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Abstract
Combinatorial samplers are algorithmic schemes devised for the approximate- and exact-size generation of
large random combinatorial structures, such as context-free words, various tree-like data structures, maps,
tilings, RNA molecules. They can be adapted to combinatorial specifications with additional parameters,
allowing for a more flexible control over the output profile of parametrised combinatorial patterns. One
can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain
sub-patterns in generated strings. However, such a flexible control requires an additional and nontriv-
ial tuning procedure. Using techniques of convex optimisation, we present an efficient tuning algorithm
for multi-parametric combinatorial specifications. Our algorithm works in polynomial time in the system
description length, the number of tuning parameters, the number of combinatorial classes in the specifica-
tion, and the logarithm of the total target size. We demonstrate the effectiveness of our method on a series
of practical examples, including rational, algebraic, and so-called Pólya specifications. We show how our
method can be adapted to a broad range of less typical combinatorial constructions, including symmetric
polynomials, labelled sets and cycles with cardinality lower bounds, simple increasing trees or substitu-
tions. Finally, we discuss some practical aspects of our prototype tuner implementation and provide its
benchmark results.

Keywords: boltzmann samplers; multiparametric tuning; convex optimisation; combinatorial specifications; analytic
combinatorics; context-free grammars; random sampling; self-concordant barriers
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1. Introduction
Random generation of combinatorial structures forms a prominent research area of theoreti-
cal computer science. Its wide applications include such topics as simulation of large physical
statistical models [LB14], automated software testing [Pał+11, Cla+00] and counterexample
construction for interactive theorem provers [Par+15], statistical analysis of queueing networks
[BBR14], RNA design [Ham+19], or network theory, where one of the major challenges is to
devise a realistic model of random graphs reflecting the properties of real-world networks [Bar16].

Given a formal specification defining a set of combinatorial structures, such as graphs, pro-
teins, or tree-like data structures, we are interested in designing an efficient algorithmic sampling
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scheme, generating such structures according to some prescribed and rigorously controlled distri-
bution. For instance, being interested in sampling certain plane trees following a uniform outcome
distribution, where plane trees with an equal number of nodes share the same probability of being
constructed, we want to obtain a combinatorial sampler satisfying these input requirements.

There exists a number of different sampling techniques in the literature. Depending on the
considered class of structures, there exist different ad-hoc methods, such as the prominent sam-
pler for plane binary trees due to Rémy [Rém85]. If no direct sampling technique is applicable,
a common technique is to use rejection sampling in which one generates objects from a larger,
yet simpler class and rejects unwanted samples. Although usually straightforward to implement,
rejection sampling may quickly become infeasible, especially if the rejection rate grows exponen-
tially fast. Another method, quite popular in physical modelling, is various Monte Carlo Markov
Chain algorithms. If each of the chain states has an equal number of transitions, then the station-
ary distribution is in fact uniform. Let us remark that this technique and its modifications were
successfully applied in sampling random walks and dimer models [PW96].

One of the earliest examples of a universal sampling template is Nijenhuis and Wilf’s recursive
method [NW78], later systematised by Flajolet, Zimmermann and Van Cutsem [FZC94]. In this
approach, the input specification, as well as the combinatorial structures it defines, are recursively
decomposed into primitive building blocks. Accordingly, sampling such objects follows closely
the recursive structure of their specification. The generation scheme is split into two stages – an
initial preprocessing phase, and the proper sampling itself. During the former, a set of decision
probabilities based on a target size n is computed and stored for later use. The probabilities are
chosen so to guarantee a uniform distribution among structures of size n constructed in the lat-
ter phase. Consequently, the sampling process reduces to a series of random decisions following
precomputed distributions, dictating how to compose the output structure.

Although quite general, the recursive method poses considerable practical limitations. In both
phases, the designed algorithm can manipulate integers of size exponential in the target size
n, turning its effective bit complexity to O(n3+o(1)), compared to �(n2) arithmetic operations
required. Denise and Zimmermann reduced later the average-case bit complexity of the recur-
sive method to O(n log n) in time and O(n) in space using a certified floating-point arithmetic
optimisation [DZ99]. Regardless, worst-case space bit complexity remained O(n2) as well as
bit complexity for specifications defining non-algebraic languages. Remarkably, for rational lan-
guages Bernardi and Giménez [BG12] recently linked the floating-point optimisation of Denise
and Zimmermann with a specialised divide-and-conquer scheme reducing further the worst-case
space bit complexity and the average-case time bit complexity to O(n).

For many years, the exact-size sampling paradigm was the de facto standard in combinatorial
generation. Inmany applications, however, such a precision is not necessary, and the outcome size
may fluctuate around some target value n. Such a relaxed paradigm was made possible with the
seminal paper of Duchon, Flajolet, Louchard and Schaeffer who proposed a universal sampler con-
struction framework of so-called Boltzmann samplers [Duc+04]. The key idea of their approach is
to relax the previous exact-size setting and allow for approximate-size samplers, generating struc-
tures within a target size window [(1− ε)n, (1+ ε)n] centred around some input size n. Like in
the recursive method, Boltzmann samplers closely follow the recursive structure of the input spec-
ification. However now, instead of directly manipulating large integers or floating-point numbers
in order to compute respective decision probabilities, the preprocessing phase uses numerical
oracles to evaluate systems of generating functions corresponding to the specified combinatorial
structures.

Throughout the years, a series of important extensions and improvements of Boltzmann
samplers was proposed. Let us mention, for instance, linear approximate-size (and quadratic
exact-size) Boltzmann samplers for planar graphs [Fus05], general-purpose samplers for unla-
belled structures [FFP07], efficient samplers for plane partitions [BFP10] or the cycle pointing
operator for Pólya structures [Bod+11]. The framework of Boltzmann samplers was more-
over generalised onto differential specifications [BRS12, Bod+16]. Finally, let us mention linear
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exact-size samplers for Catalan and Motzkin trees exploiting the shape of their holonomic
specifications [BBJ13].

What was left open since the initial work of Duchon, Flajolet, Louchard, and Schaeffer was
the development of (i) efficient, general-purpose Boltzmann oracles providing effective means of
evaluating combinatorial systems within their disks of convergence, and (ii) an automated tuning
procedure controlling the expected parameter value sizes of generated objects. The former prob-
lem was finally addressed by Pivoteau, Salvy and Soria [PSS12] who defined a rapidly converging
combinatorial variant of the Newton oracle by lifting the combinatorial version of Newton’s iter-
ation of Bergeron, Labelle and Leroux [BLL98] to a new numerical level. In principle, using their
Newton iteration and an appropriate use of binary search, it became possible to approximate the
singularity of a given algebraic combinatorial system with arbitrarily high precision. However,
even if the singularity ρ is estimated with high precision, say 10−10, its approximation quality
does not correspond to an equally accurate approximation of the generating function values at
ρ, often not better than 10−2. Precise evaluation at z close to ρ requires an extremely accurate
precision of z. Fortunately, it is possible to trade-off the evaluation precision for an additional
rejection phase using the idea of analytic samplers [BLR15] retaining the uniformity even with
rough evaluation estimates.

Nonetheless, frequently in practical applications such as for instance software testing, uniform
distribution of outcome structures might not be the most effective choice [Art+15]. In fact, it
can be argued that most software bugs are minuscule, neglected corner cases, which will not be
caught using large, typical instances of random data, see [Pał+11, RNL08]. In such cases, addi-
tional control over the internal structure of generated objects is required, cf. [Pał12]. Non-uniform
generation schemes are also required in genomics [DRT00]. Patterns observed in real genomic
sequences are tested against randomness and therefore sequences with given nucleotide frequen-
cies need to be sampled. Random generation becomes more involved when the properties do not
relate to simple motifs, but, for example, relates to secondary protein structure [Ham+19] or to
evolution histories [CPW20].

In [DRT00], a multi-parametric random generation framework for context-free languages was
suggested, while the question of efficient numerical tuning of the required generating function
arguments was left open. In [BP10] Bodini and Ponty proposed a multidimensional Boltzmann
sampler model, developing a tuning algorithm meant for the random generation of words from
context-free languages with a given target letter frequency vector. This was a major improvement
over [DRT00]; however, their algorithm converges only in an a priori unknown vicinity of the
target tuning variable vector. In practice, it is therefore possible to control no more than a few
tuning parameters at the same time.

In the present paper, we propose a novel polynomial-time tuning algorithm based on con-
vex optimisation techniques, overcoming the previous convergence difficulties. We demonstrate
the effectiveness of our approach with several examples of rational, algebraic, Pólya structures,
and labelled structures. Remarkably, with our new method, we are able to easily handle large
combinatorial systems with thousands of combinatorial classes and tuning parameters.

In order to illustrate the effectiveness of our approach, we implemented a prototype Python
library called Paganini meant to provide suitable tuning vectors, and a standalone sampler
generator Boltzmann Brain. Our software is freely available as open source1,2.

The paper is structured as follows. In Section 2 we outline basic concepts of combinatorial
random sampling, including the principles of the recursive method and Boltzmann sampling.
In Section 2.2 we introduce a new (to our best knowledge) admissible combination operation of
combinatorial classes, and explain its usefulness in certain auxiliary transformations for com-
binatorial specifications used during the construction of the tuning problem. In the following
Section 3, we show how to express the tuning problem as a convex optimisation problem and

1https://github.com/maciej-bendkowski/paganini
2https://github.com/maciej-bendkowski/boltzmann-brain
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provide important simplifications for context-free grammars, labelled structures, increasing trees
and other types of structures. In Section 4, we provide a detailed complexity analysis of the con-
vex optimisation problems obtained from various combinatorial specifications using the notion
of self-concordant barriers. Then, in Section 5 we address the problem of finding an optimal target
expectation for Boltzmann samplers when the target size is constrained in a finite interval [n1, n2].
Next, in Section 6 we describe our prototype implementation. Finally, in Section 7 we illustrate the
effectiveness of our approach providing several exemplary applications of our tuning algorithm.

2. Combinatorial random sampling
2.1 Admissible combinatorial classes
Let us consider the neutral class E , commonly denoted as 1, consisting of a single object of size
zero, and its atomic counterpart Z , which is a class consisting of a single object of size one. Both
are equipped with a finite set of admissible operators, such as the disjoint union +, Cartesian
product×, and sequence SEQ, see [FS09, Section I.2]. Depending on whether we consider labelled
or unlabelled structures, we allow for more expressive admissible operators including for instance
the multiset MSET, set SET, or cycle CYC constructions. In such a setting, combinatorial specifica-
tions we consider in the current paper are finite systems of equations (possibly mutually recursive)
built from elementary classes E , Z , and admissible operators.

Example 1. Consider the following joint specification for T and Q. In the combinatorial class T
of trees, nodes at even level (the root starts at level one) have either no or exactly two children,
whereas each node at odd level has an arbitrary number of non-planarily ordered children:{

T =Z MSET(Q)
Q=Z +ZT 2 . (1)

In order to distinguish, in other words mark, some additional combinatorial parameters we
consider the following natural multivariate extension of specifiable classes.

Definition 2 (Specifiable k-parametric combinatorial classes). A specifiable k-parametric combi-
natorial class is a combinatorial specification built, in a possibly recursive manner, from k distinct
atomic classes Z1, . . . ,Zk, the neutral class E , and admissible operators. In particular, a vector
C = (C1, . . . , Cm) forms a specifiable k-parametric combinatorial class if its specification can be
written down as ⎧⎪⎪⎨⎪⎪⎩

C1 = �1 (C,Z1, . . . ,Zk)
...

Cm = �m (C,Z1, . . . ,Zk)

, (2)

where the right-hand side expressions �i(C,Z1, . . . ,Zk) are composed from C,Z1, . . . ,Zk,
admissible operators, and the neutral class E .
Example 3. Let us continue our running example, see (1). Note that we can introduce two
additional marking classes U and V , into (2), each of weight zero, turning our example into a
k-specifiable combinatorial class: {

T = UZ MSET(Q),
Q= VZ +ZT 2 .

(3)

Here, U is meant to mark the occurrences of nodes at odd levels, whereas V is meant to mark
leaves at even levels. In effect, we decorate the univariate specification with explicit information
regarding the internal structural patterns of our interest.
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Much like in their univariate variants, k-parametric combinatorial specifications are naturally
linked to ordinary multivariate generating functions, see [FS09, Chapter III].

Definition 4 (Multivariate generating functions). The multivariate ordinary generating function
C(z1, . . . , zk) in variables z1, . . . , zk associated to a specifiable k-parametric combinatorial class C
is defined as

C(z1, . . . , zk)=
∑

p1�0,...,pk�0
cpzp, (4)

where cp = cp1,...,pk denotes the number of structures with pi atoms of type Zi, and zp denotes the
product zp11 · · · zpkk . In the sequel, we call p the (composition) size of the structure.

In this setting, we can easily lift the usual univariate generating function construction rules
associated with admissible constructions to the realm of multivariate generating functions
associated to specifiable k-parametric combinatorial classes.

2.2 Combination operator
Many examples of combinatorial structures are naturally expressed as collections of disjoint
unions and do not require to explicitly exclude certain undesired configurations. Consequently,
right-hand side expressions �i(C,Z1, . . . ,Zk) of their combinatorial specifications tend to be
composed of summands with positive coefficients. One notable exception, however, is spec-
ifications constructed using the inclusion-exclusion principle which, due to the induced class
subtraction, may cause considerable difficulties for both tuning and sampling.

From the sampling perspective, exclusion in the combinatorial specification requires additional
rejection, whose cost may undesirably dominate over the cost of sampling. Even worse, later in
Section 3 we will argue that, in general, negative coefficients do not allow to express the tuning
problem in convex optimisation form.

Remarkably, in some cases it is possible to rewrite the initial system with negative coefficients
in such a way that the resulting system contains only positive terms. A typical example of such a
situation is the construction of a non-empty product containing at most one object from each of
the classes C1, . . . , Cd. Symbolically:

(1+ C1)(1+ C2) · · · (1+ Cd)− 1. (5)
Note that (5) is a combinatorial class consisting of non-empty tuples of length d, such that their
i-th coordinate is either E or an object from Ci. The above concise specification explicitly excludes
the empty tuple, however introduces subtraction in the specification. We can eliminate the sub-
traction by expanding all brackets in (5), however, such a naive transformation produces 2d − 1
summands in the resulting specification. Instead, we propose another transformation.

Definition 5 (Combination operator). Let C1, . . . , Cd be combinatorial classes. The admissible
k-combination or k-selection SELECTk(C1, . . . , Cd) of C1, . . . , Cd is a combinatorial class consisting
of all tuples (c1, . . . , cd) such that

• ci is either empty, that is E , or an element of Ci, and
• exactly

(d
k
)
elements of (c1, . . . , cd) are non-empty.

Example 6. Consider the classes C1, . . . , Cd. Note that

SELECTk(C1, . . . , Cd)∼=
∑

1�i1<i2<···<ik�d
Ci1 × Ci2 × · · · × Cik . (6)

In words, the class SELECTk(C1, . . . , Cd) is isomorphic with the disjoint union of all ordered
k-products of classes in C1, . . . , Cd. In particular, SELECT0(C1, . . . , Cd)∼= 1. Furthermore, it holds
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SELECTd(C1, . . . , Cd)∼=
∏

i Ci. It should be noted that the isomorphism in (6) cannot be replaced
with strict equality, as SELECTk(C1, . . . , Cd) consists of tuples of length d whereas the right-hand
side sum consists of tuples of length k.

Let us denote SELECTk(C1, . . . , Cd) as Sk. Note that
(1+ C1)(1+ C2) · · · (1+ Cd)− 1= S1 + · · · + Sd. (7)

The resulting classes Sk are, in fact, elementary symmetric polynomials consisting of all
(d
k
)
sum-

mands of the expanded
∏d

i=1 (1+ Ci) of length k. Since a direct, verbose representation of
SELECTk(C1, . . . , Cd) is exponential in d, we suggest an indirect dynamic programming approach,
allowing us to obtain a much more succinct representation of each of the selection operations
using a total of O(d2) of auxiliary combinatorial classes.

Let Pk,m be a subset of Sk in which products are restricted to involve classes from C1, . . . , Cm.
Note that Pk,m is empty if and only ifm< k. Moreover, Pk,d = Sk. We start with

P1,1 = C1
P1,m+1 =Pm + Cm+1. (8)

Now, suppose that we have computed P0,m,P1,m, . . . ,Pk,m for all values of m, and wish to
compute the next row of classes corresponding to k+ 1. We start to iteratem in increasing order.
For allm such thatm< k+ 1, we set Pk+1,m = ∅. Otherwise, ifm� k+ 1 we note that

Pk+1,m =Pk+1,m−1 + Cm ×Pk,m−1. (9)

The correctness of the above scheme can be proven by induction.With its help, we can compute
a lower-triangular matrix of the symbolic representations for Pk,m and so also the elementary
symmetric polynomials Sk. As a by-product, we can therefore efficiently rewrite the initial system
(5) into an equivalent one with positive terms.

This transformation can be used as an auxiliary construction in other combinatorial specifi-
cations. For example, we apply the described technique in Section 7.4 in order to sample from a
multi-parametric class

MSET (SEQ(Z1)SEQ(Z2) · · · SEQ(Zd)− 1) . (10)

2.3 Boltzmann samplers and the recursive method
There exists a number of different sampling techniques in the literature. In the current paper,
we focus on two most prominent, general purpose frameworks — the recursive method [NW78]
and Boltzmann samplers [Duc+04]. In what follows, we focus specifically on their distinguishing
features.

2.3.1 The recursive method
The three basic building bricks of the recursive method are, similarly to the symbolic method
and admissible classes, disjoint union, Cartesian product, and pointing. In this framework, the
counting sequences of the combinatorial classes need to be readily available, as they determine the
branching probabilities of the random generation process. The three operations are processed as
follows.

Disjoint union. If the counting sequence (Cn)n�0 of the target class C is given by Cn =An +
Bn where An and Bn are the counting sequences of the classes A and B, respectively, then with
probability An

An+Bn an object fromA is constructed, otherwise an object from classB is constructed.

Cartesian product. If the counting sequence of the target class C satisfies the equation Cn =∑n
k=0 Ak · Bn−k, then a tuple of sizes (k, n− k) is chosen with probability AkBn−k

Cn
and objects from

A and B of respective sizes k and n− k are generated.
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Pointing. If A is a combinatorial class, then an object in a pointed class �A is isomorphic to an
object fromA which has a distinguished atom. Now, if the counting sequence ofA is An, then the
counting sequence of �A is given by n ·An. Having one of the samplers forA or �A, it is easy to
obtain the other one by either distinguishing a label uniformly at random or, the other way round,
by forgetting which label is distinguished.

Note that the pointing operator substantially enriches the set of admissible specifications and
plays a central rôle in the design of recursive samplers. For example, the two labelled operations,
SET and CYC are bijectively transformed using the pointing operation as follows:

�SET(A)= SET(A)× �A and �CYC(A)= SEQ(A)× �A. (11)

We are not aware of a direct and efficient sampling algorithm based on the recursive method for
unlabelled structures involving the MSET and CYC operators.

2.3.2 Boltzmann samplers
While the recursive method is applicable to specifications irrespective of the analyticity of their
generating functions, Boltzmann samplers work only with classes whose generating functions
are analytic. However, unlike the recursive method, Boltzmann samplers do not require the
underlying counting series. Instead, they rely on the values of the generating functions. As a
consequence, the size of the outcome structure is no longer fixed, but follows a Boltzmann dis-
tribution P(size= k)= Akzk∑

n�0 Anzn with z being its parameter. Nevertheless, conditioned on size,
such samplers generate a uniformly chosen object from the target class.

Boltzmann samplers support three basic operations, that is disjoint union, Cartesian product,
and substitution. For instance, assuming that that ϕ(x) is analytic, we can consider a family of
simply generated trees satisfying

T(z)= zϕ(T(z)). (12)

Let us remark however, that while substitutions of type ϕ(T(z)) are usually easier to handle, sub-
stitutions in form of T(ϕ(z)) are much more involved. Note that the recursive method does not
easily support substitutions. Now, let us focus on how these three basic operations are processed.

Disjoint union. Consider a target class C with a generating function C(x). Let A and B be two
combinatorial classes with generating functions A(x) and B(x), respectively, such that C =A+ B.
Then, with probability A(x)

A(x)+B(x) an object from A is drawn, otherwise an object from class B is
generated.

Cartesian product. Consider a target class C with a generating function C(x). LetA and B be two
combinatorial classes with generating functions A(x) and B(x), respectively, such that C =A× B.
Then, an independent pair of recursively generated objects fromA and B is drawn.

Substitution. Let C(x)= ϕ(B(x)) where ϕ(t)=∑
i φiti. Then, a Boltzmann sampler for C is

obtained as follows. Fix t = B(x) and sample a random integer k from the distribution P(k)=
φktk/ϕ(t). Finally, draw k independent copies of recursively sampled objects from B.

The substitution rule, in particular, provides Boltzmann samplers for the labelled SET, SEQ
and CYC constructions. It turns out that such samplers also cover a wide interesting family of
combinatorial classes and constructions, including unlabelled structures, first-order differential
specifications, Hadamard product and Dirichlet generating series, see [Bod10] for further details.

We summarise the most common rules in Tables 1, 2, and 3. We write X =⇒ � to denote a
procedure generating random objects from � based on the random discrete distribution X – we
draw an integer r from X and then, repeatedly and independently, invoke the respective sampler
� r times. As a result, we obtain an r-tuple of sampled objects. For more details we refer the reader
to [Duc+04] and [FFP07].
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Table 1. Multivariate generating functions and corresponding Boltzmann samplers �C(z).

Class Description C(z) �C(z)

Neutral C = {ε} C(z)= 1 ε
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Atom C = {�i} C(z)= zi �i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Union C =A+B A(z)+ B(z) Bern
(
A(z)
C(z) ,

B(z)
C(z)

)
−→ �A(z) | �B(z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Product C =A×B A(z)× B(z) (�A(z);�B(z))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sequence C = SEQ(A) (1− A(z))−1 Geom(1− A(z)) =⇒ (�A(z))

Table 2.Multivariate generating functions and corresponding Boltzmann sam-
plers �C(z) for unlabelled constructions.

Class Description C(z) �C(z)

MultiSet MSET(A) exp
(∑∞

m=1 1
mA(z

m)
)

see [Bod10, Algorithm 1]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cycle CYC(A) ∑∞
m=1

ϕ(m)
m ln 1

1−A(zm) see [Bod10, Algorithm 2]

Table 3.Multivariate generating functions and corresponding Boltzmann samplers
�C(z) for labelled constructions.

Class Description Ĉ(z) �Ĉ(z)

Set SET(A) exp (̂A(z)) Pois(̂A(z)) =⇒ (�Â(z))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cycle CYC(A) log (1− Â(z))−1 Loga(̂A(z)) =⇒ (�Â(z))

2.3.3 Multi-parametric Boltzmann samplers
Consider a multi-parametric combinatorial class C with a multivariate generating function C(z).
Let ω ∈ C be a combinatorial object with composition size p. Then, a multi-parametric Boltzmann
sampler �C(z) outputs ω with probability

Pz(ω)= zp

C(z)
. (13)

Such samplers can be constructed frommulti-parametric combinatorial specifications in the same
way as ordinary Boltzmann samplers are constructed. When the expressions of generating func-
tions involve different values of the tuning variables, then these variables, after substitution, yield
new branching probabilities.

Proposition 7 (Log-exp transform of the tuning problem). Let N= (N1, . . . ,Nk) be the random
vector where Ni equals the number of atoms of type Z1 in a random combinatorial structure
returned by the k-parametric Boltzmann sampler �C(z). Then, the expectation vector Ez(N) and
the covariance matrix Covz(N) are given by

Ez(Ni)= ∂

∂ξi
log C(eξ )

∣∣∣∣
ξ=log z

and Covz(N)=
[

∂2

∂ξi∂ξj
log C(eξ )

]k
i,j=1

∣∣∣∣∣
ξ=log z

. (14)

Hereafter, we use ez to denote coordinate-wise exponentiation.
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Proof. Let the following nabla notation denote the vector of derivatives (so-called gradient vector)
with respect to the variable vector z = (z1, . . . , zk):

∇z f (z)=
(

∂

∂z1
f (z), . . . ,

∂

∂zk
f (z)

)�
. (15)

Let (cn)n�0 be the counting sequence of the combinatorial class C. The probability generating
function p(u|z) for N with u as an argument and z as a parameter takes the form

p(u | z)=
∑
n�0

cnznun

C(z)
= C(u • z)

C(z)
, (16)

where • denotes component-wise vector multiplication. Hence, the expected value and the
covariance of N can be immediately expressed through its probability generating function as

EzN = ∇up(u|z)|u=1

Covz(N)=
[
∇2
up(u|z)+ diag(∇up(u|z))− ∇up(u|z)∇�

u p(u|z)
]
u=1

. (17)

The proof is finished by expanding the log-exp transform in (14) and comparing the result to the
expressions obtained from the probability generating functions.

Remark 8. The function γ (z):= log C(ez) is convex because its matrix of second derivatives, as
a covariance matrix, is positive semi-definite inside the set of convergence. This crucial assertion
will later prove central to the design of our tuning algorithm. The expressions for the expectation
and the covariance matrix are similar to those obtained in [BR83] for central limit theorem for
multivariate generating functions.

Remark 9. Uni-parametric recursive samplers of Nijenhuis and Wilf take, as well as Boltzmann
samplers, a system of generating functions as their input. This system can be modified by putting
fixed values of tuning variables, in effect altering the corresponding branching probabilities. The
resulting distribution of the random variable corresponding to a weighted recursive sampler coin-
cides with the distribution of the Boltzmann-generated variable conditioned on the structure size.
As a corollary, the tuning procedure that we discuss in the following section is also valid for the
exact-size approximate-frequency recursive sampling.

2.4 Complexity of exact parameter sampling
While the current paper is devoted to tuning of the parameters in expectation, let us pause for
a moment and ask the following, natural question – what is the complexity of exact-parameter
sampling for multi-parametric combinatorial specifications?

In the current section, we show that, unless both the classes of decision problems solvable in
randomised RP and nondeterministic NP polynomial time are equal, then already for unambigu-
ous context-free languages there exists no fully polynomial-time algorithm for almost-uniform
exact-parameter sampling problem. Since it is widely conjectured that RP 
=NP, cf. [WG01], this
infeasibility result justifies parameter tuning in expectation, which can be regarded as a continuous
relaxation of the exact-parameter problem variant.

Consider a context-free grammar G with derivation rules in form of
Ai → Ti,j, (18)

where Ai is a non-terminal symbol, and the right-hand side expression Ti,j is a (possibly empty)
word consisting of both terminal and non-terminal symbols. Recall that the context-free grammar
G is said to be unambiguous if each word its generates has a unique derivation. Let a1, . . . , ad
be distinct terminal symbols. The exact multi-parametric sampling problem for unambiguous
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context-free grammars can be stated as follows – given natural numbers n1, n2, . . . , nd, sample
uniformly at random a word of length n= n1 + · · · + nd from the language L(G) generated by G,
such that the number of occurrences of each terminal symbol aj is equal to nj.

Example 10. As a simple illustrating example of the discussed problem, consider the following
grammar B generating (unambiguously) all binary words over the alphabet 
 = {0, 1}:

B→ 0B | 1B | ε. (19)

Recall that ε denotes the empty word. In this example, given numbers n0 and n1, the multi-
parametric sampling problem asks to generate a uniformly random binary word over 
 which
has exactly n0 0s, and n1 1s.

In what follows we prove that, in general, the problem of exact-size multi-parametric sampling
(even if the specification does not involve loops) can be reduced to the #P-complete #2-SAT prob-
lem, which asks to count the number of satisfiable variable assignments of a given 2-CNF formula.
As suggested to us by Sergey Tarasov in personal communication, such a complexity result might
be folklore knowledge; however, we did not manage to find it in the literature. We therefore take
the liberty to fill this gap. Detailed definitions from complexity theory can be found in the papers
referenced during the proof of the following theorem.

Theorem 11 (Infeasibility of exact parameter sampling). Unless NP= RP, there is no fully
polynomial-time algorithm for almost-uniform multi-parametric sampling from unambiguous
context-free grammars.

Proof. We start by showing that extracting the coefficients [zk11 · · · zkmm ]Fi(z1, . . . , zm) of a
multivariate generating Fi(z1, . . . , zm) satisfying a system of polynomial equations in form of⎧⎪⎪⎨⎪⎪⎩

F1(z1, . . . , zm) = �1(z1, . . . , zm, F1, . . . , Fn)
...

Fn(z1, . . . , zm) = �n(z1, . . . , zm, F1, . . . , Fn)
, (20)

is #P-hard. We proceed by reduction from the #P-complete #2-SAT problem.
Consider a 2-SAT formula

F =
m∧
j=1

(αj ∨ βj), (21)

with n Boolean variables x1, . . . , xn and m clauses. For each clause (αj ∨ βj) we create a distinct
(complex) variable cj. Next, for each literal x ∈ {x1, . . . , xn, x1 . . . , xn} we introduce a corre-
sponding multivariate generating function X(c1, . . . , cm) (where X ∈ {X1, . . . , Xn, X1, . . . , Xn})
defined as

X(c1, . . . , cm)=
m∏
j=1

cj
1cj (x), (22)

where x �→ 1A(x) denotes the indicator function with respect to a set A (i.e. 1A(x)= 1 if x ∈A, and
1A(x)= 1 if x 
∈A). Finally, we create a multivariate generating function

H(c1, . . . , cm)=
n∏
i=1

(Xi(c1, . . . , cm)+ Xi(c1, . . . , cm)). (23)

Clearly, all of these generating functions form a polynomial system of equations. Intuitively,
generating functions Xi(c1, . . . , cm) are products of variables cj corresponding to clauses which
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become satisfied once the respective literal xi is true. Furthermore,H(c1, . . . , cm) encodes all pos-
sible variable assignments. Indeed, if we expand all brackets in (23) we obtain 2n summands,
each corresponding to a distinct variable assignment – occurrences of Xi(c1, . . . , cm) in each sum-
mand encode setting the respective variable xi to true, whereas Xi(c1, . . . , cm) encode setting the
respective variable xi to false.

Let us consider an arbitrary summandHϕ in the expanded (23) corresponding to some variable
assignment ϕ : {x1, . . . , xn} → {True, False}. Note that once we unfold the respective definitions
of Xi(c1, . . . , cm) and Xi(c1, . . . , cm), Hϕ becomes a monomial consisting of cj’s satisfied by ϕ.
Each clause (αj ∨ βj) in F consists of two literals, hence its corresponding variable cj can occur at
most twice in Hϕ . Consequently, the number of satisfiable assignments satisfying F is equal to

[c�1
1 · · · c�1

n ]H(c1, . . . , cn), (24)

that is to the number of monomialsHϕ in which each clause variable occurs at least once. In order
to obtain the number (24) of satisfiable assignments using a single, exact coefficient extraction, we
note that

[c21 · · · c2n]H(c1, . . . , cn)
n∏

i=1
(1+ ci)= [c�1

1 · · · c�1
n ]H(c1, . . . , cn). (25)

And so, it is as hard to extract the coefficients of a generating function as solving a #2-
SAT instance. Nevertheless, it should be noticed that not every hard enumeration problem
automatically corresponds to a hard uniform random sampling problem.

In order to complete the proof, we use the celebrated [JVV86, Theorem 6.4] which proves that
if there exists a fully polynomial almost-uniform random sampling algorithm (with an exponen-
tially small error), then there exists a fully polynomial randomised approximation scheme for
the counting problem as well (within a polynomially small error). Moreover, unless RP=NP,
there exists not fully polynomial randomised approximation scheme for #2-SAT [WG01]. Hence,
indeed the theorem statement must hold.

3. Multi-parametric tuning
A combinatorial specification typically involves several classes C1, . . . , Cm which are defined in a
mutually recursive manner. Let us denote (C1, . . . , Cm) as C. For tuning and sampling purposes,
one particular class in C is chosen. For example, consider a system⎧⎪⎪⎨⎪⎪⎩

C1 = �1 (C,Z1, . . . ,Zk)
...

Cm = �m (C,Z1, . . . ,Zk) .
(26)

Suppose that we want to sample the objects from the class C1 and we fix the expected values of
parameters Z1, . . . ,Zk to be N1, . . . ,Nk, respectively. Let C1(z1, . . . , zk), . . . , Cm(z1, . . . , zk) be
the related generating functions. Then, the system of polynomial equations corresponding to the
tuning problem (see e.g. [Duc+04, Proposition 2.1]) is given by

Ni = zi
∂ziC1(z1, . . . , zk)
C1(z1, . . . , zk)

for i= 1, . . . , k. (27)

Note that, in general, the values of the tuning parameters cannot be obtained by independently
solving each of the equations (27). Each of the functions is depending on all the arguments at the
same time (see also Figure 1). Hence, we propose an alternative procedure to achieve this goal.

From a technical point of view, the easiest case for theoretical analysis is combinatorial spec-
ifications corresponding to unambiguous context-free grammars. Here, the system defining the
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Figure 1. Dependency of parameters and expectations formulti-parametric tuning. Circle radii represent the possible values
of the parameters.

generating functions becomes a well-founded system of polynomial equations, see [PSS12]. The
most general framework of Boltzmann sampling comprises much more cases, including labelled
objects, Pólya structures, or first- and second-order differential specifications. There also exist
specifications whose equations include subtractions (related to the inclusion-exclusion principle),
substitutions, and in these cases, different sampling strategies should be applied, for example
recursive sampling or sampling with rejections, see Section 2.3. In this section, we are only
concerned with tuning, setting thus all of these sampling issues aside.

3.1 Tuning as a convex optimisation problem
It turns out that instead of solving a system of polynomial equations (27) involving the deriva-
tives of the generating function, a simpler convex optimisation problem, involving only the values
of the generating functions, can be considered. Having the derivatives of this function comes as
an advantage, because it allows to use first-order subroutines to solve the optimisation problem.
The following theorem contains the most general form of our tuning approach. For convenience,
we will write f (·)→minz , f (·)→maxz to denote the minimisation (maximisation, respectively)
problem of the target function f (·) with respect to the vector variable z.
Theorem 12 (Tuning as convex optimisation). Let F(z1, . . . , zd) be a formal power series with non-
negative coefficients analytic in an open d -dimensional set � ⊆ {z1 > 0, . . . , zd > 0}. Assume that
the solution of the multi-parametric tuning problem

Ni = zi
∂ziF(z1, . . . , zk)
F(z1, . . . , zk)

for i= 1, . . . , k, (28)

belongs to �.
LetN denote the vector (N1, . . . ,Nd). Then, the tuning problem (28) is equivalent to the following

convex optimisation problem over real variables ϕ and ζ = (ζ1, . . . , ζd):{
ϕ −N�ζ →minζ ,ϕ ,
ϕ � log F(eζ )

(29)

provided that the arguments of F meet its domain, and the logarithm is well-defined. The respective
tuning parameters z∗ satisfy then z∗ = eζ .
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Proof. Using a log-exp transformation, we note that the tuning problem (28) is equivalent to
∇ζ log F(eζ )=N , cf. Proposition 7. Since the right-hand side vector N is equal to ∇ζ (N�ζ ), the
tuning problem is further equivalent to

∇ζ

(
log F(eζ )−N�ζ

)
= 0. (30)

Note that the function under the gradient is a sum of a convex and linear function, and so neces-
sarily convex itself. We can therefore equivalently express (30) as a convex minimisation problem
in form of

log F(eζ )−N�ζ →min
ζ

. (31)

This problem can be reduced to a standard form (29) by adding an auxiliary variable ϕ.

Remark 13. We do not require the exponents of the generating function to be non-negative inte-
gers. Depending on the specific application, they might, for instance, be positive real or rational
numbers [Ham+19]. Even the non-negativity requirement could be omitted as well, as illustrated
by a following univariate example. Let the exponents of the generating function F(z) belong to
the set A which may potentially include negative elements. Then, the log-exp transform of the
function F(z) is a composition of a convex function and a set of linear functions, which is again,
convex:

log F(ez)= log

(∑
s∈A

asexs
)
.

In contrast, it is crucial that the coefficients of the generating functions remain non-negative, as
otherwise, the logarithm of the sum of exponents with potentially negative weights as ceases to be
convex.

In subsequent sections we show that having a combinatorial specification is a for the generating
function F(z1, . . . , zd) is a great advantage – instead of requiring additional oracles providing the
values of the generating function and its derivatives, a more direct approach is available.

3.2 Unambiguous context-free grammars
In the current section, we refine our general tuning procedure for regular and unambiguous
context-free specifications, avoiding any use of external oracles. Recall that such systems are
often used in connection with the Drmota–Lalley–Woods framework (see [FS09, Section VII.6]).
However, contrary to [FS09, p. VII.6], we do not distinguish linear and non-linear cases. Instead,
we develop a general result allowing to cover both cases. Also note that we do not require the sys-
tem to be strongly connected, replacing this condition by a weaker requirement that every state is
reachable from the initial one.

Theorem 14 (Tuning with finite parameter expectation). Let C = �(C,Z) be a multi-parametric
system with C = (C1, . . . , Cm) and � = (�1, . . . ,�m), where all the functions �1, . . . ,�m are
positive polynomials. Suppose that in the dependency graph corresponding to � all the states are
reachable from the initial state C1. Let N= (N1, . . . ,Nk) be the vector of target atom occurrences of
each type. Fix the expectations Ni of the parameters of objects sampled from C1 to EzN= ν. Then,
the tuning vector z is equal to eξ where ξ comes from the convex problem:{

c1 − ν�ξ →minξ ,c
c� log�(ec, eξ ).

(32)

Hereafter, eξ and log� denote coordinate-wise exponentiation and logarithm, respectively.
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Proof. Consider the vector z∗ such that Ez∗(N)= ν. Let c denote the logarithms of the values of
generating functions at point z∗ = eξ∗ . Clearly, for such a choice of the vectors c and ξ = ξ∗ all
inequalities in (32) become equalities.

Let us show that if the point (c, ξ ) is optimal, then all the inequalities in (32) become equalities.
Firstly, consider the case when the inequality

c1 � log�1(ec, eξ ), (33)

does not turn to an equality. Certainly, there is a gap and the value c1 can be decreased without
affecting the validity of other inequalities. In doing so, the target function value is decreased as
well. Hence, the point (c, ξ ) cannot be optimal.

Now, suppose that the initial inequality does turn to equality, however ck > log�k(ec, eξ ) for
some k 
= 1. Since each of the states is reachable from the initial state C1, it means that there exists
a path P = c1 → c2 → · · · → ck (indices are chosen without loss of generality) in the correspond-
ing dependency graph. Note that for pairs of consecutive variables (ci, ci+1) in P, the function
log�i(ec, eξ ) is strictly monotonic in ci+1 (as it is obtained as a log-exp transform of a posi-
tive polynomial and it references ci+1). In such a case we can decrease ci+1 so to assure that
ci > log�i(ec, eξ ) while the point (c, ξ ) remains feasible. Decreasing ci+1, ci, . . . , c1 in order, we
finally arrive at a feasible point with a decreased target function value. In consequence, (c, ξ ) could
not have been optimal to begin with.

So, eventually, the optimisation problem reduces to minimising the expression, subject to
the system of equations c= log�(ec, eξ ) or, equivalently, C(z)= �(C(z), z) and can be therefore
further reduced to Theorem 12.

Remark 15. Let us note that the above theorem extends to the case of labelled structures with SET
and CYC operators. For unlabelled Pólya operators like MSET or CYC, we have to truncate the
specification to bound the number of substitutions. In consequence, it becomes possible to sam-
ple corresponding unlabelled structures, including partitions, functional graphs, series-parallel
circuits, etc. For more details, see Section 6.1 .

Singular Boltzmann samplers (also defined in [Duc+04]) are the limit variant of ordinary
Boltzmann samplers with an infinite expected size of generated structures. In their multivari-
ate version, samplers are considered singular if their corresponding variable vectors belong to the
boundary of the respective convergence sets. We present an alternative option to tune such singu-
lar samplers corresponding to Drmota–Lalley–Woods framework [FS09, Section VII.6], provided
that their corresponding dependency graphs are strongly connected.

Theorem 16 (Tuning with infinite parameter expectation). Let C = �(C,Z ,U) be a strongly con-
nected multi-parametric system of positive polynomial equations with C = (C1, . . . , Cm), the atomic
class Z marking the corresponding structure size, and U = (U1, . . . , Uk) being a vector (possibly
empty) of distinguished atoms. Assume that the target expected frequencies of the atoms Ui are
given by the vector α. Then, the variables (z, u) that deliver the tuning of the corresponding sin-
gular Boltzmann sampler are the result of the following convex optimisation problem, where z = eξ ,
u= eη: {

ξ + α�η →maxξ ,η,c

c� log�(ec, eξ , eη).
(34)

Proof. By similar reasoning as in the previous proof, we can show that the maximum is attained
when all the inequalities turn to equalities. Indeed, suppose that at least one inequality is strict, say
cj > log�j(ec, eξ , eη).

Because all right-hand sides of each of the inequality are monotonic with respect to cj, we note
that the value cj can be slightly decreased by choosing a sufficiently small distortion ε > 0, turning
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all the equalities containing cj in the right-hand side log�i(ec, eξ , eη) into strict inequalities.
Clearly, we can repeat this process until all equalities turn into inequalities.

Finally, let us focus on the target function. Again, because all right-hand sides of each inequality
are monotonic with respect to ξ , we can slightly increase its value and increase the target function
so to remain inside the feasible set.

Let us fix u= eη. For rational and algebraic grammars, within the Drmota–Lalley–Woods
framework, see for instance [Drm97], the corresponding generating function singular approxi-
mation takes the form

C(z, u)∼ a0(u)− b0(u)
(
1− z

ρ(u)

)t
. (35)

If t < 0, then the asymptotically dominant term becomes −b0
(
1− z

ρ(u)

)t
. In this case, tuning the

target expected frequencies corresponds to solving the following equation as z → ρ(u):

diag(u)
[zn]∇uC(z, u)
[zn]C(z, u)

= nα. (36)

Let us substitute the asymptotic expansion (35) into (36) to track how u depends on α:

diag(u)
[zn]tb0(u)

(
1− z

ρ(u)

)t−1
z
∇uρ(u)
ρ2(u)

[zn]b0(u)
(
1− z

ρ(u)

)t = −nα. (37)

Only dominant terms are accounted for. Then, by the binomial theorem

diag(u)b0(u)
t
n

⎛⎝ t − 1

n

⎞⎠ z∇uρ(u)
ρ2(u)

b0(u)−1

⎛⎝ t

n

⎞⎠−1

= −α. (38)

With z = ρ(u), as n→ ∞, we obtain after cancellations

diag(u)
∇uρ(u)
ρ(u)

= −α, (39)

which can be rewritten as
∇η log ρ(eη)= −α. (40)

Passing to exponential variables (40) becomes

∇η(ξ (η)+ α�η)= 0. (41)

As we already discovered, the dependence ξ (η) is given by the system of equations because the
maximum is achieved only when all inequalities turn to equations. That is, tuning the singular
sampler is equivalent to maximising ξ + α�η over the set of feasible points.

Remark 17. For ordinary and singular samplers, the corresponding feasible set remains the same;
what differs is the optimised target function. Singular samplers correspond to imposing an infinite
target size. In practice, however, the required singularity is almost never known exactly but rather
calculated up to some feasible finite precision. The tuned structure size is therefore enormously
large, but still, nevertheless, finite. In this context, singular samplers provide a natural limiting
understanding of the tuning phenomenon and as such, there are several possible ways of proving
Theorem 16.

Figure 2 illustrates the feasible set for the class of binary trees and its transition after applying
the log-exp transform, turning the set into a convex collection of feasible points. In both figures,
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Figure 2. Binary trees B� z+ zB2 and log-exp transform of the feasible set. The black curve denotes the principal branch of
the generating function B(z) corresponding to the class of binary trees.

the singular point is the rightmost point on the plot. Ordinary sampler tuning corresponds to
finding the tangent line which touches the set, given the angle between the line and the abscissa
axis.

Remark 18. As an interesting by-product, our tuning algorithm provides a way of obtaining the
singularities of a system and the values of the generating functions at the point of this singularity.

Remark 19. It is also possible to consider singular tuning the case of non-strongly connected
specifications. However, practically speaking, it should be noted that a notion of a singular sampler
for non-strongly connected specifications such as

F(z)= 1
1− 2T(z)

and T(z)= zeT(z), (42)

is ambiguous – both singular samplers for T and F admit different values of the variable z. For T
its z = e−1 whereas for F we have z = e−1/2/2.

If the substitutions in the dependency graph of the specification include only subcritical compo-
sitions (see [FS09, Section VI.9]) it is possible to incrementally tune its parts in topological order.
Further theoretical analysis of singular samplers involving supercritical compositions is somewhat
more complicated, but can be developed as well. Nevertheless, the easiest practical way to derive
a singular tuner is to tune the target class with a large, yet finite object size.

3.3 Labelled and unlabelled structures
Systems originating from labelled specifications, that is whose generating functions are typically of
exponential type, feature such admissible operators as SET or CYC, both in their unrestricted and
cardinality restricted variants. Consider a labelled multi-parametric combinatorial class A with
a generating function A(z). Then, the resulting exponential generating functions obtained using
these operators take form

SETk(A)(z)= A(z)k

k! CYCk(A)(z)= A(z)k

k

SET(A)(z)= eA(z) CYC(A)(z)= log
1

1−A(z)
.

(43)

Classes whose definition involves one of the above operators can be incorporated into the convex
optimisation problem using a log-exp transformation F(z) �→ eϕ similarly to the case context-
free grammars, see Section 3.2 . Broadly speaking, the application of such operators results in a
composition with one of the basic functions

xk

k! ,
xk

k
, ex and log

1
1− x

, (44)

https://doi.org/10.1017/S0963548321000547 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000547


Combinatorics, Probability and Computing 781

expressing, respectively, the exponential generating functions for the class of labelled sets with k
elements, labelled cycles with k elements, and both unrestricted labelled sets and cycles.

On the other hand, ordinary generating functions, used for enumeration of unlabelled struc-
tures, feature such operators as MSET, PSET, and CYC, standing for the multiset, set, and a cycle
constructions, respectively. These, in contrast, are evaluated differently than their labelled coun-
terparts. Specifically, if applied to a class with an ordinary generating function A(z)=∑

n�0 anzn,
we obtain, respectively,

exp

⎛⎝∑
k�1

A(zk)
k

⎞⎠ , exp

⎛⎝∑
k�1

(−1)k−1A(zk)
k

⎞⎠ and
∑
k�1

ϕ(k)
k

log
1

1−A(zk)
. (45)

Here ϕ(k) denotes Euler’s totient function.
Let us note that both the first and the third expressions, after log-exp transformations, become

convex. The resulting infinite series can be then truncated at a finite threshold, given the fact that
if the corresponding singular value ρ < 1, the sequence A(zk) converges at geometrical speed to
A(0). Such a truncation is common practice and has been applied a number of time in the context
of sampling unlabelled structures, see for example [BLR15, FFP07]. A more detailed discussion
regarding these transformations is given in Section 6.1 .

Unfortunately, the remaining PSET operator, in its aforementioned series form with nega-
tive coefficients (45), does not easily fit the convex programming framework. In principle, an
alternative form could be used

PSET(A)(z)=
∏
n�0

(
(1+ zn11 ) · · · (1+ zndd )

)an , (46)

though in this case, it is not clear how to convert the problem into a polynomially tractable form.

3.4 Increasing trees
Boltzmann samplers for first- and second-order differential specifications have been developed in
[BRS12, Bod+16]. In particular, in [BRS12], the authors solve the problem of Boltzmann sampling
from specifications of type T ′ =F(Z , T ). There exist several particular cases of such a differen-
tial specification which admit an explicit solution of the corresponding differential equation. For
example, a differential equation is said to be autonomous if it does not depend explicitly on the
independent variable, that is T ′ =F(T ). In this case, the underlying differential equation can be
solved by separation of variables:{

T′(z)= F(T(z))
T(0)= t0

⇒
∫ T

t0

dt
F(t)

= z(T). (47)

The final solution T(z) is obtained by inverting z(T), which, in the case of a differential equation
with combinatorial origin, can be obtained using binary search.

Several different strategies for evaluating
∫ 1

F(t) may be also suggested. For instance, if F(t)
is a polynomial in t, all its complex roots (together with multiplicity structure) can be efficiently
found through a numerical procedure3, see [Zen05]. In the context of multi-parametric tuning, we

3Efficient polynomial root-finding is directly related to Smale’s 17th problem about finding complex solutions of complex
polynomial systems, recently positively solved by Lairez, see [Lai17].
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are mostly interested in the case when F(T) also depends on auxiliary variables u= (u1, . . . , ud),
which need to be tuned. In this case, the roots of the polynomial F(T) become dependent on u.
Theorem 20 (Multi-parametric increasing trees). Suppose that the generating function T(z, u)
corresponding to a family of increasing trees is described by a functional equation

T′
z(z, u)= F(T(z, u), u) with T(0)= t0, (48)

and that T is a formal power series with non-negative coefficients, u= (u1, . . . , ud).
Let N0,N1, . . . ,Nd be the excepted size, and expected parameter value of u1, . . . , ud, respec-

tively. Then, the tuning problem is equivalent to a convex optimisation problem over real variables
ϕ, ζ , η0, . . . , ηd: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ −N0ζ −N1η1 − · · · −Ndηd →min,

ζ � log
eϕ∫

t0

dt
F(t, eη1 , . . . , eηd )

, (49)

where the solution of the tuning problem is obtained by assigning

z = eζ , u1 = eη1 , . . . , ud = eηd , and T(z, u1, . . . , ud)= eϕ . (50)

Proof. Following Theorem 12, multi-parametric tuning is equivalent to the following convex
optimisation problem over real variables ϕ, ζ , η1, . . . , ηd:{

ϕ −N0ζ −N1η1 − · · · −Ndηd →min,

ϕ � log T(eζ , eη1 , . . . , eηd )
(51)

where T(z, u1, . . . , ud) is the solution of differential equation T′
z(z, u)= F(T(z, u), u) with ini-

tial conditions T(0, u)= t0. The target solution is given by (z, u1, . . . , ud)= (eζ , eη1 , . . . , eηd ) and
F(z, u1, . . . , ud)= eϕ . Let us denote by Z(τ , η1, . . . , ηd) the inverse function of log T(eζ , eη) with
respect to ζ , so that

log T(eZ(τ ,η1,...,ηd), eη1 , . . . , eηd )= τ . (52)

Since T is a formal power series with non-negative coefficients, the function log T(eζ , eη1 , . . . , eηd )
is convex and increasing in both ζ and η. Therefore, its inverse function with respect to ζ is
a concave increasing function. Moreover, the function Z(τ , η1, . . . , ηd) is jointly concave in all
of its arguments That is because a function f (z) is concave if and only if its hypograph hypf =
{(y, z) : y� f (z)} is a convex set.

The hypograph of the inverse function Z(τ , η) directly corresponds to the epigraph of the ini-
tial function log T(ez, eη). Consequently, a convex constraint ϕ � log T(eζ , eη1 , . . . , eηd ) can be
replaced by a different convex constraint obtained by taking the inverse with respect to ζ , resulting
in a new convex optimisation problem{

ϕ −N0ζ −N1η1 − · · · −Ndηd →min,
ζ � Z(ϕ, η1, . . . , ηd).

(53)

In order to construct Z(ϕ, η1, . . . , ηd), we use the solution of the autonomous differential
equation, see (47). Denote by z(t, u) the inverse of the generating function T(z, u), that is

T(z(t, u), u)= t, (54)
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and recall that z(t, u) is given by

z(t, u)=
∫ t

t0

dτ
F(τ , u)

. (55)

Finally, a direct calculation shows that Z(ϕ, η1, . . . , ηd)= log z(eϕ , eη1 , . . . , eηd ).

Remark 21. With an external oracle available, systems of differential equations involving more
than one variable can still be tuned using Theorem 12. However, there is little hope to generalise
Theorem 20 onto multivariate differential equations, even if we assume that all its differential
equations are autonomous. In fact, by introducing an additional dimension to the problem, any
first-order system of differential equations

d
dz

y(z)= F(z, y(z)), (56)

can be transformed into a system of autonomous differential equations. Moreover, starting
from dimension four, systems of functional equations can admit solutions which exhibit chaotic
behaviour, see [FS09, Remark VII.51].

On the other hand, any system of differential equations of arbitrarily high order

y(n)(z)= F(z, y(z), y(1)(z), . . . , y(n−1)(z)), (57)

can be reduced to a system of first-order differential equations by expanding the dimension space,
and therefore, Boltzmann samplers for such specifications may apply. As discussed in [BRS12],
for such systems, only the first sampling step is the most expensive one, because it requires to
generate a random variable defined on the interval [0, ρ), where ρ is the radius of convergence of
the formal power series. For all the consecutive operations, the support of the required random
variables is separated from ρ, so a variety of approximation methods, including Runge–Kutta can
be applied.

3.5 Other types of combinatorial structures
The general technique described in Section 3.1 can be applied to any analytic multivariate gen-
erating function provided that the solution to the multiparametric tuning problem lies inside the
respective domain of analyticity. It can be applied even to those coming from somewhat exotic
systems, including partial differential equations, systems with negative coefficients, catalytic equa-
tions, systems with non-trivial substitutions, etc. As long as the oracle providing values and the
derivatives of the generating functions is given, the source of the equations is irrelevant.

Still, for most of these systems no efficient oracle is known. Typically, the following methods,
which could be called the oracles for simplicity, can be used for the mentioned types of functional
equations

• Runge–Kutta method for ordinary differential equations,
• Grid approximation methods for partial differential equations,
• Gröbner bases for systems of polynomial equations, or
• Plain coefficient-wise evaluation for arbitrary systems.

All of these methods, however, do not guarantee polynomial complexity in terms of the bit
length of the target size and the number of equations.When additional parameters are introduced,
then the approach that we propose in Section 3.1 reduces the number of equations for an oracle
to solve, but adds the optimisation procedure on the top. Specifically, with this approach, the
tuning system of equations (28) is not anymore included as an input to the oracle, and the tuning
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parameters are chosen by the optimisation procedure, and so are considered fixed real numbers
from the viewpoint of the oracle.

Remark 22. It is worth noting that for certain combinatorial classes beyond the scope of the
current paper, the tuning problem does not have a solution in the analyticity domain. The sim-
plest non-trivial example (with an infinite number of objects in a class) is the case of unrooted
treesU(z)=∑

n�0 nn−2 zn
n! : near its dominant singular point z = e−1, the Puiseux expansion takes

form

U(z)= 1
2

− (1− ez)+ 23/2

3
(1− ez)3/2 +O((1− ez)2).

This means that the maximal possible expected value of an unrooted tree generated from
Boltzmann distribution is equal to

lim
z→e−1

z∂zU(z)
U(z)

= 2.

However, for most examples of this kind, the Boltzmann sampler itself is not directly available,
not speaking of the fact that there would be no practical motivation to apply it for expectations
higher than the maximal available value.

Still, there exist techniques different from the Boltzmann sampling which can be used to draw
the objects from such classes in a controlled manner. The reason why the solution does not exist
in the above example is because locally around the singularity ρ, the singular term of the gen-
erating function takes form (1− z

ρ
)α , where α > 1. By repeatedly applying pointed derivative to

such a class, the singular term can be modified, and the exponent α shall be consequently replaced
by a value strictly smaller than 1. From the combinatorial viewpoint, pointed derivative serves
to distinguish atoms in the underlying object, which can be un-distinguished later after the sam-
pling is performed. The possible drawbacks of this approach are that firstly, successive pointing
can increase the size of the grammar, and secondly, the resulting distribution is not anymore
Boltzmann, which is not surprising, because the tuning problem does not have a solution in the
Boltzmann case.

It is still important to discover and understand controlled sampling techniques in the cases not
covered by admissible tuning in the sense of (28): when inclusion-exclusion is used, or even in
more sophisticated cases involving stretched exponents or any kinds of essential singularities.

4. Complexity of convex optimisation
In the previous section, we have reduced the problem of multiparametric tuning to a problem
of convex optimisation. In this section, we provide the complexity results, case by case. Let us
introduce the key elements of the interior-point optimisation and discuss how to evaluate its
complexity.

A convex optimisation problem can be expressed as minimisation of a linear multivariate func-
tion (or, in an equivalent formulation, a convex one) subject to a set of constraints, expressed
as inequalities of the form fi(z)� 0 involving multivariate convex functions fi(z). In addition,
affine inequalities and linear equations are often treated separately. Each of these constraints
describes a convex set, and therefore, an intersection of these sets is also convex. A classical convex
optimisation program can be formulated as{

c�z →minz
fi(z)� 0 for i= 1, . . . ,m

, (58)
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where f1, . . . , fm are convex functions of the vector argument z. Such programs are widely
believed to be solvable in polynomial time, due to the popularisation of interior-point meth-
ods. Nevertheless, a detailed answer regarding the algorithmic complexity of convex optimisation
needs a careful investigation.

For instance, if fi(z) are linear functions with integer coefficients, then the solution to the opti-
misation problem is a rational number. In this case the problem is known to be solvable exactly
using O(n3.5L) arithmetic operations, where n denotes the number of variables, and L is the
bit length of the coefficient representation [Kar84]. Remarkably, the existence of a polynomial
algorithm whose arithmetic complexity does not depend on L (so-called strongly-polynomial algo-
rithms) is listed among 18 problems in Smale’s celebrated list [Sma98]. If the functions fi(z) are not
necessarily linear, the optimal solution does not have to be a rational number and so we usually
ask for an ε-approximation, instead.

Nesterov and Nemirovskii [NN94] developed a theoretically and practically efficient frame-
work covering a large subset of convex programs. Their method relies on the notion of a
self-concordant barrier whose construction depends on the problem formulation and needs to
exploit the global structure of the optimisation problem. The number of Newton iterations
required by their method to solve the optimisation problem (58) can be bounded by

O
(√

ν log
(νμ0

ε

))
(59)

where ε is the required precision, ν is the complexity of the constructed barrier (typically pro-
portional to the problem dimension), and μ0 is related to the choice of the starting point. More
specifically, the value of the target function is guaranteed to lie within an ε-neighbourhood of the
optimal value. Since μ0 does not depend on the target precision, it is often omitted in the final
analysis [PW00]. Further on, we compute ν for various types of combinatorial specifications.

The cost of each Newton iteration is a sum of the two parts: the cost of the composition of
the matrix of second derivatives and the cost of the inversion of this matrix. In Section 4.2, we
specify in more detail what is a Newton iteration in the interior-point method. While the cost of
the inversion part is assumed to be cubic in the number of variables, the cost of the composition
of the matrix of second derivatives depends on the problem structure.

One of the most significant achievements of interior-point programming was a proof of exis-
tence of a universal family of barriers, which admits a O(n) self-concordance complexity for
any convex body in R

n. Unfortunately, such an existence result seems to be currently only of
theoretical interest – a construction of such a barrier requires computing the convex body’s vol-
ume, which in itself is known to be an NP-hard problem. In practice, for each concrete convex
optimisation problem the barriers have to be constructed separately. There is no known construc-
tive, general-purpose polynomial-time barrier construction algorithm for convex optimisation
problems.

To summarise, the practical complexity of the convex optimisation is determined by the com-
plexity parameter ν of the associated self-concordant barrier, which requires the problem structure
to be exploited in order to be constructed. More details on the algorithmic complexity of convex
optimisation methods can be found in [PW00].

4.1 Disciplined Convex Programming
Disciplined Convex Programming (DCP, sometimes also referred to as CVX) is another framework
meant for modelling convex optimisation problems [GBY06]. Both the objective and constraints
are built using certain atomic expressions such as log (·), ‖ · ‖2, or log∑ e·, and a restricted set
of composition rules following basic principles of convex analysis. The inductive definition of
expressions allows the framework to track their curvature andmonotonicity, and, in consequence,
automatically determine whether the given program is indeed a valid convex program. Essentially,
DCP can be viewed as both a domain-specific language and a compiler which transforms the given
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convex program to a mixture of linear, quadratic, and exponential conic optimisation problems.
Such problems are passed to corresponding solvers in the necessary standard form. DCP cov-
ers therefore a strict subset of convex programs of Nesterov and Nemirovskii’s framework, but
serves well as a prototyping interface for provably convex programs. In our implementation, see
Section 6, we rely on DCP with two particular conic solvers, a second-order Embedded Conic
Solver [DCB13] and recently developed first-order Splitting Conic Solver [ODo+16].

Some of the classical combinatorial constructions, for example MSET, CYC or SET>0 can be
expressed in DCP, however involve using (at least in principle) an infinite amount of summands.
Some of the operators, for example, MSET can be efficiently represented in a truncated form,
cf. [BLR15], but for others it is intrinsically impossible to provide a reasonable truncation level,
since a large number of summands take non-negligible values. Therefore, for such constructions
DCP is not the preferable, and the classical interior-point methods should be selected instead. In
what follows, we provide some additional theoretical background on self-concordant barriers and
propose our constructions which can be further used to cover these operations.

4.2 Self-concordant barriers
While the precise descriptions of the interior-point optimisation schemes and the definitions of
the self-concordant barriers can be found in [Nem04], we only need to borrow a couple of state-
ments. We intentionally do not give the definition of a self-concordant barrier, but instead use a
sufficient construction condition. More specifically, we rely on the fact that self-concordant bar-
riers are functions assigned to various convex sets in R

n and we will only need to construct such
sets for epigraphs of convex functions, defined as

epi f = {(t, x) ∈R
2 | f (x)� t}. (60)

Lemma 23 ([Nem04, Proposition 9.2.2]). Let f(x) be a three times continuously differentiable real-
valued convex function on the ray {x> 0} such that

|f ′′′(x)|� 3βx−1f ′′(x), x> 0. (61)

for some parameter β > 0.
Then, the function

F(t, x)= − log (t − f (x))−max [1, β2] log x, (62)

is a self-concordant barrier with complexity parameter ν = 1+max [1, β2] for the two-dimensional
convex domain {(t, x) ∈R

2 | x> 0, f (x)� t}.
The two important operations for composing convex problems are addition and composition

(the composition of a convex function with an increasing convex function is also convex). Each
composition is treated by introducing an additional variable; for example, if F(x) is convex and
increasing, and G(x) is convex, then the epigraph of the composition {(t, x) | F(G(x))� t} can be
expressed as a projection of a three-dimensional set

{(x, t) | ∃y | F(y)� t, G(x)� y}. (63)

The behaviour of self-concordant barriers with respect to taking linear combinations or with
respect to combining multiple dimensions is described by the following proposition.

Lemma 24 ([Nem04, Proposition 3.1.1]). The following propositions hold:
(i) Let Fi be self-concordant barriers with complexity parameters νi for closed convex domains

Qi ⊂R
ni , i= 1, . . . ,m. Then the function

F(x1, . . . , xm)= F1(x1)+ · · · + Fm(xm), (64)

is a
(∑

i νi
)
-self-concordant barrier for Q=Q1 × · · · ×Qm.
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(ii) Let Fi be self-concordant barriers with complexity parameters νi for closed convex domains
Qi ⊂R

n and αi � 1 be reals, i= 1, . . . ,m. Assume that Q= ∩m
i=1Qi has a non-empty

interior. Then the function

F(x)= α1F1(x)+ · · · + αmFm(x), (65)

is a
(∑

i αiνi
)
-self-concordant barrier for Q.

Self-concordant barrier design is one of the central issues in modern convex optimisation –
knowing these barriers allows one to reduce any convex program to a standard form [Nes98,
Section 4.2.6]. The reduction proceeds as follows.

{
f0(z)→min
fi(z)� 0 for i= 1, . . . ,m

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ →min
f0(z)� τ

fi(z)� κ for i= 1, . . . ,m
τ � C, κ � 0.

. (66)

Here,C is a technical constant, bounding the value of the target function from above. Suppose that
F0(z, τ ), F1(z, κ), . . . , Fm(z, κ) are the ν0-self-concordant and νi-self-concordant barrier functions
for the epigraphs of the functions f0(z), f1(z), . . . , fm(z), respectively. Then, according to Lemmas
23 and 24, the resulting self-concordant barrier

F̂(z, τ , κ)= F0(z, τ )+
m∑
i=1

Fj(z, κ)− log (C − τ )− log (−κ), (67)

has a complexity parameter

ν̂ = ν0 +
m∑
i=1

νi + 2. (68)

As specified in [NN94, Section 2], each Newton step is a step of the form

xi+1 = xi − μi · (̂F′′(xi))−1F̂′(xi),

whereμi is a dampening parameter defined by the procedure, and xi ∈R
m, wherem is the dimen-

sion of the parameter space. The computation of the dampening parameter, as well as the Newton
step, involves computing the inverse of the matrix of second derivatives. It costs O(m2L) arith-
metic operations to compose this matrix, which may potentially vary if some exotic constructions
are introduced, and O(m3) steps to compute its numerical inverse.

Finally, let us note that there is room for a variety of additional fine-tuned optimisation tech-
niques. For instance, the Newton iterations can use faster thanO(n3) matrix inversion algorithms,
use O(nω) matrix multiplication algorithms, or even use algorithms dedicated to sparse matrices.

Remark 25. The DCP software, that we use in our prototype tuner implementation, uses a
completely different principle and expresses the problem in a standard form using so-called expo-
nential cones. The approach with barriers gives here more theoretical guarantees as it allows to
cover a broader range of constructions, but was not chosen for prototyping reasons.

4.3 Barriers for context-free specifications
In this section, we give rigorous complexity bounds for the case of context-free grammars, see
Section 3.2. Each of the constraints in the auxiliary convex optimisation problem that we construct
takes form
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xi � log

⎛⎝∑
j

exp (a�
ij x)

⎞⎠ for i= 1, . . . ,m, (69)

where x is the vector of unknowns, and aij are vectors of coefficients. Such a convex constraint
can be rewritten into an equivalent form

exi �
∑
j

exp (a�
ij x) ⇔

∑
j

exp ((aij − ei)�x)� 0, (70)

where ei is ith basis vector. Each of the functions exp ((aij − ei)�x) is convex, as (aij − ei)�x
is linear and ex is both increasing and convex. Clearly, their sum is also convex. Using the
sum-substitution technique from Lemma 24, we conclude that in order to provide a fast con-
vex optimisation interior-point procedure, it is sufficient to construct a self-concordant barrier
for the epigraph of ex. Note that epi ex = {(t, x) ∈R

2 | ex � t} can be equivalently rewritten as
{(t, x) ∈R

2 | t > 0, − log t�−x}. Furthermore, a linear variable change x �→ −x, and variable
swapping (x, t) �→ (t, x) converts it into an epigraph of the convex function f (x)= − log x:

epi[− log (x)]= {(t, x) ∈R
2 | x> 0, − log x� t}. (71)

Finally, we note that the condition from Lemma 23 is fulfilled with β = 2
3 . Therefore, a logarithmic

barrier

F(t, x)= − log (t + log (x))− log x, (72)

is a 2 -self-concordant barrier for an epigraph of − log (x). This also gives a 2 -self-concordant
barrier for an epigraph of ex. Consequently, each unambiguous context-free specification can
be converted into a standard form for an interior-point method with total barrier complexity
parameter O(L) where L is the total number of terms in the specification.

4.4 Cycle and positive set constructions
Among the basic labelled operators, the CYC operator cannot be easily fitted into the more
restricted DCP framework that we use in our prototype implementation. The same issue con-
cerns all of the restricted versions of labelled operators including SET>0, SET>k, and CYC>k. We
provide further, more heuristic analysis of the logarithmic barriers for these operators and hint as
to why they can be efficiently supported. We do not provide practical implementations of these
modified versions, however, in principle, they can be handled as well.

Let us start with two particular functions obtained as a log-exp transform of the CYC and SET>0
constructors, see Section 6.1. These two functions are

L(x)= log log
1

1− ex
and E(x)= log (ee

x − 1). (73)

Note that the domain of L(x) is equal to {x ∈R | x< 0}. The convexity of each of E(x) and L(x)
is ensured by noticing that they are log-sum-exp expressions with an infinite number of positive
summands:

L(x)= log
∞∑
n=1

ekx

k
and E(x)= log

∞∑
n=1

ekx

k! . (74)

Unfortunately, we cannot afford an infinite number of summands, as adding each summand
contributes to the final barrier complexity. Instead, we are going to explicitly construct self-
concordant barriers for the epigraphs of L(x) and E(x) with the help of Lemma 23.
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Table 4. |f ′′′ (̂x)| = 3β
x̂ f

′′ (̂x) for different β and corresponding x̂.

β 6 9 12 15 30

|̂x− 3β| 10−1 10−2 10−3 10−4 10−11

The case of f (x)= L(x). Direct numerical evaluation shows that when 0< x� 3β it holds
|f ′′′(x)|� 3β

x f ′′(x). Relative errors of x̂ satisfying |f ′′′(̂x)| = 3β
x̂ f ′′(̂x) for varying values of β is listed

in Table 4.
Let us notice the practical consequences of this fact. For most typical combinatorial systems,

tuning the expected size to n gives the following behaviour of the tuning parameter:

• xn = ρ
(
1−O(n−1)

)
for algebraic and rational systems, and

• xn =O(Poly(n)) for some specifications with singularity ρ at infinity, such as entire
functions (e.g. labelled sets or similar constructs).

In fact, we are not aware of any natural example combinatorial systemwhere the tuning parameter
approaches the singular value at an exponential speed xn = ρ(1− e−n).

Therefore if we choose, say, β = 10, then according to Lemam 23, the resulting logarithmic
barrier will be β2-self-concordant for x� 30. In practical terms, β = 10 covers expected values up
to N ∼ e30 ≈ 1013. More generally, for N → ∞, the complexity of the whole optimisation scheme
is proportional to a square root of the sum of all the barrier complexities, which yields an addi-
tional logN factor for the resulting barrier complexity, and for the complexity of the final tuning
algorithm.

The case of f (x)= E(x). If we try to apply Lemma 23 directly to E(x), we discover that the
conditions of the lemma cannot be satisfied. Therefore, we pre-process the epigraph of E(x) by
taking its inverse, similarly as we did for the 2-self-concordant barrier corresponding the exponent
function ex. Specifically, we transform epi E into

epi E= {(x, t) ∈R
2 | E(x)� t} = {(x, t) ∈R

2 | t > 0, x� log log (1+ et)}. (75)

It can be proven that f (x)= − log log (1+ ex) is convex for x> 0. Moreover, we can numerically
verify that the condition of Lemma 23 is satisfied for all x� 10100. We conjecture that it is valid
for all x ∈R, but, as we discussed above, in practice we only need it to be valid for relatively small
values of x.

4.4.1 Restricted versions of cycles and sets.
It is also possible to consider cycles and sets containing more than k elements, so that we need to
construct self-concordant barriers for the functions

L>k(x)= log

⎛⎝log
1

1− ex
−

k∑
n=1

ekx

k

⎞⎠ and E>k(x)= log

⎛⎝ee
x −

k∑
n=0

ekx

k!

⎞⎠ . (76)

For the cycle construction, we again empirically discover that for x� 3β the logarithmic barrier
is self-concordant. We have numerically tested this assertion for k ∈ {0, 1, 2, 3} and β � 10.

For the restricted construction SET>k, we proceed in the same way as we did for SET>0 by
constructing the epigraph of the negative inverse function. In this case, however, the inverse
function cannot be expressed explicitly, but can only be computed numerically. All the numer-
ical computations can be done efficiently using the binary search for the inverse function, and
implicit derivative theorem for its derivatives. Again, this gives an algorithmic definition of a
self-concordant barrier for restricted sets without the necessity to operate with infinite sums.
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4.4.2 Unlabelled restricted cycles andmulti-sets.
Note that the unlabelled version of the CYC operator expressed by

CYC(A)(z)=
∑
k�1

ϕ(k)
k

log
1

1−A(zk)
(77)

is in fact a weighted sum of already familiar labelled operators, for which we have already
provided efficient self-concordant barriers. Again, restricted variations of the corresponding
operators MSET>0, MSET>k and CYC>k cannot be efficiently treated by DCP, but the usage of
self-concordant barriers can provide some insight. For example, MSET>0 defined as

MSET>0(A)(z)= exp

⎛⎝∑
k�0

A(zk)
k

⎞⎠− 1, (78)

can be represented as a composition with ex − 1, whose log-exp transform is E(x)= log (eex − 1).
Next, an unlabelled cycle construction with a lower bound on the number of components

CYC�m can be expressed as

CYC�m(A)(z)=
∑
k�1

ϕ(k)
k

log��m/k�
1

1−A(zk)
where log�m

1
1− x

=
∑
k�m

xk

k
. (79)

Again, as in the case of unlabelled compositions, the sequence of values of the generating functions(
A(zk)

)∞
k=1

tends to A(0)= 0 at the speed of a geometric progression. Note that this gives an
efficient composition scheme for unlabelled cycles as well, using

L>k(x)= log

⎛⎝log
1

1− ex
−

k∑
n=1

ekx

k

⎞⎠ . (80)

Finally, let us sketch how to express restricted unlabelled sets using the self-concordant barriers
for restricted labelled sets. We start by considering two examples, MSET�2 and MSET�3.

For sets with at least two elements we have

MSET�2(A)(z)=MSET(A)(z)− 1−A(z)= exp

⎛⎝∑
k�1

A(zk)
k

⎞⎠− 1−A(z). (81)

If we set h1 =A(z) and h2 =∑
k�2

A(zk)
k , then the resulting value can be rewritten as

exp (h1 + h2)− 1− h1 = exp (h1 + h2)− 1− (h1 + h2)+ h2. (82)

The required composition scheme is obtained by composing with the log-exp transform of the
function ex − x− 1 which is E�2(x):= E>1(x)= log (eex − ex − 1).

For sets with at least three elements it holds

MSET�3(A)(z)= exp

⎛⎝∑
k�1

A(zk)
k

⎞⎠− 1−A(z)− A(z)2

2
− A(z2)

2
. (83)

Again, by introducing auxiliary variables h1 =A(z), h2 = A(z2)
2 , h3 =∑

k�3
A(zk)
k , and H = h1 +

h2 + h3, we can rewrite the operator as

exp (h1 + h2 + h3)− 1− h1 − h21
2

− h2 = exp (H)− 1−H − H2

2
+ h3 + R (84)
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Figure 3. Optimal biased expectation.

where R is a positive quantity obtained by subtracting h21
2 from (h1+h2+h3)2

2 . Again, we obtain a
composition scheme by composing with E�3(x):= E>2(x).

Finally, for sets with general restrictions the above scheme can be repeated for multi-sets with
forbidden cardinalities by subtracting MSET=m obtained by

MSET=m(A)(z)= [um] exp

⎛⎝∑
k�1

A(zk)uk

k

⎞⎠ . (85)

Afterwards, the result can be represented by adding missing parts to MSET>m. We do not provide
a detailed analysis of this case, as for large m this procedure becomes less and less efficient due to
the potential super-polynomial increase inm of the number of the required terms.

5. Optimal biased expectation and tuning precision
In the current section, we address the choice of the optimal expected value for the Boltzmann sam-
pler with prescribed anticipated rejection domain. We also investigate the precision of the control
vector x required to guarantee a linear time, approximate-size anticipated rejection sampling
scheme.

In what follows, we analyse the rejection cost independently for each parameter. That is to
say, we evaluate the cost of the anticipated rejection until the value of the investigated parameter
N falls into its prescribed tolerance window [n1, n2]. The sum of these costs taken over all the
parameters is an upper bound for costs of a global rejection scheme (which, of course, could be
better because of some overlapping rejections).

We distinguish two types of behaviours. The first concerns parameters admitting a singular
behaviour of type

(
1− z

ρ

)−α

which corresponds, for instance, to the size parameter of peak and
flat distributions described in [BGR15]. In this case, we will prove that for each α the required
precision is of order O

( 1
N
)
where N is the approximate size of the expected outcome.

The second case concerns so-called bumpy distributions, appearing in numerous situations,
such as parameter analysis in strongly connected algebraic or rational grammars. Since the dis-
tribution is concentrated around its mean value, the needed precision is related to the standard
deviation and is, usually, of order O

(
1√
N

)
. In contrast, the size of the target window is not linear,

as for the non-concentrated case, but instead is of order
√
N, or of a different order nγ .

In the first case, we show that the standard target tuning expectationE(N)= n:= n1+n2
2 involv-

ing the admissible window [n1, n2] does not minimise the overall cost of rejections, if anticipated
rejection is taken into account. Instead, E(N)= βn, for some suitable parameter β(n1, n2) should
be used, cf. Figure 3. In what follows, we describe how to find the optimal value of β and how it
improves the rejection cost, compared to the usual n:= n1+n2

2 parameter.

5.1 Non-concentrated case
For simplicity, we assume that the analysis concerns the size parameter z. Let Cu(z) be the gen-
erating function of a class C for which the parameters u are fixed (i.e. introduce some additional
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weights). Assume that Cu(z) is �-analytic and there exist analytic functions α(z), β(z), and a
corresponding singularity ρ (all depending on u) such that as z → ρ it holds

C(z)∼ a(z)− b(z)
(
1− z

ρ

)−α

. (86)

Let C<n1 (z), C>n2 (z) and C[n1,n2](z) denote the generating functions corresponding to the
subclasses of objects of size strictly smaller than n1, strictly greater than n2, and in between
(inclusively) n1 and n2, respectively. Let Tn stand for the cumulative size of the generated and
rejected objects produced by a sampler calibrated with parameter x, and an admissible size win-
dow [(1− ε)n, (1+ ε)n]. From [Duc+04, Theorem 7.3], the corresponding probability generating
function

F(u, x)=
∑
k

P(Tn = k)uk, (87)

satisfies

F(u, x)=
(
1− 1

C(x)
(C<(1−ε)n)(ux)+ C>(1+ε)n)(x)u�(1+ε)n�)

)−1 C[(1−ε)n,(1+ε)n](x)
C(x)

, (88)

and so

E(Tn)=
x d
dxC

<(1−ε)n(x)+ �(1+ ε)n�C>(1+ε)n(x)
C[(1−ε)n,(1+ε)n](x)

. (89)

Remark 26. Notice that even if the studied parameter does not denote the object size, the expec-
tation E(Tn) stays essentially similar to (89). Involved generating functions correspond then to
the subclasses of objects whose size contribution of the studied parameter is smaller, greater, or
in between the respective window parameters. It ensues that the following analysis for the size
parameter can be readily translated to others parameters.

Proposition 27. Let us consider an approximate-size, anticipated rejection Boltzmann sampler
�(C) for a class C of the above kind. Assume that �(C) is calibrated using xn = ρ

(
1− δ

n
)
for some

parameter δ. Let Tn denote the cumulative size of objects rejected by�(C). Then, as n tends to infinity

E(Tn)∼ nκc(ε, α, δ) where

κc(ε, α, δ)=

1−ε∫
w=0

wαe−δw dw+
∞∫

w=1+ε

(1+ ε)wα−1e−δw dw

1+ε∫
w=1−ε

wα−1e−δw dw

. (90)

Proof. This theorem is very similar to [BGR15, Theorem 3.2]. It has an analogous proof using
Euler–Maclaurin summation, with the difference that we do not anymore suppose that α = δ.
Let us emphasise again that keeping these two parameters distinct is the key to obtaining faster
samplers with lower anticipated rejection cost.

Note that κc(ε, α, δ) is independent of n. Moreover, κc(ε, α, δ) is bounded for each δ > 0.
Consequently, �(C) calibrated with parameter xn of precision of order O

( 1
n
)
has expected linear

time complexity.

Remark 28. The value of κc(ε, α, δ) is also independent of the weight u, depending only on the
type of the singularity α and the prescribed tolerance ε. Note that it provides strong stability
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Table 5. Pairs of values (δmin, κc(ε, α, δmin)) for respective parameters ε and α. Numerical
values are rounded up to the second decimal point.

ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.01

−α = −2 (2.77, 2.37) (2.66, 5.58) (2.61, 11.95) (2.58, 62.78)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−α = −3/2 (2.25, 2.66) (2.16, 6.17) (2.12, 13.12) (2.09, 68.58)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−α = −1 (1.74, 3.06) (1.66, 6.97) (1.62, 14.72) (1.60, 76.51)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−α = −1/2 (1.23, 3.66) (1.16, 8.18) (1.13, 17.18) (1.11, 88.38)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−α = 1/2 (0.25, 7.37) (0.22, 15.68) (0.21, 32.10) (0.20, 162.91)

guarantees regarding the sampler’s performance under the change of involved parameters; most
notably, in the vicinity of the values of u where the type of the singularity changes discontinu-
ously, cf. [BP10, Ban12]. Even in this particular cases, our result guarantees the linearity of the
anticipated rejection sampling scheme.

With an explicit formula (90) for κc(ε, α, δ) it is possible to optimise its value for specific values
of ε and α. In other words, improve themultiplicative constant in the expected number Tn. Table 5
provides some exemplary values for δmin and the corresponding κc(ε, α, δmin).

Remark 29. The careful reader might be surprised by the fact that δmin is not equal to α, as it
is suggested in the seminal paper [Duc+04]. The reason behind this is the fact that anticipated
rejection creates a small bias in the distribution, initially not taken into account. For instance, for
α = 1 and tolerance ε = 0.1, the best choice for β is not 1, but 1.6572067. Notably, this decreases
the rejection complexity from 8.05n to 6.97n.

In consequence of the introduced bias, it is no longer optimal to find x by solving Ex(N)= n.
Instead, we have to make a small correction accounting for the effect of anticipated rejec-
tion. Luckily, this is easy to provide. Recall that, asymptotically, Ex(N)= n is attained for xn =
ρ(1− α

n ). After computing the expectation, it follows that in order to obtain xn = ρ
(
1− δmin

n

)
we have to solve the corrected Ex(N)= α

δmin
n, instead.

5.2 Concentrated cases
In following part we consider cases where the investigated size parameter tends asymptotically to
a Gaussian law, provided that the target expectation is fixed and large. Let C(z) be, as usual, the
generating function corresponding to the class C, and N be the random variable representing the
size of an object generated according to the associated Boltzmann distribution. As previously, we
want to evaluate the rejection cost and find an appropriate bias parameter which minimises its
value.

Before we begin, let us consider a few examples of concentrated distributions analysed using
the following generalised quasi-powers theorem.

Lemma 30 (Generalised quasi-powers, [FS09, Theorem IX.13]). Assume that, for u in a fixed
complex neighbourhood � of 1, the probability generating functions pn(u) of non-negative discrete
random variables Xn admit representations of the form

pn(u)= exp (hn(u)) (1+ o(1)) , (91)

uniformly with respect to u, where each hn(u) is analytic in �. Assume also the conditions

h′
n(1)+ h′′

n(1)→ ∞ and
h′′′(u)

(h′
n(1)+ h′′

n(1))3/2
→ 0, (92)

as n→ ∞, uniformly for u ∈ �.
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Then, the random variable

X�
n = Xn −EXn√

Var Xn
= Xn − h′

n(1)
(h′

n(1)+ h′′
n(1))1/2

, (93)

converges in distribution toN (0, 1).

In what follows, we apply the generalised quasi-powers theorem to a series of probability
generating functions capturing the outcome size distributions of example Boltzmann samplers.
Therefore, the discrete random variables of interest Xn denote these outcome sizes, where n stands
for the target expected size, while n→ ∞. We use the standard formulas for the mean and vari-
ance corresponding to the size N of objects sampled according to the Boltzmann distribution
parametrised with x:

ExN = μ(x)= xC′(x)
C(x)

VarxN = σ (x)2 = xμ(x)′. (94)

For convenience, we also use xn to denote the solution of the tuning equation μ(xn)= n.

5.2.1 Bicoloured sets
Consider the combinatorial class C consisting of finite sets with atoms of two different types
(colours). The corresponding generating function satisfies C(x)= e2x. Accordingly, the mean
value μ(x) and standard deviation σ (x) satisfy

μ(x)= 2x and σ (x)= √
2x, (95)

whereas xn = n/2.
The probability generating function pn(u) capturing the size distribution calibrated with

parameter xn satisfies therefore

pn(u)= C(xnu)
C(xn)

= en(u−1). (96)

A direct calculation reveals that all the conditions of Lemma 30 hold, and the size distribution
tends to a Gaussian law as xn → ∞. In particular, we have

ExnN ∼ n and Varxn N ∼ n. (97)

5.2.2 Involutions
Consider the combinatorial class of involutions, that is n-element permutations π satisfying π ◦
π = id. The respective generating function satisfies C(x)= exp

(
x+ x2

2

)
. Consequently, the mean

value μ(x), variance σ (x)2, and tuning parameter xn satisfy

μ(x)= x(1+ x), σ (x)2 = x(1+ 2x), and xn =
√
1+ 4n− 1

2
. (98)

And so

pn(u)= exp
(

−1
4
(u− 1)

((√
1+ 4n− 1

)
(u− 1)− 2n(u+ 1)

))
. (99)

Again, the premises of Lemma 30 can be easily verified. In the end, we obtain a limit Gaussian
distribution where

ExnN ∼ n and Varxn N ∼ 1
2

(
1+ 4n− √

1+ 4n
)
. (100)
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5.2.3 Set partitions
Consider the combinatorial class of set partitions for which we have C(x)= eex−1. A direct
computation provides the identities

μ(x)= xex, σ (x)2 = xex(1+ x), and xn =W(n), (101)

whereW(n) is the Lambert function defined as the positive solution ofW(n)eW(n) = n.
In this case, pn(u)= exp (hn(u)) (1+ o(1)) where hn(u)= euW(n) − eW(n). We can easily check

that

h′
n(1)= n, h′′

n(1)= eW(n)W(n)2, and h′′′
n (u)=W(n)3euW(n). (102)

SinceW(n)= ln n− ln ln n+ o(1) we note that h′
n(1)+ h′′

n(1)→ ∞. Moreover

h′′′
n (u)(

h′
n(1)+ h′′

n(1)
)3/2 = W(n)3euW(n)

(n(W(n)+ 1))3/2
∼ ( ln n)3/2nu−3/2, (103)

which for u fixed near one tends to 0 as n→ ∞.
Hence, by Lemma 30 the distribution tends, again, to a Gaussian law. In the limit we obtain

Exn(N)∼ n and Varxn (N)∼ n (1+W(n)) . (104)

5.2.4 Fragmented permutations
Next, consider the class of fragmented permutations, that is sets of non-empty labelled sequences,
see [FS09, Example VIII.7, p. 562]. The corresponding generating function satisfies C(x)=
exp

(
x

1−x

)
. Consequently, we find that

μ(x)= x
(1− x)2

, σ (x)2 = x
(

2x
(1− x)3

+ 1
(1− x)2

)
and xn = 1+ 2n− √

1+ 4n
2n

. (105)

Note that as n→ ∞, the tuning parameter xn → 1. Again, we verify that, as xn → ∞, the
function hn(u)= uxn

1−uxn − xn
1−xn satisfies both

h′(xn)+ h′′(xn)→ ∞ and
h′′′(xnu)

(h′
n(xn)+ h′′

n(xn))3/2
→ 0. (106)

However, now hn(u) is not analytic at u= 1. We cannot therefore apply Lemma 30. Nonetheless,
it is still possible to prove that the limiting distribution is Gaussian, using the explicit formula for
the number of fragmented permutations from [FS09].

From the above examples, we see that there is a variety of different behaviours regarding the
variance of the limit Gaussian distribution. In what follows we will show how the mean value is
connected to the anticipated rejection cost (89) in the Gaussian case.

Theorem 31 (Tuning precision for concentrated distributions). Let the size parameter asymptoti-
cally follow a Gaussian law with expectation μ(x) and standard deviation σ (x), and let X(n) be the
inverse function of μ(x), that is μ(X(n))= n. Denote by xn,δ the biased tuning value

xn,δ := xn + δσ (xn)
dX(n)
dn

. (107)

Then the anticipated rejection cost Tn with the target tolerance window [n− εσ (xn), n+ εσ (xn)]
satisfies, when n tends to infinity:

Exn,δ (Tn)∼ nκ(ε, δ), κ(ε, δ)= 1+ �(−ε − δ)− �(ε − δ)
�(ε − δ)− �(−ε − δ)

, (108)
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where �(x):= 1√
2π

∫ x

−∞
e−w2/2dw is the Gaussian distribution function. The minimal cost is

achieved when δ = δmin = 0.

Proof. Using the Euler–MacLaurin estimate similarly to [BGR15], we obtain the following
estimates for C[n1,n2](x), C>n2 (x) and d

dxC
<n1 (x), when x= xn as n→ ∞:

C[n1,n2](x)
C(x)

=
n2∑

n=n1

[zn]C(z)xn

C(x)
∼ 1√

2πσ (x)

∫ n2

n1
e−

1
2

(
n−μ(x)

σ (x)

)2
dn

= �

(
n2 − μ(x)

σ (x)

)
− �

(
n1 − μ(x)

σ (x)

)
,

C>n2 (x)
C(x)

∼ 1− �

(
n2 − μ(x)

σ (x)

)
, and

x d
dxC

<n1 (x)
C(x)

=
n1∑
n=0

n
[zn]C(z)xn

C(x)
∼ 1√

2πσ (x)

∫ n1

0
[(n− μ(x))+ μ(x)] e−

1
2

(
n−μ(x)

σ (x)

)2
dn

∼ 2σ (x)√
2π

[
1− e−

1
2

(
n1−μ(x)

σ (x)

)2]
+ μ(x)�

(
n1 − μ(x)

σ (x)

)
. (109)

Since μ(x)� σ (x) for x= xn as n→ ∞, the second summand dominates the first summand in
the last expression.

Combining these quantities, and by substituting into E(Tn)= xC′<n1 (x)+n2C>n2 (x)
C[n1,n2](x) , we get the

estimated cost of anticipated rejection:

Ex(Tn)=
μ(x)�

(
n1 − μ(x)

σ (x)

)
+ n2

[
1− �

(
n2 − μ(x)

σ (x)

)]
�

(
n2 − μ(x)

σ (x)

)
− �

(
n1 − μ(x)

σ (x)

) . (110)

Let us choose x= xn,δ in such a way that μ(xn,δ)= n+ δσ (xn). Using the first two terms of the
Taylor expansion of μ(xn,δ) around xn, we can show that this value is asymptotically xn,δ ∼ xn +
δσ (xn) dX(n)dn . This finally allows to obtain κ(ε, δ):= limn→∞

ETn
n

:

κ(ε, δ)= 1+ �(−ε − δ)− �(ε − δ)
�(ε − δ)− �(−ε − δ)

. (111)

This expression achieves its minimum when �(ε − δ)− �(−ε − δ) achieves its maximum.
Its derivative has only one root δ = 0 which corresponds to the global maximum. Therefore,
δmin = 0.

Remark 32. In the case when the standard deviation σ (xn) is negligible compared to the mean
value μ(xn) as n→ ∞, the rejection cost can be shown to be asymptotically equal

Exn,δTn ∼ nκ(ε, δ)= n
∫
(−∞,n1)∪(n2,+∞) p(x)dx∫

(n1,n2) p(x)dx
, (112)

where p(x) is the probability density function of the limiting distribution. In the case when
the limiting distribution is not symmetric, and the probability density function is known, the
corresponding bias can be computed as δmin = arg min κ(ε, δ).
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6. Paganini: a multi-parametric tuner prototype
To illustrate the effectiveness of our tuning procedure, we developed Paganini4 — a lightweight
Python library implementing the tuning-as-convex-optimisation idea. Our software relies on
cvxpy, a Python-embedded modelling language for Disciplined Convex Programming (DCP)
[GBY06]. With its help, Paganini is able to automatically compose, and solve adequate opti-
misation problems so to compute the parameter vector corresponding to the user-defined
expectations.

6.1 Implementation details
Due to the imposed restrictions of Disciplined Convex Programming, Paganini supports a strict,
though substantial subset of admissible constructions. In both the labelled and unlabelled case,
Paganini provides the basic empty class ε, disjoint sum +, and Cartesian product × operations.
More involved constructions are briefly discussed below.

6.1.1 Sequence operator
Consider SEQ(A) for some class A (either labelled or unlabelled). By definition,
SEQ(A)= ε +A× SEQ(A) and so we can treat SEQ(A) as a new, auxiliary variable with a
corresponding definition of the above shape. The log-exp transform of SEQ(A) takes then the
form of an elementary DCP log-sum-exp function:

SEQ(A)(z)= 1
1−A(z)

log-exp−−−−→ σ � log
(
1+ eα+σ

)
, (113)

where eα =A(z) and eσ = SEQ(A)(z).
Likewise, since

SEQ=k(A)(z)=A(z)k, SEQ�k(A)(z)= A(z)k

1−A(z)
, and

SEQ�k(A)(z)=
k∑

i=0
A(z)k, (114)

it is readily possible to translate SEQ with its restricted variants into valid DCP constraints.

6.1.2 Pólya structures
Consider MSET(A) and its log-exp variant:

MSET(A)(z)= exp

⎛⎝∑
k�1

A(zk)
k

⎞⎠ log-exp−−−−→ μ�
∑
k�1

eαk
k
, (115)

where eαk =A(zk) and eμ =MSET(A)(z).
The right-hand side of the MSET log-exp transform is an infinite sum of exponents with posi-

tive weights. For practical purposes, we can therefore truncate the series at a finite threshold and
notice that it conforms with DCP rules. What remains is to construct constraints for the respective
diagonals A(zk) based on the definition of A(z).

It is also possible to handle the restricted MSET=k. Following [FFP07, Section 2.4] we notice
that MSET=k(A)(z) can be expressed as

4see https://github.com/maciej-bendkowski/paganini and http://paganini.readthedocs.io.
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MSET=k(A)(z)=
∑
P∈Pk

k∏
i=1

A(zi)
inini! , (116)

where Pk consists of so-called partition sequences of size k, that is sequences (ni) of natural
numbers satisfying the condition

∑k
i=1 ini = k. In this form, (116) unfolds to a polynomial in

A(z),A(z2), . . . ,A(zk) with positive coefficients. Consequently, MSET=k can be converted to a
DCP constraint just like a regular algebraic equation. Following the same idea, we can handle
MSET�k as

MSET�k(A)(z)= 1+
k∑

i=1
MSET=i(A)(z). (117)

The MSET�k variant is much more involved. Since the difference of convex functions is not
necessarily a convex function itself, we cannot directly translate the defining

MSET�k(A)=MSET(A)−MSET<k(A), (118)

into a valid DCP constraint. Let us recall, however, that for k= 1 in the case when A= z1 +
z2 + · · · + zd it is possible to rewrite MSET�k so to avoid subtraction altogether and compose
a corresponding DCP constraint (cf. Section 7.4 and more generally, Section 2.2).

For general k, a more heuristic approach using Disciplined Convex-Concave Programming
(DCCP) might be preferred, see [She+16]. Consider the following exp transform:

MSET�1(A)(z)
exp−−→ eμ + 1� exp

⎛⎝∑
k�1

eαk
k

⎞⎠ , (119)

where eαk =A(zk) and eμ =MSET(A)�1(z).
Here we have two convex expressions on both sides of the inequality. Although such constraints

do not conform with DCP rules, they are allowed in the DCCP framework, and can be therefore
included in the problem statement.

Now, let us focus the cycle construction CYC(A). Note that

CYC(A)(z)=
∑
k�1

ϕ(k)
k

log
1

1−A(zk)
log-exp−−−−→ γ � log

⎛⎝∑
k�1

ϕ(k)
k

log
1

1− eαk

⎞⎠ ,

(120)

where eαk =A(zk), eγ =CYC(A)(z), and ϕ(k) is the Euler totient function.
Unfortunately, such a constraint does not meet the requirements of DCP, even though its right-

hand side is convex. On the other hand, the restricted CYC=k(A) satisfies

CYC=k(A)(z)= 1
k
∑
i|k

ϕ(i)A(zi)
k
i , (121)

and so is it possible to express its log-exp transform as a standard DCP log-sum-exp function. In
order to emulate the unrestricted CYC(A) operator, one can either use DCCP, reformulating (120)
as a DCCP constraint, or use the relation

CYC(A)(z)=
∑
k�0

CYC=k(A)(z), (122)

with a (heuristically chosen) truncation threshold. See further comments about the cycle construc-
tion and the function log log 1

1−ex in Section 4.4.
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Finally, consider the power set construction PSET(A):

PSET(A)(z)= exp

⎛⎝∑
k�1

(−1)k−1

k
A(zk)

⎞⎠ log-exp−−−−→ π �
∑
k�1

(−1)k−1eαk
k

, (123)

where eαk =A(zk) and eπ = PSET(A)(z).
Due to the alternating summation and subtraction in (123), the right-hand side of the con-

straint cannot be expressed as an elementary, convex, DCP expression. Consequently, it is not
supported in our prototype implementation.

6.1.3 Labelled constructions
Consider the labelled set operator SET(A). Recall that for both the restricted and unrestricted
variants we have

SET(A)(z)= eA(z)
log-exp−−−−→ σ � eα

SET=k(A)(z)= 1
k!A(z)

k log-exp−−−−→ σk � log
eαk

k! , (124)

where eα =A(z), eσ = SET(A)(z), and eσk = SET=k(A)(z).
In this form, it is clear that both log-exp transformations can be expressed in terms of

elementary DCP functions. Hence, both SET(A) and SET=k(A) can be effectively handled.
Let us now focus on the final cycle operator CYC(A). Note that

CYC(A)(z)= log
1

1−A(z)
log-exp−−−−→ γ � log log

1
1− eα

CYC=k(A)(z)= 1
k
A(z)k

log-exp−−−−→ γk � log
eαk

k
, (125)

where eα =A(z), eγ =CYC(A)(z), and eγk =CYC=k(A)(z).
The log-exp transform of CYC=k is an elementary DCP constraint. Unfortunately, the same

does not hold for CYC and, in general, expressions in form of

log log
1

1− ex
. (126)

Although (126) is convex, it cannot be modelled in terms of basic DCP functions. Consequently,
heuristic approaches (as discussed above) or alternative convex programming techniques like the
interior point method should be applied, instead. More labelled constructions, and the ways to
bypass this limitation are discussed in Section 4.4.

6.2 Sampler construction
Given a combinatorial specification enriched with user-specified parameters and their target
expectations, it is possible to mechanically compute respective tuning values, and compile ded-
icated samplers. To illustrate this point, we implemented a sampler compiler called Boltzmann
Brain5 supporting algebraic, and in particular rational, specifications.

Constructed samplers for general algebraic specifications use the principle of anticipated rejec-
tion whereas samplers for rational specifications implement the idea of interruptible sampling, see
[BGR15]. In addition, both sampler types are endowed with near-optimal decision trees based on
established branching probabilities [KY76]. Combined, these optimisations lead to remarkably
efficient samplers, supporting all of the algebraic specifications included in the current paper, see
Section 7.
5see https://github.com/maciej-bendkowski/boltzmann-brain.
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Figure 4. Examples of admissible tiles.

Figure 5. Eight random n× 7 tilings of areas in the interval [500;520] using in total 95 different tiles.

7. Applications
In this section, we present several examples illustrating the wide range of applications of our
tuning techniques.

7.1 Polyomino tilings.
We start with a benchmark example of a rational specification defining n× 7 rectangular tilings
using up to 126 different tile variants (a toy example of so-called transfer matrix models, cf. [FS09,
Chapter V.6, Transfer matrix models]).

We begin the construction with defining the set T of admissible tiles. Each tile t ∈ T consists
of two horizontal layers. The base layer is a single connected block of width wt � 6. The second
layer, placed on top of the base one, is a subset (possibly empty) of wt blocks, see Figure 4. For
presentation purposes, each tile is given a unique, distinguishable colour.

Next, we construct the asserted rational specification following the general construction
method of defining a deterministic automaton with one state per each possible partial tiling
configuration using the set T of available tiles. Tracking the evolution of attainable configura-
tions while new tiles arrive, we connect relevant configurations by suitable transition rules in the
automaton. Finally, we (partially) minimise the constructed automaton removing states unreach-
able from the initial empty configuration. Once the automaton is created, we tune the tiling
sampler such that the target colour frequencies are uniform, that is each colour occupies, on aver-
age, approximately 1

126 ≈ 0.7936% of the outcome tiling area. Figure 5 depicts an exemplary tiling
generated by our sampler.

Remark 33. The automaton corresponding to our n× 7 tiling sampler consists of more than 2
000 states and 28, 000 transitions. Pushing this toy construction to its extreme, we were able to
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Table 6. Empirical frequencies of the node degree distribution.

Node degree 0 1 2 3 4 5 6 7 8 9

Tuned frequency - - - - - - 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00%


Observed frequency 35.925% 56.168% 0.928% 0.898% 1.098% 0.818% 1.247% 0.938% 1.058% 0.918%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Default frequency 50.004% 24.952% 12.356% 6.322% 2.882% 1.984% 0.877% 0.378% 0.169% 0.069%

Figure 6. Two random plane trees with degrees in the set D= {0, . . . , 9}. On the left, a tree of size in between 500 and 550;
on the right, a tree of size in the interval [10, 000;10, 050].

develop a sampler for n× 9 tilings, using 1022 different tiles. The corresponding automaton has
more than 19, 000 states and 357, 000 edges.

We remark that both examples are a notable improvement over the work of Bodini and
Ponty [BP10] who were able to sample n× 6 tilings using 7 different tiles with a corresponding
automaton consisting of roughly 1 500 states and 3 200 transitions.

7.2 Simply-generated trees with node degree constraints.
Next, we give an example of simple varieties of plane trees with fixed sets of admissible node
degrees, satisfying the general equation

y(z)= zφ(y(z)) for some polynomial φ : C→C . (127)

Let us consider the case of plane trees where nodes have degrees in the set D= {0, . . . , 9}, that
is φ(y(z))= a0 + a1y(z)+ a2y(z)2 + · · · + a9y(z)9. Here, the numbers a0, a1, a2, . . . , a9 are non-
negative real coefficients. We tune the corresponding algebraic specification so to achieve a target
frequency of 1% for all nodes of degrees d� 2. Frequencies of nodes with degrees d� 1 are left
undistorted. For presentation purposes, all nodes with equal degree are given the same unique,
distinguishable colour. Figure 6 depicts two exemplary trees generated in this manner.

Empirical frequencies for the right tree of Figure 6 and a simply-generated tree of size in
between 10,000 and 10,050 with default node degree frequencies are included in Table 6.

We briefly remark that for this particular problem, Bodini, David and Marchal proposed a
different, bit-optimal sampling procedure for random trees with given partition of node degrees
[BDM16].
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Figure 7. On the left, a random λ-term of size in the interval [500;550]; on the right, a larger example of a random λ-term of
size between 10,000 and 10,050.

7.3 Variable distribution in plain λ-terms.
To exhibit the benefits of distorting the intrinsic distribution of various structural patterns in
algebraic data types, we present an example specification defining so-called plain λ-terms with
explicit control over the distribution of de Bruijn indices.

In their nameless representation due to de Bruijn [Bru72] λ-terms are defined by the for-
mal grammar L ::= λL|(LL)|D where D= {0, 1, 2, . . .} is an infinite denumerable set of so-called
indices (cf. [Ben+17, GG16]). Assuming that we encode de Bruijn indices as a sequence of suc-
cessors of zero (i.e. use a unary base representation), the class L of plain λ-terms can be specified
as L=ZL+ZL2 +D where D =ZSEQ(Z). In order to control the distribution of de Bruijn
indices, we need a more explicit specification for de Bruijn indices. For instance:

D = U0Z + U1Z2 + · · · + UkZk+1 +Zk+2SEQ(Z) .

Here, we roll out the k+ 1 initial indices and assign distinct marking variables to each one of
them, leaving the remainder sequence intact. In doing so, we are in a position to construct a
sampler tuned to enforce a uniform distribution of 8% among all marked indices, that is indices
0, 1, . . . , 8, distorting in effect their intrinsic geometric distribution.

Figure 7 illustrates two random λ-terms with such a new distribution of indices. For presenta-
tion purposes, each index in the left picture is given a distinct colour.

Empirical frequencies for the right term of Figure 7 and a plain λ-term of size in between 10,000
and 10,050 with default de Bruijn index frequencies are included in table 7.

Let us note that algebraic data types, an essential conceptual ingredient of various functional
programming languages such as Haskell or OCaml, and the random generation of their inhabi-
tants satisfying additional structural or semantic properties is one of the central problems present
in the field of property-based software testing (see, e.g. [CH00, Pał12]). In such an approach to
software quality assurance, programmer-declared function invariants (so-called properties) are
checked using random inputs, generated accordingly to some predetermined, though usually not
rigorously controlled, distribution. In this context, our techniques provide a novel and effective
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Table 7. Empirical frequencies (with respect to the term size) of index distribution.

Index 0 1 2 3 4 5 6 7 8

Tuned frequency 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00%


Observed frequency 7.50% 7.77% 8.00% 8.23% 8.04% 7.61% 8.53% 7.43% 9.08%


Default frequency 21.91% 12.51% 5.68% 2.31% 0.74% 0.17% 0.20% 0.07% - - -

approach to generating random algebraic data types with fixed average frequencies of type con-
structors. In particular, using our methods it is possible to boost the intrinsic frequencies of certain
desired subpatterns or diminish those which are unwanted.

7.4 Weighted partitions.
Integer partitions are one of the most intensively studied objects in number theory, algebraic com-
binatorics and statistical physics. Hardy and Ramanujan obtained the famous asymptotics which
has later been refined by Rademacher [FS09, Chapter VIII]. In his article [Ver96], Vershik con-
siders several combinatorial examples related to statistical mechanics and obtains the limit shape
for a random integer partition of size n with α

√
n parts and summands bounded by θ

√
n. Let us

remark that Bernstein, Fahrbach, and Randall [BFR18] have recently analysed the complexity of
exact-size Boltzmann sampler for weighted partitions. In the model of ideal gas, there are several
particles (bosons) which form a so-called assembly of particles. The overall energy of the system is
the sum of the energies� =∑N

i=1 λi where λi denotes the energy of i -th particle. We assume that
energies are positive integers. Depending on the energy level λ, there are j(λ) possible available
states for each particle; the function j(λ) depends on the physical model. Since all the particles are
indistinguishable, the generating function P(z) for the number of assemblies p(�) with energy �

takes the form

P(z)=
∞∑

�=0
p(�)z� =

∏
λ>0

1
(1− zλ)j(λ)

. (128)

In the model of d-dimensional harmonic trap (also known as the Bose-Einstein condensation)
according to [CMZ99, HHA97, LR08] the number of states for a particle with energy λ is

d + λ −
(
1
λ

)
so that each state can be represented as a multiset with λ elements having d differ-

ent colours. Accordingly, an assembly is a multiset of particles (since they are bosons and hence
indistinguishable) therefore the generating function for the number of assemblies takes the form

P(z)=MSET(MSET�1(Z1 + · · · +Zd)) . (129)

It is possible to control the expected frequencies of colours using our tuning procedure and
sample resulting assemblies as Young tableaux. Each row corresponds to a particle whereas the
colouring of the row displays the multiset of included colours, see Figure 8. We also generated
weighted partitions of expected size 1000 (which are too large to display) with tuned frequencies
of 5 colours, see Table 8.

Let us briefly explain our generation procedure. Boltzmann sampling for the outer MSET oper-
ator is described in [FFP07]. The sampling of innerMSET�1(Z1 + . . . +Zd) is more delicate. The
generating function for this multiset can be written as
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Table 8. Empirical frequencies of colours observed in random partition.

Colour index 1 2 3 4 5 size

Tuned frequency 0.03 0.07 0.1 0.3 0.5 1000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.03 0.08 0.07 0.33 0.49 957
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.03 0.06 0.09 0.28 0.54 1099
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observed frequency 0.03 0.08 0.09 0.34 0.46 992
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.04 0.07 0.1 0.31 0.49 932
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.04 0.09 0.1 0.25 0.52 1067

(a) (b) (c) (d)

Figure 8. Young tableaux corresponding toBose–Einstein condensateswith expected numbers of different colours. Notation
[c1, c2, . . . , ck] provides the expected number cj of the j -th colour, cmk is a shortcut form occurrences of ck .

MSET�1(z1 + · · · + zd)=
d∏

i=1

1
1− zi

− 1 . (130)

In order to correctly calculate the branching probabilities, we introduce slack variables s1, . . . , sd
satisfying (1+ si)= (1− zi)−1. Boltzmann samplers for the newly determined combinatorial
classes �Si are essentially Boltzmann samplers for SEQ�1(Zi). Let us note that after expanding
brackets the expression becomes

MSET�1(z1 + · · · + zd)= (s1 + · · · + sd)+ (s1s2 + · · · + sd−1sd)+ · · · + s1s2 . . . sd. (131)

The total number of summands is 2d − 1 where each summand corresponds to choosing some
subset of colours. Finally, we pre-compute all the symmetric polynomials and efficiently handle
the branching process in quadratic time using a dynamic programming approach discussed in
Section 2.2.

7.5 Multi-partite rooted labelled trees
Consider a family of rooted labelled trees, such that the children of each node are not ordered.
The exponential generating function of such trees T(z) satisfies the equation

T(z)= zeT(z). (132)
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Figure 9. Random coloured Cayley tree of size 1665 drawn with Kamada–Kawai algorithm [KK89].

In this example, we suggest an alteration of this model, where the nodes on each level have distinct
colours. We consider a periodic system of colouring, where the levels 1, 2, . . . , d have distinct
colours, and then the colours repeat, that is the levels d + 1, . . . , 2d have the same colours as
the levels 1, 2, . . . , d. Let u1, . . . , ud be the marking variables for the respective colours, and let
T1, . . . , Td denote multivariate exponential generating functions for trees whose root is coloured
respectively, with the colour 1, 2, . . . , d. Then, these functions satisfy the system of functional
equations

T1(z, u1, . . . , ud)= zu1eT2(z,u1,...,ud),
T2(z, u1, . . . , ud)= zu2eT3(z,u1,...,ud),

...

Td(z, u1, . . . , ud)= zudeT1(z,u1,...,ud). (133)

Using our software (see Section 6), we implement the multi-parametric tuning and sampling
when d = 10 and the proportions of vertices of the respective colours are sorted in an arithmetic
progression 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, 0.17, 0.19.

An example of a resulting tree of size 1665 is shown in Figure 9, and the empirical frequencies
of the colours inside this tree are given in Figure 10.

Note that even in such a simple example where the dependency graph forms a cycle, and the
structure of the equations is symmetrical, no simpler tuning procedure is available — no variable
can be tuned separately from the others, and the resulting variable values do not form the same
arithmetic pattern as the target weights. Also, let us point to a curious pattern for the numerical
values of the tuning parameters can be observed in Table 9.

7.6 Otter trees
Starting from the seminal paper of Otter [Ott48], unlabelled tree-like structures play an important
role in chemistry, phylogenetics [Pen82] and synthetic biology [FVS17]. Their study also helps to
discover newmethods for numerical solution of partial differential equations, involving automatic
differentiation and construction of expression trees [MCA18].

In this section, we consider a relatively simple example of rooted unlabelled binary trees, such
that the children of each node are not ordered. An additional assumption that the leaves are
coloured in d distinct colours gives the following specification:

T(z, u1, . . . , ud)= z
d∑

i=1
ui +MSET2(T(z, u1, . . . , ud)), (134)
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Table 9. Numerical values for multi-partite rooted labelled trees parameters.

z u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

value 0.3 0.009 1.88 1.37 1.29 1.26 1.25 1.24 1.23 1.23 3.52

Figure 10. Histogram of colour frequencies for Cayley tree.

Figure 11. Random coloured Otter tree of size 1434 drawn with Kamada–Kawai algorithm [KK89].

where the MSET2 operator is defined as

MSET2(T(z, u1, . . . , ud))=
T(z, u1, . . . , ud)2 + T(z2, u21, . . . , u

2
d)

2
. (135)

Recall that the corresponding univariate model was considered in [BLR15] where the authors
constructed a system of quadratic equations which could be solved in reverse. As in the previous
example (see Section 7.5), we solve the multi-parametric tuning problem when d = 10, and the
expected colour frequencies form an arithmetic progression 0.01, 0.03, . . . , 0.19.

After setting an appropriate truncation level (the probability of having nodes on a level h is
exponentially decreasing in h), we solve the tuning problem and generate the corresponding trees,
see Figure 11 for the generated tree of size 1434, and Figure 12 for empirical frequency histogram.
The numerical values of the tuning parameters are given in Table 10.
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Table 10. Numerical values of tuning parameters for multicoloured Otter trees.

u1z u2z u3z u4z u5z u6z u7z u8z u9z u10z

value 0.005 0.015 0.025 0.035 0.044 0.054 0.063 0.072 0.081 0.09

Figure 12. Histogram of colour frequencies for Otter tree.

7.7 Substitution-closed permutation classes
Permutation patterns stem from a growing body of research which originated from Knuth’s study
of sorting algorithms and also later from the study of sorting networks by Tarjan and Pratt.
Recently, the authors of [Bas17] have obtained a method which allows to automatically construct
a combinatorial specification for permutation classes avoiding given set of permutations.

Let us start by giving a few basic definitions. A permutation σ = (σ (1), σ (2), . . . , σ (n)) is said
to contain a pattern π = (π(1), . . . , π(k)) if σ has a subsequence whose terms have the same
relative ordering as π . A permutation of length n is said to be simple if it does not contain inter-
vals of length strictly in between 1 and n, where an interval is a contiguous sequence of indices
{i | a� i� b} such that the set of values {σ (i) | a� i� b} is also contiguous. And so, for instance,
the permutation from Figure 13 is not simple, since it contains an interval {1, 2, 3} whose image is
{5, 6, 7}.

Many interesting permutation classes can be described in the augmented language of context-
free specifications. Given a permutation σ ∈ Sm and non-empty permutations τ1, . . . , τm, the
inflation of σ by τ1, . . . , τm is the permutation obtained by replacing each entry σ (i) with an
interval having the same relative ordering as τi. If τ1, . . . , τm belong, respectively, to the classes
T1, . . . , Tm, such an inflation is denoted as σ [T1, . . . , Tm]. While from the counting point of view,
σ [T1, . . . , Tm] is isomorphic to a Cartesian product T1 × · · · × Tm, it is useful to explicitly keep
the external permutation σ for sampling and construction purposes.

Interestingly, Albert and Atkinson describe a specification for any substitution-closed class of
permutations [AA05].

Proposition 34 ([AA05, Lemma 11]). Suppose that a class C is substitution-closed and contains 12
and 21. Let S be the class of all simple permutations contained in C. Then, C satisfies the following
system of equations
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Figure 13. Visualisation of a random permutation 76512834.

C = {•} + 12[C+, C]+ 21[C−, C]+
∑
π∈S

π[C, C, . . . , C]

C+ = {•} + 21[C−, C]+
∑
π∈S

π[C, C, . . . , C]

C− = {•} + 12[C+, C]+
∑
π∈S

π[C, C, . . . , C]. (136)

It is, therefore, possible to endow each of the simple permutations π ∈ S by a distinguished
marking variable uπ and insert them into the specification:

C = {•} + 12[C+, C]+ 21[C−, C]+
∑
π∈S

uπ · π[C, C, . . . , C]

C+ = {•} + 21[C−, C]+
∑
π∈S

uπ · π[C, C, . . . , C]

C− = {•} + 12[C+, C]+
∑
π∈S

uπ · π[C, C, . . . , C]. (137)

Finally, note that by tuning the expectations attached to uπ we alter the expected frequencies
of inflations used during the construction of a permutation.
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