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SUMMARY
There is increasing interest in using rehabilitation robots to assist post-stroke patients during
rehabilitation therapy. The motion control of the robot plays an important role in the process of
functional recovery training. Due to the change of the arm impedance of the post-stroke patient in
the passive recovery training, the conventional motion control based on a proportional-integral (PI)
controller is difficult to produce smooth movement of the robot to track the designed trajectory set
by the rehabilitation therapist. In this paper, we model the dynamics of post-stroke patient arm as
an impedance model, and propose an adaptive control scheme, which consists of an adaptive PI
control algorithm and an adaptive damping control algorithm, to control the rehabilitation robot
moving along predefined trajectories stably and smoothly. An equivalent two-port circuit of the
rehabilitation robot and human arm is built, and the passivity theory of circuits is used to analyze the
stability and smoothness performance of the robot. A slide Least Mean Square with adaptive window
(SLMS-AW) method is presented for on-line estimation of the parameters of the arm impedance
model, which is used for adjusting the gains of the PI-damping controller. In this paper, the Barrett
WAM Arm manipulator is used as the main hardware platform for the functional recovery training
of the post-stroke patient. Passive recovery training has been implemented on the WAM Arm, and
the experimental results demonstrate the effectiveness and potential of the proposed adaptive control
strategies.

KEYWORDS: Rehabilitation robot; Stroke; Impedance model; Parameter identification; Robot
control.

1. Introduction
Stroke is a leading cause of serious, long-term disability. For instance, in China every year there
are about 2,000,000 people suffering from a stroke, of which approximately 66 percent survives the
stroke, commonly involving deficits of motor function.1 Although the optimal therapy for patients who
suffer from stroke is still a point of discussion, one theory is that patients will recover better and faster
when having intensive physiotherapy directly after the accident. According to motion and relearning
theory, undamaged brain tissue will then take over the functionality of the damaged tissue, and the
lost functionality caused by the stroke will be regained.2 In recent years, there is increasing interest
in using robotic devices to help provide rehabilitation therapy following neurologic injuries such as
stroke and spinal cord injury.3 In order to assist the stroke patients during rehabilitation therapy, much
of this new work has focused on developing more sophisticated, many degrees-of-freedom (DOF)
robot-assisted rehabilitation therapy systems, such as MIME,4 ARM Guide,5 MIT-MANUS,6 and
UECM.7 And there has also been a progression in the development of control strategies that specify
how these devices interact with participants.

Robotic aids can provide programmable levels of assistance, and automatically modify their output
based on sensor data using control frameworks.8,9 The goal of robotic therapy control algorithms is
to control robotic devices for rehabilitation exercise, so that the robot-assisted training is helpful to
the improvement of motor recovery. In clinic, rehabilitation robot usually works on two modes, one
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is passive recovery training mode, another is active recovery training mode. The passive recovery
training is the initial stage of rehabilitation training, and its therapy aim is to reduce the muscle tone
and provoke motor spasticity, and increase impaired-limb movable region.10 The main objective in
this stage is to control the robot stably and smoothly to stretch the patient moving along a predefined
trajectory with the position controller. Thus, in the passive recovery training mode, providing a
desired movement trajectory with appropriate velocity to the patient is a key issue for the robot
control. O’Malley et al. used a traditional fixed gain proportional-derivative (PD) trajectory controller
to control the Rice Wrist moving along the desired trajectory in the GoTo mode and found that
the performance was dependent on the selection of PD gains.11 Erol et al. proposed an artificial
neural network-based proportional-integral (PI) gain, scheduling direct force controller which can
automatically adjust control gains for a wide range of patients with different conditions.12 Xu and
Song designed a fuzzy logic based PD position controller for upper-limb rehabilitation robot to obtain
stable motion tracking performance.13 Xu and Song then developed an adaptive impedance controller
based on evolutionary dynamic fuzzy neural networks for arm rehabilitation robot to obtain the robust
control performance when the change of impaired limb’s physical condition happens.14 Owing to the
difficulty of neural network training and lack of sufficient training set, it is not easy to satisfy the
practical need.

In this paper, a novel control scheme is proposed, which is the combination of adaptive PI control
and adaptive damping control. The passivity theory is introduced to analyze the stability performance
of the rehabilitation robot when interacting with patient, moreover, a slide Least Mean Squares with
adaptive window (SLMS-AW) method is given to estimate the parameters of human arm impedance
on-line for adjusting the gains of the PI-damping controller. The Barrett WAM Arm manipulator is
used as the main hardware platform of rehabilitation robot for the functional recovery training of the
post-stroke patient, and the passive recovery training has been implemented on the WAM Arm.

2. Arm Rehabilitation Robot System
Figure 1 depicts the configuration and control structure of the arm rehabilitation robot system, which
consists of a robot with some DOF, PC-based controller, an arm support device at the end of the robot,
a multi-dimensional force/torque sensor installed between the robot end and the arm support. During
the rehabilitation training, the arm of the post-stroke patient is banded to the arm support device at
the end of the robot. The robot drives the human arm to track the designed trajectory circularly under
the control of PC. The position sensor measures the movement of the robot as well as the force/torque
sensor measures the interactive force between the rehabilitation robot and the arm of post-stroke
patient for the robot control. The control structure of position tracking can be shown as Fig. 1(b).

3. Modeling of Rehabilitation Robot System

3.1. Dynamics of the rehabilitation robot
For the simplification of the analysis, we only consider the one-DOF case of the rehabilitation robot;
however, the results of the analysis are easy to expand to n-DOF cases.

The robot dynamics can be expressed as follows:

fc(t) − fh(t) = mrẍr (t) + br ẋr (t) + krxr (t), (1)

where fc is output of controller as a force command, xr is displacement of the robot, and mr , br , kr

denote mass, damping, and stiffness of the robot, respectively. fh is applied force on the human arm
by robot.

Equation (1) can be expressed in frequency domain by using Laplace transformation as

fc(s) − fh(s) = (mrs + br + kr/s)ẋr (s). (2)

LetZr (s) = mrs + br + kr/s. (3)

Zr (s) is mechanical impedance of the robot.
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Fig. 1. Arm rehabilitation robot and control structure: (a) arm rehabilitation system; (b) control structure.

3.2. Impedance model of the human arm
The human arm dynamics is usually expressed by a mass-spring-damping system as follows:

fh(t) − fa(t) = mhẍh(t) + bhẋh(t) + khxh(t), (4)

where fa is the active force of the post-stoke patient. During the passive recovery training mode, fa

is sometimes caused by spastic muscle, which can be treated as an interference force affecting the
rehabilitation system. xh is displacement of the human arm, and mh, bh, kh denote mass, damping,
and stiffness of the human arm, respectively.

Rewriting Eq. (4) in frequency domain as

fh(s) = Zh(s)ẋh(s) + fa(s), (5)

Zh(s) = mhs + bh + kh/s, which is mechanical impedance of the human arm.
During the rehabilitation training process, owing to the changes of wrist joint, elbow joint,

and shoulder joint when human arm is passively driven by the robot, the mh, bh, kh are changed
continuously and circularly. Thus, the mechanical impedance of the human arm is typically time-
varying. Because it is impossible to pre-know the change of the Zh(s) and when the fa is applied, the
environment of rehabilitation robot is parameter uncertain.

3.3. Control of rehabilitation robot
The conventional PI controller is used for position trajectory control. In order to keep the trajectory of
human arm smooth and stable without abrupt change in velocity, the damping control is incorporated
with the PI control, which can prevent robot from high speed and thus maintains safety of the
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Fig. 2. Adaptive PI and damping controllers.
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Fig. 3. Equivalent two-port circuit of arm rehabilitation robot.

rehabilitation robot system. In this paper, the block diagram of the suggested adaptive PI-damping
controller is shown as Fig. 2.

The outputs of the PI control and damping control are given as the following:

fPI = KP (ẋd − ẋh) + KI (xd − xh), (6)

fdamp = −Rdẋh, (7)

fc = fPI + fdamp = KP (ẋd − ẋh) + KI (xd − xh) − Rdẋh. (8)

Here, KP ,KI denote the proportional coefficient and integral coefficient of the PI controller,
respectively. Rd stands for the damping coefficient which is a parameter of the damping controller.

3.4. Equivalent two-port circuit of rehabilitation robot
According to the equivalent rule between mechanical systems and electrical systems, such as current I
is equivalent to velocity ẋ, and voltage U is equivalent to force F, we can express Eq. (8) in frequency
domain as

Uc = UPI + Udamp = Zc(Id − Ih) − RdIh, (9)

where Zc(s) = Kp + KI/s is defined as the control impedance of the robot. Therefore, the
rehabilitation robot can be depicted as an equivalent two-port circuit based on Eqs. (1)–(9), seen
in Fig. 3.

Where, for the convenience of analysis, the interference force Ua caused by patient is treated as an
input voltage source of the two-port circuit, and Ua is power limited, Ia(s) = −Ih(s) stands for the
input velocity.
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4. Analysis of Stability and Smoothness Performance

4.1. Passivity performance analysis
Definition 1:15 An n-port circuit is said to be passive if and only if for any independent set of n-port
flows, Ii injected into the circuit, and efforts, Ui applied across the circuit,

∫ ∞

0
UT (t)I (t)dt ≥ 0, (10)

where UT = [U1, U2, · · · , Un]T ∈ Ln
2(R+), I T = [I1, I2, · · · , In]T ∈ Ln

2(R+).
Condition (10) is simply a statement that a passive n-port circuit may dissipate energy but cannot

increase the total energy of a system in which it is an element. The passivity of the circuit implies the
stability of the system.

Assumption: The parameters of robot impedance mr, br, kr ∈ R+ are fixed, the parameters of
human arm impedance mh, bh, kh ∈ R+are bounded mh ≤ λm, bh ≤ λb, kh ≤ λk . The parameters of
controller KP , KI , Rd ∈ R+ are bounded.

Let

Zd (s) = Rd + Zr + Zh = (mr + mh)s + (Rd + br + bh) + 1

s
(kr + kh). (11)

Thus, Zd (s) is a typical energy dissipation impedance.
The relationship between effort U (t) (force, voltage) and flow I (t) (velocity, current) of the

equivalent two-port circuit of rehabilitation robot can be conveniently specified by its hybrid matrix,
H (s) according to

[
UPI

Ia

]
=

[
h11 h12

h21 h22

] [
Id

Ua

]
= H (s)

[
Id

Ua

]
. (12)

Deducing from Eqs. (1)–(9) and (11), we have

[
UPI

Ia

]
=

[
ZcZd

Zc+Zd

Zc

Zc+Zd

− Zc

Zc+Zd

1
Zc+Zd

][
Id

Ua

]
, (13)

H (s) =
[

h11 h12

h21 h22

]
=

[
ZcZd

Zc+Zd

Zc

Zc+Zd

− Zc

Zc+Zd

1
Zc+Zd

]
(14)

So, for the equivalent two-port circuit of rehabilitation robot, we have

∫ ∞

0
[UPI Ia]HT [ Id Ua ]T dt =

∫ ∞

0

(
h11I

2
d + (h12 + h21)IdUa + h22U

2
a

)
dt

=
∫ ∞

0

(
ZcZd

Zc + Zd

I 2
d + 1

Zc + Zd

U 2
a

)
dt ≥ 0. (15)

Therefore, the rehabilitation robot system under the PI-damping control with bounded parameters
is always passive, which means it is stable.

4.2. Smooth position tracking performance analysis
Assuming the interference voltage Ua = 0, the movement of the human arm

Ih = Zc

Zc + Zd

= Zc

Z̃
Id = (KP s + KI )

m̃s2 + b̃s + k̃
Id . (16)
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Let

Z̃ = Zc + Zd = (mr + mh)s + (Rd + br + bh + KP ) + 1

s
(kr + kh + KI ) = m̃s + b̃ + k̃/s, (17)

where

m̃ = mr + mh; b̃ = Rd + br + bh + KP ; k̃ = kr + kh + KI . (18)

The position tracking error between the desired trajectory and real trajectory of the robot is

e = Id − Ih = Id − (KP s + KI )

m̃s2 + b̃s + k̃
Id = m̃s2 + (b̃ − KP )s + (k̃ − KI )

m̃s2 + b̃s + k̃
Id . (19)

Thus, the steady-state position tracking error

ess = lim
s→0

se(s)
1

s
= k̃ − KI

k̃
= kh

KI + kh

. (20)

For an interference fa(t) = δ(t) caused by patient, the position tracking error

e′ = 1

m̃s2 + b̃s + k̃
Ua. (21)

So, the steady-state position tracking error caused by the interference Ua

e′
ss = lim

s→0
se′(s) = 0. (22)

The above equation means the control structure is insensitive to the interference Ua .

Let ωn =
√

k̃
m̃

, ζ = 1
2

b̃√
m̃k̃

, and substitute them into Eq. (16). Then

G(s) = Ih

Id

=
ω2

n

k̃
(KP s + KI )

s2 + 2ζωns + ω2
n

. (23)

From the theory of automatic control, if ζ ≥ 1, the control system is called damping system.

b̃ ≥ 2
√

m̃k̃. (24)

In this case, there is no overshoot in the step response of the system, which means the smoothness
performance is desired for post-stroke patient passive recovery training, so that, the parameters of the
controller should satisfy the smoothness condition as

Rd + br + bh + KP ≥ 2
√

(mr + mh)(kr + kh + KI ). (25)

5. Identification of Arm Impedance Model
The impaired arm’s dynamics can be expressed as a time-variant mass-spring-damping model.
Suppose m̂h, b̂h, k̂h are estimates of mh, bh, kh in Eq. (4) respectively. Then we have

f̂ha = m̂hẍh + b̂hẋh + k̂hxh, (26)

where fha = fh − fa .
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According to the Least Mean Square method

E =
N∑

i=1

[fha(i) − f̂ha(i)]2, (27)

∂E

∂m̂h

= 0;
∂E

∂b̂h

= 0;
∂E

∂k̂h

= 0, (28)

so we have

⎡
⎣ m̂h

b̂h

k̂h

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

ẍ2
h(i)

N∑
i=1

ẍh(i)ẋh(i)
N∑

i=1
ẍh(i)xh(i)

N∑
i=1

ẋh(i)ẍh(i)
N∑

i=1
ẋ2

h(i)
N∑

i=1
ẋh(i)xh(i)

N∑
i=1

xh(i)ẍh(i)
N∑

i=1
xh(i)ẋh(i)

N∑
i=1

x2
h(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

ẍh(i)fha(i)

N∑
i=1

ẋh(i)fha(i)

N∑
i=1

xh(i)fha(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

N is number of sampling points for parameter estimation. In order to estimate the parameters on
line, we have proposed a kind of SLMS method16 as the following:

⎡
⎣ m̂h(t)

b̂h(t)
k̂h(t)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

t∑
i=t−N+1

ẍ2
h(i)

t∑
i=t−N+1

ẍh(i)ẋh(i)
t∑

i=t−N+1
ẍh(i)xh(i)

t∑
i=t−N+1

ẋh(i)ẍh(i)
t∑

i=t−N+1
ẋ2

h(i)
t∑

i=t−N+1
ẋh(i)xh(i)

t∑
i=t−N+1

xh(i)ẍh(i)
t∑

i=t−N+1
xh(i)ẋh(i)

t∑
i=t−N+1

x2
h(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎢⎢⎣

t∑
i=t−N+1

ẍh(i)fha(i)

t∑
i=t−N+1

ẋh(i)fha(i)

t∑
i=t−N+1

xh(i)fha(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (30)

[
Ẑh(t)

] = [A(t)]−1 [C(t)] t ≥ N. (31)

The elements of the matrixes [A(t)] and [C(t)] can be quickly calculated by using slide method as:

ai,j (t + 1) =
t+1∑

k=t−N+2

x
(3−i)
h (k)x(3−j )

h (k)

= ai,j (t) + x
(3−i)
h (t + 1)x(3−j )

h (t + 1) − x
(3−i)
h (t − N + 1)x(3−j )

h (t − N + 1);

i = 1, 2, 3; j = 1, 2, 3, (32)

ci(t + 1) =
t+1∑

k=t−N+2

x
(3−i)
h (k)fha(k)

= ci(t) + x
(3−i)
h (t + 1)fha(t + 1) − x

(3−i)
h (t − N + 1)fha(t − N + 1); i = 1, 2, 3. (33)

In general, the parameter N is fixed. In this research, in order to estimate the impaired limb’s
parameters more effectively and real time, a SLMS-AW identification algorithm is given. N is
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Fig. 4. Identification results of human arm impedance: (a) identification using SLMS-AW; (b) identification
using traditional SLMS.

dynamically adapted according to the variations of fha and ẍh, which can be expressed as:

N = f (�ẍh, �fha), N ∈ [Nmin, Nmax],

f (�ẍh, �fha) = Nmax − (Nmax − Nmin) •
[

(1 − λ)
�ẍh

�ẍmax
+ λ

�fha

�fmax

]
, (34)

where Nmin, Nmax are the up and low limitation of N, respectively, �ẍmaxand �fmax are the maximum
variations of accelerator and force, and λis the weight coefficient.

To verify the performance of the suggested SLMS-AW, some simulation experiments have been
carried out. The N for SLMS-AW is set to [10, 40]. The results of identification of mass, damping,
and stiffness of human arm impedance are shown in Fig. 4. For comparison, the identification results
of traditional SLMS identification algorithm are also given, in which the N is set to be 40. In Fig. 4,
solid line represents the impedance parameters of human arm which are predefined according to
the experimental results and clinical analysis in refs. [17] and [18], and dashed line represents the
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(a) (b)

Fig. 5. Rehabilitation robot systems based on WAM Arm: (a) three-dimensional sensor; (b) Arm support device.

identification curve. From the identification results in Fig. 4, it can be concluded that the proposed
SLMS-AW algorithm is obviously more accurate, robust and real-time than the traditional SLMS
method.

6. Experiment

6.1. Experimental setup
The Barrett WAM Arm manipulator shown in Fig. 5 is used as the main hardware platform for the
functional recovery therapy in this research. The standard WAM Arm is a 4-DOF highly dexterous,
naturally back-drivable manipulator. The upper-limb rehabilitation experimental setup consists of the
Barrett WAM Arm, a three-dimensional force sensor (Fig. 5(a)), an arm support device (Fig. 5(b)),
and an external PC offered by Barrett. In order to record the force between the patient arm and the
rehabilitation robot end-effector, a three-dimensional force sensor19 is designed and installed at the
end-effector of the WAM Arm. With the arm support device, the patient forearm can be well supported
on it. An external PC running with the Linux system was responsible for running the control loop
and providing high-level command of the WAM rehabilitation robot system. The control loop is
the repeated reading of motor angles and commanding of motor torques at 2 KHz. Following the
generated high-level command, the patient arm could be stretched by the WAM rehabilitation robot
and perform various physical training.

6.2. Control system
During the robot-assisted passive recovery training, the physical state of patient’s upper-limb is not
ideal, there are many uncertain factors affecting the control performance, e.g. pose-position change,
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Fig. 6. Control system block diagram for passive training.

muscle spasm and tremor, even occasional cough, and other external disturbance. In this research, the
adaptive PI control algorithm and damping control algorithm are proposed for the passive recovery
training to control the WAM Arm stably and smoothly to stretch the impaired limb moving along the
predefined trajectory. The adaptive PI-damping controller is expected to provide better performance
than the traditional fixed gain PI controller because of its ability of adjusting the control gains in
accordance with changes of the patient’s physical state. The block diagram of proposed control
strategy is given in Fig. 6.

As shown in Fig. 6, the designed control system mainly consists of controller unit, identification
unit, and parameter regulators. The designed controller adopts adaptive PI-damping algorithm. In this
research, damping control works as an energy-dissipation part, which is proportional to velocity with
opposite direction and is incorporated with PI control. Under the designed controller, the rehabilitation
robot stretches the impaired limb to do recovery training. The proposed control method can effectively
prevent robot from high speed and abrupt interference caused by post-stroke patient, so that the robot
always runs with stable and smooth tracking movement during rehabilitation training. The SLMS-
AW identification unit estimates the impaired-limb impedance parameters online, which stand for
the dynamic state of the training arm. Then the parameter regulators adjust KP , KI , and Rd of the
designed controller according to the arm physical condition.

In this paper, fuzzy reasoning logic is adopted to adjust the controller parameters. There are
three separate fuzzy regulators for theKP , KI , and Rdparts, respectively. During the rehabilitation
exercise, m̂h,b̂h,k̂h of the training limb are estimated by SLMS-AW identification. In order to regulate
the control parameters effectively and appropriately, the identified results of mass and stiffness are
used for adjusting KP , and the identified results of mass and damping are used for adjusting KI .
For the damping control, the identified dumping and measured active force of subject are used to
regulate Rd . All the inputs of fuzzy regulators are scaled to [0,1], and the corresponding outputs are
separately scaled: KP ∈ [500,700], KI ∈ [650,900], Rd ∈ [0,50]. Meanwhile, during the fuzzification
and defuzzification, all the inputs and outputs are defined as five fuzzy sets: small (S), small and
middle (SM), middle (M), middle and large (ML), and large (L), respectively. According to the
practical application, the KP regulator should adjust gently and be less affected by the mass change,
while the Rd regulator should be magnificently sensitive to the active force of subject. The designed
fuzzy reasoning rules for regulating KP , KI , and Rdare shown in Tables I–III, respectively, and the
corresponding input–output surface maps are shown in Figs. 7–9.

6.3. Experimental results
To verify the effectiveness of the proposed adaptive PI-damping controller, two healthy subjects
are recruited to participate in the robot-aided upper-limb passive rehabilitation exercise. Figure 10
shows the sinusoidal trajectory tracking performances of the proposed adaptive PI-damping strategy
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Table I. Fuzzy reasoning rules for KP .

k-scaled

m-scaled S SM M ML L

S S S S SM M
SM S SM M M ML
M S SM M M ML
ML SM SM M ML ML
L M M ML ML L

Table II. Fuzzy reasoning rules for KI .

b-scaled

m-scaled S SM M ML L

S S S SM SM M
SM S SM SM M M
M SM SM SM M ML
ML SM M M ML ML
L M M ML ML L

Table III. Fuzzy reasoning rules for Rd .

b-scaled

f-scaled S SM M ML L

S S S S SM SM
SM SM SM SM SM M
M M M M M ML
ML ML M ML ML L
L ML L L L L
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Fig. 7. Control surface of KP .
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and the traditional PI method with regard to a healthy subject sample P1 in the horizontal (J3, the
3rd joint) flexion/extension exercises. The human arm’s flexion/extension limitations expressed in
WAM Arm world frames are defined as –0.8 rad in flexion and 0.8 rad in extension, respectively.
According to the previous experimental performances and practical application of the system, the
conventional PI controller gainsKP and KI were set as 600 and 750, respectively. The safety peak
joint velocity and the maximum motor torque for four motors were set as 1.2 rad/s and 8.2 Nm,
respectively. It is obvious in Fig. 10, when the participant is guided by the WAM Arm along the
predefined sinusoidal trajectory, both the adaptive PI-damping controller and traditional PI controller
can achieve the desired trajectories, but the tracking performance of the former is even better than
that of the latter, which can be observed from the trajectory tracking error.

Meanwhile, the maximum absolute error (MAE) and sum of absolute error (SAE) of trajectory
tracking are selected as two indices for quantitative evaluation of the performances of the control
methods. Table IV gives the quantitative comparison results in terms of the two indices. It is shown that
the MAE (0.017865) and SAE (28.446) of our methods are obviously smaller than the ones (0.049066,
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Fig. 10. Representative results of trajectory tracking control for participant 1 (P1) in stationary state: (a) arm
identification in stationary; (b) trajectory tracking in stationary; (c) tracking error in stationary.
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Table IV. Control performance comparison for P1.

Tracking error (rad) MAE SAE

Stationary Adaptive 0.017865 28.446
Traditional 0.049066 44.022

Non-stationary Adaptive 0.059341 37.835
Traditional 0.10919 52.993

Table V. Control performance comparison for P2.

Tracking error (rad) MAE SAE

Stationary Adaptive 0.015636 23.261
Traditional 0.045019 39.651

Non-stationary Adaptive 0.072641 38.507
Traditional 0.10909 51.475

44.022) of the conventional method. A further comparison is made under the non-stationary condition
that the participant intentionally applies disturbance force during the time interval from 10 s to
12 s. Figure 11 shows the representative results. From the human arm’s impedance identification curve,
when the subject is asked to apply intentional force, the estimated human arm’s mass, damping, and
stiffness parameters show substantial increases at the moment when the arm muscle force increases
intentionally. Although a certain interference force exerts on the passive rehabilitation training system,
the sinusoidal trajectory tracking of the adaptive control method is still well achieved. Moreover, it is
obvious that the smoothness of the robot joint motion under the control of the adaptive PI-damping
method is much better than that of the traditional PI control method, which can also be found from
the MAE and SAE of trajectory tracking shown in Table IV.

To verify the adaptability of the proposed control method among different subjects, another
participant P2 is asked to perform the same passive rehabilitation exercises as the one conducted
for participant P1. Figures 12 and 13 show the P2’s arm impedance parameter identification and
trajectory tracking performance. Corresponding quantitative results in terms of the MAE and SAE
are also illustrated in Table V. The quantitative analysis of trajectory tracking errors of two subjects in
Tables IV and V shows that the errors of the proposed control strategy are obviously less than that of
the traditional PI control method. Therefore, the experimental results demonstrate that the proposed
adaptive PI-damping controller has better performance of stability, smoothness, and robustness than
the conventional controller.

7. Conclusions
In this paper, an adaptive PI-damping control strategy is proposed for the rehabilitation robot motion
control to realize stable and smooth recovery training of the post-stroke patient, considering that the
physical condition of the training arm is usually dynamically changed during the passive recovery
exercises. Impedance model of the patient arm and the equivalent two-port circuit of the rehabilitation
robot together with the patient arm are built, and then the stability and smoothness performance of the
robot are analyzed by using the passivity theory. Moreover, the SLMS-AW method is introduced to
identify the impedance parameters of the training arm in real time, which can more effectively
represent the upper-limb physical condition. Three fuzzy regulators are designed to adjust the
parameters of the PI-damping controller real-time according to the current physical state of training
arm. Two types of experiments with different control methods are carried out, and the experimental
results demonstrate that the proposed adaptive PI-damping control strategy has better performance
of stability and smoothness than the traditional PI algorithm.
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Fig. 11. Representative results of trajectory tracking control for participant 1 (P1) in non-stationary state: (a) arm
identification in non-stationary; (b) trajectory tracking in non-stationary; (c) tracking error in non-stationary.
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Fig. 12. Representative results of trajectory tracking control for participant 2 (P2) in stationary state: (a) arm
identification in stationary; (b) trajectory tracking in stationary; (c) tracking error in stationary.
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Fig. 13. Representative results of trajectory tracking control for participant 2 (P2) in non-stationary state: (a) arm
identification in non-stationary; (b) trajectory tracking in non-stationary; (c) tracking error in non-stationary.
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