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Abstract A conjecture of Huneke and Wiegand claims that, over one-dimensional commutative Noethe-
rian local domains, the tensor product of a finitely generated, non-free, torsion-free module with its
algebraic dual always has torsion. Building on a beautiful result of Corso, Huneke, Katz and Vasconce-
los, we prove that the conjecture is affirmative for a large class of ideals over arbitrary one-dimensional
local domains. Furthermore, we study a higher-dimensional analogue of the conjecture for integrally
closed ideals over Noetherian rings that are not necessarily local. We also consider a related ques-
tion on the conjecture and give an affirmative answer for first syzygies of maximal Cohen–Macaulay
modules.
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1. Introduction

Throughout, unless otherwise stated, R denotes a commutative Noetherian local ring
with unique maximal ideal m and residue field k. All R-modules are assumed to be
finitely generated. For such an R-module M , we denote the algebraic dual HomR(M,R)
of M by M∗.

Recall that an R-module M is called torsion-free if the natural map M → M ⊗R Q,
where Q is the total quotient ring of R, is injective. In general, if M is torsionless, i.e. if
the natural map M → M∗∗ is injective, then M must be torsion-free, but the converse
may fail; see, for example, the paragraph following [4, 2.1] for details.
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In this paper we are concerned with the following longstanding conjecture of Huneke
and Wiegand; see [19, 4.6 and the discussion following the proof of 5.2].

Conjecture 1.1 (Huneke and Wiegand [19]). Let R be a one-dimensional local
ring and let M be a finitely generated, torsion-free R-module. Assume M has rank, i.e.
there is a non-negative integer r such that Mp

∼= R⊕r
p for all associated prime ideals p of

R. If M ⊗R M∗ is torsion-free, then M is free.

Huneke and Wiegand [19, 3.1] established Conjecture 1.1 over hypersurface domains,
but in general the conjecture is very much open, even for ideals over one-dimensional
complete intersection domains of codimension at least two; however, see, for example [16]
for some recent promising work on the conjecture.

We point out that Conjecture 1.1 holds if and only if the following holds; see [5, 8.6]
and Theorem 3.1.

Conjecture 1.2. Let R be a local ring satisfying Serre’s condition (S2), and let M
be a finitely generated, torsion-free R-module which has rank. If M ⊗R M∗ is reflexive,
then M is free.

A result of Corso et al. [10] shows that integrally closed m-primary ideals are Tor-
rigid and pd-test; see 2.9 and Theorem 2.10. In particular, Conjecture 1.1 is true for such
ideals; see Corollary 2.17. On reading through the proof of their result, we discovered that
the integrally closed hypothesis could be replaced with a weaker assumption, namely the
weakly m-full property; see [7]. Although this observation merely follows from a slight
modification of the argument given in [10], the outcome pertaining to Conjecture 1.1
makes a significant difference: in general, it is quite difficult to determine whether a given
ideal is integrally closed, even by using a computer software such as Macaulay2 [17], but
the weakly m-full property is easier to check. Furthermore, examples of weakly m-full
ideals are easy to construct. For example, if J is an ideal of R, then J :R m is a weakly
m-full ideal; see Remark 2.2. In general, an integrally closed ideal is not necessarily weakly
m-full; a zero ideal in a field is such an example. However, if R is a domain with infinite
residue field, then each non-zero integrally closed ideal is weakly m-full; see [14, 2.4]. In
§ 2 we record some of these observations and obtain the following.

Proposition 1.3. Let R be a one-dimensional local domain and let I be a non-zero,
proper ideal of R. Assume I is weakly m-full. If I ⊗R I∗ is torsion-free, then I is principal
and R is a discrete valuation ring (DVR).

Recall that, for a commutative Noetherian ring R, Pic R consists of the isomor-
phism classes of finitely generated projective R-modules M such that Mp

∼= Rp for all
p ∈ Spec(R); see, for example [13, 11.3]. In § 3, we prove the following as Theorem 3.3,
which is our first main result in this paper.

Theorem 1.4. Let R be a Noetherian ring (not necessarily local) satisfying Serre’s
condition (S2), and let I be an integrally closed ideal of R of positive height. Then I is
locally free of rank one (so represents a class in Pic R) if and only if I ⊗R I∗ is reflexive.
Moreover, if either of the equivalent conditions holds, then a primary decomposition of I
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is of the form

I =
⋂

p∈AssR(R/I)

p(n(p))

where, for each p ∈ AssR(R/I), n(p) and p(n(p)) denote a positive integer and the symbolic
power of p, respectively.

We have already mentioned that Conjecture 1.1, and hence Conjecture 1.2, holds for
integrally closed m-primary ideals due to [10]. Hence we should highlight that we do not
assume the ring in Theorem 1.4 is local.

In [16], it was shown that Conjecture 1.1 fails if R is a Cohen–Macaulay local ring
with canonical module ω and one replaces the tensor product M ⊗R M∗ with M ⊗R M†,
where M† = HomR(M,ω). However, even if M∗ is replaced with M†, the conjecture
still remains open when the ring in question is Cohen–Macaulay with minimal mul-
tiplicity. Motivated by this fact, in the last section, we discuss a question related to
Conjecture 1.1 and prove the following as our second main result; see Question 4.2
and Theorem 4.3.

Theorem 1.5. Let R be a Cohen–Macaulay local ring with a canonical module ω.
Assume R has minimal multiplicity. If M is a first syzygy of a maximal Cohen–Macaulay
R-module and M ⊗R M† ∼= ω, then M ∼= R.

Let us note that, in Theorem 1.5, the isomorphism between M ⊗R M† and ω need not
be the natural one. Prior to giving a proof of Theorem 1.5, we provide an example show-
ing that the isomorphism M ⊗R M† ∼= ω does not necessarily imply M ∼= R in general.
Subsequently, we give an application of Theorem 1.5 that concerns reflexive ideals; see
Corollary 4.5.

2. Tensoring with weakly m-full ideals

In this section we give a proof of Proposition 1.3 and discuss several homological prop-
erties of weakly m-full ideals. Recall that an ideal I of R is called m-full if mI : x = I
for some x ∈ m. As mentioned by Watanabe in [22], m-full ideals were first defined and
studied by Rees (unpublished); see also [14, 2.1]. Motivated by this definition, a class of
ideals is defined as follows.

Definition 2.1 (see [7, 3.7]). Let R be a local ring and let I be an ideal of R. Then
I is said to be weakly m-full ideal provided that mI : m ⊆ I or, equivalently, mI : m = I.

Notice that I ⊆ mI : m ⊆ mI : x, so that each m-full ideal is weakly m-full. Examples
of weakly m-full ideals include non-maximal prime ideals; see [7]. Moreover, we have the
following.

Remark 2.2. Let J be an ideal of R, and set I = J :R m. Then, since mI ⊆ J , we
have mI : m ⊆ J : m = I so that I is a weakly m-full ideal of R.

Prior to giving a proof of Proposition 1.3, we record examples of weakly m-full ideals
that are not m-full. To obtain such examples, we need some preliminary results.
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2.3 (Corso and Polini [9, 2.1 and 2.2]). Let R be a Cohen–Macaulay local ring which
is not regular. If q is a parameter ideal of R and I = q : m, then I2 = qI and mI = mq.

2.4 (Goto [14, 2.2(2)]). Let R be a local ring and let J be an m-full ideal of R. If I is
an ideal of R such that J ⊆ I and length(I/J) is finite, then μ(I) ≤ μ(J), where μ(M)
denotes the cardinality of a minimal generating set of an R-module M .

The next lemma is straightforward, so we omit its proof.

Lemma 2.5. Let R be a local ring, and let I and J be ideals of R such that J ⊆ I
and mI = mJ . Then it follows that μ(I) = μ(J) + length(I/J).

Proposition 2.6. Let R be a d-dimensional Cohen–Macaulay local ring and let I = q :
m for some parameter ideal q of R. If embdim R > d + r, where r is the Cohen–Macaulay
type of R, i.e. r = length(ExtdR(R/m, R)), then I is not m-full.

Proof. Note that as embdim R �= d, R is not regular, and so I is a proper ideal of
R. Moreover, the Cohen–Macaulay type of R, which is the length of I/q, is r. Since
Theorem 2.3 implies mI = mq, we conclude from Lemma 2.5 that μ(I) = d + r. Therefore,
if I is m-full, then it follows from Theorem 2.4 that embdim R = μ(m) ≤ μ(I) = d + r,
which contradicts our assumption. Thus, I is not m-full. �

We are now ready to give two examples of weakly m-full ideals that are not m-full.

Example 2.7. Let R = C[[t4, t5, t6]] and let q = (t4). Then R is a one-dimensional com-
plete intersection ring and q is a parameter ideal of R. Set I = q : m. Then Proposition 2.6
shows that I is weakly m-full but not m-full. In particular, I is not integrally closed; see
[14, 2.4]. Note that as t7 /∈ R, it follows that t11 /∈ q. On the other hand, since t16 and
t12 belong to q, we see that t11 ∈ I. Therefore, I = q + t11R = (t4, t11).

Example 2.8. Let R = C[[t7, t9, t11, t13]] and let q = (t14). Then R is a one-dimensional
local domain that is not Gorenstein, and q is a parameter ideal of R. Set I = q : m. Then
Proposition 2.6 shows that I is weakly m-full but not m-full. In particular, I is not
integrally closed; see [14, 2.4]. Furthermore, one can check that I = (t14, t29, t31, t33).

We proceed by recalling the definition of rigid-test and strongly-rigid modules.

Definition 2.9 (see [6, 12]). Let R be a local ring and let M be a finitely generated
R-module.

(i) M is called rigid-test provided that M is Tor-rigid and pd-test, i.e. the following
condition holds: if N is a finitely generated R-module with TorRn (M,N) = 0 for
some n ≥ 1, then TorRi (M,N) = 0 for all i ≥ n, and pd(N) < ∞; see [6, 2.3].

(ii) M is called strongly rigid provided that the following condition holds: if T is a
finitely generated R-module with TorRs (M,T ) = 0 for some s ≥ 1, then pdR(T ) <
∞; see [12, 2.1].

Although each rigid-test module is strongly-rigid, it is unknown whether the converse
holds; see [6, 2.5] for details. A result of Huneke, Corso, Katz and Vascencelos [10, 3.3]

https://doi.org/10.1017/S0013091518000731 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000731


Ideal case of a conjecture of Huneke and Wiegand 851

states that integrally closed m-primary ideals are rigid-test, and hence strongly rigid.
The aim of this section is to point out that their argument in fact shows the same
result for weakly m-full ideals. This will allow us to obtain various examples supporting
Conjecture 1.1; see Corollary 2.17. Note that if k is infinite, then integrally closed ideals
are m-full, and hence weakly m-full, but there are weakly m-full ideals that are not
integrally closed; see [14, 2.4], above (2.7 and 2.8) and § 3.

We now proceed, slightly modifying the proof given in [10] to prove that m-primary
weakly m-full ideals are rigid-test; since this fact has already been established for integrally
closed ideals, we include an argument—for completeness—only for weakly m-full ideals;
cf. [10, 3.1 and 3.2].

Theorem 2.10 (Corso, Huneke, Katz and Vasconcelos [10, 3.3]). Let R be
a local ring and let I be an m-primary ideal of R. Assume I is weakly m-full, or inte-
grally closed. If TorRt (M,R/I) = 0 for some R-module M and non-negative integer t, then
pd(M) < t. In particular, I is a rigid-test R-module.

Proof. If t = 0, then M = 0 and pd(M) = −∞. Thus, we may assume t is positive.
Consider a minimal free resolution of M :

F = · · · −→ Ft+1 −→ Ft

∂t−→ Ft−1 → · · · → F0 → 0.

Tensoring F with R/I, we obtain the complex:

F = · · · −→ F t+1 −→ F t

∂t−→ F t−1 → · · · → F 0 → 0.

Assume ∂t = 0. Then (im ∂t+1 + IFt)/IFt = im ∂t+1 = ker ∂t = Ft/IFt. Hence im ∂t+1 +
IFt = Ft so that im ∂t+1 = Ft by Nakayama’s lemma, i.e. ∂t = 0 and ∂t−1 is injective.
This would show pd(M) < t. Hence we assume im ∂t �= 0 and seek a contradiction.

As im ∂t ⊆ Ft−1, we have (im ∂t)I ⊆ IFt−1. Since I is m-primary, there is a posi-
tive integer s such that (im ∂t)ms ⊆ IFt−1. We may assume s is the smallest integer
with this property. So (im ∂t)ms−1 � IFt−1. Let u ∈ (im ∂t)ms−1 with u /∈ IFt−1. Then
mu ∈ IFt−1. Therefore, u ∈ Soc(Ft−1/IFt−1) = {α ∈ Ft−1/IFt−1 : αm = 0}. Moreover,
u ∈ (im ∂t)ms−1 ⊆ im ∂t so that u ∈ im ∂t. Consequently,

u /∈ IFt−1 and u ∈ Soc(Ft−1/IFt−1) ∩ im ∂t. (2.1)

Since u ∈ (im ∂t)ms−1 ⊆ im ∂t, we have u = ∂t(v) for some v ∈ Ft.
Let x ∈ m. Then it follows from the fact u ∈ Soc(Ft−1/IFt−1) that xu ∈ IFt−1. Since

xu = x∂t(v), we deduce that x∂t(v) ∈ IFt−1. This gives the series of implications:

∂t(xv) ∈ IFt−1 =⇒ ∂t(xv) = 0 =⇒ xv ∈ im(∂t+1) =⇒ ∂t+1(z) = ∂t+1(z) = xv

for some z ∈ Ft+1/IFt+1.

Consequently, we have

∂t+1(z) − xv ∈ IFt =⇒ xv = ∂t+1(z) + w0 for some w0 ∈ IFt =⇒ x∂t(v) = ∂t(w0).

Since xu = x∂t(v), we get xu = ∂t(w0). Note that ∂t(w0) ∈ ∂t(IFt) ⊆ ImFt−1. There-
fore, xu ∈ ImFt−1. As x is arbitrary, we obtain mu ⊆ mIFt−1. It follows that u ∈ (mI :
m)Ft−1 = IFt−1. �
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Next we discuss tensoring certain modules with strongly rigid ones. Recall that each
rigid-test module is strongly rigid; see 2.9.

Observation 2.11. Let R be a local ring with depth(R) ≥ 1, and let M be a non-zero
strongly rigid R-module such that Mp is a free Rp-module for each associated prime ideal
p of R. If N embeds into a free R-module and M ⊗R N is torsion-free, then pd(N) < ∞.

To observe this, note that there is a short exact sequence of the form 0 → N →
F → C → 0, where F is a free R-module. Applying −⊗R M , we obtain the injection
TorR1 (C,M) ↪→ M ⊗R N . Since Mp is a free Rp-module for each associated prime ideal

p of R, we have that TorR1 (C,M) has torsion. As M ⊗R N is torsion-free, this implies
TorR1 (C,M) = 0 so that pd(C) < ∞ since M is strongly-rigid. Hence the short exact
sequence shows pd(N) < ∞.

One can also use Observation 2.11 to determine that an ideal is not weakly m-full.

Example 2.12. Let R = C[[t4, t5, t6]], I = (t4, t5) and J = (t4, t6). Then it follows that
TorR2 (R/I,R/J) = 0, i.e. I ⊗R J is torsion-free; see, for example [19, 4.3]. Since I and J
are not principal, we conclude from Theorem 2.10 and Observation 2.11 that I and J
are not weakly m-full ideals. In fact, t6m = (t10, t11, t12) ⊆ mI = (t8, t9, t10, t11) so that
t6 ∈ mI : m and mI : m � I. Similarly, one can check that J is not weakly m-full directly.

Lemma 2.13. Let R be a local ring such that depth(R) ≤ 1, and let M be a finitely
generated torsion-free R-module. Then M∗ is free if and only if M is free.

Proof. Let X be an indecomposable direct summand of M . It suffices to assume X∗

is free and prove X is free. Note that X is torsion-free. Hence, if X∗ = 0, then it follows
from [3, 1.2.3(b)] that X = 0. So we may assume X∗ �= 0.

Consider a minimal presentation F1 → F0 → X → 0 of X. This yields the following
exact sequence

0 → X∗ → F ∗
0 → F ∗

1 → TrX → 0, (2.13.1)

where TrX is the Auslander transpose of X. Since X∗ is free and depth(R) ≤ 1, (2.13.1)
gives that pd(TrX) ≤ 1. Therefore, Ext2R(TrX,R) = 0 and so the natural map X → X∗∗ is
surjective; see [2, 2.8]. As X∗∗ is free and X is indecomposable, this map is an isomorphism
and so X is free. �

Remark 2.14. The conclusion of Lemma 2.13 has been recently established in [11,
3.9] for the case where R is Cohen–Macaulay and dim(R) ≤ 1. Our argument extends
[11, 3.9] with a different and short proof; see also [18, 1.2] and [20, Theorem 3] for some
related results concerning Lemma 2.13.

Corollary 2.15. Let R be a local ring such that depth(R) ≤ 1 and let M be a torsion-
free strongly rigid R-module. Assume Mp is a free Rp-module for each associated prime
ideal p of R. If M ⊗R M∗ is torsion-free, then M is free.

Proof. We may assume depth(R) = 1: otherwise M would be free. Notice that M∗,
being torsionless, embeds into a free module. Therefore, it follows from Observation 2.11
that M∗ is free. So M is free by Lemma 2.13. �
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Remark 2.16. Let R be a local ring of positive depth and let I be an m-primary
ideal of R. Assume I is either integrally closed or weakly m-full. Assume further that
I is principal. Then, since I contains a non-zero-divisor, I is a free R-module so that
pdR(R/I) ≤ 1. In particular, TorR2 (R/m, R/I) = 0. It now follows from Theorem 2.10
that pdR(R/m) ≤ 1, i.e. R is a DVR.

Our next result establishes Proposition 1.3, as mentioned in the introduction.

Corollary 2.17. Let R be a local ring of depth one and let I be an m-primary ideal
of R (e.g. R is a one-dimensional local domain and I is a non-zero proper ideal of R).
Assume I is either integrally closed or weakly m-full. If I ⊗R I∗ is torsion-free, then R is
a DVR and I is principal.

Proof. This follows from Theorem 2.10, Corollary 2.15 and Remark 2.16. �

Remark 2.18. Let R be a one-dimensional local domain that is not regular, and let
I = x :R m for some 0 �= x ∈ m. Consider I ′ = I/x ⊆ Q(R), where Q(R) is the total ring
of fractions of R. Then I ′ is a fractional ideal of R. Notice that I2 = xI; see 2.3. Therefore,
it follows that

I ′ =
I

x
=

⋃
n≥1

In

xn
= R

[
I

x

]
. (2.18.1)

Here the second equality is due to the fact that I2 = xI, and the third equality follows
from the definition of R[I/x]. The equality in (2.18.1) implies that I ′ is a module finite
R-algebra. So we have R ⊆ I ′ ⊆ R, where R is the integral closure of R. It follows that
(I ′)∗ ∼= R :R I ′ = m, and hence I∗ ∼= m. Notice that I is a weakly m-full ideal of R so
that I ⊗R I∗ cannot be torsion-free; see Remark 2.2 and Corollary 2.17. However, since
I∗ ∼= m, one can conclude that the tensor product I ⊗R I∗ has torsion without appealing
to Corollary 2.17; see, for example [8, p. 842].

In view of Remark 2.18, we next construct an example of a weakly m-full ideal L, where
L∗ � m. This, in particular, indicates that the conclusion of Corollary 2.17 is not trivial.

Example 2.19. Let R = k[[t9, t11, t13, t14, t15, t17]] and set L = I :R m, where I =
(t26, t30, t32). Then L is weakly m-full. One can see that L = (t26, t30, t32, t34, t36, t38, t42).
Let L′ be the R-module generated by 1, t4, t6, t8, t10, t12, t16. Then L′ ∼= L and t26L′ = L.
Note also that, since R ⊆ L′, we have L∗ = HomR(L,R) ∼= R :Q(R) L′ = R :R L′.

Suppose now that L∗ ∼= m, and seek a contradiction. It follows that m ∼= R :R L′ and
hence mL′ ⊆ R. However, t19 = t13t6 ∈ mL′, but t19 /∈ R. Therefore, L∗ � m. Further-
more, since L is weakly m-full and R is not a DVR, we conclude from Corollary 2.17 that
L ⊗R L∗ is not torsion-free, i.e. L ⊗R L∗ has torsion.

There are many examples in the literature supporting Conjecture 1.1. For example,
the conjecture is known to be true for ideals over numerical semigroup rings that have
multiplicity at most seven; see [16, 1.7]. Notice, in Example 2.19, that the numerical
semigroup ring has multiplicity nine. Therefore, to our best knowledge, L is a new example
of an ideal supporting Conjecture 1.1. Furthermore, it is a non-trivial example in the sense
that L∗ � m; see Remark 2.18.
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3. On integrally closed ideals

This section is devoted to a proof of Theorem 1.4. For our argument we will make use
of the next two results; the first one is due to Auslander and follows from the proof of
[1, 3.3].

3.1 (Auslander; see [1, 3.3] and also [19, 5.2]). Let R be a local ring satisfying Serre’s
condition (S2) and let M ∈ mod R be a torsion-free R-module. Assume Mp is a free Rp-
module for each prime ideal p of R with height(p) ≤ 1. If M ⊗R M∗ is reflexive, then M
is free.

Lemma 3.2. Let R be a Noetherian ring (not necessarily local) satisfying Serre’s
condition (S1), and let I be an ideal of R. Assume IRp

∼= Rp for some p ∈ AssR(R/I).
Then Rp is a one-dimensional Cohen–Macaulay ring. If, furthermore, I is integrally closed,
then Rp is a DVR.

Proof. Note that depthRp
(Rp/IRp) = 0. Since IRp is principal, we have depth(Rp) =

1. As R satisfies (S1), we conclude that Rp is a one-dimensional Cohen–Macaulay ring.
Since IRp is an integrally closed pRp-primary ideal of Rp, we conclude from Remark 2.16
that Rp is a DVR. �

Recall that the Picard group Pic R of a Noetherian ring R consists of the isomorphism
classes [M ] of finitely generated projective R-modules M such that Mp

∼= Rp for all
p ∈ Spec(R); see, for example [13, 11.3].

Theorem 3.3. Let R be a Noetherian ring (not necessarily local) and let I be an ideal
of R of positive height. Assume R satisfies Serre’s condition (S2). Then the following
conditions are equivalent.

(i) I is integrally closed and [I] ∈ Pic R.

(ii) Rp is a DVR for every p ∈ AssR(R/I) and [I] ∈ Pic R.

(iii) I is integrally closed and I ⊗R I∗ is reflexive.

Moreover, if one of the equivalent conditions holds, then a primary decomposition of I is
of the form

I =
⋂

p∈AssR(R/I)

p(n(p))

where n(p) ≥ 1 for every p ∈ AssR(R/I) and p(n(p)) denotes a symbolic power of p.

Proof. (ii) ⇒ (iii): Let I denote the integral closure of I. Suppose that I/I �= (0)
and choose p ∈ AssR(I/I). Then p ∈ AssR(R/I) so that Rp is a DVR by assumption.
Hence IRp = IRp = IRp. This is a contradiction since (I/I)p �= (0). Thus, I = I, i.e. I
is integrally closed. Note that since [I] ∈ Pic R, I is projective. Since R-duals and tensor
products of projective modules are projective, and projective modules are reflexive, we
conclude that I ⊗R I∗ is reflexive.

(iii) ⇒ (ii): We start the proof by proving the following claim.
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Claim. Let p ∈ Spec(R) with height(p) ≤ 1. Then IRp
∼= Rp and SuppR(I) = Spec(R).

Proof of the claim. Assuming IRp
∼= Rp for all p ∈ Spec(R) with height(p) ≤ 1, we

have that SuppR(I) = Spec(R); this is because each prime ideal of R contains a minimal
prime, which supports the R-module I. So we will prove IRp

∼= Rp for each p ∈ Spec(R)
with height(p) ≤ 1. This is clear if I �⊆ p. Hence we assume I ⊆ p.

Since I ⊆ p and I has positive height, we have dim Rp = 1. Since R satisfies (S2),
we conclude that Rp is a one-dimensional Cohen–Macaulay local ring. Moreover, IRp

has positive height since I has positive height. In particular, heightRp
(IRp) = 1 so that√

IRp = pRp.
As I is integrally closed, IRp is an integrally closed ideal of Rp. Moreover, IRp ⊗Rp

(IRp)∗ is torsion-free over Rp. Thus, we see from Corollary 2.17 that IRp is principal,
i.e. IRp

∼= Rp. This proves the claim. �

Now we proceed to show [I] ∈ Pic R by using 3.1. For that, fix a prime ideal q of R. Pick
P ∈ Spec(Rq) with dim(RP ) ≤ 1. Then P = pRq for some p ∈ Spec(R) with dim(Rp) =
height(p) ≤ 1. It follows from the claim that (IRq)P

∼= IRp
∼= Rp. Moreover, IRq ⊗Rq

(IRq)∗ is reflexive. So 3.1 implies that IRq is free over Rq. Since SuppR(I) = Spec(R) by
the claim, we see that IRq

∼= Rq. This shows that I is projective, i.e. [I] ∈ Pic R.
Now let p ∈ AssR(R/I). Since [I] ∈ Pic R, we have IRp

∼= Rp. Thus, by Lemma 3.2,
we see that Rp is a one-dimensional Cohen–Macaulay ring. As IRp is principal, i.e. free,
we have Tor

Rp

i (Rp/pRp, Rp/IRp) = 0 for all i ≥ 2. As IRp is integrally closed and pRp-
primary, we deduce from Theorem 2.10 that Rp is a DVR. This completes the proof of
(iii) ⇒ (ii).

(ii) ⇒ (i): Since (ii) implies (iii), we see that (ii) implies (i).
(i) ⇒ (ii): This implication follows from Lemma 3.2.
For the last assertion on the primary decomposition of I, let p ∈ AssR(R/I). Then,

since Rp is a DVR, we have IRp = pn(p)Rp for some n(p) ≥ 1. Thus, IRp ∩ R = p(n(p)),
and the result follows. �

4. On a question related to Conjecture 1.1

Goto et al. [16] considered Conjecture 1.1 for ideals I by replacing the tensor prod-
uct I ⊗R I∗ with I ⊗R I†, where ω is the canonical module and (−)† = Hom(−, ω).
They proved that, this new version of Conjecture 1.1, fails over a one-dimensional
numerical semigroup ring; see [16, 7.3]. However, the ring considered in their exam-
ple does not have minimal multiplicity; recall that a Cohen–Macaulay local ring
R is said to have minimal multiplicity if e(R) = embdim R − dim R + 1, where e(R)
and embdim R stand for the multiplicity of R (with respect to m) and the embed-
ding dimension of R, respectively. Therefore, the following question still remains
open:

Question 4.1. Let R be a one-dimensional local domain with a canonical module ω,
and let I be an ideal of R. Assume R has minimal multiplicity. If I ⊗R I† is torsion-free,
then must I ∼= R or I ∼= ω?
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In this section we consider a version of Question 4.1, and look at maximal Cohen–
Macaulay modules M such that M ⊗R M† ∼= ω. More precisely, we ask:

Question 4.2. Let R be a Cohen–Macaulay local ring with a canonical module ω.
Assume R has minimal multiplicity. If M is a maximal Cohen–Macaulay R-module such
that M ⊗R M† ∼= ω, then must M ∼= R or M ∼= ω?

Note that, if M ⊗R M† ∼= ω, then M ⊗R M† is torsion-free, but somewhat surprisingly
this isomorphism does not necessarily force M ∼= R or M ∼= ω, in general. For example, if
R = k[[t9, t10, t11, t12, t15]] and I = R + Rt, then I ⊗R I† ∼= ω, where ω = R + Rt + Rt3 +
Rt4; see [15, 2.5].

The following is our main result in this section; it gives a partial affirmative answer to
Question 4.2.

Theorem 4.3. Let R be a Cohen–Macaulay local ring with a canonical module ω.
Assume R has minimal multiplicity. Let M be a first syzygy of a maximal Cohen–
Macaulay R-module. If M ⊗R M† ∼= ω, then M ∼= R.

Proof. We may assume, by replacing R by R[t]mR[t] with an indeterminate t over
R, that the residue field k of R is infinite. Therefore, since R has minimal multiplicity,
there exists a parameter ideal q of R such that m2 = qm; see, [21, Theorem 1]. There are
isomorphisms:

ω/qω ∼= (M ⊗R M†) ⊗R R/q

∼= M/qM ⊗R/q (M† ⊗R R/q)
∼= M/qM ⊗R/q HomR/q(M/qM,ω/qω).

Here the last isomorphism follows from [3, 3.3.3(a)] since M is maximal Cohen–Macaulay
and ExtiR(M,ω) = 0 for all i ≥ 1. As ω/qω is isomorphic to the injective hull ER/q(k), we
obtain:

ER/q(k) ∼= M/qM ⊗R/q HomR/q(M/qM,ER/q(k)).

Taking the Matlis dual of this isomorphism over R/q, we see:

R/q ∼= HomR/q(M/qM ⊗R/q HomR/q(M/qM,ER/q(k)),ER/q(k))
∼= HomR/q(M/qM,HomR/q(HomR/q(M/qM,ER/q(k)),ER/q(k)))
∼= HomR/q(M/qM,M/qM).

Now, by the hypothesis, there is an exact sequence

0 → M → R⊕a → N → 0

of R-modules such that N is maximal Cohen–Macaulay. Tensoring this short exact
sequence with R/q, we have an exact sequence:

0 → TorR1 (R/q, N) → M/qM → (R/q)⊕a.

Notice that TorR1 (R/q, N) is isomorphic to the first Koszul homology of N with respect
to the minimal system of generators of q, which is a regular sequence on N . Thus,
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TorR1 (R/q, N) vanishes, and this yields the injection M/qM ↪→ (R/q)⊕a. Therefore, there
is an isomorphism

M/qM ∼= L ⊕ (R/q)⊕b,

where L is a submodule of m(R/q)⊕(a−b). Since m2 = qm, the module L is a k-vector
space so that L ∼= k⊕c for some c ≥ 0. Now we obtain the isomorphisms:

R/q ∼= HomR/q(M/qM,M/qM)

∼= HomR/q(k⊕c ⊕ (R/q)⊕b, k⊕c ⊕ (R/q)⊕b)

∼= k⊕(c2+bc+bcr) ⊕ (R/q)⊕b2 ,

where r denotes the type of R.
Note that R/q and k are indecomposable R/q-modules, and that decomposition of

each R/q-module into indecomposable R/q-modules is unique up to isomorphisms. Hence
we have either (b, c) = (0, 1) or (b, c) = (1, 0). In both cases we obtain an isomorphism
M/qM ∼= R/q. (In the former case, we also have q = m so that R is regular). Now applying
[3, 1.3.5] repeatedly, we conclude that M ∼= R. �

We finish this section with two corollaries of Theorem 4.3.

Corollary 4.4. Let R be a d-dimensional Cohen–Macaulay local ring with a canonical
module ω. Assume R has minimal multiplicity. Let M be a (d + 1)st syzygy of a finitely
generated R-module. If M ⊗R M† ∼= ω, then M ∼= R.

Proof. The assertion follows from Proposition 4.3 since a d-th syzygy of a finitely
generated R-module is a maximal Cohen–Macaulay R-module. �

Corollary 4.5. Let R be a one-dimensional Cohen–Macaulay local ring with a canon-
ical module ω. Assume R has minimal multiplicity. If I is a reflexive ideal of R and
I ⊗R I† ∼= ω, then I ∼= R.

Proof. Let Q
f−→ P → I∗ → 0 be a presentation of the R-module I∗ by finitely

generated free R-modules P and Q, where I∗ = HomR(I,R). Since I is reflexive,

dualizing this presentation by R, we obtain the exact sequence 0 → I → P ∗ f∗
−→ Q∗.

Hence I is a second syzygy of the cokernel of f∗, and so Corollary 4.4 completes the
proof. �
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