies. Analogously, for the model semantics

we need a concept of environment, which carries the semantics of the units named in the

corresponding static context.

When discussing the application of local constructions to global models in Section 3,

we viewed the global context as a single monolithic model over a single ‘global’ signature.

Unfortunately, this view cannot be maintained in the context of architectural specifications

in Casl. The technical reason is that Casl does not ensure amalgamation over arbitrary

colimits of signature diagrams, as pointed out in Section 2. Indeed, if amalgamability

were ensured for arbitrary colimits of signature diagrams, we could always represent

the global context of all the (non-parametrised) units declared or defined so far by a

monolithic global model over a single global signature, and many of the technicalities

below become rather simpler, see Bidoit et al. (2002b) and Tarlecki (2003). As things are,

for architectural specifications in Casl, static information about (non-parametrised) units

declared or defined in an architectural specification will be stored in signature diagrams,

with nodes labelled by unit signatures and edges labelled by signature morphisms that

capture dependencies between units.

More formally, we view a signature diagram as a graph morphism from its shape I to

the category of Casl signatures, D : I → Sig. We write |D| for the set of nodes of I, and

m: i → j in D for an edge m with source i and target j in I. The extension of diagrams is

understood as usual. Two diagrams D1, D2 disjointly extend D if both D1 and D2 extend D

and the intersection of their shapes is the shape of D. If this is the case, the union D1 ∪D2

is well defined. As usual, disjointness of diagram extensions may be ensured by choosing

the new nodes and edges appropriately.

For any diagram D : I → Sig, a family M = 〈Mi〉i∈|D| of models is called D-coherent

if for each i ∈ |D|, Mi ∈ |Mod(D(i))|, and for each m: i → j in I, Mi = Mj D(m); this

is extended to |D|-indexed families of model morphisms in the obvious way. Given a

† Baumeister et al. (2004) makes a distinction between the static semantics of architectural specifications, which

ignores dependencies between terms and hence does not contribute to the analysis of amalgamability, and

the extended static semantics.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 338

D-coherent family M = 〈Mi〉i∈|D|, we write Mi for Mi, i ∈ |D|. We let Mod(D) be the

category with D-coherent model families as objects and D-coherent families of model

morphisms as morphisms (with the obvious component-wise composition).

D ensures amalgamability for D′, where D′ extends D, if any D-coherent model family

can be uniquely extended to a D′-coherent model family. It is easy to see that Definition 2.1

is in fact a special case of this notion†.

An extended static context Cst = (Pst ,Bst , D), in which Casl phrases are elaborated,

consists of a static context for parametrised units Pst mapping parametrised unit names

to signature morphisms (from the parameter to the result signature), a global context

diagram D, and a static context for non-parametrised units Bst mapping non-parametrised

unit names to nodes in D. From any such extended static context we can extract a static

context ctx (Cst) = (Pst ,Bst) by preserving the static context Pst for parametrised units and

building a direct static context Bst for non-parametrised units that extracts their signatures

from Bst and D (that is, Bst (U) = DBst (U)). C�
st stands for the ‘empty’ extended static

context that consists of the empty parametrised and non-parametrised unit contexts, and

of the empty context diagram. Extension (or inclusion) of extended static contexts, written

Cst ⊆ C′
st , is defined component-wise, as expected. We refer to unit names in dom(Pst)

as parametrised unit names in Cst , and to those in dom(Bst) as non-parameterised unit

names in Cst .

Figure 1 gives rules to derive semantic judgments of the following forms:

— � ASP �� ((Pst ,Bst),Σ)

The architectural specification ASP yields a static context describing the units declared

or defined in ASP , and the signature of the result unit.

— � UDD+ �� Cst

The sequence UDD+ of unit declarations and definitions yields an extended static

context Cst .

— Cst � UDD �� C′
st

The unit declaration or definition UDD in the extended static context Cst yields a new

extended static context C′
st extending Cst .

— (Pst ,Bst , D) � T �� (i, D′)

The unit term T in the extended static context (Pst ,Bst , D) yields a new context

diagram D′ extending D and a node i in D′ that carries the signature of the unit

term T .

To follow the rules for unit application and amalgamation, it may be helpful to look at

Figure 2, where the corresponding global context diagrams are sketched.

It is worth noting that in the rule for parametrised unit application, the requirement

that D′ ensures amalgamability for D′′ is weaker than requiring that the pushout used

† In spite of Lemma 2.2 and its obvious generalisation to colimits of arbitrary signature diagrams, we do not

know whether in the framework of Casl it is always the case that if D ensures amalgamability for D′, then

the similar property also holds for D-coherent families of model morphisms; we conjecture that this is the

case. However, in this paper we need only a few special cases of this, where D′ arises from D essentially by

adding a surjective cone, and so a proof similar to that for Lemma 2.2 goes through; the same is true for a

similar generalisation of Lemma 5.6 below.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 339

Fig. 1. Extended static semantics.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 340

Fig. 2. Unit application and amalgamation diagrams.

in this rule ensures amalgamability: even if it does not, the global context in which the

application is carried out may impose additional constraints on the models involved that

ensure amalgamability.

Note also that the rule for unit amalgamation does not require that the amalgamated

units have common signatures: the resulting unit will be built over the union of the two

signatures, provided this union is defined† and that the two units built can be uniquely

amalgamated to yield a unit over this union signature. This is ensured by the final

condition in the rule, which requires that the dependencies between units captured in the

diagram D1 ∪ D2 ensure amalgamability of the two models involved. This requires, in

particular, that these models share the interpretation of the symbols in the intersection of

their signatures.

In the model semantics, we work with contexts C that are classes of unit environments

E . Unit environments map unit names to either local constructions (for parametrised

units) or to individual models (for non-parametrised units). Unit evaluators UEv map unit

environments to models.

Given an extended static context Cst = (Pst ,Bst , D), a unit environment E fits Cst if:

— for each U ∈ dom(Pst), E (U) is a local construction along Pst (U); and

— there is a D-coherent family of models M ∈ |Mod(D)| such that for each U ∈ dom(Bst),

E (U) = MBst (U) – we say then that M witnesses E in Cst .

We write ucx (Cst) for the class of all unit environments that fit Cst . Note that if Cst ⊆ C′
st ,

then ucx (C′
st) ⊆ ucx (Cst).

Two unit environments E1,E2 ∈ ucx (Cst) coincide in Cst , written E1 =Cst
E2, if for all

(parametrised and non-parametrised) unit names U in Cst , E1(U) = E2(U).

† The union is defined in the obvious, component-wise manner, with the subsort preorder given as the transitive

closure of the two preorders in the component signatures – however, this may fail to yield a Casl signature

due to overloading of operation and predicate names that may arise, which we have disallowed here. The

union may also fail to be defined with Casl’s treatment of overloading, albeit for more subtle reasons.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 341

Fig. 3. Literal model semantics.

Proposition 4.1. If E1 =Cst
E2, any family that witnesses E1 in Cst , also witnesses E2 in

Cst .

A context C ⊆ ucx (Cst) is closed in Cst if for all unit environments E1 ∈ C and E2 ∈
ucx (Cst), we have E1 =Cst

E2 implies E2 ∈ C.

C� = ucx (C�
st) is the context that constrains no unit name. Given a context C, a unit

name U and a class of units V, we write C × {U �→ V} for {E + {U �→ V } | E ∈ C,V ∈
V}, where E + {U �→ V } maps U to V and otherwise behaves like E .

Figure 3 gives rules to derive semantic judgments of the following forms:

— � ASP ⇒ (C,UEv)

The architectural specification ASP yields a context C with environments providing

interpretations for the units declared and defined in ASP , and a unit evaluator that

for each such environment determines the result unit.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 342

— � UDD+ ⇒ C
The sequence UDD+ of unit declarations and definitions yields a context C.

— C � UDD ⇒ C′

The unit declaration or definition UDD in the context C yields a new context C′.

— C � T ⇒ UEv

The unit term T in the context C yields a unit evaluator UEv that when given

an environment (in C) yields the unit resulting from the evaluation of T in this

environment.

The rules rely on a successful run of the extended static semantics; this allows us to

use the static concepts and notation introduced there. The crossed-out premises in the

rules are crucial properties that are guaranteed to hold for phrases for which the extended

static semantics yields a result: this is a consequence of the following theorem.

Theorem 4.2. The following invariants link the extended static semantics and model

semantics:

(1) If � ASP �� ((Pst ,Bst),Σ) and � ASP ⇒ (C,UEv), then there is an extended static

context Cst such that ctx (Cst) = (Pst ,Bst) and C ⊆ ucx (Cst), C is closed in Cst , and

for each E ∈ C, E ∈ dom(UEv) and UEv (E) ∈ |Mod(Σ)|. Moreover, for E1,E2 ∈ C,

if E1 =Cst
E2, then UEv (E1) = UEv (E2).

(2) If � UDD+ �� Cst and � UDD+ ⇒ C, then C ⊆ ucx (Cst) and C is closed in Cst .

(3) If Cst � UDD �� C′
st and C � UDD ⇒ C′, where C ⊆ ucx (Cst) and C is closed in Cst ,

then C′ ⊆ ucx (C′
st), C′ ⊆ C, C′ is closed in C′

st and for each unit environment E ∈ C
and model family M that witnesses E in Cst , there is E ′ ∈ C′ such that E =Cst

E ′

and an extension of M witnesses E ′ in C′
st .

(4) If Cst � T �� (i, D′) and C � T ⇒ UEv with C ⊆ ucx (Cst), then for each unit

environment E ∈ C and model family M that witnesses E in Cst , there is an extension

of M to a D′-coherent model family M′ ∈ |Mod(D′)| such that M′
i = UEv (E).

Moreover, for E1,E2 ∈ C, if E1 =Cst
E2, then UEv (E1) = UEv (E2).

Proof.

(4) We use induction on the structure of the unit term. The fact that the value of the

unit evaluator on an environment does not change when it does not depend on

the values in the environment not mentioned in the static context (for E1,E2 ∈ C,

if E1 =Cst
E2, then UEv (E1) = UEv (E2)) follows easily in each case by using the

induction hypothesis.

The case of unit name is trivial, and the case of unit reduct is very easy.

Consider the case of unit application, when the unit term is of the form U [T fit γ].

Adjusting the notation slightly to fit the corresponding rules (for unit application) in

Figures 1 and 3 (we will rely implicitly below on the notation used in these rules),

assume that C ⊆ ucx (Cst), Cst � U [T fit γ] �� (l, D′′) and C � U [T fit γ] ⇒ UEv ′,

where UEv ′(E) = UEv (E) ⊕ E (U)(UEv (E) γ) for E ∈ C. Consequently, all the

premises of the corresponding rules (for unit application) in Figures 1 and 3 must

hold. Let E ∈ C and M be a model family that witnesses E in Cst . By the induction

hypothesis, there is an extension MT ∈ |Mod(D)| of M such that MT
i = UEv (E).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 343

Let M′ extend MT by putting M′
j = UEv (E) γ and M′

k = E (U)(UEv (E) γ) (since

UEv (E) γ ∈ dom(E (U)), the latter is well defined). Then M′ ∈ |Mod(D′)|. Since D′

ensures amalgamability for D′′, we have M′ uniquely extends to M′′ ∈ |Mod(D′′)|,
yielding M′′

l ι′ = M′
i and M′′

l γ′ = M′
k , that is, M′′

l = UEv (E) ⊕ E (U)(UEv (E) γ),

which completes the proof for this case.

For the case of unit amalgamation, when the unit term is of the form T1 and T2,

assume C ⊆ ucx (Cst), Cst � T1 and T2 �� (j, D′) and C � T1 and T2 ⇒ UEv , where

Cst = (Pst ,Bst , D). Consequently, all the premises of the corresponding rules (for unit

amalgamation) in Figures 1 and 3 must hold; we refer below to the notation used in

the rules. Let E ∈ C and M be a model family that witnesses E in Cst . By the induction

hypothesis, there are extensions M1 ∈ |Mod(D1)| and M2 ∈ |Mod(D2)| of M such

that M1
i1

= UEv 1(E) and M2
i2

= UEv 2(E). Since D1 and D2 are disjoint extensions of

D, we have M1 ∪ M2 is a (D1 ∪ D2)-coherent family of models. Now, since D1 ∪ D2

ensures amalgamability for D′, we have M1 ∪ M2 extends uniquely to a D′-coherent

family M′ ∈ |Mod(D′)|, necessarily with M′
j D′(m1) = M1

i1
and M′

j D′(m2) = M2
i2
, that is,

M′
j = UEv (E), which completes the proof of item (4).

(3) This follows by inspection of the rules; the cases of unit declarations are easy. The

case of unit definitions relies on item (4) as follows. Assume that C ⊆ ucx (Cst) and C
is closed in Cst , Cst = (Pst ,Bst , D). To derive Cst � UDD �� C′

st and C � UDD ⇒ C′,

where UDD is of the form U = T , we must have (Pst ,Bst , D) � T �� (i, D′),

U �∈ (dom(Pst) ∪ dom(Bst)), and C � T ⇒ UEv , with C′
st = (Pst ,Bst + {U �→ i}, D′)

and C′ = {E + {U �→ UEv (E)} | E ∈ C}. Now, for each E ∈ C and model

family M ∈ |Mod(D)| that witnesses E in Cst , by item (4) there exists an extension

M′ ∈ |Mod(D′)| of M with M′
i = UEv (E). M′ witnesses E + {U �→ UEv (E)} in

C′
st . Consequently, we have C′ ⊆ ucx (C′

st). Moreover, since C is closed in Cst and

U �∈ (dom(Pst) ∪ dom(Bst)), we have (E + {U �→ UEv (E)) ∈ C, which shows C′ ⊆ C.

Finally, C′ is closed in C′
st since C is closed in Cst .

(2) This follows from item (3) by an obvious induction on the length of the sequence of

unit declarations and definitions.

(1) This follows from items (2) and (4) by inspection of the rules. Namely, to derive

the assumptions for ASP of the form arch spec UDD+ result T , we must have

� UDD+ �� Cst and � UDD+ ⇒ C, as well as Cst � T �� (i, D) and C � T ⇒ UEv ,

with (Pst ,Bst) = ctx (Cst) and Σ = D(i). The thesis now follows directly from items (2)

and (4).

The invariants in Theorem 4.2 ensure that the crossed out premises of the unit amalga-

mation rule and of the parametrised unit application rule in the literal model semantics

follow from the other premises of the rule and the premises of the corresponding rules of

the extended static semantics.

5. Observational equivalence for Casl models

Up to this point we have followed the usual interpretation for basic specifications given as

sets of axioms over some signature, which is to require models of such a basic specification

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 344

to satisfy all of its axioms. This is what is captured by the notion of literal correctness

(Definition 3.2) and the literal model semantics of Figure 3. However, in many practical

examples this turns out to be overly restrictive. The point is that only a subset of the

sorts in the signature of a specification are typically intended to be directly observable,

while the others are treated as internal with properties of their elements made visible only

through observations: terms producing a result of an observable sort, and predicates. Often

there are models that do not satisfy the axioms ‘literally’, but in which all observations

nevertheless deliver the required results. This calls for a relaxation of the interpretation

of specifications, as advocated in numerous ‘observational’ or ‘behavioural’ approaches,

going back at least to Giarratana et al. (1976) and Reichel (1981). Two general approaches

are possible:

— introduce an ‘internal’ observational indistinguishability relation between elements in

the carrier of each model, and re-interpret equality in the axioms as indistinguishability;

or

— introduce an ‘external’ observational equivalence relation on models over each signature,

and re-interpret specifications by closing their class of models under such equivalence.

It turns out that under some acceptable technical conditions, these two approaches are

closely related and coincide for most basic specifications (Bidoit et al. 1995; Bidoit and

Tarlecki 1996). We follow the second approach here.

From now on we will assume that the set of observable sorts is empty and so

predicates are the only observations. Because of this decision, there is no need to

parametrise the definitions below by a chosen set of observable sorts. This departs from

standard approaches to observational equivalence in the usual algebraic frameworks,

where choosing a non-empty set of observable sorts is crucial if we are to have any

observations at all. Moreover, it is appropriate for this set to vary in the process of

modular development, where some sorts must be locally considered as observable (for

example, the parameter sorts in specifications of local constructions). The former is taken

care of by assuming that appropriate predicates are introduced into the specifications

considered. For instance, to make a generated sort observable, it is enough to introduce

the ‘equality predicate’ on this sort into the specification†. The latter will be achieved in

a technically different way here, see Definition 6.9 below and the subsequent comment.

We should also note here that for each Casl signature Σ and sort s in Σ we have

s � s, so we also have a predicate ins�s: s, which holds for all its arguments in any Casl

model. This means that given a Σ-term t of sort s, we have ins�s(t) holds if and only if t

has a defined value. Consequently, observing predicates in Casl models covers observing

definedness of terms.

Given a Casl signature Σ, an observation is an atomic predicate formula φ of the form

p(t1, . . . , tn), where p: s1 × · · · × sn is a predicate symbol in Σ# and for i = 1, . . . , n, we have

† Some free datatype definitions in Casl ensure that the new sort is observable even though no equality

predicate is explicitly introduced. This is the case when there is a subsort for each alternative and selectors for

each non-constant constructor. This means that enough observations are available to distinguish between any

two data values, provided the other argument sorts for the constructors are observable (come with enough

observations to distinguish between any data of these sorts).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 345

ti is a Σ#-term of sort si. The observation p(t1, . . . , tn) is closed if all the terms ti, i = 1, . . . , n,

are closed (contain no variables). Given a sort s in Σ, the observation p(t1, . . . , tn) is for

sort s if it contains a unique variable z: s of sort s (and no other variables at all). We will

then often write φ(z) to indicate the variable explicitly, and for a Σ#-term t of sort s, we

write φ(t) for the result of substituting t for z in φ.

Definition 5.1 (Observational equivalence). Given a Casl signature Σ, two Σ-models

M,N ∈ |Mod(Σ)| are observationally equivalent, written M ≡ N, if for all closed

observations φ,

M |= φ ⇐⇒ N |= φ .

It is trivial to see that observational equivalence is indeed an equivalence on Casl models

over any signature Σ.

In the following we will work with a technically different but equivalent definition

of observational equivalence, where the equivalence of two models is ‘witnessed’ by a

relation between them; this has been worked out in detail (for partial algebras without

predicates) in Schoett (1987), cf. ‘simulations’ in Milner (1971) and ‘weak homomorphisms’

in Ginzburg (1968).

Definition 5.2 (Correspondence). Consider a signature Σ. A correspondence between two

Σ-models M,N ∈ |Mod(Σ)|, written ρ:M � N, is a relation ρ ⊆ |M| × |N| that

— is closed under the operations: for f: s1 × . . . × sn → s in Σ#, a1 ∈ |M|s1 , . . . ,

an ∈ |M|sn and b1 ∈ |N|s1 , . . . , bn ∈ |N|sn , if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn , then

fM(a1, . . . , an) is defined if and only if fM(b1, . . . , bn) is defined, and if this is the case,

then (fM(a1, . . . , an), fN(b1, . . . , bn)) ∈ ρs; and

— preserves and reflects the predicates: for p: s1 × . . . × sn in Σ#, a1 ∈ |M|s1 , . . . ,

an ∈ |M|sn and b1 ∈ |N|s1 , . . . , bn ∈ |N|sn , if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn , then

pM(a1, . . . , an) ⇐⇒ pN(b1, . . . , bn).

In the rest of the paper we will rely on the following equivalence without further

mention.

Theorem 5.3. Given a Casl signature Σ, Σ-models M,N ∈ |Mod(Σ)| are observationally

equivalent if and only if there is a correspondence between them.

Proof. Let M ≡ N. Define a relation ρ ⊆ |M| × |N| to contain, for each sort s in Σ,

all and only pairs of the form (tM, tN), for all closed Σ#-terms t of sort s such that the

value of t is defined in both M and N. To check that ρ is a correspondence between M

and N, consider for i = 1, . . . , n, ai ∈ |M|si and bi ∈ |N|si such that (ai, bi) ∈ ρsi , so that

ai = (ti)M and bi = (ti)N for some Σ#-term ti of sort si. Now consider f: s1 × . . . × sn → s

in Σ#. Since M ≡ N, M |= ins�s(f(t1, . . . , tn)) if and only if N |= ins�s(f(t1, . . . , tn)); so,

fM(a1, . . . , an) is defined if and only if fM(b1, . . . , bn) is defined, and if this is the case, then,

by definition, (fM(a1, . . . , an), fN(b1, . . . , bn)) ∈ ρs (since (f(t1, . . . , tn))M = fM(a1, . . . , an)

and (f(t1, . . . , tn))N = fN(b1, . . . , bn)). Similarly, for p: s1 × . . . × sn in Σ#, we have M |=
p(t1, . . . , tn) if and only if N |= p(t1, . . . , tn), which shows the equivalence of pM(a1, . . . , an)

and pN(b1, . . . , bn), and completes the proof of ρ:M � N.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 346

Now consider a correspondence ρ:M � N. Using the correspondence properties, by

simple induction on the term structure, for any closed Σ#-term t, one can prove that

tM is defined if and only if tN is defined, and if this is the case, (tM, tN) ∈ ρ. Now,

given any closed observation p(t1, . . . , tn), by symmetry, it is enough to prove that if

M |= p(t1, . . . , tn), then N |= p(t1, . . . , tn). Suppose M |= p(t1, . . . , tn). Then for i = 1, . . . , n, we

have (ti)M is defined, so (ti)N is defined and ((ti)M, (ti)N) ∈ ρ. Moreover, pM((t1)M, . . . , (tn)M)

holds, so, by the correspondence property, pN((t1)N, . . . , (tn)N) holds as well. Thus N |=
p(t1, . . . , tn).

It is easy to check that isomorphisms (and, in particular, identities) are correspondences

and that the class of correspondences is closed under composition.

Correspondences between Casl models may be replaced by spans of strong homo-

morphisms. Namely, given a span of strong homomorphisms (hM:K → M, hN:K → N),

putting ρ = h−1
M ;hN , that is, ρs = {(hM(c), hN(c)) | c ∈ |K|s} for each sort s in Σ, yields a

correspondence ρ:M � N. In the opposite direction, we have the following proposition.

Proposition 5.4. For any Casl signature Σ, any Σ-models M,N and any correspondence

ρ:M � N, there is a Σ-model K and strong Σ-homomorphisms hM:K → M and hN:K →
N such that ρ = h−1

M ;hN .

Proof. To define K , first put |K|s = ρs ⊆ |M|s × |N|s for each sort s in Σ. The

operations in K are then defined component-wise using the operations in M and N,

respectively. The predicates in K are defined using either the first components and the

predicates in M, or (equivalently) the second components and the predicates in N. The

correspondence properties of ρ ensure that no problems arise, and that the projection

functions hM:K → M and hN:K → N are strong Σ-homomorphisms.

This proposition implies directly that the reduct of a correspondence along a signature

morphism (defined in the obvious way) is a correspondence. More interestingly, this

extends to derived signature morphisms with observable conditions.

Consider a signature Σ. A conditional Σ-term 〈(φi, ti)〉i�0 is observationally sensible if

for all i � 0, we have φi are observers, that is, Boolean combinations of observations. A

derived signature morphism δ: Σ′ → Σ is observationally sensible if it maps Σ′-operations

to observationally sensible terms.

Lemma 5.5. Let δ: Σ′ → Σ be an observationally sensible derived signature morphism,

and let ρ:M � N be a correspondence between Σ-models M,N ∈ |Mod(Σ)|. Then

ρ δ:M δ � N δ is a correspondence also.

It follows that reducts with respect to observationally sensible derived signature morphisms

extend to strong homomorphisms.

The view of correspondences as spans of homomorphisms also leads to an easy

extension to correspondences of the amalgamation property given in Lemma 2.2 for

homomorphisms.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 347

Lemma 5.6. Suppose that the pushout

Σ

Σ1

Σ′

Σ′
1

�
γ

�
ι

�ι′

�
γ′

ensures amalgamability. Then for all correspondences ρ1:M1 � N1 in Mod(Σ1) and

ρ′:M ′ � N ′ in Mod(Σ′) such that ρ1 γ = ρ′
ι there exists a unique correspondence

ρ′
1:M

′
1 � N ′

1 in Mod(Σ′
1) such that ρ′

1 ι′ = ρ1 and ρ′
1 γ′ = ρ′, where M ′

1 = M1 ⊕ M ′ and

N ′
1 = N1 ⊕ N ′.

Proof. A direct proof mimics the proof of Lemma 2.2.

Note though that this does not ensure that amalgamation preserves observational

equivalence.

Counterexample 5.7. Let Σ be a signature with a single sort s, and let Σ1 extend Σ by a

constant a: s. Since there are no predicates in Σ1, all Σ1-models in which the constant a

is defined are observationally equivalent. Let Σ′ extend Σ by a unary predicate p: s; since

there are no closed observations over Σ′, all Σ′-models are observationally equivalent. The

pushout signature of the two extensions of Σ is the signature Σ′
1 with sort s, constant a: s

and predicate p: s. Clearly, not all Σ′
1-models with defined values of a are observationally

equivalent – there is a new closed observation here, namely p(a).

To make the counterexample explicit, let M1 be a Σ1-model with a single element,

|M1|s = {x}, and aM1
= x. Let M ′ and M ′′ be Σ′-models such that M ′

Σ = M ′′
Σ = M1 Σ

and pM ′ (x) holds while pM ′′ (x) does not hold. We still have M ′ ≡ M ′′ (and trivially

M1 ≡ M1). However, (M1 ⊕ M ′) �≡ (M1 ⊕ M ′′).

Observational equivalence can also be characterised in terms of internal indistinguisha-

bility. Namely, consider a Casl signature Σ and Σ-model M ∈ |Mod(Σ)|. Let 〈M〉 be the

generated submodel of M having all and only the defined values in M of closed Σ#-terms

as elements of the carrier. For any sort s in Σ, given a, a′ ∈ |〈M〉|s, we say that a and a′

are observationally indistinguishable in M, written a ≈M a′, if for all observations φ for

sort s,

M[z �→ a] |= φ ⇐⇒ N[z �→ a′] |= φ .

Thus defined, observational indistinguishability on M, ≈M ⊆ |〈M〉| × |〈M〉|, is the largest

strong congruence on 〈M〉. The observational quotient of M, written M/≈, is the quotient

of 〈M〉 by ≈M .

Theorem 5.8. Consider a Casl signature Σ. Two Σ-models are observationally equivalent

if and only if their observational quotients are isomorphic.

Proof. For all Casl models M, since there is a natural strong homomorphism from

〈M〉 to M/≈, which is a correspondence between M and M/≈, we have that M ≡ M/≈.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 348

Therefore, given two Casl models M,N ∈ |Mod(Σ)| with isomorphic observational

quotients M/≈ and N/≈, we get M ≡ N.

Now suppose that M ≡ N. Then for any closed Σ#-term t of a sort s, the value tM of

t in M is defined if and only if the value tN of t in N is defined. Moreover, if this is the

case, then for any observation φ(z) for sort s

M[z �→ tM] |= φ(z) ⇐⇒ M |= φ(t) ⇐⇒ N |= φ(t) ⇐⇒ N[z �→ tN] |= φ(z) .

It follows that for any closed Σ#-terms t and t′ of a common sort s, if their values are

defined in M (and hence in N as well)

tM ≈M t′M ⇐⇒ tN ≈N t′N .

Consequently, a function that for each closed Σ#-term t with defined value in M maps

the equivalence class of tM with respect to ≈M to the equivalence class of tN with respect

to ≈N is a well-defined, bijective, strong homomorphism, and hence an isomorphism,

between M/≈ and N/≈.

Corollary 5.9. Consider a Casl signature Σ. Σ-models M and N are observationally

equivalent if and only if they have submodels with common strong quotients, that is,

there exist submodels M ′ of M and N ′ of N and strong congruences
 on M ′ and
′ on

N ′ such that the quotients of M ′ by
 and of N ′ by
′ are isomorphic.

6. Observational correctness and stability

The observational concepts introduced in Section 5 above motivate a new interpretation

of specifications. For any specification SP with Sig[SP] = Σ, we define its observational

interpretation by abstracting from the standard interpretation as follows:

[[SP]]≡ = {M ∈ |Mod(Σ)| | M ≡ N for some N ∈ [[SP]]}.

Given this, the most obvious way to re-interpret the correctness of local construc-

tions (Definition 3.2) in order to take advantage of the observational interpretation

of specifications is to modify the earlier definition by requiring [[SP]]≡ ⊆ dom(F) and

F([[SP]]≡) ⊆ [[SP ′]]≡. This works, but misses a crucial point: when using a realisation of

a specification, we would like to pretend that it satisfies the specification literally, even

if when we actually implement it, we are permitted to supply a model that is correct

only up to observational equivalence. This leads to a different notion of observational

correctness of a local construction, for which we would just require [[SP]] ⊆ dom(F) and

F([[SP]]) ⊆ [[SP ′]]≡. This relaxation has a price: observationally correct local constructions

do not automatically compose! The crucial insight required for resolving this problem

came from Schoett (1987), who noticed that well-behaved constructions satisfy the stability

property described in the following section.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 349

6.1. Stability

Definition 6.1 (Stability). A construction F: |Mod(Σ)| ⇀ |Mod(Σ′)| is stable if it preserves

observational equivalence, that is, for any models M,N ∈ |Mod(Σ)| such that M ≡ N, if

M ∈ dom(F), then N ∈ dom(F) and F(M) ≡ F(N).

The rest of this subsection is devoted to an analysis of conditions that ensure the stability

of constructions when they arise through the use of local constructions, as in Section 3.

The problem is that we want to restrict attention to conditions that are essentially local

to the local constructions involved, rather than conditions that refer to all the possible

global contexts in which such a construction can be used.

We will start with the local version of the stability property for local constructions,

aiming for the stability of any use of local constructions in an admissible global context.

Definition 6.2 (Local stability). A local construction F along ι: Σ → Σ′ is locally stable

if for any Σ-models M,N ∈ |Mod(Σ)| and correspondence ρ:M � N, M ∈ dom(F) if

and only if N ∈ dom(F) and, moreover, if this is the case, there exists a correspondence

ρ′:F(M) � F(N) that extends ρ (that is, ρ′
ι = ρ).

Clearly, local stability implies stability. Trivial identity constructions are locally stable,

and composition of locally stable constructions is locally stable as well. Local stability

is also preserved under observational equivalence of constructions, which is defined as

follows.

Local constructions F1, F2 along ι: Σ → Σ′ are observationally equivalent, written F1 ≡
F2, if dom(F1) = dom(F2) and for each M ∈ dom(F1) there exists a correspondence

ρ:F1(M) � F2(M) with reduct ρ ι being the identity on M.

Proposition 6.3. Let F1 and F2 be observationally equivalent local constructions along

ι: Σ → Σ′. Then, if F1 is locally stable, so is F2.

Proof. Consider models M,N ∈ |Mod(Σ)| with correspondence ρ:M � N. Suppose

M ∈ dom(F2). Then M ∈ dom(F1), and so N ∈ dom(F1) = dom(F2). Since F1 is locally

stable, there is a correspondence ρ′:F1(M) � F1(N) with ρ′
ι = ρ. From F1 ≡ F2, we

get correspondences ρM:F2(M) � F1(M) and ρN:F1(N) � F2(N) with the identity reducts

ρM ι and ρN ι. This yields a correspondence (ρM;ρ′;ρN):F2(M) � F2(N) with reduct

(ρM;ρ′;ρN) ι = ρ.

Most crucially though, local stability (unlike stability in general) is preserved under

lifting local constructions to a global application context, which is, as usual, given by the

following pushout diagram:

Σ

ΣG

Σ′

Σ′
G

�
γ

�
ι

�ι′

�
γ′

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 350

Lemma 6.4. If F is a locally stable construction along ι: Σ → Σ′, then for any signa-

ture ΣG and admissible fitting morphism γ: Σ → ΣG, the induced global construction

FG: |Mod(ΣG)| ⇀ |Mod(Σ′
G)| along ι′: ΣG → Σ′

G is locally stable as well.

Proof. Consider a correspondence ρG: G � H between models G,H ∈ |Mod(ΣG)|. Its

reduct is a correspondence ρG γ: G γ � H γ , so G γ ∈ dom(F) if and only if H γ ∈ dom(F),

and consequently G ∈ dom(FG) if and only if H ∈ dom(FG). Suppose G γ ∈ dom(F). Then

there exists a correspondence ρ′:F(G γ) � F(H γ) with ρ′
ι = ρG γ . Amalgamation of ρG

and ρ′ yields a correspondence ρ′
G:FG(G) � FG(H) such that ρ′

G ι′ = ρG, see Lemma 5.6.

Corollary 6.5. If F is a locally stable construction along ι: Σ → Σ′, then for any

signature ΣG and admissible fitting morphism γ: Σ → ΣG, the induced global construction

FG: |Mod(ΣG)| ⇀ |Mod(Σ′
G)| along ι′: ΣG → Σ′

G is stable.

This establishes a sufficient local condition (local stability) that ensures that a local

construction induces a stable global construction in every possible context of use. Imposing

an additional requirement on the correspondences involved yields an auxiliary notion,

which we will use to prove that this is both sufficient and necessary.

Given a Casl signature Σ, a correspondence ρ:M � N is closed if whenever (a, b) ∈ ρ,

(a′, b) ∈ ρ and (a, b′) ∈ ρ, then (a′, b′) ∈ ρ. The following proposition is easy.

Proposition 6.6. For any correspondence ρ:M � N there is a least closed correspondence

ρ̂:M � N that contains ρ.

Consequently, two Σ-models are behaviourally equivalent if and only if there is a closed

correspondence between them.

Theorem 6.7. For any local construction F along ι: Σ → Σ′, the following conditions are

equivalent:

(1) F is locally stable.

(2) F induces a stable global construction in every possible (also infinitary) context of

use, that is, for every admissible fitting morphism γ: Σ → ΣG, the induced global

construction FG: |Mod(ΣG)| ⇀ |Mod(Σ′
G)| along ι′: ΣG → Σ′

G is stable.

(3) F extends closed correspondences, that is, for every closed correspondence ρ̂:M � N

in Mod(Σ), M ∈ dom(F) if and only if N ∈ dom(F), and if this is the case, there

exists a closed correspondence ̂ρ′:F(M) � F(N) in Mod(Σ′) that extends ρ̂ (that is,
̂ρ′

ι = ρ̂).

Proof.

(1) =⇒ (2) See Corollary 6.5.

(2) =⇒ (3) Consider a closed correspondence ρ̂:M � N in Mod(Σ). Construct the

extension ΣG of Σ by adding

— for each sort s in Σ and (a, b) ∈ ρ̂s, a (total) constant !a,b,s: s,

— for each sort s in Σ and b ∈ |N|s, a predicate ?b,s: s, and

— for each sort s in Σ, a predicate ?s: s,

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 351

and let γ: Σ → ΣG be the signature inclusion. The admissibility of γ is easy to check.

Now construct the following expansions MG and NG of M and N, respectively:

— for each sort s in Σ and (a, b) ∈ ρ̂s, !a,b,sMG
= a and !a,b,sNG

= b;

— for each sort s in Σ and b ∈ |N|s, ?b,sMG
(a) holds if and only if (a, b) ∈ ρ̂s; ?b,sNG

(b′)

holds if and only if there exists a ∈ |M|s such that (a, b) ∈ ρ̂s and (a, b′) ∈ ρ̂s;

— for each sort s in Σ and a ∈ |M|s, ?sMG
(a) holds, and for each b ∈ |N|s ?sNG

(b) holds

if and only if there exists a ∈ |M|s such that (a, b) ∈ ρ̂s.

It is easy to check that ρ̂:MG � NG is a correspondence: closedness of ρ̂:M � N is

needed to establish that ρ̂ preserves and reflects the ?b,s predicates. Moreover, ρ̂ is

the only correspondence between MG and NG: any such correspondence includes ρ̂

because it must preserve the !a,b,s constants, and it is included in ρ̂ because it must

preserve and reflect the ?b,s and ?s predicates.

Hence, MG ∈ dom(FG) if and only if NG ∈ dom(FG). So we also have M ∈ dom(F)

if and only if N ∈ dom(F). Moreover, if this is the case, there is a correspon-

dence ρG:FG(MG) � FG(NG) in Mod(Σ′
G), and the uniqueness of the correspondence

ρ̂:MG � NG in Mod(ΣG) implies that ρG ι′ = ρ̂. Consider the least closed correspon-

dence ρ̂G:FG(MG) � FG(NG) that includes ρG. Then we also have ρ̂G ι′ = ρ̂, so we

obtain ρ̂G γ′:F(M) � F(N) with (ρ̂G γ′) ι = ρ̂.

(3) =⇒ (1) Consider a correspondence ρ:M � N in Mod(Σ). By Proposition 5.4, we

have a Σ-model K and strong Σ-homomorphisms hM:K → M and hN:K → N such

that ρ = h−1
M ;hN . Since h−1

M and hN are closed correspondences, by (3), M ∈ dom(F)

if and only if K ∈ dom(F) if and only if N ∈ dom(F), and if this is the case, we

have correspondences ρM:F(M) � F(K) and ρN:F(K) � F(N) that extend h−1
M and

hN , respectively. Then the correspondence ρM;ρN:F(M) � F(N) extends ρ.

The following is a corollary of Lemma 5.5.

Corollary 6.8. Let δ: Σ′ → Σ be an observationally sensible derived signature mor-

phism and ι: Σ → Σ′ be a signature morphism such that ι;δ = idΣ. Then the reduct

δ: |Mod(Σ)| → |Mod(Σ′)| is a local construction that is locally stable.

The above corollary supports the point put forward in Schoett (1987) that stable

constructions are those that respect modularity in the software construction process. That

is, such constructions can use the components provided by their imported parameters, but

they cannot take advantage of their particular internal properties. This is the point of the

requirement that δ should be observationally sensible: any branching in the code must

be governed by directly observable properties. This turns (local) stability into a directive

for language design, rather than a condition to be checked on a case-by-case basis: in a

language with good modularisation facilities, all constructions that one can code should

be locally stable.

6.2. Observational correctness

We now turn again to the issue of correctness of local constructions with respect to given

specifications.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 352

Definition 6.9 (Observational correctness). We say a local construction F along ι:

Sig[SP] → Sig[SP ′] is observationally correct with respect to SP and SP ′ if for every

model M ∈ [[SP]], we have M ∈ dom(F) and there exists a model M ′ ∈ [[SP ′]] and

correspondence ρ′:M ′ � F(M) such that ρ′
ι is the identity.

We write [[SP
ι−→SP ′]]≡ for the class of all locally stable constructions along ι that are

observationally correct with respect to SP and SP ′.

By imposing the restriction in this definition that ρ′ is the identity on the carriers of the

parameter sorts, we have in fact ‘locally’ introduced a set of sorts that act as directly

observable for the purposes of verification of the local construction considered.

It follows that if F ∈ [[SP
ι−→SP ′]]≡, there is some F ′ ∈ [[SP

ι−→SP ′]] such that

dom(F ′) = dom(F), and for each M ∈ [[SP]], there is a correspondence ρ:F ′(M) � F(M)

that is the identity on sorts of the form ι(s) for s in Σ. However, in general, [[SP
ι−→SP ′]] �⊆

[[SP
ι−→SP ′]]≡, as literally correct local constructions need not be stable. Moreover, it may

happen that there are no stable observationally correct constructions, even if there are

literally correct ones: that is, we may have [[SP
ι−→SP ′]]≡ = � even if [[SP

ι−→SP ′]] �= �.

This was, perhaps, first pointed out in Bernot (1987), though in a different framework.

Counterexample 6.10. Let SP1 have a sort s with two constants a, b: s, and let SP2 enrich

SP1 by a new sort o with predicate p : o × o, two (total) constants c, d: o and axiom

p(c, d) ⇐⇒ a = b. Then [[SP1 → SP2]] is non-empty, with any construction in it mapping

models satisfying a = b to those that satisfy p(c, d), and models satisfying a �= b to those

that do not satisfy p(c, d). But none of these constructions is stable!

To see this, consider any construction F ∈ [[SP1
ι−→SP2]], ‘singleton’ model M ∈ [[SP1]]

(where aM = bM) and two-element model N ∈ [[SP2]] with aN �= bN . Clearly, M ≡ N.

However, there is no correspondence between F(M) and F(N): it would have to link

cF(M) with cF(N) and dF(M) with dF(N), which is impossible since F(M) |= p(c, d) while

F(N) �|= p(c, d).

The crucial issue here is how specifications of local constructions can be used when the

local constructions are lifted to an admissible global context, which is captured by the

following pushout diagram:

Sig[SP]

ΣG

Sig[SP ′]

Σ′
G

�
γ

�
ι

�ι′

�
γ′

Lemma 6.11. Consider a local construction F along ι: Sig[SP] → Sig[SP ′] that is

observationally correct with respect to SP and SP ′, F ∈ [[SP
ι−→SP ′]]≡. Then, for

every global signature ΣG and admissible fitting morphism γ: Sig[SP] → ΣG, and every

G ∈ [[SP with γ]], we have G ∈ dom(FG), and there is some G′ ∈ [[SP ′ with γ′]] such that

G′
ι′ = G and G′ ≡ FG(G).

Proof. We have G γ ∈ [[SP]], so G γ ∈ dom(F) and there is M ′ ∈ [[SP ′]] and a corres-

pondence ρ′:M ′ � F(G γ) with identity reduct ρ′
ι. Consider the Σ′

G-model G′ = G ⊕ M ′.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 353

Then the identity idG: G � G and ρ′:M ′ � F(G γ) amalgamate to a correspondence

ρ′
G: G′ � FG(G), which proves FG(G) ≡ G′ ∈ [[SP ′ with γ′]].

If F ∈ [[SP
ι−→SP ′]]≡ and γ: Sig[SP] → ΣG is admissible, then, by Lemma 6.11, we obtain

[[SP with γ]] ⊆ dom(FG) and FG([[SP with γ]]) ⊆ [[SP ′ with γ′]]≡, and by Corollary 6.5,

FG is stable. Given two ‘global’ specifications SPG with Sig[SPG] = ΣG and SP ′
G with

Sig[SP ′
G] = Σ′

G, we have FG ∈ [[SPG
ι′−→SP ′

G]]≡ whenever [[SPG]] ⊆ [[SP with γ]]≡ and

[[SP ′ with γ′]] ⊆ [[SP ′
G]]≡. But while the former requirement is quite acceptable, the latter

is in fact impossible to achieve in practice since it implicitly requires that all the global

requirements must follow (up to observational equivalence) from the result specification

for the local construction, independent of the argument. More practical requirements are

obtained by generalising Theorem 3.4 to the observational setting as follows.

Theorem 6.12. Assuming a local construction F ∈ [[SP
ι−→SP ′]]≡, a specification SPG

with admissible fitting morphism γ: Sig[SP] → Sig[SPG], and a specification SP ′
G with

Sig[SP ′
G] = Σ′

G, if

(i) [[SPG]] ⊆ [[SPG and (SP with γ)]]≡ and

(ii) [[(SP ′ with γ′) and (SPG with ι′)]] ⊆ [[SP ′
G]]≡,

then for every G ∈ [[SPG]], we have G ∈ dom(FG) and FG(G) ∈ [[SP ′
G]]≡, hence FG ∈

[[SPG
ι′−→SP ′

G]]≡.

Proof. Let G ∈ [[SPG]]. Then G ≡ H for some H ∈ [[SPG]] ∩ [[SP with γ]] by (i).

By Lemma 6.11, FG(H) ≡ H′ for some H′ ∈ [[SP ′ with γ′]] with H′
ι′ = H ∈ [[SPG]].

Hence H′ ∈ [[SP ′
G]]≡ by (ii). By stability of FG (Corollary 6.5), G ∈ dom(FG) and

FG(G) ≡ FG(H) ≡ H′, so FG(G) ∈ [[SP ′
G]]≡. This completes the proof, since FG is locally

stable by Lemma 6.4.

Requirement (i) is perhaps the only surprising assumption in this theorem. Note though

that it follows straightforwardly from the inclusion of literal model classes [[SPG]] ⊆
[[SP with γ]] (or, equivalently, [[SPG]] γ ⊆ [[SP]]), which is often easiest to verify. However,

condition (i) is strictly stronger in general than the perhaps more expected [[SPG]] ⊆
[[SP with γ]]≡. This weaker condition turns out to be sufficient (and is in fact equivalent

to (i)) if we also assume that the two specifications involved are behaviourally consistent

(Bidoit et al. 1995), that is, closed under observational quotients. When this is not the

case, the use of this weaker condition would have to be paid for by a stronger version

of (ii):

[[SP ′ with γ′]]≡ ∩ [[SPG with ι′]] ⊆ [[SP ′
G]]≡,

which seems even less convenient to use than (i). Overall, we need a way to pass

information on the global context from SPG to SP ′
G independently from the observational

interpretation of the local construction and its correctness, and this must result in some

inconvenience of verification on either the parameter or the result side.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 354

Fig. 4. Observational model semantics – the modified rules.

7. Observational interpretation of architectural specifications

In this section we discuss an observational interpretation of the architectural specifications

introduced in Section 4. The extended static semantics remains unchanged – observational

interpretation of specifications does not affect their static properties. We provide, however,

a new observational model semantics, with judgments written as � ≡
=⇒ .

To begin with, the effect of unit declarations has to be modified, taking into account

observational interpretation of the specifications involved, as discussed in Sections 5 and 6.

The new rules follow in Figure 4. No other modifications are necessary: all the remaining

rules are the same for the observational and literal model semantics. This should not

be surprising: the interpretation of the constructs on unit terms remains the same, all

we change is the interpretation of unit specifications. Moreover, the observational model

semantics can be linked to the extended static semantics in exactly the same way as in

the case of the literal model semantics: the invariants stated in Theorem 4.2 carry over

without change. We will not repeat here either the unmodified rules, or Theorem 4.2 for

the observational model semantics.

The fact that nearly all the rules remain the same does not mean that the two semantics

quite coincide: at the point in the model semantics where verification is performed,

the resulting verification conditions for literal and observational model semantics differ.

Namely, in the rule for parametrised unit application, the premise

for each E ∈ C,UEv (E) γ ∈ dom(E (U))

checks whether what we can conclude about the argument ensures that it is indeed in

the domain of the parametrised unit. Suppose the corresponding unit declaration was

U : SP1
ι−→SP2. Then in the literal model semantics this requirement reduces to

for each E ∈ C,UEv (E) γ ∈ [[SP1]] .

Now, in the observational model semantics, this is replaced by a more permissive condition

(since the parametrised units considered are locally stable, their domains are closed under

observational equivalence):

for each E ∈ C,UEv (E) γ ∈ [[SP1]]≡ .

Of course, the situation is complicated by the fact that the contexts C from which

environments are taken are different in the two semantics. In the simplest case, where

the argument T is given as a unit name previously declared with a specification SP , for

the literal model semantics the above verification condition amounts to [[SP]] ⊆ [[SP1]],

while for the observational model semantics we get, as expected, [[SP]] ⊆ [[SP1]]≡ (which

is equivalent to [[SP]]≡ ⊆ [[SP1]]≡).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 355

This relaxation of verification conditions is not of merely theoretical interest: it is not

difficult to find statically correct architectural specifications ASP (that is, � ASP �� (Cst ,Σ)

for some extended static context Cst and signature Σ) that are observationally correct

(that is, � ASP
≡
=⇒ (C�,UEv�) for some unit context C� and evaluator UEv�) but are

not literally correct (that is, for no unit context C and evaluator UEv can we derive

� ASP ⇒ (C,UEv)). For instance, along the lines of the discussion above, one may take

arch spec ASP =

units U : SP 1
ι−→SP 2;

T : SP

result U [T]

where Sig[SP] = Sig[SP1], [[SP]] ⊆ [[SP1]]≡ but [[SP]] �⊆ [[SP1]].

A complete study of verification conditions for architectural specifications is beyond the

scope of this paper; see Hoffman (2001) and Mossakowski et al. (2004) for work in this

direction, which still has to be combined with the observational interpretation as given

by the semantics here and presented in the simpler setting of Section 6. In the rest of

this paper we will concentrate on some aspects of the relationship between the literal and

observational model semantics and on the stability of the unit constructions introduced

in Section 4.

Our first aim is to show that constructions that can be defined by architectural

specifications are (locally) stable. In order to state this precisely, we need some more

notation and terminology, as constructions are captured here by unit evaluators operating

on environments rather than on individual units.

For any extended static context Cst = (Pst ,Bst , D), environments E1,E2 ∈ ucx (Cst)

are observationally equivalent in Cst , written E1 ≡Cst
E2, if for each unit name U in Cst ,

E1(U) ≡ E2(U). A unit environment E ∈ ucx (Cst) is stable in Cst if for each parametrised

unit name U in Cst , we have that E (U) is locally stable. By Proposition 6.3, the class of

environments that are stable in Cst is closed under observational equivalence in Cst . We

write ucx�(Cst) for the class of all unit environments that fit Cst and are stable in Cst .

A D-coherent correspondence between the two D-coherent model families M1,M2 ∈
|Mod(D)|, written ρ: M1 � M2, is a family of correspondences ρi: M1

i � M2
i for i ∈ |D|

such that ρi = ρj D(m) for each m: i → j in D.

Two unit environments E1,E2 ∈ ucx�(Cst) are coherently equivalent in Cst , written

E1 �Cst
E2, if for all parametrised unit names U in Cst , we have E1(U) ≡ E2(U), and

there are D-coherent families of models M1 and M2 with a D-coherent correspondence

ρ: M1 � M2 such that M1 and M2 witness E1 and E2, respectively, in Cst .

Then, given a unit context C ⊆ ucx (Cst), we write ClCst
≡ (C) for the class of all unit

environments that in Cst are stable and coherently equivalent to a unit environment in C.

It is then clear that ClCst
≡ (C) ⊆ ucx�(Cst).

Returning to the stability of the constructions defined by architectural specifications,

we want to show that if � ASP �� (Cst ,Σ) and � ASP
≡
=⇒ (C�,UEv�), then the

unit evaluator UEv� is stable, that is, it maps observationally equivalent environments

to observationally equivalent models. Unfortunately, this cannot be proved by a simple

induction on the structure of the unit terms involved, relying on the fact that (locally) stable

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 356

constructions are closed under composition. The trouble is with amalgamation, since, in

general, amalgamation is not stable: informally, joining the signatures of two models may

introduce new observations for either or both of them – see Counterexample 5.7.

However, the key point here is that amalgamation in unit terms in architectural

specifications is not used as a construction on its own, but it just identifies a new part

of the global context that has been constructed earlier. Since the constructions used to

build genuinely new components of the global context are locally stable, such use of

amalgamation can do no harm.

The following lemma captures the essential stability property of the unit evaluators

built for unit terms by the observational model semantics.

Lemma 7.1. Assume Cst � T �� (i, D′) and C� � T
≡
=⇒ UEv� with C� ⊆ ucx�(Cst), where

Cst = (Pst ,Bst , D). The unit evaluator UEv� is locally stable in the following sense.

Consider any E1,E2 ∈ C� such that E1 �Cst
E2, and M1,M2 ∈ |Mod(D)| that witness

E1 and E2, respectively, in Cst . Any D-coherent correspondence ρ: M1 � M2 can be

extended to a D′-coherent correspondence ρ′: M′
1 � M′

2 between model families M′
1,M′

2 ∈
|Mod(D′)| that extend M1 and M2, respectively, and satisfy (M′

1)i = UEv�(E1) and

(M′
2)i = UEv�(E2).

Proof. We use induction on the structure of the unit term. The cases when the term is

a unit name or a unit reduction are trivial.

Consider the case of parametrised unit application. Using the notation as in the

corresponding rules of the extended static semantics and of the (observational) model

semantics in Figures 1 and 3, respectively, consider E1,E2 ∈ C� such that E1 �Cst

E2 and a coherent correspondence ρ: M1 � M2 between model families M1, M2 that

witness E1 and E2, respectively, in Cst . By the induction hypothesis, ρ can be extended

to a D-coherent correspondence ρT : MT
1 � MT

2 , where MT
1 extends M1, MT

2 extends

M2, (MT
1)i = UEv (E1) and (MT

2)i = UEv (E2). Then, ρT extends to a D′-coherent

correspondence ρ′: M′
1 � M′

2, where (M′
1)j = UEv (E1) γ , (M′

1)k = E1(U)(UEv (E1) γ),

and similarly for M′
2 (by local stability of either E1(U) or E2(U), and the fact that

E1(U) ≡ E2(U)). Now, we can extend M′
1 and M′

2 to D′′-coherent model families M′′
1

and M′′
2, respectively, by putting (M′′

1)l = UEv (E1) γ ⊕ E1(U)(UEv (E1) γ), and similarly

for M′′
2. Moreover, as in Lemma 5.6, following the proof of Lemma 2.2, we can extend ρ′

to a coherent correspondence ρ′′: M′′
1 � M′′

2.

Finally, consider the case of unit amalgamation. Again using the notation as in the

corresponding rules of the extended static semantics and of the (observational) model

semantics in Figures 1 and 3, respectively, consider E1,E2 ∈ C� such that E1 �Cst
E2 and

a coherent correspondence ρ: M1 � M2 between model families M1, M2 that witness

E1 and E2, respectively, in Cst . By the induction hypothesis, ρ can be extended to a

D1-coherent correspondence ρT1 : MT1

1 � MT1

2 , where (MT1

1) extends M1, (MT1

2) extends

M2, (MT1

1)i = UEv 1(E1) and (MT1

2)i = UEv 1(E2). Similarly, ρ can be extended to a D2-

coherent correspondence ρT2 : MT2

1 � MT2

2 , where (MT2

1) extends M1, (MT2

2) extends M2,

(MT2

1)i = UEv 2(E1) and (MT2

2)i = UEv 2(E2). Now, since D1 and D2 are disjoint extensions

of D, ρT1 and ρT2 can be put together to form a (D1 ∪ D2)-coherent correspondence

between MT1

1 ∪ MT2

1 and MT1

2 ∪ MT2

2 , respectively. To complete the proof, we proceed

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 357

as in the previous case, following Lemma 5.6 generalised as indicated in the footnote on

page 338; this is possible since the union of Casl signatures is built by taking the union

of their respective sets of sort, operation and predicate names and forming the transitive

closure of the union of the subsort preorders. Consequently, no new sorts, operations

or predicates are added in the resulting model, since everything there was constructed

‘earlier’ while evaluating T1 and T2.

We can strengthen the invariant concerning the semantics of unit declarations and

definitions by adding the following property.

Corollary 7.2. Let Cst � UDD �� C′
st and C� � UDD

≡
=⇒ C′

� with C� ⊆ ucx�(Cst). Then

C′
� ⊆ ucx�(C′

st), C′
� ⊆ C�, and for any unit environments E ′

1,E
′
2 ∈ C′

� such that E ′
1 ≡C′

st
E ′

2,

whenever E ′
1 �Cst

E ′
2, we also have E ′

1 �C′
st

E ′
2.

Proof. The statement follows by easy inspection of the rules, using Lemma 7.1 for the

case of unit definitions.

Corollary 7.3. Let � UDD+ �� Cst and � UDD+ ≡
=⇒ C�. Then C� ⊆ ucx�(Cst) and for

any unit environments E1,E2 ∈ C�, if E1 ≡Cst
E2, then E1 �Cst

E2.

Proof. For the empty extended static context C�
st , any environment in C� is witnessed

by the empty family of models, so any two such environments are coherently equivalent

in C�
st . Therefore, by Corollary 7.2 and an easy induction on the length of the sequence

of unit declarations and definitions, for any E1,E2 ∈ C� such that E1 ≡Cst
E2 as in the

premise of the corollary, we have E1 �Cst
E2.

Corollary 7.4. If � ASP �� (Cst ,Σ) and � ASP
≡
=⇒ (C�,UEv�), then C� ⊆ ucx�(Cst),

and for any unit environments E1,E2 ∈ C� such that E1 ≡Cst
E2, we have UEv�(E1) ≡

UEv�(E2).

Proof. By Corollary 7.3, we have that, for any E1,E2 ∈ C� such that E1 ≡Cst
E2 as

in the premise here, E1 �Cst
E2. The conclusion then follows by the stability property in

Lemma 7.1.

As already mentioned, the observational semantics is more permissive than the literal

model semantics: the existence of a successful derivation of an observational meaning for

an architectural specification does not in general imply that its literal model semantics

is defined. Moreover, the observational semantics may ‘lose’ some results permitted by

the literal model semantics – see Counterexample 6.10. However, if an architectural

specification has a literal model semantics, its observational semantics is defined as well,

and up to observational equivalence, nothing new is added. The following theorem captures

the essential links between literal model semantics and observational model semantics.

Theorem 7.5. The following relationships between the literal and observational model

semantics hold:

(1) If � ASP �� ((Pst ,Bst),Σ) and � ASP ⇒ (C,UEv), then � ASP
≡
=⇒ (C�,UEv�) with

C� ⊆ ClCst
≡ (C), and for each unit environment E ∈ C that is stable in Cst , E ∈ C�

and UEv�(E) = UEv (E).

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 358

(2) If � UDD+ �� Cst and � UDD+ ⇒ C, then � UDD+ ≡
=⇒ C�, where C� ⊆ ClCst

≡ (C)

and C� contains all unit environments E ∈ C that are stable in Cst .

(3) If Cst � UDD �� C′
st and C � UDD ⇒ C′, where C ⊆ ucx (Cst), then for any

C� ⊆ ClCst
≡ (C) that contains all unit environments E ∈ C that are stable in Cst ,

C� � UDD
≡
=⇒ C′

�, where C′
� ⊆ ClC′

st≡ (C′) and C′
� contains all unit environments

E ′ ∈ C′ that are stable in C′
st .

(4) If Cst � T �� (i, D′) and C � T ⇒ UEv with C ⊆ ucx (Cst), then for any C� ⊆ ClCst
≡ (C)

that contains all unit environments E ∈ C that are stable in Cst , C� � T
≡
=⇒ UEv�

and for E ∈ C ∩ C�, we have UEv�(E) = UEv (E).

Proof.

(4) We use induction on the structure of the unit term. As usual, the cases when the term

is a unit name or a unit reduction are easy.

Consider the case of unit application, when the unit term is of the form U [T fit γ].

Assume then that C ⊆ ucx (Cst), Cst � U [T fit γ] �� (l, D′′) and C � U [T fit γ] ⇒
UEv ′, with UEv ′(E) = UEv (E) ⊕ E (U)(UEv (E) γ) for E ∈ C. Consequently, all

the premises of the corresponding rules (for unit application) in Figures 1 and 3

must hold; we refer below to the notation used in the rules. Now take any C� ⊆
ClCst

≡ (C) that contains all unit environments E ∈ C that are stable in Cst . By the

induction hypothesis, C� � T
≡
=⇒ UEv�, and for E ∈ C ∩ C�, UEv�(E) = UEv (E).

Now consider any E� ∈ C� ⊆ ClCst
≡ (C), with some E ∈ C such that E� �Cst

E .

Then E ∈ C ∩ C�. We have E�(U) ≡ E (U), UEv�(E) = UEv (E), and since by

Lemma 7.1 UEv (E) ≡ UEv (E�) and observational equivalence is preserved by reducts,

from UEv (E) γ ∈ dom(E (U)), we obtain UEv�(E�) γ ∈ dom(E�(U)). Thus, we can

derive C� � U [T fit γ]
≡
=⇒ UEv ′

�, where for E� ∈ C�, UEv ′
�(E�) = UEv�(E�) ⊕

E�(U)(UEv�(E�) γ). Now, for E ∈ C ∩ C�, since UEv�(E) = UEv (E), it follows that

UEv ′
�(E) = UEv ′(E), which completes the proof for this case.

The proof for the case of unit amalgamation, when the unit term is of the form

T1 and T2, proceeds along similar lines: assume C ⊆ ucx (Cst), Cst � T1 and T2 ��

(j, D′) and C � T1 and T2 ⇒ UEv . Consequently, all the premises of the corresponding

rules (for unit amalgamation) in Figures 1 and 3 must hold; we refer below to the

notation used in the rules. Now take any C� ⊆ ClCst
≡ (C) that contains all unit

environments E ∈ C that are stable in Cst . By the induction hypothesis, C� �
T1

≡
=⇒ UEv 1

�, C� � T2
≡
=⇒ UEv 2

�, and for E ∈ C ∩ C�, UEv 1
�(E) = UEv 1(E) and

UEv 2
�(E) = UEv 2(E). Then C� � T1 and T2

≡
=⇒ UEv�, where for E� ∈ C�, we

have UEv�(E�) amalgamates UEv 1
�(E�) and UEv 2

�(E�). Clearly now, by the definition

of UEv in the model semantics, for E ∈ C ∩ C�, since UEv 1
�(E) = UEv 1(E) and

UEv 2
�(E) = UEv 2(E), we conclude that UEv�(E) = UEv (E), which completes the

proof of item (4).

(3) This item follows by inspection of the rules; the cases of unit declarations are easy.

The case of unit definition relies on item (4) as follows. Assume that C ⊆ ucx (Cst) and

C is closed in Cst = (Pst ,Bst , D). To derive Cst � UDD �� C′
st and C � UDD ⇒ C′,

where UDD is of the form U = T , we must have (Pst ,Bst , D) � T �� (i, D′),

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 359

U �∈ (dom(Pst) ∪ dom(Bst)), and C � T ⇒ UEv , with C′
st = (Pst ,Bst + {U �→ i}, D′)

and C′ = {E + {U �→ UEv (E)} | E ∈ C}. Now take any C� ⊆ ClCst
≡ (C) that

contains all unit environments E ∈ C that are stable in Cst . By item (4), C� � T
≡
=⇒

UEv�, and for E ∈ C ∩ C�, UEv�(E) = UEv (E). Hence, C� � U = T ⇒ C′
� with

C′
� = {E� + {U �→ UEv�(E�)} | E� ∈ C�}. To see that C′

� ⊆ ClC′
st≡ (C′), consider

any E� ∈ C� ⊆ ClCst
≡ (C), with some E ∈ C such that E� �Cst

E . By Lemma 7.1,

E� + {U �→ UEv�(E�)} is coherently equivalent in C′
st to E + {U �→ UEv�(E)}, which

is the same as E + {U �→ UEv (E)}. This shows that E� + {U �→ UEv�(E�)} is indeed

in ClC′
st≡ (C′). Finally, if for some E ∈ C, we have E + {U �→ UEv (E)} is stable in

C′
st , then E is stable in Cst and hence is in C�. Then, since UEv�(E) = UEv (E) by

item (4), we also have that E + {U �→ UEv (E)} is in C′
�.

(2) This follows from item (3) by an easy induction on the length of the sequence of unit

declarations and definitions. To begin, note that every environment in C� is stable in

the empty static context C�
st and is witnessed in C�

st by the empty family of models,

so C� = Cl
C�

st≡ (C�).

(1) This now follows easily. In order to derive the assumptions for ASP of the form

arch spec UDD+ result T , we must have � UDD+ �� Cst and � UDD+ ⇒ C, as well

as Cst � T �� (i, D) and C � T ⇒ UEv , with (Pst ,Bst) = ctx (Cst) and Σ = D(i). So,

by item (2), we have � UDD+ ≡
=⇒ C�, where C� ⊆ ClCst

≡ (C) and C� contains all unit

environments E ∈ C that are stable in Cst . By item (4) in turn, C� � T
≡
=⇒ UEv�, and

for each unit environment E ∈ C stable in Cst , UEv�(E) = UEv (E) (since E ∈ C ∩ C�

then).

Corollary 7.6. If � ASP �� (Cst ,Σ) and � ASP ⇒ (C,UEv), then � ASP
≡
=⇒ (C�,UEv�),

where for every E� ∈ C� there exists E ∈ C such that E� ≡Cst
E and UEv�(E�) ≡ UEv (E).

Proof. Given the assumptions, by Theorem 7.5, � ASP
≡
=⇒ (C�,UEv�) with C� ⊆

ClCst
≡ (C) and for each E ∈ C that is stable in Cst , we have E ∈ C� and UEv�(E) =

UEv (E). Hence, for each E� ∈ C� there is a stable environment E ∈ C such that

E� �Cst
E and UEv (E) = UEv�(E). It follows that E� ≡Cst

E and, by Corollary 7.4,

UEv�(E) ≡ UEv�(E�), which yields UEv(E) ≡ UEv�(E�).

8. Example

The following example illustrates some of the points in the paper. We hope that

the notation of Casl is understandable without further explanation; otherwise, see

CoFI (2004).

We start with a simple specification of sets of strings; we will not go into any details of

a specification of strings, just remarking that any standard specification would typically

be monomorphic (with a unique model, up to isomorphism) and would certainly provide

the equality predicate for strings.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 360

spec String = sort String

· · ·
pred eqS : String × String;

axiom ∀s, s′ : String • eqS (s, s
′) ⇐⇒ s = s′

· · ·

spec StringSet = String

then sort Set

ops empty : Set;

add : String × Set → Set

pred present : String × Set

∀ s, s′ : String , t : Set

• add (s, add (s, t)) = add (s, t)

• add (s, add (s′, t)) = add (s′, add (s, t))

• ¬present(s, empty)

• present(s, add (s, t))

• s �= s′ =⇒ (present(s, add (s′, t)) ⇐⇒ present(s, t))

We now provide a more elaborate version of the requirements this specification captures,

introducing the idea of using a hash table implementation of sets.

spec Int = sort Int

· · ·
pred eqN : Int × Int;

axiom ∀n, n′ : Int • eqN(n, n′) ⇐⇒ n = n′

· · ·

spec Elem = sort Elem

spec Array[Elem] = Elem and Int

then sort Array[Elem]

ops empty : Array[Elem];

put : Int × Elem × Array[Elem] → Array[Elem];

take : Int × Array[Elem] →? Elem

pred used : Int × Array[Elem]

∀ i, j : Int; e, e′ : Elem; a : Array[Elem]

• i �= j =⇒ put(i, e′, put(j, e, a)) = put(j, e, put(i, e′, a))

• put(i, e′, put(i, e, a)) = put(i, e′, a)

• ¬used (i, empty)

• used (i, put(i, e, a))

• i �= j =⇒ (used (i, put(j, e, a)) ⇐⇒ used (i, a))

• take(i, put(i, e, a)) = e

spec ElemKey = Elem and Int

then op hash : Elem → Int

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 361

spec HashTable[ElemKey] = ElemKey and Array[Elem]

then ops add : Elem × Array[Elem] → Array[Elem];

putnear : Int × Elem × Array[Elem] → Array[Elem]

preds present : Elem × Array[Elem]

isnear : Int × Elem × Array[Elem]

∀ i : Int; e : Elem; a : Array[Elem]

• add (e, a) = putnear(hash(e), e, a)

• ¬used (i, a) =⇒ putnear(i, e, a) = put(i, e, a)

• used (i, a) ∧ take(i, a) = e =⇒ putnear(i, e, a) = a

• used (i, a) ∧ take(i, a) �= e =⇒ putnear(i, e, a) = putnear(succ(i), e, a)

• present(e, a) ⇐⇒ isnear(hash(e), e, a)

• ¬used (i, a) =⇒ ¬isnear(i, e, a)

• used (i, a) ∧ take(i, a) = e =⇒ isnear(i, e, a)

• used (i, a) ∧ take(i, a) �= e =⇒ (isnear(i, e, a) ⇐⇒ isnear(succ(i), e, a))

spec StringKey = String and Int

then op hash : String → Int

spec StringHashTable =

HashTable[StringKey] with Array[String] �→ Set

reveal String , Set , empty , add , present

StringHashTable does not literally ensure all the requirements imposed by the original

specification StringSet: the second axiom (commutativity of adding elements to a set) fails

in some models of StringHashTable. Still, it is easy to check that [[StringHashTable]] ⊆
[[StringSet]]≡, so every future (observationally-correct) realisation of StringHashTable

is an observationally-correct realisation of StringSet
†.

StringHashTable is structured in a fairly natural way, building on a generic specifica-

tion of arrays that is presumably already available, and including a generic specification

of hash tables that may be reused in the future.

However, the structure of StringHashTable must not be viewed as an obligatory

prescription of the structure of the final implementation. For example, we may decide

to adopt the architectural specification StringHashTableDesign given below as an

alternative structure.

The architectural specification uses the Casl construct given to mark units that are

imported by other units. Formally, a sequence of declarations like

N : Int; S : String;

SK : StringKey given S,N;

abbreviates

N : Int; S : String;

SK ′ : Int × String → StringKey;

SK = SK ′[N][S];

where a new generic construction SK ′ is introduced and immediately applied to the

imported units.

† Note that dropping the first two axioms in StringSet yields a specification with a class of models that

coincides with [[StringSet]]≡ – in fact, we could have started with such an observationally-closed version of

the specification, without making any use of observational correctness at this stage.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 362

arch spec StringHashTableDesign =

units N : Int;

S : String;

SK : StringKey given S,N;

A : Elem → Array[Elem] given N;

ASK = A[SK fit Elem �→ String];

HT : StringHashTable given {ASK with Array[String] �→ Set}
result HT reveal String , Set , empty , add , present

The above architectural specification captures a modular design of the system to be

built as follows. Components N and S are to be defined, implementing specifications

Int and String, respectively. Presumably, these would be predefined in any practical

programming language. Then, N and S are put together and extended by a definition

of a hash function hash , yielding a new component SK . However, as explained above,

the given notation used here really means that we are to provide a construction (a

generic unit SK ′) that yields such a component for any realisations of Int and String.

Another component to be provided is a generic unit A to implement arrays indexed by

integers and storing data of any sort (Elem , to be instantiated when A is applied to

an argument component). Again, this is to be given by a construction A′ that works

for any implementation of Int, but is then instantiated with the specific implementation

given by N. This is then used to build a component ASK , which implements arrays

of strings (with a hash function) by instantiating A with SK . In turn, ASK (with the

main sort renamed to Set to fit the top level names given in the original requirement

specification) will be extended to a component implementing StringHashTable – again,

this is to be built using a construction HT ′, independently of the details of ASK ,

for an arbitrary implementation of Array[StringKey]. Finally, the overall result will

be given by exporting from this component only the required sorts, operations and

predicate.

Note that the structure here differs from the structure of StringHashTable in an

essential way, since we have chosen to forego genericity of hash tables (for arbitrary

elements), implementing them for the special case of strings.

Further development might lead to a final implementation in Standard ML, including

the following modules. The task of extracting Standard ML signatures (ARRAY_SIG, and

so on, using boolean functions for predicates) from the corresponding Casl signatures

of the specifications given above is left for the reader. We assume though that the

implementations N of Int and S of String, which we do not spell out here, use the

Standard ML built-in types int and string, respectively. These are so-called equality

types in Standard ML, and come with the built-in (infix) equality function = , which

should replace eqN and eqS in the corresponding Standard ML signatures. We also

omit a component SK that implements a hash function hash; any total function from

strings to integers will do, although, of course, a good hash function will produce an

even distribution of hash values. We compress consecutive instantiations of A’ (first to

N and then to SK) into a single functor application. Finally, we will incorporate the

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 363

final adjustment to the overall result signature (the reveal construct in the result unit in

StringHashTableDesign) and the renaming of arrays to sets (in the given part of HT)

directly into the definition of the functor HT’ used to build the resulting hash table of

strings.

functor A’(structure N: INT_SIG and E : ELEM_SIG) : ARRAY_SIG =

struct

open N E

type array = int -> elem

exception unused

fun empty(i) = raise unused

fun put(i,e,a)(j) = if i=j then e else a(j)

fun take(i,a) = a(i)

fun used(i,a) = (a(i); true) handle unused => false

end

structure ASK =

struct

structure Astring =

A’(structure N=N and E=struct type elem=SK.string end)

open Astring

open SK

end

functor HT’(structure ASK: ASK_SIG) : STRING_HASH_TABLE_SIG =

struct

open ASK

type set = array

fun putnear(i,s,t) =

if used(i,t)

then if take(i,t)=s then t else putnear(i+1,s,t)

else put(i,s,t)

fun add(s,t) = putnear(hash(s),s,t)

fun isnear(i,s,t) =

used(i,t) andalso (take(i,t)=s orelse isnear(i+1,s,t))

fun present(s,t) = isnear(hash(s),s,t)

end

structure HT = HT’(structure ASK=ASK)

The functor A’ is literally correct with respect to Int and Elem and Array[Elem]. To be

more precise, the semantic function on the models determined by A’ extends any model

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 364

in [[Int and Elem]] to a model in [[Array[Elem]]] such that

[[A’]] ∈ [[Int and Elem
ι−→Array[Elem]]] ,

where ι is the obvious signature inclusion. Similarly, the structure HT satisfies the axioms

of StringHashTable literally (at least on the reachable part, and assuming the use of

extensional equality on functions).

The reader might want to check that StringHashTableDesign is a statically correct

architectural specification†: we can derive

� StringHashTableDesign �� ((Pst ,Bst),Σ)

where Pst binds the generic units declared in StringHashTable (including those implicitly

introduced by expanding the given construct for imports), Bst maps the non-generic unit

names in StringHashTable to their signatures, and Σ is the signature of the result unit

(the signature of StringHashTable). Moreover, the (literal) model semantics also works,

so we have

� StringHashTableDesign ⇒ (C,UEv) .

Here, the context C contains all environments that map unit names declared and defined

in StringHashTableDesign to their realisations so that declared units satisfy their

specifications and the defined units are built from the units given in the environment as

prescribed by their respective definitions. Then, the unit evaluator UEv maps any such

environment in C to a model as determined by the result unit definition. In particular,

the environment determined by the Standard ML functor and structure definitions given

above is in C, and UEv maps it to the expected system realisation.

However, even though the above functor A’ implementing arrays is correct, we might

want to use a completely different array implementation, for instance, because it is given

as a highly optimised module in a library. Various useful ‘tricks’ in the code might then

be expected. Here is an example where each entry in the array includes its history of

updates:

functor Atrick(structure N: INT_SIG and E : ELEM_SIG) : ARRAY_SIG =

struct

open E

type array = int -> elem list

fun empty(i) = nil

fun put(i,e,a)(j) = if i=j then e::a(j) else a(j)

fun take(i,a) = let val e::_=a(i) in e end

fun used(i,a) = not(null a(i))

end

Then, Atrick given here is not literally correct with respect to Int and Elem and

Array[Elem], since it violates the axiom put(i, e′, put(i, e, a)) = put(i, e′, a), but it is

† For example, the Hets tool, see www.informatik.uni-bremen.de/cofi/hets/, could be used.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 365

observationally correct: [[Atrick]] ∈ [[Int and Elem
ι−→Array[Elem]]]≡. Similarly, the

extra flexibility that observational correctness offers would allow us, for instance, to

change the code for HT’ to count the number of insertions of each string, yielding a new

functor HTtrick’. The structure

structure HTtrick = HTtrick’(structure ASK=ASK)

violates the axiom used (i, a) ∧ take(i, a) = s =⇒ putnear(i, s, a) = a, but, again, it is

observationally correct: [[HTtrick]] ∈ [[StringHashTable]]≡.

The unit environment determined by Atrick’ and HTtrick’ is not in the context

C given by the literal model semantics of StringHashTable. However, under the

observational semantics, we have

� StringHashTableDesign
≡
=⇒ (C�,UEv�),

where C� contains the environment that is determined by Atrick’ and HTtrick’.

Moreover, UEv� (which essentially coincides with UEv given by the literal model semantics

above, but works on a different domain) maps such an environment to a model of the

whole system that is an observationally correct realisation of the original specification

StringHashTable, as expected.

The Standard ML functors above define locally stable constructions: they respect

encapsulation since they do not use any properties of their arguments other than what is

spelled out in their parameter signatures. Indeed, all closed functors (which do not refer

to external structure definitions) in Standard ML define locally stable constructions.

Returning to the idea inherent in the structure of the StringHashTable specification,

we will try to build our implementation using a generic construction for hash tables. That

structure may be captured by the following architectural specification:

arch spec StringHashTableDesign
′ =

units N : Int;

A : Elem → Array[Elem] given N;

HTgen : ElemKey × Array[Elem] → HashTable[ElemKey];

S : String;

SK : StringKey given S,N;

result HTgen [SK fit Elem �→ String][A[S]] with Array[String] �→ Set

reveal String , Set , empty , add , present

This is again a correct architectural specification, and, indeed, we get

� StringHashTableDesign
′ �� ((P ′

st ,B
′
st),Σ)

� StringHashTableDesign
′ ⇒ (C′,UEv ′)

� StringHashTableDesign
′ ≡
=⇒ (C′

�,UEv ′
�) .

The extended static semantics and the literal model semantics work as expected (we

encourage the reader to try to describe the resulting contexts). However, perhaps

unexpectedly, we get C′
� = �, so the above architectural specification is observationally

inconsistent!

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 366

The trouble is, of course, with the specification of generic hash tables. One might try

to implement it as follows:

functor HTgen

(structure EK : ELEM_KEY_SIG and A : ARRAY_ELEM_KEY_SIG

sharing type EK.elem=A.elem) : HASH_TABLE_ELEM_KEY_SIG =

struct

open EK A

fun putnear(i,e,a) =

if used(i,a)

then if take(i,a)=e then a else putnear(i+1,e,a)

else put(i,e,a)

fun add(e,a) = putnear(hash(e),e,a)

fun isnear(i,e,a) =

used(i,a) andalso (take(i,a)=e orelse isnear(i+1,e,a))

fun present(e,a) = isnear(hash(e),e,a)

end

Unfortunately, the construction defined by HTgen is not locally stable, and, in fact,

HTgen is not correct code in Standard ML, since it requires equality on elem (in

take(i,a)=e), which is not provided by ELEM_KEY_SIG. This problem is not accidental:

there is no locally stable construction, and hence no Standard ML functor, satisfying

the required specification. Consequently, there are no stable environments in context C′

resulting from the literal model semantics, leading to the observational inconsistency of

StringHashTableDesign
′ (C′

� = �). Even though what is a reasonable structure for

the requirements specification, as expressed in StringHashTable, led to an inappropriate

modular design StringHashTableDesign
′, this is in fact good news. While allowing for

a more relaxed interpretation of the axioms in (result) specifications as long as their

observable consequences are ensured, the observational semantics marked as inconsistent

a specification that cannot be implemented in a reasonable programming language in

which no tricky means are available for violating the modular structure.

Of course, this does not mean that there is no good design that would require a generic

implementation of hash tables. A simple way to achieve this would be to modify the

above architectural specification to add ‘equality’ on Elem by introducing an equality

predicate (for instance, in ElemKey). Notice that this is different from requiring Elem to

be an equality type as in Standard ML, since this predicate is not necessarily constrained

to be interpreted as the identity. Consequently, we should then use this predicate, rather

than identity, to compare elements stored in HashTable. One point of architectural

specifications is that such a change of structure is an important design decision that

deserves to be recorded explicitly. The new specifications would be as follows:

spec ElemKeyEq = Elem and Int

then op hash : Elem → Int;

pred eqE : Elem × Elem

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 367

spec HashTableEq[ElemKeyEq] = ElemKeyEq and Array[Elem]

then ops add : Elem × Array[Elem] → Array[Elem];

putnear : Int × Elem × Array[Elem] → Array[Elem]

preds present : Elem × Array[Elem]

isnear : Int × Elem × Array[Elem]

∀ i : Int; e : Elem; a : Array[Elem]

• add (e, a) = putnear(hash(e), e, a)

• ¬used (i, a) =⇒ putnear(i, e, a) = put(i, e, a)

• used (i, a) ∧ eqE(take(i, a), e) =⇒ putnear(i, e, a) = a

• used (i, a) ∧ ¬eqE(take(i, a), e) =⇒ putnear(i, e, a) = putnear(succ(i), e, a)

• present(e, a) ⇐⇒ isnear(hash(e), e, a)

• ¬used (i, a) =⇒ ¬isnear(i, e, a)

• used (i, a) ∧ eqE(take(i, a), e) =⇒ isnear(i, e, a)

• used (i, a) ∧ ¬eqE(take(i, a), e) =⇒ (isnear(i, e, a) ⇐⇒ isnear(succ(i), e, a))

The architectural design might then look as follows:

arch spec StringHashTableDesignEq =

units N : Int;

A : Elem → Array[Elem] given N;

HTgen : ElemKeyEq × Array[Elem] → HashTableEq[ElemKeyEq];

S : String;

SK : StringKey given S,N;

result HTgen [SK fit Elem �→ String][A[S]] with Array[String] �→ Set

reveal String , Set , empty , add , present

The following Standard ML functor then provides a generic implementation of hash

tables for any type of elements with an equality function, yielding a locally stable con-

struction that is (observationally) correct with respect to ElemKeyEq and Array[Elem]

and HashTableEq[ElemKeyEq]:

functor HTEQgen

(structure EK : ELEM_KEY_EQ_SIG and A : ARRAY_ELEM_KEY_SIG

sharing type EK.elem=A.elem) : HASH_TABLE_ELEM_KEY_EQ_SIG =

struct

open EK A

fun putnear(i,e,a) =

if used(i,a)

then if eq_E(take(i,a),e) then a else putnear(i+1,e,a)

else put(i,e,a)

fun add(e,a) = putnear(hash(e),e,a)

fun isnear(i,e,a) =

used(i,a) andalso (eq_E(take(i,a),e) orelse isnear(i+1,e,a))

fun present(e,a) = isnear(hash(e),e,a)

end

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 368

9. Conclusions and further work

The overall goal of this paper was to provide an observational view of Casl specifications

that supports observational refinement of specifications in combination with Casl-style

architectural design. This has been achieved, and spelled out in detail for a simplified

version of Casl architectural specifications. Extending this to full Casl architectural

specifications (by allowing multiple parameters for parametrised units, adding unit

translations, and so on) is straightforward. Imports of units defined by arbitrary unit

expressions are the only potential source of difficulty. But the methodologically well-

justified case of this, where the import can be given an explicit specification, is easily dealt

with as in Section 8.

Although we have worked in the specific setting of Casl signatures and models,

formulated as an institution in Section 2, it should be clear that much of the above applies

to a wide range of institutions. Rather than attempting to spell out the appropriate

notion of ‘institution with extra structure’, we just note that surprisingly little appears to

be required. A notion of observational model morphisms that is closed under composition

and reduct, plus some extra categorical structure to identify ‘correspondences’ as certain

spans of such morphisms, seems necessary and sufficient to formulate most of the material

presented. The need for additional structure is obviated by the fact that the technical

development makes no reference to a set of observable sorts, in contrast to standard

approaches to the observational interpretation of specifications. In the context of Casl

(where one can treat a sort as observable by introducing an ‘equality predicate’ on it) this

is adequate. It may well not be adequate in institutions of much more limited expressive

power, but it is not clear that such institutions are of genuine practical importance. Links

with indistinguishability relations using factorisation properties, like Theorem 5.8, may

require the richer context of concrete institutions, where model categories are equipped

with a concretisation structure subject to a number of technical requirements as in Bidoit

and Tarlecki (1996), or alternatively may follow the ideas of Popescu and Roşu (2005).

A challenging issue is now to understand how far the concepts developed for our

somewhat simplified view of software components as local constructions on Casl models

can be inspiring for a more general view of components involving some form of external

communication. While this is clearly beyond the scope of this paper, we can, nevertheless,

imagine that a promising direction of future research would be to look for an adequate

counterpart of (local) stability in this more general setting.

Acknowledgements

Our thanks go to the CoFI Language Design and Semantics Task Groups for many

discussions and opportunities to present and improve our ideas on architectural spec-

ifications, and thanks in particular to Piotr Hoffman, Bartek Klin, Till Mossakowski

and Lutz Schröder for collaboration on their semantics. Thanks are also due to one of

the anonymous reviewers for careful checking and perceptive comments. This work has

been partially supported by European projects IST-2001-32747 AGILE (AT), IST-2005-

015905 MOBIUS (DS, AT) and IST-2005-016004 SENSORIA (AT), the EPSRC-funded

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 369

ReQueST project (DS), the British–Polish Research Partnership Programme (DS, AT),

and Visiting Professorships at ENS de Cachan (AT).

References

Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella, D. and

Tarlecki, A. (2002) Casl: The Common Algebraic Specification Language. Theoretical Computer

Science 286 153–196.

Astesiano, E., Krieg-Brückner, B. and Kreowski, H.-J. (1999) (eds.) Algebraic Foundations of Systems

Specification, Springer.

Baumeister, H., Cerioli, M., Haxthausen, A., Mossakowski, T., Mosses, P.D., Sannella, D. and

Tarlecki, A. (2004) Casl Semantics. In: Mosses, P.D. (ed.) Casl Reference Manual. Springer-

Verlag Lecture Notes in Computer Science 2960 115–273.

Bernot, G. (1987) Good functors . . . are those preserving philosophy! Proc. 2nd Summer Conf.

on Category Theory and Computer Science CTCS’87. Springer-Verlag Lecture Notes in Computer

Science 283 182–195.

Bidoit, M. and Hennicker, R. (1993) A general framework for modular implementations of modular

systems. Proc. 4th Intl. Conf. on Theory and Practice of Software Development TAPSOFT’93.

Springer-Verlag Lecture Notes in Computer Science 668 199–214.

Bidoit, M. and Hennicker, R. (1998) Modular correctness proofs of behavioural implementations.

Acta Informatica 35 (11) 951–1005.

Bidoit, M. and Hennicker, R. (2006) Proving behavioral refinements of COL-specifications. Algebra,

Meaning and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of his 65th

Birthday. Springer-Verlag Lecture Notes in Computer Science 4060 333–354.

Bidoit, M., Hennicker, R. and Wirsing, M. (1995) Behavioural and abstractor specifications. Science

of Computer Programming 25 149–186.

Bidoit, M. and Mosses, P.D. (2004) Casl User Manual. Springer-Verlag Lecture Notes in Computer

Science 2900.

Bidoit, M., Sannella, D. and Tarlecki, A. (2002a) Architectural specifications in Casl. Formal Aspects

of Computing 13 252–273.

Bidoit, M., Sannella, D. and Tarlecki, A. (2002b) Global development via local observational

construction steps. Proc. 27th Intl. Symp. on Mathematical Foundations of Computer Science,

MFCS’02. Springer-Verlag Lecture Notes in Computer Science 2420 1–24.

Bidoit, M., Sannella, D. and Tarlecki, A. (2004) Toward component-oriented formal software

development: an algebraic approach. Proc. 9th Monterey Workshop, Radical Innovations of

Software and Systems Engineering in the Future, Venice, October 2002. Springer-Verlag Lecture

Notes in Computer Science 2941 75–90.

Bidoit, M. and Tarlecki, A. (1996) Behavioural satisfaction and equivalence in concrete model

categories. Proc. 20th Coll. on Trees in Algebra and Computing CAAP’96, Linköping. Springer-

Verlag Lecture Notes in Computer Science 1059 241–256.

Burmeister, P. (1986) A Model Theoretic Approach to Partial Algebras, Akademie Verlag.

Burstall, R. and Goguen, J. (1980) The semantics of Clear, a specification language. Proc. Advanced

Course on Abstract Software Specifications, Copenhagen. Springer-Verlag Lecture Notes in

Computer Science 86 292–332.

The CoFI Language Design Group (2004) Casl Summary. Krieg-Brückner, B. and Mosses, P.D.

(eds.) In: Mosses, P.D. (ed.) Casl Reference Manual. Springer-Verlag Lecture Notes in Computer

Science 2960 3–74.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

M. Bidoit, D. Sannella and A. Tarlecki 370

Ehrig, H. and Kreowski, H.-J. (1999) Refinement and implementation. In: Astesiano, E., Krieg-

Brückner, B. and Kreowski, H.-J. (eds.) Algebraic Foundations of Systems Specification, Springer

201–242.

Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. (1982) Algebraic implementation of abstract

data types. Theoretical Computer Science 20 209–263.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification I: Equations and Initial

Semantics, Springer.

Ganzinger, H. (1983) Parameterized specifications: parameter passing and implementation with

respect to observability. ACM Transactions on Programming Languages and Systems 5 318–354.

Giarratana, V., Gimona, F. and Montanari, U. (1976) Observability concepts in abstract data

type specifications. Proc. 5th Intl. Symp. on Mathematical Foundations of Computer Science.

Springer-Verlag Lecture Notes in Computer Science 45 576–587.

Ginzburg, A. (1968) Algebraic Theory of Automata, Academic Press.

Goguen, J. and Burstall, R. (1992) Institutions: abstract model theory for specification and

programming. Journal of the ACM 39 95–146.

Goguen, J., Thatcher, J. and Wagner, E. (1978) An initial algebra approach to the specification,

correctness and implementation of abstract data types. In: Yeh, R. T. (ed.) Current Trends in

Programming Methodology, Vol. 4: Data Structuring, Prentice-Hall, 80–149.

Guttag, J. and Horning, J. (1993) Larch: Languages and Tools for Formal Specification, Springer.

Hoare, C.A.R. (1972) Proofs of correctness of data representations. Acta Informatica 1 271–281.

Hoffman, P. (2001) Verifying architectural specifications. Recent Trends in Algebraic Development

Techniques, Selected Papers, WADT’01. Springer-Verlag Lecture Notes in Computer Science 2267

152–175.

Honsell, F., Longley, J., Sannella, D. and Tarlecki, A. (2000) Constructive data refinement in typed

lambda calculus. Proc. 2nd Intl. Conf. on Foundations of Software Science and Computation

Structures. Springer-Verlag Lecture Notes in Computer Science 1784 149–164.

Kahrs, S., Sannella, D. and Tarlecki, A. (1997) The definition of Extended ML: a gentle introduction.

Theoretical Comp. Sci. 173 445–484.

Klin, B., Hoffman, P., Tarlecki, A., Schröder, L. and Mossakowski, T. (2001) Checking

amalgamability conditions for Casl architectural specifications. Proc. 26th Intl. Symp. on

Mathematical Foundations of Computer Science MFCS’01. Springer-Verlag Lecture Notes in

Computer Science 2136 451–463.

Milner, R. (1971) An algebraic definition of simulation between programs. Proc. 2nd Intl. Joint

Conf. on Artificial Intelligence, London 481–489.

Mossakowski, T., Hoffman, P., Autexier, S. and Hutter, D. (2004) Casl Logic. In: Mosses, P.D. (ed.)

Casl Reference Manual. Springer-Verlag Lecture Notes in Computer Science 2960 275–359.

Mosses, P.D. (2004) (ed.) Casl Reference Manual. Springer-Verlag Lecture Notes in Computer

Science 2960.

Popescu, A. and Roşu, G. (2005) Behavioral extensions of institutions. Proc. 1st Conf. on Algebra and

Coalgebra in Computer Science CALCO’05, Swansea. Springer-Verlag Lecture Notes in Computer

Science 3629 331–347.

Reichel, H. (1981) Behavioural equivalence – a unifying concept for initial and final specification

methods. Proc. 3rd Hungarian Comp. Sci. Conference 27–39.

Sannella, D. and Tarlecki, A. (1988a) Specifications in an arbitrary institution. Information and

Computation 76 165–210.

Sannella, D. and Tarlecki, A. (1988b) Toward formal development of programs from algebraic

specifications: implementations revisited. Acta Informatica 25 233–281.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

Observational interpretation of Casl specifications 371

Sannella, D. and Tarlecki, A. (1989) Toward formal development of ML programs: foundations and

methodology. Proc. Colloq. on Current Issues in Programming Languages, Intl. Joint Conf. on

Theory and Practice of Software Development TAPSOFT’89, Barcelona. Springer-Verlag Lecture

Notes in Computer Science 352 375–389.

Sannella, D. and Tarlecki, A. (1997) Essential concepts of algebraic specification and program

development. Formal Aspects of Computing 9 229–269.

Schoett, O. (1987) Data Abstraction and the Correctness of Modular Programming, Ph.D. thesis,

University of Edinburgh. (Report CST-42-87, Department of Computer Science, University of

Edinburgh.)

Schoett, O. (1990) Behavioural correctness of data representations. Science of Computer Programming

14 43–57.

Schröder, L. and Mossakowski, T. (2002) HasCasl: Towards integrated specification and develop-

ment of functional programs. Proc. 9th Intl. Conf. on Algebraic Methodology and Software

Technology, AMAST’02. Springer-Verlag Lecture Notes in Computer Science 2422 99–116.

Schröder, L., Mossakowski, T., Tarlecki, A., Hoffman, P. and Klin, B. (2001) Semantics of

architectural specifications in Casl. Proc. 4th Intl. Conf. on Fundamental Approaches to Software

Engineering FASE’01. Springer-Verlag Lecture Notes in Computer Science 2029 253–268.

Schröder, L., Mossakowski, T., Tarlecki, A., Hoffman, P. and Klin, B. (2005) Amalgamation in the

semantics of Casl. Theoretical Computer Science 331 215–247.

Szyperski, C. (1998) Component Software: Beyond Object-Oriented Programming, ACM Press and

Addison-Wesley.

Tarlecki, A. (2003) Abstract specification theory: An overview. In: Broy, M. and Pizka, M. (eds.)

Models, Algebras and Logic of Engineering Software. NATO Science Series – Computer and

Systems Sciences, IOS Press 191 43–79.

https://doi.org/10.1017/S0960129507006536 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006536

