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R. BEALS1, D. H. SATTINGER1 AND J. SZMIGIELSKI2

1Department of Mathematics, Yale University, 10 Hillhouse Avenue,
New Haven, CT 06520-8283, USA

2Department of Mathematics and Statistics, University of Saskatchewan,
106 Wiggins Road, Saskatoon, Saskatchewan S7N 5E6, Canada

(Received 1 June 2003; accepted 1 September 2003)

Abstract It has long been known that a number of periodic completely integrable systems are associated
to hyperelliptic curves, for which the Abel map linearizes the flow (at least in part). We show that this
is true for a relatively recent such system: the periodic discrete reduction of the shallow water equation
derived by Camassa and Holm. The associated spectral problem has the same form and evolves in the
same way as the spectral problem for a family of finite-dimensional non-periodic Hamiltonian flows
introduced by Calogero and Françoise. We adapt the Weyl function method used earlier by us to solve
the peakon problem to give an explicit solution to both the periodic discrete Camassa–Holm system and
the (non-periodic) Calogero–Françoise system in terms of theta functions.
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1. Introduction

One of the striking discoveries made in the study of the Korteweg–de Vries equa-
tion (KdV) and other infinite-dimensional integrable systems is that methods of alge-
braic geometry can be used to linearize and integrate the periodic versions of many
such systems, as well as such finite-dimensional counterparts as the Toda lattice
(see [15,17,18,22–26,28,30]). In outline, these problems are integrable because they
can be expressed as a Lax equation for the evolution of a linear operator. In the periodic
case there is an algebraic curve, or family of such curves, attached to a spectral problem
for the operator, and the Abel map linearizes the flow of certain spectral data.

In this paper we derive analogous results for two more recently discovered finite-
dimensional integrable systems. One system is the periodic discrete reduction of the
Camassa–Holm equation. The second is the (non-periodic) Calogero–Françoise system,
which generalizes the finite-dimensional reduction of the Camassa–Holm equation. In
general, the scattering problem for the Calogero–Françoise system is essentially identical
to that of periodic discrete Camassa–Holm. Again, there is an associated algebraic curve,
and data that linearizes under the Abel map.
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The Camassa–Holm equation is one of a class of (formally) integrable equations dis-
covered by Fokas and Fuchssteiner [19]. It was derived as a shallow water wave equation
and studied in detail by Camassa, Holm and collaborators [1,2,10,11]. For this equation
the analogues of KdV solitons and multisolitons are weak solutions, known as peakons,
antipeakons and multipeakons, that have corners. Explicit formulae for general multi-
peakons were found in [3,4]. The smooth periodic case has been studied, for example,
in [1,2,12–14,27,29]. The present authors found formulae for the periodic two peakon
and peakon/antipeakon pair problems in terms of Weierstrass elliptic functions [6].

In this paper we present explicit solutions for an arbitrary number of peakons and/or
antipeakons in terms of Riemann theta functions. The spectral problem is treated in § 2,
and a corresponding Floquet matrix is analysed in § 3. Theta function representations of
the spectral data are obtained in §§ 4–6.

The (non-periodic) Calogero–Françoise systems have, in general, a scattering matrix
that evolves in the same way as the Floquet matrix for the finite-dimensional periodic
Camassa–Holm system. In §§ 7 and 8 we carry over the methods of the earlier sections
to these cases.

The flows considered here may have singularities in finite time, depending on the initial
conditions and other parameters. The theta function formulae are valid until singularities
occur, and they sometimes allow reasonable continuation past singularities. In § 9 we
make some observations about the dynamics in various cases.

2. Periodic Camassa–Holm equation: spectral problem(s)

The linear spectral problem associated to the Camassa–Holm evolution has the form

L(λ)ϕ ≡ D2ϕ − ν2ϕ − 2νλm(x)ϕ = 0, D =
d
dx

, (2.1)

with ν > 0. An operator of this form is compatible with a generalized Lax evolution

−2νλmt =
d
dt

L(λ) = [L(λ), B(λ)] + 2uxL(λ), (2.2)

where

B(λ) =
{

1
2νλ

− u(x)
}

D + 1
2ux(x). (2.3)

In fact, Equation (2.2) is equivalent to the Camassa–Holm evolution

mt = uxm + (um)x, 2mx = 4ν2ux − uxxx (2.4)

(cf. the argument in [5]). Replacing the second equation with the relation 2m = 4ν2u−uxx

and substituting in the first equation gives the Camassa–Holm evolution in the form

4ν2ut − uxxt = 2ux(4ν2u − uxx) + u(4ν2uxx − uxxxx). (2.5)

Multipeakon/antipeakon solutions of (2.4) on the line correspond to discrete measures

m(x, t) =
∑

j

mj(t)δ(x − xj(t)); (2.6)
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Periodic peakons and Calogero–Françoise flows 3

here (2.4) and the spectral problem (2.1) must be interpreted in the sense of distributions
(cf. [4]). The associated function u is

u(x, t) =
1
2ν

∑
j

mj(t)e−2ν|x−xj(t)|. (2.7)

In this discrete case the Camassa–Holm evolution is equivalent to the finite-dimensional
Hamiltonian system with variables xj , 1 � j � d, dual variables mj , 1 � j � d, and
Hamiltonian

H(x1, . . . , xd, m1, . . . , md) = 1
2

d∑
j,k=1

mjmkGν(xj − xk), (2.8)

where Gν = e−2ν|x|/2ν is the integrable fundamental solution for 2ν2 − D2/2.
We assume here that m is periodic with respect to x, with period X > 0 and is

supported on d points in each period interval. Thus the index j runs through the integers,
and

xj+d = xj + X, mj+d = mj , j ∈ Z, (2.9)

and (at least for most values of t)

mj(t) �= 0, xj(t) < xj+1(t), j ∈ Z.

This is equivalent to the problem with d particles on a circle of length X, and again the
Camassa–Holm evolution is equivalent to a finite-dimensional Hamiltonian system. Here
the Hamiltonian is

H(x1, . . . , xd, m1, . . . , md) = 1
2

d∑
j,k=1

mjmkGν,X(xj − xk), (2.10)

where Gν,X is the periodization of Gν ,

Gν,X(x) =
1
2ν

∞∑
j=−∞

e−2ν|x−jX|. (2.11)

The series is easily summed to give

Gν,X(x) =
cosh(2ν|x| − νX)

2ν sinh νX
, |x| � X. (2.12)

We consider the spectral problem (2.1) at fixed time t = 0, and write xj = xj(0),
mj = mj(0). We are assuming

x1 < x2 < · · · < xd < xd+1 = x1 + X,

d∏
j=1

mj �= 0. (2.13)
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Suppose that ϕ is a solution of (2.1). On each interval Ij = (xj−1, xj), ϕ is a linear
combination ajeνx + bje−νx. Equation (2.1) itself translates into a continuity equation
and a jump condition:

aj+1eνxj + bj+1e−νxj = ajeνxj + bje−νxj ,

aj+1eνxj − bj+1e−νxj = ajeνxj − bje−νxj + λmj(ajeνxj + bje−νxj ). (2.14)

Thus the transition is given by[
aj+1

bj+1

]
=

[
1 + λmj λmje−2νxj

−λmje2νxj 1 − λmj

] [
aj

bj

]
. (2.15)

Denoting the transition matrix in (2.15) by Tj(λ), the Floquet matrix for this problem,
giving the transition from the representation on the interval (xd − X, x1) = (x0, x1) to
the representation on the interval (xd, x1 + X) = (xd, xd + 1), is the product

Φ(λ) = Td(λ)Td−1(λ) · · ·T1(λ). (2.16)

It follows by induction that

Φ(λ) = I + λ

[
M M−

−M+ −M

]
+ O(λ2), λ → 0, (2.17)

and

Φ(λ) = λd
d∏

j=1

mj

d∏
j=2

(1 − e−2ν(xj−xj−1))

[
1 e−2νx1

−e2νxd −e2ν(xd−x1)

]
+ O(λd−1), λ → ∞,

(2.18)

where

M =
d∑

j=1

mj , M± =
d∑

j=1

mje±2νxj . (2.19)

Thus the entries Φij(λ) are polynomials of degree d in λ. Since detTj = 1, it follows that
det Φ = 1.

Of course, one could analyse the spectral problem using any choice of d consecutive
indices. For example, starting at xk, the corresponding quantities M± would be

M±(k) =
k+d−1∑

j=k

mje±2νxj .

We note that the data {xj}, {mj} can be reconstructed from d + 1 consecutive values of
M±(k).
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Proposition 2.1. We have

e4νxk = −e−4νX M+(k + 1) − M+(k)
M−(k + 1) − M−(k)

and

m2
k = − [M+(k + 1) − M+(k)][M−(k + 1) − M−(k)]

4 sinh2(νX)
.

Proof. These identities follow easily from the identities

M±(k + 1) − M±(k) = e±2νxk+dmk+d − e±2νxkmk

and the periodicity conditions xk+d = xk + X, mk+d = mk. �

In the remainder of this section we discuss the periodic and anti-periodic spectra of
the operator (2.2) and their relationship to certain other spectral data.

Note that ϕ(x + X) ≡ ϕ(x) if and only if the coefficients of ϕ with respect to the basis
eνx, e−νx on the interval (xd, x1 + X) are the same as the coefficients with respect to the
basis eν(x+X), e−ν(x+X) on the interval (xd − X, x1). Therefore, in order to compare wave
functions ϕ near x = x1 and near x = x1 + X with periodicity in mind, we renormalize
on the subinterval (xd − X, x1) by writing ϕ as a linear combination of eν(x+X) and
e−ν(x+X) rather than eνx and e−νx. The associated transition matrix that relates the
coefficients of ϕ on (xd, x1 + X) to the coefficients with respect to the revised basis on
(xd − X, x1) is the renormalized Floquet matrix

Ψ(λ) = Φ(λ)EνX = Φ(λ)

[
eνX 0
0 e−νX

]
. (2.20)

We show later that the trace

P (λ) = trΨ(λ) = Ψ11(λ) + Ψ22(λ) (2.21)

is invariant under the flow (2.4).
Choose a constant a so that xd − X < a < x1 and consider the operator L(λ) on the

interval [a, a+X]. The periodic spectrum consists of those λ for which there is a solution
ϕ �= 0 of (2.1) with periodic boundary conditions: ϕ(a+X) = ϕ(a), Dϕ(a+X) = Dϕ(a).
The anti-periodic spectrum consists of those λ for which there is a solution ϕ �= 0 such
that ϕ(a + X) = −ϕ(a), Dϕ(a + X) = −Dϕ(a). Note that 0 cannot lie in the periodic
or anti-periodic spectrum. Let ϕ be a wave function and let v = (c, d)t, where

ϕ(x) = ceνx + de−νx, x ∈ (xd − X, x1).

Then ϕ is periodic if and only if v is an eigenvector of Ψ(λ) with eigenvalue 1, and anti-
periodic if and only if v is an eigenvector of Ψ(λ) with eigenvalue −1. Thus the periodic
and anti-periodic spectra consist of those λ such that Ψ(λ)−λI or Ψ(λ)+λI are singular,
respectively.
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The auxiliary spectrum consists of those λ for which there is a solution ϕ �= 0 that
satisfies one of the following pairs of boundary conditions:

Dϕ(a) − νϕ(a) = 0 = Dϕ(a + X) − νϕ(a + X), (2.22)

Dϕ(a) + νϕ(a) = 0 = Dϕ(a + X) + νϕ(a + X). (2.23)

Note that 0 is in the auxiliary spectrum, since the wave functions eνx and e−νx sat-
isfy (2.22) and (2.23), respectively. We remark here that an auxiliary spectrum typically
plays a role in the analysis of such periodic problems, but usually it is taken to be the
Dirichlet spectrum, e.g. in the Camassa–Holm case (see [14]).

Lemma 2.2. The periodic and anti-periodic spectra of L(λ) are real and non-zero, and
coincide with the zeros of P (λ) − 2 and with the zeros of P (λ) + 2, respectively.

The spectra with respect to the boundary conditions (2.22) and (2.23) are real and
coincide with the zeros of Ψ21 and Ψ12, respectively.

Proof. To prove reality, we note that if L(λ)ϕ = 0, then

2νλ

d∑
j=1

|ϕ(xj)|2mj =
∫ a+X

a

[D2ϕ(x) − ν2ϕ(x)]ϕ̄(x) dx

= Dϕ · ϕ̄|a+X
a −

∫ a+X

a

{|Dϕ(x)|2 + ν2|ϕ(x)|2} dx. (2.24)

If ϕ satisfies periodic or anti-periodic boundary conditions, then the boundary terms
vanish and it follows that ϕ ≡ 0 or λ is real and non-zero. If ϕ satisfies (2.22), then

Dϕ · ϕ̄|a+X
a = νϕϕ̄|a+X

a = ν

∫ a+X

a

{Dϕ(x)ϕ(x) + ϕ(x)Dϕ(x)} dx. (2.25)

The same calculation holds for boundary conditions (2.23), with a change of sign. There-
fore, with Dϕ ± νϕ = 0 at a and a + X, we may sum (2.24) and (2.25) to obtain

2νλ

d∑
j=1

|ϕ(xj)|2mj = −
∫ a+X

a

|Dϕ(x) ± νϕ(x)|2 dx.

Again, it follows that λ is real.
We observed above that the periodic and anti-periodic spectra consist of those λ such

that Ψ(λ) − I and Ψ(λ) + I are singular, respectively. Since detΨ = 1, these conditions
are equivalent to P (λ) = 2 and P (λ) = −2, respectively. A solution ϕ �= 0 satisfies (2.22)
if and only if the initial coefficients have the form (c, 0) = vt, and the final coefficients
(Ψ(λ)v)t have the form (d, 0), so the necessary and sufficient condition is Ψ21 = 0; the
proof for boundary conditions (2.23) is similar. �
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Theorem 2.3. Counting multiplicity, P 2 − 4 has 2d real roots. Let these be numbered
λ1, . . . , λ2d in increasing order.

(a) Each of the pairs λ2j−1, λ2j contains one periodic and one anti-periodic eigenvalue.
Each of the pairs λ2j , λ2j+1 consists of two periodic or two anti-periodic eigenvalues,
or of a root of multiplicity two.

(b) The roots of λ−1Ψ12 and λ−1Ψ21 are real and simple. Each (possibly degenerate)
interval Ij = [λ2j , λ2j+1], j = 1, . . . , d − 1, contains exactly one root of λ−1Ψ12 and
one root of λ−1Ψ21

(c) If all the mj are positive (respectively, negative), then all the λj are negative
(respectively, positive). If exactly k of the mj are positive, 1 � k < d, then 0 lies
in the interval Ik = [λ2k, λ2k−1].

Proof. The proof is by induction on d. For d = 1, it follows from (2.17) and (2.20) that

P (λ) = trΨ(λ) = 2 cosh νX + 2λm1 sinh νX.

Therefore, the roots of P ± 2 are

− 1
2m1 cosh(νX/2)

, − 1
2m1 sinh(νX/2)

.

This verifies (a) and (c) when d = 1; (b) is vacuous.
Suppose now that (a), (b), and (c) hold for a given d � 1. We claim that these

conditions are stable under continuous, sign-preserving changes of the mj . Under such a
perturbation, the roots λj of P 2 − 4 move continuously (in the complex plane), but they
remain non-zero. The roots of λ−1Ψ12 and of λ−1Ψ21 remain real, so long as they remain
simple. The identity

P 2 − 4 = (Ψ11 + Ψ22)2 − 4(Ψ11Ψ22 − Ψ21Ψ12)

= (Ψ11 − Ψ22)2 + 4Ψ21Ψ12 (2.26)

implies that each of these latter roots lies in a (maximal) interval where P +2 and P − 2
have the same sign. Therefore, the (possibly degenerate) interval Ij that contains such
a root cannot vanish under perturbation. It follows that the roots λj remain real under
perturbation, 2 � j � 2d − 1, and that the roots of λ−1Ψ12 and of λ−1Ψ21 remain (real
and) simple. Moreover, the configuration of these intervals with respect to the origin
remains the same, since λj �= 0 throughout. As for λ1 and λ2d, note that P 2 − 4 is
negative between λ1 and λ2 and has no roots to the left, so either P = −2 at λ2 and
P → +∞ as λ → −∞, or P = 2 at λ2 and P → +∞ as λ → −∞. This behaviour is
stable also, so the real root λ1 cannot vanish. The same argument applies to λ2d.

In view of these remarks, we may carry out the inductive step by assuming the truth
of (a), (b), (c) for a trace P0 associated to a configuration with xj , mj , 1 � j < d, and
verifying them for Pε associated to the configuration with additional xd ∈ (xd−1, x1 +X)
and md = ε ≈ 0. By stability, the result then carries over to arbitrary values of md.

https://doi.org/10.1017/S1474748005000010 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748005000010


8 R. Beals, D. H. Sattinger and J. Szmigielski

If md = ε is small enough, then the previous stability argument implies that there are
roots of Pε ± 2 near the roots of P0 ± 2, and the same is true for the auxiliary spectra.
Note that (2.18) and (2.20) imply that the coefficient of the leading coefficient in Pε is a
positive multiple of

d∏
j=1

mj(eνX − e2ν(xd−x1)−νX).

The last factor on the right is positive, so the leading coefficient has the same sign as the
product of the mj . It follows easily that if ε is sufficiently small and positive, Pε ± 2 will
each have one ‘new’ root lying far to the left of the roots of P0 ±2. Similarly, if ε is small
but negative, each will have one ‘new’ root lying far to the right of the roots of P0 ± 2.
Moreover, the configuration of roots of Pε ± 2 will continue to satisfy (a) and (c).

The new λ−1Ψ12 and λ−1Ψ21 will also have roots near the old roots and ‘new’ roots
lying far to the left or right, according as ε is positive or negative. To complete the proof,
we need to show that these roots lie closer to the origin than do the new roots of Pε ± 2.

To lighten the notational burden, let yj = e2νxj . By (2.16) we have, for md = ε �= 0,
that up to a scalar factor, Φ(λ) is

ελd

[
1 − yd−1y

−1
d y−1

1 − yd−1(y1yd)−1

yd−1 − yd yd−1y
−1
1 − ydy

−1
1

]

+ λd−1

[
1 y−1

1

−yd−1 −yd−1y
−1
1

]
+ O(ελd−1 + λd−2)

= ε(yd − yd−1)λd

[
y−1

d (y1yd)−1

−1 −y−1
1

]
+ λd−1

[
1 y−1

1

−yd−1 −yd−1y
−1
1

]

+ O(ελd−1 + λd−2). (2.27)

Therefore, the new zeros of Ψ21 = Φ21eνX and Ψ12 = Φ12e−νX occur at

λ = − 1
ε(yd − yd−1)

yd−1 + O(1), λ = − 1
ε(yd − yd−1)

yd + O(1), (2.28)

respectively. By (2.20), up to a scalar factor P (λ) is

ε(yd − yd−1)e−Xλd

(
e2νX

yd
− 1

y1

)
+ λd−1

(
e2νX − yd−1

y1

)
+ O(ελd−1 + λd−1).

Therefore, the new zeros of P ± 2 occur at

λ = − 1
ε(yd − yd−1)

e2νXy1 − yd−1

e2νXy1 − yd
yd + O(1). (2.29)

It follows from (2.28) and (2.29) that, for small md = ε, the new zeros of Ψ21 and Ψ12

are closer to the origin than the new zeros of P ± 2. This completes the proof. �
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3. Spectral analysis of Ψ ; algebraic curve and Weyl function

Throughout this and the following three sections, we assume that d > 1 and that the xj ,
mj take ‘generic’ values. For example, we assume that the roots λj of P 2 − 4 are simple,
and that zero is a simple root of Ψ12 and of Ψ21. The last pair of assumptions is equivalent
to assuming that M± �= 0 (see (2.17)). In view of Theorem 2.3, these assumptions imply
that all roots of Ψ12 and of Ψ21 are simple. More such assumptions will be made, some
tacitly, as we proceed.

For given λ, the eigenvalues µ±(λ) of the matrix Ψ(λ) are the solutions of the equation
µ2 − P (λ)µ + 1 = 0; therefore, they define a single-valued function

µ(λ, z) = 1
2 (P (λ) + z) (3.1)

on the curve
Γ = ΓP = {(λ, z) ∈ C

2 : z2 = P (λ)2 − 4}. (3.2)

The curve Γ is elliptic (genus 1) if d = 2, hyperelliptic of genus g = d−1 if d > 2. We refer
to [16] for various results from the theory of hyperelliptic curves and theta functions.

We represent Γ as a double cover of the Riemann sphere by cutting the sphere along
the real intervals [λ2j−1, λ2j ], j = 1, . . . , d. As λ → ∞,

z = ±P (λ) + O(λ−d). (3.3)

The functions z and µ can be considered as single-valued functions on this double cover.
We take the ‘upper’ and ‘lower’ sheets of the cover to be those on which z ∼ P and

z ∼ −P at infinity, respectively. For convenience, we adopt the following notational
convention: λ denotes a point of the Riemann sphere, λ± the corresponding point on the
double cover Γ , on the upper (+) or lower (−) sheet. Thus (3.1) implies that

µ(λ+) = P (λ) + O(λ−d), λ → ∞,

µ(λ−) = O(λ−d), λ → ∞.

}
(3.4)

Lemma 3.1. If λ0 is a zero of Ψ12Ψ21, then z(λ+
0 ) = Ψ11(λ0)−Ψ22(λ0) and thus µ(λ+

0 ) =
Ψ11(λ0). Similarly, z(λ−

0 ) = Ψ22(λ0) − Ψ11(λ0) and thus µ(λ−
0 ) = Ψ22(λ0).

In particular,
z(0±) = ±2 sinh νX, µ(0±) = e±νX . (3.5)

Proof. According to (2.26), z2 = (Ψ11−Ψ22)2 at roots of Ψ12Ψ21 = Φ12Φ21. To determine
the sign, we use a continuity argument, treating the period X as a parameter. Note that
Φ is independent of X, and as X → ∞, e−νXP → Φ11 at each point. Taking λ ∼ ∞, we
find

e−νXz(λ+) ∼ Φ11 ∼ e−νX(Ψ11 − Ψ22).

The relation must hold with this choice of sign on the entire upper sheet, and, in par-
ticular, at λ+

0 . The same argument applies to λ−
0 . This verifies the asserted choice of

signs.
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10 R. Beals, D. H. Sattinger and J. Szmigielski

It follows from (2.26) and (2.17) that, as λ → 0,

Ψ11 = eνX + O(λ), Ψ22 = e−νX + O(λ),

Ψ12 = λe−νXM− + O(λ2), Ψ21 = −λeνXM+ + O(λ2).

}
(3.6)

The identities (3.5) are a consequence. �

Except possibly at the branch points λj , Ψ(λ±) − µ(λ±) has a one-dimensional null
space, so there is an induced map from Γ to complex projective space which we nor-
malize by taking the eigenvector in the form (1, w(λ±))t. The Weyl function w(λ±) is
characterized by the matrix equation

Ψ(λ±)

[
1

w(λ±)

]
= µ(λ±)

[
1

w(λ±)

]
,

which leads to two equivalent equations for w,

w =
µ − Ψ11

Ψ12
=

Ψ21

µ − Ψ22
. (3.7)

Theorem 3.2. The Weyl function w is meromorphic on the curve Γ . Its zeros are simple
and occur at the points on the upper sheet that correspond to zeros of Ψ21; its poles are
simple and occur at the points on the lower sheet that correspond to zeros of Ψ12.

Proof. It follows from Equations (3.7) that w is meromorphic and that its zeros on
either sheet correspond to a subset of the zeros of Ψ21, while its poles on either sheet
correspond to a subset of the zeros of Ψ12.

Lemma 3.1 and Equations (3.7) imply that the potential poles on the upper sheet and
potential zeros on the lower sheet do not occur, while the potential zeros on the upper
sheet and poles on the lower sheet do occur. �

We turn next to the behaviour of w at the points 0± and ∞± on the upper and lower
sheets.

Theorem 3.3. The Weyl function has the properties

w(λ+) = − λM+eνX

2 sinh νX
+ O(λ2), λ → 0, (3.8)

w(λ−) = − 2 sinh νX

λM−e−νX
+ O(1), λ → 0, (3.9)

w(λ+) = −e2νxd

(
1 − 1

λmd
+

e2νxd

(λmd)2(e2νxd − e2νxd−1)

)
+ O(λ−3), λ → ∞, (3.10)

w(λ−) = −e2νxd+1

(
1 − 1

λm1
− e2νx2

(λm1)2(e2νx2 − e2νx1)

)
+ O(λ−3), λ → ∞. (3.11)
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Proof. According to (3.5) and (3.6), near 0+, µ − Ψ22 ∼ eνX − e−νX , while near 0−,
µ − Ψ11 ∼ e−νX − eνX . In view of (3.6) and (3.7), the results (3.8) and (3.9) follow.

As λ+ → ∞+, µ − Ψ22 = Ψ11 + O(λ−d), so

w(λ+) =
Ψ21

Ψ11
+ O(λ−2d) =

Φ21

Φ11
+ O(λ−2d). (3.12)

By (2.18), the last quotient in (3.12) approaches −e2νxd , so we have obtained the principal
term in (3.10). However, all terms in (3.10) can be obtained in a different way. Starting
with the vector v0 = (1, 0)t, use the transition matrices Tj of (2.15) to define vectors
vj(λ) = Tj(λ)vj−1. Set vj = (aj , bj)t and rj = bj/aj . Then rd = Φ21/Φ11. At each stage,
rj is regular at ∞. By the construction, and the form of Td, we have

Φ21

Φ11
= rd

=
−λmde2νxdad−1 + (1 − λmd)bd−1

(1 + λmd)ad−1 + λmde−2νxdbd−1

=
−λmde2νxd + (1 − λmd)rd−1

1 + λmd + λmde−2νxdrd−1

= −e2νxd

(
1 − 1

λmd
+

e2νxd

(λmd)2(e2νxd + rd−1) + λmde2νxd

)
. (3.13)

This gives the first two terms of the expansion (3.10). The same calculation applies to
rd−1, so its leading term is −e2νxd−1 , and we obtain the third term in the expansion.

Similarly, as λ− → ∞−, µ − Ψ11 = −Ψ11 + O(λ−d), so

w(λ−) ∼ −Ψ11

Ψ12
= −e2νX Φ11

Φ12
.

It follows from this and (2.18) that the leading term in (3.11) is e2νxd+1 . Further terms
may be computed as above, by taking row vectors v0 = (1, 0), vj = vj−1Td−j+1 = (aj , bj),
so that ad/bd = Φ11/Φ12. We omit the details. �

4. Theta function representations, I

In the two-sheet representation of the genus g = d−1 curve Γ , we use the left-most g cuts
to determine cycles a1, . . . , ad−1. We choose dual cycles b1, . . . , bg, to obtain a standard
basis for the homology of Γ . Then there are unique holomorphic one-forms ωj with∫

ak

ωj = 2πiδjk,

∫
bk

ωj = Bjk, j, k = 1, . . . , g.

The Jacobi variety J(Γ ) is C
g/Λ, where Λ is the lattice

Λ =
{

w ∈ C
g : wj = 2πimj +

∑
k

nkjBjk, mk, nkj ∈ Z

}
.
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The Abel map A : Γ → J(Γ ) is determined by choosing a point p0 ∈ Γ and defining

Ak(p) =
∫ p

p0

ωk, p ∈ Γ, k = 1, . . . , g.

The same notation is commonly used for the induced map from the symmetric product
Sd−1Γ to J(Γ ), but to avoid confusion we denote the latter by As,

As(p1, . . . , pg) =
g∑

j=1

A(pj).

We will take p0 = ∞+, so A(∞+) = 0.
Let λ1j , j = 1, . . . , g = d−1, denote the non-zero roots of Φ12, and let λ2j , j = 1, . . . , g,

denote the non-zero roots of Φ21. According to 3.2, the zeros and poles of the meromorphic
function w are simple and occur at

0+, λ+
21, . . . , λ

+
2g, 0−, λ−

11, . . . , λ
−
1g. (4.1)

By a theorem of Abel, the sum of the values of the Abel map at the zeros equals the sum
of the values at the poles,

A(0+) +
g∑

j=1

A(λ+
2j) = A(0−) +

g∑
j=1

A(λ−
1j). (4.2)

Let θ : J(Γ ) → C be the Riemann theta function and K the Riemann vector in J(Γ );
these have the property that if the function

f(p) = θ(A(p) − As(p1, . . . , pg) − K)

is not identically zero, then its zeros are p1, . . . , pg (see [16, Theorem 2.4.2]).
There is a unique Abelian differential (meromorphic one-form) of the third kind ω0+0−

with residue ±1 at 0± and integral 0 on each cycle ak.

Theorem 4.1. The Weyl function w is

w(λ±) = C
θ(A(λ±) − ξ+)
θ(A(λ±) − ξ−)

exp
(∫ λ±

∞+
ω0+0−

)
, (4.3)

where
ξ+ = As(λ+

21, . . . , λ
+
2g) + K,

ξ− = As(λ−
11, . . . , λ

−
1g) + K = ξ+ + A(0+) − A(0−),

}
(4.4)

and the constant C is given by

C = − M+eνX

2 sinh νX
· θ(A(0+) − ξ−)
θ(A(0+) − ξ+)

= −2 sinh νX

M−e−νX
· θ(A(0−) − ξ−)
θ(A(0−) − ξ+)

. (4.5)
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Proof. Properties of the theta function imply that the function on the right in (4.3) is
single valued and meromorphic on Γ . According to the previous remarks, this function
has the same zeros and poles as w; therefore, by the Riemann–Roch theorem, w has the
form (4.3), for some choice of C. To determine C, we use (3.8), (3.9), and the fact that
the right-most factor in the product on the right in (4.3) is λ + O(λ2) as λ+ → 0+ and
1/λ + O(1) as λ− → 0−. The results are the two expressions (4.5). �

For later use we extract from (4.4) the identity

A(0+) − ξ− = A(0−) − ξ+. (4.6)

As a corollary, we obtain an explicit theta function representation of xd and a (less
explicit) representation of md. We give here the formula for the former, the latter will be
discussed in § 6. Recall that A(∞+) = 0.

Corollary 4.2. The position xd can be obtained from

e2νxd =
M+eνX

2 sinh νX
· θ(A(0+) − ξ−)θ(ξ+)
θ(A(0+) − ξ+)θ(ξ−)

. (4.7)

Remark 4.3. Theorem 3.3 leads to corresponding representations of x1 and m1 from the
first two terms in the expansion of w at ∞−. Moreover, the proof shows that x2 and m2

can be obtained from the next two terms, and so on, but the relationships become more
complicated. Thus it is natural to try to obtain the other mj and xj by examining the
Weyl functions associated with different starting positions. This is the discrete analogue
of a method used for continuous periodic problems of this kind, e.g. by Constantin and
McKean [14] for the Camassa–Holm equation.

Lemma 4.4. Let Ψ̃ , P̃ , and w̃ denote the Floquet matrix, trace and Weyl function
associated to the starting position x2 in place of x1. Then P̃ = P , so that the associated
curve Γ̃ = Γ .

Proof. That P̃ = P follows from the fact that these polynomials have the same roots
(the periodic and anti-periodic spectra), and the same value at λ = 0. For a purely
algebraic proof, note that E−1

νXT1EνX = Td+1. Therefore,

Ψ̃ = Φ̃EνX

= Td+1 · · ·T2EνX

= Td+1ΦT−1
1 EνX

= Td+1ΨE−1
νXT−1

1 EνX

= Td+1ΨT−1
d+1. (4.8)

Therefore, the traces P̃ and P are the same. �

Lemma 4.5. There is a meromorphic function on Γ whose zeros are simple and equal
to the non-zero poles of w, and whose poles are simple and equal to the non-zero poles
of w̃, in addition to a simple zero at ∞+ and a simple pole at ∞−.
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Proof. The identity (4.8) shows that the vector (a, b)t = T−1
d+1(1, w̃)t is an eigenvector

for Ψ , so the quotient b/a = w. Now

a = (1 − λmd+1) − λmd+1e−2νxd+1w̃ = 1 − λmd+1(1 + e−2νxd+1w̃). (4.9)

This shows that a is meromorphic. It is regular at 0±, so its finite poles are the non-zero
poles of w̃, namely the points on the lower sheet that correspond to non-zero roots of
Ψ̃12. Moreover, it follows from (4.9) and (3.10) (for w̃) that a has a simple zero at ∞+.
Similarly, it follows from (4.9) and (3.11) that a has a simple pole at ∞−. Since b/a = w,
it follows that the zeros of a are included among the non-zero poles of w. Since the
number of zeros must equal the number of poles, we conclude that all the non-zero poles
of w are zeros of a. �

Theorem 4.6. The Weyl function wk that corresponds to the configuration

xk+1, xk+2, . . . , xk+d

is

wk(λ±) = Ck
θ(A(λ±) − ξ+ + kA(∞−))
θ(A(λ±) − ξ− + kA(∞−))

exp
(∫ λ±

∞+
ω0+0−

)
, (4.10)

for some choice of the constant Ck.

Proof. It is enough to prove this for k = 1. It follows from Theorem 4.3 and Lemma 4.4
that the Weyl function w̃ in this case has such a theta function expression related to the
same curve Γ . To complete the proof, we only need to show that the respective non-zero
poles λ−

1j and λ̃−
1j satisfy

g∑
j=1

A(λ̃−
1j) + A(∞−) =

g∑
j=1

A(λ−
1j).

But this is a consequence of Lemma 4.5, together with the normalization A(∞+) = 0. �

5. Time dependence of the spectra under the Camassa–Holm flow

We now consider evolution under the flow. Equation (2.2) implies

L(λ)(ϕ̇ + B(λ)ϕ) = 0, (5.1)

where the dot denotes differentiation with respect to time. By (2.3),

B(λ)(aeνx + be−νx) =
1
2λ

(aeνx − be−νx) − aeνx
d∑

j=1

mj [νG(x − xj) − 1
2G′(x − xj)]

+ be−νx
d∑

j=1

mj [νG(x − xj) + 1
2G′(x − xj)],

(5.2)

where G = Gν,X .
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Equation (2.11) implies

νG(x − xj) + 1
2G′(x − xj) =

⎧⎪⎪⎨
⎪⎪⎩

e2ν(x−xj) · eνX

2 sinh νX
, xd − X < x < x1,

e2ν(x−xj) · e−νX

2 sinh νX
, xd < x < x1 + X,

νG(x − xj) − 1
2G′(x − xj) =

⎧⎪⎪⎨
⎪⎪⎩

e2ν(xj−x) · e−νX

2 sinh νX
, xd − X < x < x1,

e2ν(xj−x) · eνX

2 sinh νX
, xd < x < x1 + X.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

Combining (5.2) and (5.3), we find that the vector representation of B(λ)ϕ in terms of
that of ϕ is given by

B(λ) :

[
a

b

]
→ B−(λ)

[
a

b

]
=

⎡
⎢⎢⎣

1
2λ

M−eνX

2 sinh νX

− M+e−νX

2 sinh νX
− 1

2λ

⎤
⎥⎥⎦

[
a

b

]
, (5.4)

for xd − X < x < x1, and

B(λ) :

[
a

b

]
→ B+(λ)

[
a

b

]
=

⎡
⎢⎢⎣

1
2λ

M−e−νX

2 sinh νX

− M+eνX

2 sinh νX
− 1

2λ

⎤
⎥⎥⎦

[
a

b

]
, (5.5)

for xd < x < x1 + X.
Let us take solutions ϕ1 = eνx and ϕ2 = e−νx in the interval xd −X < x < x1, so that

the two vector representations give the identity matrix on (xd − X, x1) and the matrix
Φ(λ) on (xd, x1 + X). In view of the preceding, Equation (5.1) on (xd, x1 + X) gives

Φ̇(λ) + B+(λ)Φ(λ) = Φ(λ)B(λ),

while (5.1) on (xd − X, x1) gives

B−(λ) = B(λ).

We note that B+(λ) = E−1
νXB−(λ)EνX , so the preceding two equations may be combined

with (2.20) to give

Ψ̇(λ) = [Ψ(λ), B+(λ)] = Ψ(λ)B+(λ) − B+(λ)Ψ(λ). (5.6)

One consequence is that the polynomial P = trΨ is an invariant of the motion.
The evolution of the off-diagonal entries of Ψ is

Ψ̇12 = − 1
λ

Ψ12 +
M−e−νX

2 sinh νX
(Ψ11 − Ψ22),

Ψ̇21 =
1
λ

Ψ21 +
M+eνX

2 sinh νX
(Ψ11 − Ψ22).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.7)
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The momentum M =
∑

mj is constant; this follows by direct computation using
Hamilton’s equations for the Hamiltonian (2.10), or because the linear term of the invari-
ant polynomial P (λ) has coefficient 2 sinh(νX)M . Equations (5.7) allow us to relate the
flow of M± to spectral data.

Theorem 5.1. We have

Ṁ+

M+
= −M coth(νX) −

g∑
j=1

1
λ2j

,

Ṁ−
M−

= M coth(νX) +
g∑

j=1

1
λ1j

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.8)

Proof. As before, let λ1j and λ2j , j = 1, . . . , g, denote the roots of Ψ12/λ and of Ψ21/λ,
respectively. We continue to assume that these roots are simple and non-zero. In view
of (2.17) and (2.20),

Ψ12 = λM−e−νX

g∏
j=1

(
1 − λ

λ1j

)
,

Ψ21 = −λM+eνX

g∏
j=1

(
1 − λ

λ2j

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)

It follows that
Ṁ−
M−

= lim
λ→0

Ψ̇12

Ψ12
,

Ṁ+

M+
= lim

λ→0

Ψ̇21

Ψ21
. (5.10)

To evaluate the limits, we turn to (5.7). Note that (2.17) and (2.20) imply that

Ψ11 − Ψ22 = 2 sinh νX + 2 cosh νXMλ + O(λ2).

This and (5.9) imply that

M−e−νX

2 sinh νX
· Ψ11 − Ψ22

Ψ12
=

1
λ

{
1 + Mλ coth(νX) + · · ·

1 − λ
∑

λ1j
−1 + · · ·

}
,

M+eνX

2 sinh νX
· Ψ11 − Ψ22

Ψ21
= − 1

λ

{
1 + Mλ coth(νX) + · · ·

1 − λ
∑

λ2j
−1 + · · ·

}
.

Combining these equations with (5.7), we find that (5.10) becomes (5.8). �

Theorem 5.2. The roots {λ1j} of Ψ12 and the roots {λ2j} of Ψ21 evolve according to

λ̇1j =
1∏

k �=j(1 − λ1j/λ1k)
· Ψ11(λ1j) − Ψ22(λ1j)

2 sinh νX
,

λ̇2j = − 1∏
k �=j(1 − λ2j/λ2k)

· Ψ11(λ2j) − Ψ22(λ2j)
2 sinh νX

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.11)
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Proof. Evaluating (5.7) at the roots gives

Ψ̇12(λ1j) =
M−e−νX

2 sinh νX
(Ψ11 − Ψ22),

Ψ̇21(λ2j) =
M+eνX

2 sinh νX
(Ψ11 − Ψ22).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.12)

On the other hand, differentiating (5.9) and then evaluating at the roots gives

Ψ̇12(λ1j) = M−e−νX
∏
k �=j

(
1 − λ1j

λ1k

)
λ̇1j ,

Ψ̇21(λ2j) = −M+eνX
∏
k �=j

(
1 − λ2j

λ2k

)
λ̇2j .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.13)

Combining (5.12) and (5.13) gives (5.11). �

We may rewrite (5.11) as a system of equations on the curve Γ . Indeed, at a root of
Ψ12Ψ21, as noted earlier, Ψ11 − Ψ22 = ±z (see (2.26)). Therefore, Equations (5.11) can be
written as

λ̇±
1j = ± 1∏

k �=j(1 − λ1j/λ1k)
·

z(λ±
1j)

2 sinh νX
,

λ̇±
2j = ∓ 1∏

k �=j(1 − λ2j/λ2k)
·

z(λ±
2j)

2 sinh νX
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.14)

According to Theorem 3.2, the zeros and poles of w correspond to these roots. We
have the following result.

Theorem 5.3. The Abel map for the curve (3.2) linearizes the flow of zeros and poles
of w,

ξ+(t) ≡ As(λ+
2j(t), . . . , λ

+
2g(t)) + K = ξ+ + tκ,

ξ−(t) ≡ As(λ−
1j(t), . . . , λ

−
1g(t)) + K = ξ− + tκ,

}
(5.15)

where K is the vector of Riemann constants and κ is a fixed element of J(Γ ).

Proof. It is enough to prove

d
dt

As(λ+
21(t), . . . , λ

+
2g(t)) = const., (5.16)

since (4.2) shows that the difference ξ+(t) − ξ−(t) is constant. The kth equation of the
system (5.16) is

g∑
j=1

d
dt

∫ λ2j

p0

ωk = const. (5.17)
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The ωj are linear combinations of the one-forms αm = λm−1dλ±/z, m = 1, . . . , g. There-
fore, it suffices to prove the analogue of (5.17) for each of the αm. We shall show that if
pj(t) = λ+

2j(t), then

d
dt

{ g∑
j=1

∫ pj(t)

∞+
αm

}
= − δm1

2 sinh νX
. (5.18)

In fact, according to (5.14), the derivative here is

− 1
2 sinh νX

g∑
j=1

(λ2j)m−1∏
k �=j(1 − λ2j/λ2k)

. (5.19)

Let

Rm(λ) = λm−2
g∏

k=1

(
1 − λ

λ2k

)−1

, m = 1, . . . , g.

Since Rm is O(λm−g) as λ → ∞, the sum of its residues is zero. For m = 2, . . . , g, the
sum in (5.19) is this sum of the residues of Rm, and hence is zero. For m = 1, R1 has an
additional residue 1 at λ = 0, so the sum in (5.19) is − 1

2 sinh νX. This proves (5.16). �

Writing

ωk =
g∑

m=1

ckmαm, (5.20)

we note that the above argument evaluates the constant κ ∈ J(Γ ) as

κ = − 1
2 sinh νX

(c11, c21, . . . , cg1). (5.21)

6. Theta function representations, II

Theorems 5.1 and 5.3 make it possible to find theta function representations of M±.

Theorem 6.1. The functions M±(t) can be represented as

M+(t) = C+e−ct θ(A(0+) − ξ+ − tκ)
θ(A(0−) − ξ+ − tκ)

, (6.1)

M−(t) = C−ect θ(A(0−) − ξ− − tκ)
θ(A(0+) − ξ− − tκ)

. (6.2)

Here we have used the notation of Theorem 5.3. The constant c is

c =
g∑

j=1

1
2πi

∫
aj

λ−1ωj + M coth(νX), (6.3)

while the constants C± are

C+ = M+(0)
θ(A(0−) − ξ+)
θ(A(0+) − ξ+)

, C− = M−(0)
θ(A(0+) − ξ−)
θ(A(0−) − ξ−)

.
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Proof. For p ∈ Γ , set

F±(p) = θ(A(p) − ξ± − tκ), γ =
g∑

j=1

1
2πi

∫
aj

λ−1ωj .

The constants C± are chosen so that the formulae (6.1), (6.2) are correct at t = 0. In
view of Theorem 5.1, it is enough to show that

d log F+

dt
(0+) − d log F+

dt
(0−) = γ −

g∑
j=1

1
λ2j

, (6.4)

d log F−
dt

(0−) − d log F−
dt

(0+) = −γ +
g∑

j=1

1
λ1j

. (6.5)

The function F+ has simple zeros precisely at the points λ+
2j(t) (see [16, Lemma 2.4.2]).

The cycles {aj}, {bj} may be chosen so that their complement Γ̃ is simply connected.
Computing residues, it follows that the integral

1
2πi

∫
∂Γ̃

dF

λF
=

g∑
j=1

1
λ2j(t)

+
d
dλ

log F+(0+) +
d
dλ

log F−(0−). (6.6)

On the other hand, because of the jump properties of the theta function on the cycles,
the integral (6.6) is constant and equal to γ. We turn to the last two summands on the
right in (6.6). First,

d log F+

dλ
=

d
dλ

log θ(A(λ) − ξ+ − tκ) =
1

F+

g∑
k=1

∂θ

∂zk

dAk

dλ
,

where (z1, z2, . . . , zg) are the standard coordinates in C
g/Λ. It follows from (5.20) and

the definition of the Abel map that

dAk

dλ
=

g∑
m=1

ckm
λm−1

z
.

Evaluating at 0±, we obtain

dAk

dλ
(0±) = ± ck1

2 sinh νX
= ∓κk.

Therefore,

γ =
g∑

j=1

1
λ2j(t)

− 1
F+(0+)

g∑
k=1

κk
∂θ

∂zk
(0+) +

1
F+(0−)

g∑
k=1

κk
∂θ

∂zk
(0−). (6.7)

The time derivative in (6.4) is

d log F+

dt
= − 1

F+

g∑
k=1

κk
∂θ

∂zk
.

Combining this with (6.7) gives (6.4). The same argument proves (6.5). �
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We can use this representation of M+ or of M− to obtain a theta function representa-
tion of the flow of the Weyl function.

Theorem 6.2. The Weyl function w(λ±, t) has the form

w(λ±, t) = Ce−ct θ(A(λ±) − ξ+ − tκ)
θ(A(λ±) − ξ− − tκ)

exp
(∫ λ±

∞+
ω0+0−

)
, (6.8)

where c is given by (6.3).

Proof. According to Theorems 4.1 and 5.3,

w(λ±, t) = C(t)
θ(A(λ±) − ξ+ − tκ)
θ(A(λ±) − ξ− − tκ)

exp
(∫ λ±

∞+
ω0+0−

)
. (6.9)

To identify the function C(t), we note first that

w(0+, t)
w(0+, 0)

=
C(t)
C(0)

θ(A(0+) − ξ+ − tκ)
θ(A(0+) − ξ− − tκ)

θ(A(0+) − ξ−)
θ(A(0+) − ξ+)

. (6.10)

On the other hand, Equations (3.8) and (6.1) imply that the left-hand side of (6.10) is
equal to

M+(t)
M+(0)

= e−ct θ(A(0+) − ξ+ − tκ)
θ(A(0−) − ξ+ − tκ)

θ(A(0−) − ξ+)
θ(A(0+) − ξ+)

. (6.11)

It follows from the equality of (6.10) and (6.11) that C(t) has the form

C(t) = Ce−ct θ(A(0+) − ξ− − tκ)
θ(A(0−) − ξ+ − tκ)

.

By (4.6), the arguments of the two theta functions are the same, so their quotient is 1.
Combining the resulting equation with (6.9), we obtain (6.8). �

As in § 4, this can be carried over to other starting positions.

Theorem 6.3. The Weyl function wk that corresponds to the configuration of positions
xk+1, . . . , xk+d has the form

wk(λ±, t) = Cke−ct θ(A(λ±) − ξ+ − tκ + kA(∞−))
θ(A(λ±) − ξ− − tκ + kA(∞−))

exp
(∫ λ±

∞+
ω0+0−

)
, (6.12)

where c is given by (6.3) and Ck is independent of time.

Proof. The argument is essentially the same as in Theorem 6.2, combining Theorem 4.6
and an appropriate version of Theorem 3.3, with M+ replaced by M+(k). �

In view of Theorem 3.3, generalized to k = −j, j = 0, 1, . . . , d − 1, we can now write
formulae for the positions xd−j , as well as the momenta md−j .
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Theorem 6.4. Let 0 � j � d − 1. Then the positions xd−j can be obtained from

xd−j = cd−j − ct

2ν
+

1
2ν

log
θ(ξ+ + tκ + jA(∞−))
θ(ξ− + tκ + jA(∞−))

, (6.13)

where c is given by (6.3) and the cd−j are independent of time. If the local parameter
around ∞+ is σ = 1/λ, then 1/md−j can be computed from

1
md−j

= D − d
dσ

log
θ(A(λ+) − ξ+ − tκ − jA(∞−))
θ(A(λ+) − ξ− − tκ − jA(∞−))

∣∣∣∣
σ=0

, (6.14)

where D is a time-independent constant.

Proof. By Theorem 3.3 generalized to k = −j,

w−j(λ+) = −e2νxd−j

(
1 − 1

λmd−j
+ O(λ−2)

)
, λ → ∞. (6.15)

Hence −wj(∞+) = e2νxd−j , and the formula for the positions xd−j follows from Theo-
rem 6.3. Similarly, to get the momenta md−j , one writes (6.15) as

w−j(λ+)
w−j(∞+)

= 1 − 1
λmd−j

+ O(λ−2). (6.16)

The formula for the momenta follows then from the Taylor expansion in σ = 1/λ about
σ = 0 and Theorem 6.3. �

7. Calogero–Françoise flows

Calogero [7] and Calogero and Françoise [9] introduced a family of completely inte-
grable finite-dimensional Hamiltonian systems with Hamiltonian in a form that general-
izes (2.10),

H(x1, . . . , xd, m1, . . . , md) = 1
2

d∑
j,k=1

mjmkGν,β(xj − xk), (7.1)

where
Gν,β(x) =

β+

2ν
e2ν|x| +

β−
2ν

e−2ν|x|. (7.2)

Here, ν and β = (β−, β+) are complex parameters. We shall assume that β+ �= β−, so
that Gν,β is not a smooth function of x.

Remark 7.1. The Hamiltonians considered by Calogero and Françoise included an addi-
tive constant, and also two limiting cases. The additive constant may be removed by
changing to a moving frame [6]. One limiting case is the case β− = β+ of smooth G

(see [7,8]). The other limiting case is

G(x) = ax2 + b|x| + c,

associated to the Hunter–Saxton equation (see [5,20,21]).
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We assume here that β− − β+ = 1, so that (D2 − 4ν2)G = −2δ(x); a rescaling in
(perhaps complex) time will accomplish this. It will also be convenient to assume that
β−β+ �= 0.

As before, the operator

L(λ) = D2 − ν2 − 2νλm(x) (7.3)

is compatible with the generalized Lax evolution (2.2), where B(λ) is given by (2.3). For
sufficiently smooth u, Equation (2.2) is equivalent to the conditions

mt = uxm + (um)x, 2mx = 4ν2ux − uxxx. (7.4)

Suppose that m is a discrete measure of the form (2.6), x1 < · · · < xd. Up to an
additive constant, any even fundamental solution for (−D3 + 4ν2D)u = 2Dm has the
form Gν,β . Thus, up to a choice of moving frame, system (7.4) for u is equivalent to
Hamilton’s equation for the Hamiltonian (7.1).

In analogy with the periodic problem considered in the previous sections, we set

M± =
d∑

j=1

e±2νxj mj . (7.5)

Then u(x) =
∑

mjGν,β(x − xj) has precise asymptotics,

u(x) =
β−
2ν

M−e2νx +
β+

2ν
M+e−2νx, x < x1,

u(x) =
β+

2ν
M−e2νx +

β−
2ν

M+e−2νx, x > xd.

⎫⎪⎪⎬
⎪⎪⎭ (7.6)

As before, M is constant under the flow.
We may analyse the spectral problem

D2ϕ − ν2ϕ = 2νλmϕ (7.7)

in the same way as for the periodic case above. Set x0 = −∞, xd+1 = +∞. On each inter-
val (xj , xj+1), a solution of (7.7) is a linear combination ajeνx + bje−νx. Equation (7.7)
is formally identical to (2.1), so again it leads to Equations (2.14) and (2.15). Again,
denoting the transition matrix in (2.15) by Tj(λ), we see that the scattering matrix for
this problem is given by the product

Φ(λ) = Td(λ)Tg(λ) · · ·T1(λ) = I + λ

[
M M−

−M+ −M

]
+ O(λ2). (7.8)

As before, the entries Φij(λ) are polynomials of degree d in λ, and Φ has determinant 1.
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We now consider evolution under the flow. Equation (2.2) implies (5.1). It follows
from (7.6) and an argument like that in § 2 that the matrix representation is is

B(λ) :

[
a

b

]
→ B−(λ)

[
a

b

]
=

⎡
⎢⎣

1
2νλ

β−M−

−β+M+ − 1
2νλ

⎤
⎥⎦

[
a

b

]
, x < x1, (7.9)

B(λ) :

[
a

b

]
→ B+(λ)

[
a

b

]
=

⎡
⎢⎣

1
2νλ

β+M−

−β−M+ − 1
2νλ

⎤
⎥⎦

[
a

b

]
, x > xd. (7.10)

Take solutions ϕ1 = eνx, ϕ2 = e−νx for x < x1, so that the two vector representations
give the identity matrix for x < x1 and the matrix Φ(λ) for x > xd. As before, we deduce
that

Φ̇(λ) + B+(λ)Φ(λ) = Φ(λ)B−(λ).

Note that
diag(β−, β+)B+(λ) = B−(λ) diag(β−, β+).

For convenience later, we choose γ so that

γ2 =
β−
β+

and set

Ψ = Φ

[
γ 0
0 γ−1

]
.

Then
Ψ̇(λ) = [Ψ(λ), B+(λ)] = Ψ(λ)B+(λ) − B+(λ)Ψ(λ). (7.11)

Thus the polynomial

P (λ) = Ψ11(λ) + Ψ22(λ) = γΦ11(λ) + γ−1Φ22(λ) (7.12)

is an invariant of the motion. The evolution of the off-diagonal entries is

Ψ̇12 = − 1
λ

Ψ12 + β+M−(Ψ11 − Ψ22), (7.13)

Ψ̇21 =
1
λ

Ψ21 + β−M+(Ψ11 − Ψ22). (7.14)

It follows that the roots of Ψ12 and of Ψ21 evolve by (5.11), while the quantities M±
evolve according to (5.8). Moreover,

Ψ12(λ)Ψ21(λ) = 0 implies {Ψ11(λ) − Ψ22(λ)}2 = P (λ)2 − 4.
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8. Linearization and solution of the Calogero–Françoise flows

The observation of the previous section show that the Hamiltonian system associated
to (7.1) may be analysed in exactly the same way as the periodic Camassa–Holm problem.
We consider the associated hyperelliptic curve

Γ = {ξ = (λ, z) ∈ C
2 : z2 = P (λ)2 − 4}. (8.1)

The analogues of Theorems 5.3 and 6.1 hold for the Calogero–Françoise flows. The missing
step in the analysis would appear to be Proposition 2.1. This result was based on the
assumption of periodicity, so that one could use any of the positions xk, k ∈ Z, as the
first of d consecutive locations. To overcome this obstacle, we begin by assuming that ν

is positive, and note just how close the connection between the discrete periodic problem
and the Calogero–Françoise problem really is.

Proposition 8.1. Suppose that ν > 0 and β− > 1. Let

X =
1
2ν

log
{

β−
β+

}
. (8.2)

Then Green’s functions Gν,X of (2.12) for the periodic Camassa–Holm problem and
Green’s function Gν,β of (7.2) for the Calogero–Françoise flow are identical on the interval
−X � x � X.

Proof. For a given period X > 0, Gν,X clearly has the form (7.2) on the interval
−X � x � X, with β± = e∓νX/2 sinh νX. Solving for X in terms of β− yields (8.2). �

It follows that, under these assumptions, Φ and Ψ coincide with the same matrices
for periodic Camassa–Holm. Moreover, the Calogero–Françoise dynamics correspond to
a ‘window’ of the periodic Camassa–Holm dynamics.

Corollary 8.2. Suppose that ν > 0, β− > 1. Let X be given by (8.2). Suppose that the
initial positions x1(0) < · · · < xd(0) for the flow associated to the Hamiltonian (7.1) are
such that xd(0) − x1(0) < X. Define xj(0) and mj(0) for all integers j by periodizing,

xj+d(0) = xj(0) + X, mj+d(0) = mj .

For small enough |t|, the Calogero–Françoise flow coincides with the flow of x1, . . . , xd,
m1, . . . , md for the periodic discrete Camassa–Holm flow of period X.

(Actually, the flows, suitably interpreted, coincide for all time. This is explained in the
next section.)

The formulae obtained from Propositions 6.1 and 2.1 are analytic in ν, X and the initial
data xj(0), mj(0). The analytic continuations will continue to provide the solutions to
any of the Calogero–Françoise flows considered here, so long as the flow remains non-
singular.
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9. Remarks on dynamics and singularities

One can prove by induction that the scattering matrix Φ of (7.8) has leading term of the
same form as in the Camassa–Holm case,

Φ(λ) = λd
d∏

j=1

mj

d∏
j=2

(1 − e−2ν(xj−xj−1))

[
1 e−2νx1

−e2νxd −e2ν(xd−x1)

]
+ O(λg), λ → ∞.

(9.1)

Therefore, the leading coefficient of the invariant polynomial P = trΨ is
d∏

j=1

mj

d∏
j=2

(1 − e−2ν(xj−xj−1))(γ − γ−1e2ν(xd−x1)). (9.2)

Under the assumptions of Proposition 8.1, γ = eνX , so the leading coefficient of P is a
multiple of

d∏
j=1

mj

d∏
j=2

(1 − e−2ν(xj−xj−1))(1 − e2ν(xd−x1−X)). (9.3)

Theorem 9.1. Consider the periodic discrete Camassa–Holm equation with parameter
ν > 0, with d positions xj in a period X. Suppose that the mj(0) all have the same
sign. Then the solution exists for all time, and the successive distances xj+1(t) − xj(t)
are bounded away from zero.

Proof. Since the sum M =
∑d

j=1 mj is a constant of the motion, it follows that as long
as the mj have the same sign, they are bounded. The fact that the expression (9.3) is
constant implies that the mj cannot vanish, and thus cannot change sign. Therefore,
each of the factors in (9.2) is bounded, so each must also be bounded away from zero.
This implies that the xj+1 −xj are bounded away from zero, j = 1, . . . , g. By periodicity,
−(xd−x1−X) = xd+1−xd, so all these differences are bounded away from zero. Existence
of the solution for all time follows from Hamilton’s equations, given that Gν,X is bounded
and that the mj remain bounded. �

The same proof, in conjunction with Proposition 8.1 and Corollary 8.2, gives the
following result.

Theorem 9.2. Under the assumptions of Proposition 8.1, if the mj(0) all have the same
sign, then the Calogero–Françoise flow exists for all time, provided xd(0) − x1(0) �= X.
Moreover, xd(t) − x1(t) − X is bounded away from zero.

If xd − x1 < X, then the flow coincides for all time with the flow of x1, . . . , xd,
m1, . . . , md for the periodic discrete Camassa–Holm flow having period X.

In the non-periodic Camassa–Holm flow, if the mj do not all have the same sign, then
there are ‘collisions’. At a certain time t0, one or more distinct pairs satisfy

xj+1(t) − xj(t) = aj(t − t0)2 + O((t − t0)3),

mj(t) =
bj

t − t0
+ O(1), mj+1(t) = − bj

t − t0
+ O(1).
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It follows that the function u = (1/2ν)
∑

mje−2ν|x−xj | remains continuous through the
transition from t < t0 to t > t0, and one may consider mj and mj+1 to have exchanged
signs. We shall show elsewhere that this result is valid in the periodic case as well.

This has a particularly interesting implication for the Calogero–Françoise flows of
Corollary 8.2. If the mj do not have the same sign, then in one or both time directions
there will be internal collisions within the window that contains x1 and xd. In addition,
in one or both time directions it will happen that xd − x1 → X as t → t0. Then there
is a corresponding blow-up of m1 and md. Once again there is a natural continuation
past t0, in which md and m1 have exchanged signs, and xd − x1 decreases. Similarly, if
xd − x1 > X and m1md < 0, then in one time direction one will have xd − x1 decrease
to X and then increase, while m1 and m2 blow up and exchange signs, and u remains
well behaved.

Finally, we note that for other values of ν or β−, the behaviour of Calogero–Françoise
flows will be quite different. With d = 2 and

ν = 1, β− = −β+ = 1
2 , m1m2 > 0,

the separation x2 − x1 goes to infinity in finite time, in both time directions, while with

ν = i, β− = −β+ = 1
2 , m1m2 > 0,

solutions exist for all time, and x2 − x1, m1, m2 and x1 + x2 + Kt are periodic in time
for some constant K (see [6]).
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