

Available online at www.sciencedirect.com

QUATERNARY RESEARCH

Quaternary Research 67 (2007) 502-508

www.elsevier.com/locate/yqres

Short Paper

A late-glacial transition from *Picea glauca* to *Picea mariana* in southern New England

Matts Lindbladh^{a,*}, W. Wyatt Oswald^{b,c}, David R. Foster^c, Edward K. Faison^c, Juzhi Hou^d, Yongsong Huang^d

^a Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 230 53 Alnarp, Sweden
 ^b Department of Communication Sciences and Disorders, Emerson College, Boston, MA 02116-4624, USA
 ^c Harvard Forest, Harvard University, Petersham, MA 01366, USA
 ^d Department of Geological Sciences, Brown University, Providence, RI 02912, USA

Received 4 August 2006 Available online 8 March 2007

Abstract

Picea is an important taxon in late-glacial pollen records from eastern North America, but little is known about which species of *Picea* were present. We apply a recently developed palynological method for discriminating the three *Picea* species in eastern North America to three records from New England. *Picea glauca* was dominant at ~14,500–14,000 cal yr BP, followed by a transition to *Picea mariana* between ~14,000 and 13,500 cal yr BP. Comparison of the pollen data with hydrogen isotope data shows clearly that this transition began before the beginning of the Younger Dryas Chronozone. The ecological changes of the late-glacial interval were not a simple oscillation in the position of a single species' range, but rather major changes in vegetation structure and composition occurring during an interval of variations in several environmental factors, including climate, edaphic conditions, and atmospheric CO₂ levels.

© 2007 University of Washington. All rights reserved.

Keywords: Black spruce; CART; CO₂; Forest history; New England; Picea glauca; Picea mariana; Picea rubens; Pollen analysis; Red spruce; White spruce; Younger Dryas

Introduction

Picea (spruce) was a dominant taxon in eastern North America during the transition from the Pleistocene to the Holocene (e.g., Watts, 1979; Davis, 1983; Davis and Jacobson, 1985; Jackson et al., 1997). In late-glacial lake sediments from New England, for example, *Picea* pollen percentages reached $\sim 20-80\%$ between $\sim 16,000$ and 11,000 calibrated ¹⁴C yr before present (cal yr BP) (e.g., Davis, 1969; Davis et al., 1975; Whitehead, 1979; Spear et al., 1994; Shuman et al., 2004). Paleoclimatic evidence suggests that abrupt climate fluctuations occurred during the late-glacial interval in the region (e.g., Levesque et al., 1993; Peteet et al., 1993; Shemesh and Peteet, 1998; Shuman et al., 2001; Hou et al., 2006), and pollen data indicate that the location and abundance of *Picea* varied in response to those changes (e.g., Shuman et al., 2002).

* Corresponding author. *E-mail address:* matts.lindbladh@ess.slu.se (M. Lindbladh).

0033-5894/\$ - see front matter @ 2007 University of Washington. All rights reserved. doi:10.1016/j.yqres.2007.01.010

Despite the prevalence of *Picea* in New England during the late-glacial interval and its importance in interpreting the environmental changes of that period (Peteet et al., 1993; Newby et al., 2000; Shuman et al., 2002; 2004) we do not know which species of *Picea* were involved. Davis (1958) speculated that southern New England may have experienced a shift from either *Picea glauca* (white spruce) or *Picea rubens* (red spruce) to *Picea mariana* (black spruce), but that hypothesis has not been tested using quantitative palynological techniques and cannot be addressed by the limited available macrofossil evidence (Terasmae and Matthews, 1980; Anderson et al., 1990; Jackson et al., 1997).

Studies of the palynological differences among *Picea* species have been conducted for various regions of North America (Cain, 1948; Richard, 1970; Bagnell, 1975; Birks and Peglar, 1980; Hansen and Engstrom, 1985; Brubaker et al., 1987). Lindbladh et al. (2002) developed a method for differentiating pollen grains of the three *Picea* species in eastern North America (*P. glauca, P. mariana* and *P. rubens*), using a large

reference collection of modern pollen from the region. A pilot study in Maine and Massachusetts applied the technique to fossil pollen at eleven levels of varying age from nine sites (Lindbladh et al., 2003). Here we apply the method for the first time to sequences of late-glacial sediment cores. We investigate three sites in southern New England, with the goal of interpreting the ecological and environmental changes of the late-glacial interval.

Methods

We applied the technique of Lindbladh et al. (2002) to lakesediment pollen samples from three sites in Massachusetts: Blood Pond (BP), Berry East Pond (BEP), and Black Gum Swamp (BGS) (Fig. 1) (Table 1). Field methods, laboratory techniques, and dating results for Blood Pond and Berry East Pond are available elsewhere (Oswald et al., in press). We collected a core from Black Gum Swamp in April 2004 using a modified Livingstone piston sampler (Wright et al., 1984). The core was extruded in the field, wrapped in plastic and aluminum foil, and subsequently refrigerated.

Chronological control for the Black Gum Swamp core is provided by accelerator mass spectrometry (AMS) ¹⁴C analysis of plant macrofossils sieved from the sediment (Table 2). ¹⁴C dates were converted to calibrated ages using OxCal 3.9 (Bronk Ramsey, 1995, 2001). The age-depth model is based on linear interpolation between the midpoints of the 2σ calibrated age ranges of selected dates. Samples of 1 cm³ were prepared for pollen analysis following standard procedures (Faegri and Iversen, 1989), with Lycopodium clavatum spores (42,716 per cm³) added to allow estimation of pollen concentrations and influx rates (Stockmarr, 1971). For all three sites, influx and concentration values (the latter not shown) had very similar patterns. Pollen residues were mounted in silicone oil, and pollen grains and spores were counted at ×400 magnification. A minimum of 300 pollen grains and spores from upland taxa were identified for each level, and all percentages are expressed relative to that sum.

At each level where *Picea* pollen percentages exceeded 5%, thirty *Picea* grains were examined for species identification, with the exception of three levels with very low pollen concentrations (BGS 422 cm; BE 1030 and 1230 cm). All measurements were made by one individual (M. Lindbladh).

Table 1	
Locations and characteristics of the study sites	

	Berry East Pond	Blood Pond	Black Gum Swamp
Latitude	42°37′ 13″ N	42°04′ 48″ N	42°32′ 30″ N
Longitude	71°05′ 14″ W	71°57′ 41″ W	72°11′ 30″ W
Elevation (m)	43	214	358
Surface area (ha)	1.6	8.5	10.0
Maximum depth (m)	5.9	3.6	0.0 ^a
Core interval analyzed (cm)	1250-950	1360-885	420–275

^a Lacustrine sediments at Black Gum Swamp are overlain by a forested peatland (Foster and Zebryk, 1993; Anderson et al., 2003).

Only grains that were unbroken, symmetrical, and fully expanded in equatorial view were analyzed. Sand grains (50-100 µm) were added to the slides to avoid the flattening of the pollen grains by the cover slip (Cushing, 1961). Three quantitative (total grain size, corpus breadth, and saccus width at the base) and two qualitative (cap undulation, exine verrucation) variables were measured on each grain. The measurements were applied to a classification tree analysis (CART) procedure based on measurements of modern Picea pollen grains from the three Picea species of eastern North America: P. glauca, P. mariana, and P. rubens (Lindbladh et al., 2002). We examined a total of 1196 fossil Picea grains, and of those 840 were identified to species (70.2% identification rate). The 356 unidentified grains had intermediate characteristics; we assume that they were proportionally distributed among the identified species. Of the unidentified grains, only eight were equivocally identified (i.e. classified to more than one species). This low number of equivocally identified grains implies that the classification system is robust and conservative. A more detailed discussion of the modern pollen dataset and CART methodology is presented in Lindbladh et al. (2002).

We identified pollen zone boundaries for each site by clustering the pollen spectra using the constrained incremental sum of squares (CONISS) method on square-root transformed pollen percentages (Grimm, 1987). Taxa included in the analysis included *Abies, Acer, Alnus, Artemisia, Asteraceae, Betula, Cupressaceae, Cyperaceae, Ericaceae, Larix, Myrica/Comptonia, Ostrya/Carpinus, P. glauca, P. mariana, P. rubens, Poaceae, Populus, Quercus, Salix, and Tsuga.* We also compared vegetation changes at the three sites using detrended

Figure 1. (a) Map of eastern North America showing study area (Massachusetts is highlighted). (b) Topographic map of southern New England showing study sites.

Depth (cm)	Material	Lab number	δ^{13} C	¹⁴ C yr (BP)	2σ cal age range
294–296 252–254 ⁸	Seeds	Beta-192018	-23.9	9580 ± 50	11,139–10,729
403–404	Plant fragments Plant fragments	Beta-192019 Beta-192020	-27.0 -24.4	2130 ± 40 12,190±60	2302–1989 14,199–13,869

 Table 2

 Radiocarbon results for Black Gum Swamp

^a Excluded from age-depth model.

correspondence analysis (DCA) of all pollen spectra combined, using the same taxa as in the zonation.

Results

Quantitative zonation of the pollen records using CONISS resulted in three zones for each site (Figs. 2 and 3). The pollen spectra for each zone are similar for the three sites, but the timing of the zone boundaries differs somewhat between sites. The lack of strong chronological control makes it difficult to say whether the asynchrony is real, but given the proximity of the sites it also seems possible that the changes actually took place

synchronously. The general timing of the changes in *Picea* pollen percentages is consistent with several other studies in the region (e.g., Newby et al., 2000). Furthermore, the position of the Younger Dryas Chronozone (YDC) in the Blood Pond record, as revealed by isotope geochemical analyses (Hou et al., 2006), provides temporal context for that record and shows that its age-depth model is reasonable (Fig. 4).

Picea pollen reaches ~40% in Zone 1 at all three sites, and most of the *Picea* grains are *P. glauca*. Other common taxa include *Betula*, *Pinus* (mainly *P. banksiana*-type), *Salix*, and *Populus*. Low total pollen influx values and relatively high pollen percentages of Cyperaceae, Poaceae, and other herbaceous taxa

Figure 2. Pollen diagrams for Blood Pond, Berry East Pond, and Black Gum Swamp (BGS). *Picea* graphs show percentages of individual species. See BGS graph for key: g=Picea glauca (white fill); m=Picea mariana (black fill); r=Picea rubra (gray fill); u=undifferentiated *Picea* (dotted line). *Pinus* pollen grains were differentiated for Blood and Berry East: p=Pinus subgenus *Strobus*. Influx graphs show values for *Picea* (P; black fill) and total upland pollen (T; white fill). Note change in x-axis range for major (black fill) and minor taxa (gray fill). The ¹⁴C dates shown are the midpoints of the 26 calibrated age ranges in yr BP.

Figure 3. Results of detrended correspondence analysis (DCA) of pollen data from Blood Pond, Berry East Pond, and Black Gum Swamp. The variance explained by the ordination axes was determined by calculating the coefficient of determination between Relative Euclidian Distances in the ordination space and the original *n*-dimensional space: r^2 values for axis 1 and 2 were 0.42 and 0.40, respectively.

suggest a relatively open *P. glauca* forest. Very few *Picea* grains were identified as *P. rubens* in this and subsequent zones.

Zone 2 assemblages are also dominated by *Picea* pollen (~50–70%), and the dominant species after ~14,000–13,000 cal yr BP is *P. mariana*. Total and *Picea* influx values increase in this zone, particularly at Blood and Berry East. Pollen percentages for *Alnus*, *Betula*, *Abies*, and *Larix* are generally higher in Zone 2, and herbaceous taxa are less abundant than in the previous zone. *Pinus* (still *Pinus banksiana*-type) percentages remain relatively high, particularly at the beginning of the zone. These results suggest a change to a denser forest featuring *P. mariana* and other boreal trees and shrubs.

Picea pollen percentages decline at the beginning of Zone 3 (\sim 11,500 cal yr BP), and *Quercus*, *Pinus* (mainly *P. strobus*-type), *Betula*, *Tsuga*, and *Ostrya/Carpinus* increase sharply. We interpret these changes as a shift from *P. mariana*-dominated forest to a Holocene community with a mix of deciduous and coniferous trees.

Discussion

Late-glacial environmental and ecological dynamics

At all three sites we documented two late-glacial peaks in *Picea* pollen abundance, as has been observed in other records in the region (e.g., Suter, 1985; Shuman et al., 2001). Moreover, by applying the Lindbladh et al. (2002) *Picea* pollen discrimination method to these records, we revealed that the first peak was dominated by *P. glauca*, while the second

https://doi.org/10.1016/j.yqres.2007.01.010 Published online by Cambridge University Press

featured *P. mariana*. This is the first compelling evidence for a late-glacial shift in dominance from *P. glauca* to *P. mariana* in New England, supporting and refining the hypothesis proposed by Davis (1958). Furthermore, the transition from *P. glauca* to *P. mariana* is accompanied by other changes in vegetation composition and structure (Figs. 2 and 3). The interval of *P. glauca* dominance featured relatively high pollen percentages of several herbaceous taxa (e.g., Cyperaceae and Poaceae) and relatively low pollen influx values, whereas the *P. mariana* zone had higher influx values and taxa characteristic of present-

Figure 4. Summary of late-glacial changes in climate and vegetation. *Picea* pollen percentages for Black Gum Swamp, Berry East Pond, and Blood Pond (*Picea glauca*=white fill, *Picea mariana*=black fill; *Picea rubens*=gray fill); Hydrogen isotope ratios for Blood Pond (Hou et al., 2006); Oxygen isotope data from the GISP2 Greenland ice core (Stuiver et al., 1995): B=Bølling; A=Allerød; YDC=Younger Dryas chronozone.

day boreal forests (e.g., *Larix*, *Abies*, and *Alnus*). The decline in herbaceous taxa after the first *Picea* peak also appears in other records from the region (e.g., Peteet et al., 1993; Newby et al., 2000; Shuman et al., 2001). These changes suggest a transition at $\sim 14,000-13,000$ cal yr BP from open *P. glauca* forest-tundra to closed forest dominated by *P. mariana*.

The observed late-glacial vegetation dynamics, including the shift from P. glauca to P. mariana, may be attributable to the sequence of environmental changes that occurred across this interval. P. glauca increased sharply after ~15,000 cal yr BP, reaching its highest abundances at all three sites $\sim 14,500-$ 14,000 cal yr BP (Fig. 4). The maximal P. glauca pollen percentages appear to coincide with the Bølling event documented in the Greenland ice-core record, which was the warmest period of the late-glacial interval (e.g., Björk et al., 1998; Stuiver and Grootes, 2000; Southon, 2000). The Bølling peak in warmth does not appear in the Blood Pond isotopic record (Fig. 4; Hou et al., 2006), but its absence may be due to the relatively coarse sampling resolution. Moreover, the prevalence of P. glauca at ~14,500-14,000 cal yr BP may also be related to the edaphic conditions occurring at that time. P. glauca is abundant today on coarse-textured, nutrient-rich soils (e.g., Viereck et al., 1983; 1986; Yarie, 1983; Foster, 1984, 1985), substrates that likely were common on recently deglaciated landscapes in southern New England (e.g., Miller, 1980, 1987). This combination of relatively warm climate and well-drained soils may have allowed P. glauca to dominate during the early portion of the *Picea* interval.

At all three sites the transition from P. glauca to P. mariana begins $\sim 14,000-13,500$ cal yr BP, and comparison of the pollen and geochemical data from Blood Pond shows clearly that the shift began before the beginning of the YDC (Fig. 4). This result indicates that for the dominant tree genus in the region during the late glacial, Picea, the dynamics were not necessarily linked to the climate fluctuations of the YDC, as suggested by Shuman et al. (2002). On the other hand, the timing of this shift is consistent with the findings of a study by Viau et al. (2002), which identified a significant change in vegetation composition across North America at 13,800 cal yr BP. The decline in P. glauca and increase in P. mariana may have taken place in response to cooling that occurred across the North Atlantic during the Allerød period (e.g., Björk et al., 1998; Stuiver and Grootes, 2000; Southon, 2000). Cooler conditions would have promoted permafrost aggradation, leading to soil paludification and nutrient leaching (e.g., Klinger, 1996; Young et al., 1997). This type of progressive change in edaphic conditions would lead to a change from P. glauca to P. mariana, as P. mariana currently dominates in areas of wet, acidic, nutrient-poor soils (e.g., Viereck et al., 1983; 1986; Yarie, 1983; Foster, 1984; 1985). Subsequent changes in the environment during the YDC may have furthered the shift from P. glauca to P. mariana. Various lines of evidence indicate cold, moist conditions in eastern North America during the YDC (Levesque et al., 1993; Peteet et al., 1993; Cwynar and Levesque, 1995; Shemesh and Peteet, 1998; Shuman et al., 2001; Huang et al., 2002), and cooling may have accentuated the development of permafrost. This would have led to a further reduction in the availability of the well-drained, nutrient-rich soils preferred by *P. glauca* and an increase in the extent of wet, acidic soils dominated by *P. mariana* (e.g., Viereck et al., 1986).

However, the hypothesis that these late-glacial ecological dynamics were initiated by cooling during the Allerød period is inconsistent with the paleoclimatic data that currently exist for the region. For example, no such cooling is evident in the Blood Pond geochemical data (Fig. 4) or in another isotopic record from southeastern Massachusetts (Huang et al., 2002). Likewise, chironomid data from the region indicate increasing temperatures throughout the late-glacial interval and warm conditions immediately before the YDC, rather than a sequence of declining temperatures from the Bølling to the Allerød to the YDC (e.g., Cwynar and Levesque, 1995).

An alternative explanation for the transition from P. mariana to P. glauca is that the shift was related to changes in atmospheric CO₂ levels. The ecological dynamics described in this study occurred during the most dramatic rise in CO₂ levels of the late Quaternary. Atmospheric CO₂ levels rose from \sim 200 ppm at \sim 16,000 cal yr BP to \sim 265 ppm at \sim 11,000 cal yr BP (Monnin et al., 2001). Such a rise is potentially important because of the known effects of CO₂ levels on plant water-use efficiency (Polley et al., 1993). P. glauca would likely have been more tolerant than P. mariana of moisture stress induced by low water-use efficiency when CO2 levels were low, and thus P. mariana would have experienced a reduction in moisture stress as CO₂ levels rose through the late-glacial interval. Indeed, the shift from P. glauca to P. mariana precedes the abrupt climate change at the beginning of the YDC, but coincides closely with a rapid rise in CO₂ levels occurring between $\sim 14,000$ and 13,700 cal yr BP. Average CO₂ concentrations were ~ 225 ppm from 15,000 to 14,000 cal yr BP, and rose to \sim 240 ppm during the period from 14,000 to 11,600 cal yr BP (Monnin et al., 2001).

With the available data we are unable to assess the relative importance of changes in climate, substrate, and the composition of the atmosphere as drivers of the observed changes in vegetation composition and structure. However, it is possible that the shift from P. glauca to P. mariana resulted from the combined effects of late-glacial environmental change, its impacts on soil moisture, and the relatively gradual increase in CO₂ during the transition from the Pleistocene to the Holocene. This uncertainty about the mechanism notwithstanding, our results confirm that the environmental dynamics of the lateglacial interval were not a simple oscillation in temperature (Shuman et al., 2002) and show clearly that the ecological response was not a simple oscillation in the position of a single species' range. These findings highlight the critical importance of taxonomic resolution in reconstructions of vegetation and climate, and also illustrate the complex nature of environmental and ecological changes in southern New England during the late-glacial period.

The history of Picea rubens

This study supports the conclusions of Lindbladh et al. (2003) that *P. rubens* was uncommon or absent in New England

during the late-glacial and early-Holocene intervals. Very few Picea grains were classified as P. rubens, with the highest value (7.7%) occurring at \sim 12.000 cal vr BP in the Berry East record. Our studies of modern pollen indicate that grains of P. mariana are more likely than P. glauca to be misclassified as P. rubens (Lindbladh et al., 2002). The few grains classified as P. rubens in this study occurred almost exclusively when P. mariana was common, which suggests that the P. rubens grains may actually have been P. mariana. Consequently, the question of where P. rubens existed during the late-glacial interval remains to be answered. The only relevant evidence comes from two sites in southern Pennsylvania and western Virginia where Watts (1979) used the morphological approach of Birks and Peglar (1980) to identify some Picea pollen as P. rubens during the late-glacial and early-Holocene intervals. Additional palynological research in that region is needed to clarify the history of P. rubens.

Picea in New England during the Holocene

Picea was absent or very rare in southern New England for most of the Holocene. At the end of the YDC, the precessiondriven maximum in summer solar radiation produced a climate characterized by greater seasonality and warmer growing seasons than today (e.g., Davis et al., 1980; Webb et al., 1993; Almquist et al., 2001). Vegetation changes at that time were rapid and synchronous across eastern North America (e.g., Jacobson et al., 1987; Viau et al., 2002; Shuman et al., 2002, 2004). Paleoclimatic data from New England and elsewhere (e.g., Stuiver et al., 1995; Huang et al., 2002; Hou et al., 2006) show a dramatic increase in temperature coincident with the decline in *Picea* and the corresponding increase in relatively thermophilous tree genera such as Quercus and Tsuga (Figs. 2 and 4). The decline in P. mariana may also have been associated with dry conditions, as lake-level reconstructions suggest that the beginning of the Holocene was the driest period of the last 13,000 yr (Shuman et al., 2001, 2004).

Picea pollen percentages remained low for much of the Holocene, but increased during the past ~2000 yr, apparently in response to the onset of cooler and moister conditions (e.g., Davis et al., 1980; Foster and Zebryk, 1993; Schauffler and Jacobson, 2002; Shuman et al., 2004). Today *P. glauca* is absent from southern New England, while *P. rubens* and *P. mariana* are present at low abundances. Both occur in areas of moist, acidic soils, with *P. mariana* associated with extremely nutrient-poor and ombotrophic conditions and *P. rubens* preferring sites with somewhat higher nutrient availability (e.g., Anderson et al., 2003). Late-Holocene environmental and ecological changes in New England, including the recent histories of *P. rubens* and *P. mariana*, await further study.

Acknowledgments

We thank Elaine Doughty for invaluable assistance in the field and laboratory, Barbara Hansen for analyzing pollen samples and commenting on the manuscript, Brian Hall for drafting Figure 1, and Tom Webb and several anonymous referees for reviews of the manuscript. This research was funded by the National Science Foundation (Long-Term Ecological Research Program and DEB 99-03792), the A.W. Mellon Foundation, and a Charles Bullard Fellowship from Harvard University to M. Lindbladh.

References

- Almquist, H., Dieffenbacher-Krall, A.C., Flanagan-Brown, R., Sanger, D., 2001. The Holocene record of lake levels of Mansell Pond, central Maine, USA. Holocene 189, 189–201.
- Anderson, R.S., Miller, N.G., Davis, R.B., Nelson, R.E., 1990. Terrestrial fossils in the marine Presumpscot Formation: implications for Late Wisconsinan paleoenvironment and isostatic rebound along the cost of Maine. Canadian Journal of Earth Science 27, 1241–1246.
- Anderson, R.L., Foster, D.R., Motzkin, G., 2003. Integrating lateral expansion into models of peatland development in temperate New England. Journal of Ecology 91, 68–76.
- Bagnell, C.R., 1975. Species distinction among pollen grains of *Abies*, *Picea* and *Pinus* in the Rocky Mountain area. Review of Palaeobotany and Palynology 19, 203–220.
- Birks, H.J.B., Peglar, S.M., 1980. Identification of *Picea* pollen of Late Quaternary age in eastern North America: a numerical approach. Canadian Journal of Botany 58, 2042–2058.
- Björk, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B., 1998. An event stratigraphy for the last termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283–292.
- Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430.
- Bronk Ramsey, C., 2001. Development of the radiocarbon program OxCal. Radiocarbon 43, 355–363.
- Brubaker, L.B., Graumlich, L.J., Anderson, P.M., 1987. An evaluation of statistical techniques for discriminating *Picea glauca* from *Picea mariana* pollen in northern Alaska, USA. Canadian Journal of Botany 65, 899–906.
- Cain, S.A., 1948. Palynological studies at Sodon Lake: I. Size frequency study of fossil spruce pollen. Science 108, 115–117.
- Cushing, E.J., 1961. Size increase in pollen grains mounted in thin slides. Pollen et Spores 3, 265–274.
- Cwynar, L.C., Levesque, A.J., 1995. Chironomid evidence for late-glacial climatic reversals in Maine. Quaternary Research 43, 405–413.
- Davis, M.B., 1958. Three pollen diagrams from central Massachusetts. American Journal of Science 256, 540–570.
- Davis, M.B., 1969. Climatic changes in southern Connecticut recorded by pollen deposition at Rogers Lake. Ecology 50, 409–422.
- Davis, M.B., 1983. Holocene vegetational history of the eastern United States. In: Wright Jr., H.E. (Ed.), Late Quaternary Environments of the United States: Volume 2, The Holocene. University of Minnesota Press, Minneapolis, Minnesota, pp. 166–181.
- Davis, R.B., Jacobson Jr., G.L., 1985. Late glacial and early Holocene landscapes in northern New England and adjacent areas of Canada. Quaternary Research 23, 341–368.
- Davis, R.B., Bradshaw, T.E., Stuckenrath Jr., T.E., Borns Jr., H.W., 1975. Vegetation and associated environments during the past 14,000 years near Moulton Pond, Maine. Quaternary Research 5, 436–465.
- Davis, M.B., Spear, R.W, Shane, L.C.K., 1980. Holocene climate of New England. Quaternary Research 14, 240–250.
- Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis, Fourth edition. John Wiley and Sons, Chichester, UK.
- Foster, D.R., 1984. The dynamics of *Sphagnum* in forest and peatland communities in southeastern Labrador, Canada. Arctic 37, 133–140.
- Foster, D.R., 1985. Vegetation development following fire in *Picea mariana* (black spruce)-*Pleurozium* forests of south-eastern Labrador, Canada. Journal of Ecology 73, 517–534.
- Foster, D.R., Zebryk, T.M., 1993. Long-term vegetation dynamics and

disturbance history of a *Tsuga*-dominated forest in New England. Ecology 74, 982–998.

- Grimm, E.C., 1987. Coniss: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geoscience 13, 13–35.
- Hansen, B.C.S., 1985. A comparison of numerical and quantitative methods of separating pollen of black and white spruce. Canadian Journal of Botany 63, 2159–2163.
- Hou, J., Huang, Y., Wang, Y., Shuman, B., Oswald, W.W., Faison, E., Foster, D.R., 2006. Postglacial climate reconstruction based on compound-specific D/H ratios of fatty acids from Blood Pond, New England. Geochemistry, Geophysics, and Geosystems 7, 1–11.
- Huang, Y., Shuman, B., Wang, Y., Webb III, T., 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late-Quaternary climate variations. Geology 30, 1103–1106.
- Jackson, S.T., Overpeck, J.T., Webb III, T., Keattch, S.E., Anderson, K.E., 1997. Mapped plant-macrofossil and pollen records of Late Quaternary vegetation change in Eastern North America. Quaternary Science Reviews 16, 1–70.
- Jacobson Jr., G.L., Webb III, T., Grimm, E.C., 1987. Patterns and rates of vegetation change during the deglaciation of eastern North America. In: Ruddiman, W.F., Wright Jr., H.E. (Eds.), North America and Adjacent Oceans During the Last Deglaciation. The Geology of North America, K-3. Geological Society of America, Boulder, Colorado, pp. 277–288.
- Klinger, L.F., 1996. Coupling of soils and vegetation in peatland succession. Arctic and Alpine Research 28, 380–387.
- Levesque, A.J., Mayle, F.E., Walker, I.R., Cwynar, L.C., 1993. A previously unrecognized late-glacial cold event in eastern North America. Nature 361, 623–626.
- Lindbladh, M., O'Connor, R., Jacobson Jr., G.L., 2002. Morphometric analysis of pollen grains for paleoecological studies: classification of *Picea* from eastern North America. American Journal of Botany 89, 1459–1467.
- Lindbladh, M., Jacobson, G.L., Schauffler, M., 2003. The postglacial history of three Picea species in New England, USA. Quaternary Research 59, 61–69.
- Miller, N.G., 1980. Mosses as paleoecological indicators of late glacial terrestrial environments: some North American studies. Bulletin of the Torrey Botanical Club 107, 373–391.
- Miller, N.G., 1987. Late Quaternary fossil moss floras of eastern North America: evidence of major floristic changes during the late Pleistocene–early Holocene transition. Symposia Biologica Hungarica 35, 343–360.
- Monnin, E., Indermuhle, A., Dallenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.-M., 2001. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114.
- Newby, P.E., Killoran, P., Waldorf, M.R., Shuman, B.N., Webb, R.S., Webb III, T., 2000. 14,000 years of sediment, vegetation, and water-level changes at the Makepeace Cedar Swamp, southeastern Massachusetts. Quaternary Research 53, 352–368.
- Oswald, W.W., Faison, E.K., Foster, D.R., Doughty, E.D., Hansen, B.C.S., in press. Post-glacial changes in spatial patterns of vegetation across southern New England. Journal of Biogeography.
- Peteet, D.M., Daniels, R.A., Heusser, L.E., Vogel, J.S., Southon, J.R., Nelson, D.E., 1993. Late-glacial pollen, macrofossils and fish remains in northeastern U.S.A.—The Younger Dryas oscillation. Quaternary Science Reviews 12, 597–612.
- Polley, H.W., Johnson, H.B., Marinot, B.D., Mayeux, H.S., 1993. Increase in C3 plant water-use efficiency and biomass over Glacial to present CO2 concentrations. Nature 361, 61–64.
- Richard, P., 1970. Atlas pollinique des arbes et de quelques arbustes indigenes du Quebec. I Introduction generale. II Gymnospermes. Naturalist Canadian 97, 1–34.

Schauffler, M., Jacobson Jr., G.L., 2002. Persistence of coastal spruce refugia

during the Holocene in northern New England, USA, detected by standscale pollen stratigraphies. Journal of Ecology 90, 235–250.

- Shemesh, A., Peteet, D., 1998. Oxygen isotopes in fresh water biogenic opal— Northeastern US Alleröd-Younger Dryas temperature shift. Geophysical Research Letters 25, 1935–1938.
- Shuman, B.N., Bravo, J., Kaye, J., Lynch, J.A., Newby, P., Webb III, T., 2001. Late-Quaternary water-level variations and vegetation history at Crooked Pond, southeastern Massachusetts. Quaternary Research 56, 401–410.
- Shuman, B., Webb III, T., Bartlein, P., Williams, J.W., 2002. The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone. Quaternary Science Reviews 21, 1777–1791.
- Shuman, B., Newby, P., Huang, Y., Webb III, T., 2004. Evidence for the close climate control of New England vegetation history. Ecology 85, 1297–1310.
- Southon, J.R., 2000. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0–14,500 yr BP. Quaternary Research 53, 32–37.
- Spear, R.W., Davis, M.B., Shane, L.C.K., 1994. Late Quaternary history of lowand mid-elevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64, 85–109.
- Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621.
- Stuiver, M., Grootes, P.M., 2000. GISP2 oxygen isotope ratios. Quaternary Research 53, 277–284.
- Stuiver, M., Grootes, P.M., Braziunas, T.F., 1995. The GISP2 δ18O climate record of the past 16,500(years and the role of the sun, ocean and volcanoes. Quaternary Research 44, 341–354.
- Suter, S.M., 1985. Late-glacial and Holocene vegetation history in southeastern Massachusetts: a 14,000 year pollen record. Current Research in the Pleistocene 2, 87–89.
- Terasmae, J., Matthews, H.L., 1980. Late Wisconsin white spruce (*Picea glauca* (Moench) Voss) at Brampton Ontario. Canadian Journal of Earth Sciences 17, 1087–1095.
- Viau, A.E., Gajewski, K., Fines, P., Atkinson, D.E., Sawada, M., 2002. Widespread evidence of 1500 yr climate variability in North America during the past 14,000 yr. Geology 30, 455–458.
- Viereck, L.A., Dyrness, C.T., Van Cleve, K., Foote, M.J., 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Canadian Journal of Forest Research 13, 703–720.
- Viereck, L.A., Van Cleve, K., Dyrness, C.T., 1986. Forest ecosystem distribution in the taiga environment. In: Van Cleve, K., Chapin III., F.S., Flanagan, P.W., Viereck, L.A., Dyrness, C.T. (Eds.), Forest Ecosystems in the Alaska Taiga: A Synthesis of Structure and Function. Springer-Verlag, New York, New York, pp. 22–43.
- Watts, W.A., 1979. Late Quaternary vegetation of Central Appalachia and the New Jersey Coastal Plain. Ecological Monographs 49, 427–469.
- Webb III, T., Bartlein, P.J., Harrison, S.P., Anderson, K.H., 1993. Vegetation, lake levels, and climate in eastern North America for the past 18,000 years. In: Wright Jr., H.E., Kutzbach, J.E., Webb III., T., Bartlein, P.J. (Eds.), Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, Minnesota, pp. 415–467.
- Whitehead, D.R., 1979. Late-glacial and postglacial vegetational history of the Berkshires, western Massachusetts. Quaternary Research 12, 333–357.
- Wright, H.E., Mann, D.H., Glaser, P.H., 1984. Piston corers for peat and lake sediments. Ecology 65, 657–659.
- Yarie, J., 1983. Forest community classification of the Porcupine River drainage, interior Alaska and its application to forestry management. United States Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon, USA.
- Young, K.L., Woo, M.K., Edlund, S.A., 1997. Influence of local topography, soils, and vegetation on microclimate and hydrology at a high Arctic site, Ellesmere, Island, Canada. Arctic and Alpine 270–284.