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In this paper we use a simple model with a single Cobb—Douglas firm and a consumer
with a CRRA utility function to show the difference between the equity premia in the
production-based Brock model and the consumption-based Lucas model. With this simple
example we show that the equity premium in the production-based model exceeds that of
the consumption-based model with probability 1.

1. INTRODUCTION

The equity premium puzzle that was raised by Mehra and Prescott (1985) has
spawned a vast literature over the past quarter century in which the authors attempt
to explain the magnitude of the difference between the returns on equity and the
returns on risk-free assets. As Cochrane (2008, p. 261) puts it, “The ink spilled on
the equity premium puzzle would sink the Titanic . . .” See Mehra (2006) and the
articles in Mehra (2008) for many references to some of this ink.

As a point of departure from this literature, Akdeniz and Dechert (2007) took
the asset pricing model in Brock (1982) and numerically simulated the returns on
equity and a risk-free asset. They showed that there were indeed parameteriza-
tions for which the equity premia were much higher than for the corresponding
consumption-based model. Contrast this with Mehra and Prescott (1985), who
concluded that they were unable to replicate the large historical equity premium
on U.S. securities with the Lucas (1978) asset pricing model.!

What then is the source of the difference between the findings of Mehra and
Prescott and those of Akdeniz and Dechert? The consumption-based asset pricing
model takes the production process as given (as in an endowment economy)
and assumes that the output is paid out to the consumer as dividends, which in
turn equals consumption. The formula of Lucas (1978) is then used to price the
production process (which is thought of as an asset owned by the consumer). This
methodology relies on the basic idea in Mehra’s theorem (2006, p. 70), which
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states that adding production to the model ... does not increase the set of joint
equilibrium processes on consumption and asset prices.” This is certainly true if
the asset that is being priced is a net cash flow of N, = Y, — I, = C,. That is,
two different production processes, {Y;} and {¥/}, will have identical asset prices,
provided that their respective investment processes, {I;} and {1}, are such that
Y, — I, = Y] — I for all ¢. This is the essence of Mehra’s theorem: there is an
invariance in the consumption-based asset prices in all models that produce the
same consumption stream.

In Brock’s model 1982 the net cash flow that is priced is the stream of per period
profits, which does not equal consumption. As Brock shows in his appendix, the
difference in these two concepts is that when the firms own the capital stock,
the net cash flow is output minus investment, which equals consumption. If the
consumer owns the capital, then the net cash flow is output minus rents, which
does not equal consumption. In a more realistic framework, there are inputs of
production that are owned by firms and inputs that are rented. (For instance, the
latter include labor and certain types of resources, among others.) In this highly
aggregated framework, these two models represent polar extremes.

In this paper we perform the following thought experiment: use the real side
of the Brock (1982) model to generate the sequences of consumption, investment
and output. Then price the consumption sequence (output minus investment) as in
Lucas (1978) and the profit sequence as in Brock (1982) and compare the equity
premia for the two models. As we show in Section 3, there is a direct analytical link
between these two prices, with which we can derive a formula for the difference
between the equity premia. In Section 4 we use a simple model with a logarithmic
utility function and Cobb—Douglas production function to show that the equity
premium on the profit sequence can be strictly larger than it is on the consumption
sequence.

2. THE ONE-FIRM MODEL
Consider the Brock and Mirman (1972) growth model:

max  E [Z ﬂ’u(cz)}

t=0

subjectto: ¢, +x; = y;

Yir1 = f (s, &p1),

where ¢; and x; are the consumption and investment at time ¢ and &, is the
production shock that affects output, y,;, at date # + 1. In analyzing this model,
we make the same assumptions on # and f as Brock and Mirman: the utility
function, u, is concave, differentiable and lim.jou'(c) = oo. Similarly, with
probability 1 the production function, f(x, &), is concave and differentiable in x
and the Inada conditions hold, lim, o f'(x, &) = co and lim,_, o f'(x,&) = 0.
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2.1. Model 1: Pricing Profits

Following the method of Brock (1982), we can also use this growth model as the
foundation for two asset pricing models. In the first model, which is in the text of
Brock (pp. 14-15), the consumer owns the capital stock and rents it to the firm on
a per period basis. We will refer to this as model 1. In this model the consumer’s
budget constraint is

¢ +x+ PSS < + P)Si—1 +rix—a,

where P, is the share price at date ¢, S; is the number of shares held at date 7, r,
is the rental on capital received at date ¢, and 7, is the profits paid as dividends
at date 7. The consumer treats profits (in this model all profits are paid out as
dividends) and rents, 7, and r;, as exogenous to his/her consumption, rental, and
share purchase decisions, ¢;, x;, and S;. In a rational expectations equilibrium the
following hold:

m= -1, &) — f'(x—1, EDx-1,
rr = f/(xz—ly &),

St == 1,
Cr + X = Y.
It is notationally useful to define the (random) intertemporal marginal rate of
substitution by
Bu'(cr41)
Tryp = — . 1
u'(cr)
The Euler equations with respect to x; and S; for this model are
1 =E [[rp1ri41], 2
P = BT p1(Pry1 + )] 3

Any asset that is in zero net supply can be priced within this model. The price, B;,
of a one period bond that pays one unit of the consumption good at date ¢ + 1 will
satisfy at date ¢

u'(c)B, = E, [ﬂu,(ct-&-l )]

or, using equation (1),
Bt = Et [Ft+1] . (4)

The equity premium is the expected return on equity minus the return on the

risk-free asset:
Py Tr+1 1
E - —, 5
z[ P + P B )

where the first term in brackets is the return on the appreciation of the price of the
equity and the second is the dividend return. Because the risk-free bond pays out
one unit of consumption at date ¢ 4 1, its return is the final term in equation (5).
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2.2. Model 2: Pricing Consumption

In the second model, which is in the appendix of Brock (1982, p. 36-37), the firm
owns the capital stock and maximizes the present discounted value of its net cash
flow. We will refer to this as model 2. In this model, the firm has the traditional
capital budget,

P (S — Si—1) + Y =x +diSi-1, (6)

where P, is the share price at time ¢ (not necessarily the same as P, in model 1) and
d; are the dividends per share declared at time ¢ and paid on the shares outstanding
prior to the firm’s operations in the equity market, S, —S,_;. (In the example below,
which has an analytical solution, capital fully depreciates in one period. Hence,
gross investment is x, — x,_; + éx;,—; = x,. We will assume § = 1 throughout
because it does not affect the basic point that we make.)

The firm is assumed to maximize the present discounted value of its net cash
flow. As is shown in Brock (1982), this leads to the valuation formula

PS; = EqTiq1 (Prs1 Sis1 + Nign)], (7
where
Nit1 = Yig1 — X1 = Ci41.

If we let V, = P,S,, then the valuation of the firm turns out to be
Vi =E [Tig1 Vigr + )], ®

which is precisely the Lucas (1978) formula for the price of the asset in an
endowment economy in which the consumption stream is the dividends of the
asset.

That the two models give a different value of the firm (and in the example below
a different equity premium) stems from the fact that in model 1, the firms rent
capital from the consumers (who own it), whereas in model 2 the firms own the
capital. These are the two polar cases.

3. THE COMPARISON OF EQUITY PREMIA

The equity premium in the Lucas model is

|% c 1
E, 1+1 i 1| .
Vi Vi B,

where, similarly to the Brock model, the first term in brackets is the return to the
appreciation of the price of the asset and the second is the return on dividends,
which, recall, equals consumption. The difference between the equity premium in
the two models is

(€]

A, =E, |:Pt+l T Vit +Ct+l:|.

Py Vi
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To complete the analysis to see whether there is, in fact, a difference between the
equity premia in the two models, we need to solve for the relationship between
V, and P,. Let the optimal solution in model 1 have {c,} as the consumption
sequence. Price this sequence with the model 2 model. Its price sequence will be
{V;}. Let { P;} be the asset price sequence from the Brock model. We can get a
direct comparison of these two price sequences by expanding equation (3) and
using equation (2) and the rational expectations equilibrium (REE) conditions:

P = E (L1 (P + 4],
= E[Cr1 (P + Yig1 — rip1x0)],
= E(lr1 (P + X1 + )] — E[Drgaregixie,
= E/(lr1 (P + X1 + cop)] — X0

Rewrite this equation as

(P + x;:) = BT 1 (Prg1 + X401 + )] (10)
Now subtract equation (10) from equation (7):

Vi = P —x) =BT 1(Vig1 — Py — x0D)].

The transversality condition in this model is that if a random sequence, {Z,},
satisfies
Zi=E[I'1Zi]

for all ¢, then Z, = 0. This follows from repeated substitutions:
Z; =k (Cr1lra - D5 Zogs]
and by taking the limit of this equation as s — oo. Therefore,
Vi— P—x,=0

or
V[=Pt+xt~ (11)

This is the relationship between the asset prices in the two models.
Using equations (9) and (11), the difference between the returns on these two
types of assets is

A =E [Pr+l g Pt X +Cz+1:|

P[ P,—I—x,

=E, |:Pz+1 + Yt = f s )X . Py + yt+1:| . 12)

P P + x;
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We can use this equation to measure the difference between the equity premia in
the two models. If we were to take the utility weighted difference between the
equity premia, we would have

E, |:Fz+l (Pz+1 i Vi >] ’

Py Vi

which, by the pricing equations (8) and (3), is zero. However, there is no reason
(other than risk neutrality in which case I, = 1) why this would imply that equation
(9) is zero. In the next section we show with an example that this difference is not
necessarily zero.

4. AN EXAMPLE

Take the case of a logarithmic utility function with a Cobb—Douglas production
function that has a random elasticity of capital:

u(c) = In(c),
flx, ) =x%,

where 0 < o < 1 wpl. (For the production function f to be continuous in x at 0

wpl, we must rule out a mass point of « at 0.) Let @ = E [«] and let {«,} be iid.
The solution of the dynamic programming problem is

X, = aBy, 13)

1 = (I — 1) Vit (14)
_ B —a)

P = ﬁ)’zo (15)

(See the appendix for proofs of the equations in this section.) Now compute the
difference in the asset returns from equation (12):

A, = |:Pt+1 +d -y P+ yt+1:| 16)
P, P + x;
1-p8 _
=—F — 17
B0 —a)y, L@ — ary1)yiy1] a7

The algebra of going from equation (16) to equation (17) is tedious and is in the

appendix. Also in the appendix, we show that for this example, if 0 < yy < 1 then

0 < y, < 1for all z. In Theorem 1 of the appendix we show that this implies that

E; [(&@ — o;+1)yi+1] > 0 for all 7. (The one exception occurs for the degenerate

case that o, = @ for all ¢, in which case the equity premium is the same for the
Art1

two models.) In particular, we show that o, and x, "' are negatively correlated
for0 < x, < 1.2
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For this example, the sequence of outputs, {y,}, is transient in the set [1, c0)
and is eventually in (0, 1) with probability 1 for any initial yy > 0. Once it has
reached this set, A, > 0 and the equity premium on the model 1 asset prices is
strictly greater than it is on the model 2 asset prices. In the transient set it is strictly
less.

5. CONCLUSION

The model in Section 4 is not meant to be our view of the “correct” model that
explains the equity premium. It is used solely because it is analytically tractable and
it verifies the conclusion that there can be a difference between the equity premia
in the production-based asset prices and the consumption-based asset prices. How
much of the equity premium can be explained by this difference is an empirical
issue that we do not address here.

This example should lay to rest the notion that production in and of itself
cannot add anything to the analysis of the equity premium on asset prices. (Recall
the quote of Mehra and Prescott in the introduction.) In this example, there is
only one firm with 100% depreciation. In Akdeniz and Dechert (2007) it was
shown that for a model with four firms, with partial depreciation and for which
the technology parameters are state dependent, the equity premium can easily be
twice the value of ,3’1 — 1. This is due, in part, to the fact that such a model
also can include idiosyncratic risk, which is also a determinant of the equity
premium.

NOTES

1. This claim is for reasonable parameterizations of the model, which they discuss in detail on
pp. 154-155.

2. We thank the referee for this observation. The intuition behind this result is that « and x* move
in oposite directions when both x and « are in the interval (0, 1).
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APPENDIX

Here are the proofs of the assertions in the text.
Equation (13). This was proved in Mirman and Zilcha (1975), Example A, p. 333. ®
Equation (14). Since f(x, @) = x*, then

/ _ Q1 __
X 1y o) = g1, = Q1 Y1415

and thus 7,41 = Y1 — X /(6 @p1) = (1 — @) yegr.- u
Equation (15). From equation (1) and using u(c) = In(c) for the example, we have
r, = Be: _ Vi .
Cr+1 Ye+1

Insert this and the result above for profits into the asset pricing equation (3) to get

i

t+1

P :Et{ﬂ [Py +(1_05t+1))’t+1]}~

Now assume that the pricing function is linear in output, P, = ky;, and see whether we get
a consistent equation for k:

ky, =E {,BL[/Q’:H +d- “r+1))’y+1]},
Vi+1
which reduces to
k=E{Blk+ (1 —a)]} =Bk+1—a),

and we getk = (1 —@)/(1 — B). |
Equation (17). The terms inside the expectation in equation (16) are

|:k+(1_at+l)_ k+1j|)’t+l_<1+1_at+l k+1)yt+l

k k+ap| v kK k+aB)

s

where k is defined above. Now,

_Bl-@ . 1-ap
krl=—p tl=7
and B —a) Bl —ap)
_ _ — _ _ —
k+aﬂ_7l_ﬂ +aﬂ_71_13 s
and so
k+1 1-ap 1-8 1

k+ap  1-pg pl—ap) B
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Putting these together we get

R SO a-p 1
M Thvap T T e Te T
_U-o)d-8 1-8

Bl —a) B

B 1—ﬁ<1—a,+1_1)
] l—«

1—B (a—oam
B l-a )’
From this we conclude that

_ 1=B8(a—o1\ Yt . 1-p _
A =E [T (ﬁ) Y :| = 7[3(1 —a)y, E (@ — 1)yl

which was to be shown. |
Notice that if 0 < y, < 1 then 0 < y,;; < 1 wpl. This follows from y,;; = x;""' =
(&By,)*+!, and the terms in parentheses are all between 0 and 1.

THEOREM 1. Assume that the sequence {«,} is iid. Then for the example in Section 4,
E/ [(@ — 1) yi41] > O for y, € (0, 1).

Proof. Note that y,, | = e%+'"* and that Inx, < 0 for x, € (0, 1). Define the auxiliary
function

#(c) = E[(@ — a)e]

for arandom variable « that has the same distribution as the iid sequence {c,}. The function
¢ is differentiable:

#'(c) = E[(@ — o)ae™]

El(@ —a)(a—a+a)e“]

—E[(@ — a)?¢] + aE [(@ — a)e™]
—E[(@ — a)’e“] +agp(c).

Define another auxiliary function,

¥(c) = E[(@ — a)*e™],

and note that ¥ (c¢) > 0 for all c. The function ¢ satisfies the differential equation

¢'(©) =ag(c) —¥(o),

which has a general solution of

0
p(c) = e [tP(O) +/ eﬁ&?!/(Z)dz]
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This can be verified by differentiating the right-hand side with respect to c¢. From its
definition, ¢ (0) = 0, so the particular solution for ¢ is

0
¢(c) = ew‘/ e Y (2)dz.
Since i > 0, it follows that ¢ (¢) > 0 for ¢ < 0. Therefore,

E[(@— o5r-¢—1)ewr+l] >0

for ¢ < 0. Let ¢ = In x, and the conclusion follows for x;, € (0, 1). |
COROLLARY 2. A, <0 forx, > 1.
Proof. When x, > 1, ¢ =1In(x;) > 0and so ¢(c) < 0. |
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