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Abstract

Increasing crop diversity has been highly recommended because of its environmental and
economic benefits. However, the impacts of crop diversity on soil properties are not well docu-
mented. Thus, the present study was conducted to assess the impacts of crop diversity on
selected soil quality indicators. The cropping systems investigated here included wheat
(Triticum aestivum L.) grown continuously for 5 years as mono-cropping (MC), and a
5-year cropping sequence [(wheat–cover crop (CC)–corn (Zea mays L.)–pea (Pisum sativum L.)
and barley (Hordeum vulgare L.)–sunflower (Helianthus annuus L.)]. Each crop was present
every year. This study was conducted in the northern Great Plains of North America, and soil
quality data were collected for 2016 and 2017. Selected soil quality indicators that include: soil
pH, organic carbon (SOC), cold water-extractable C (CWC) and N (CWN), hot water-extract-
able C (HWC) and N (HWN), microbial biomass carbon (MBC), bulk density (BD), water
retention (SWR), wet soil aggregate stability (WAS), and urease and β-glucoside enzyme activ-
ity were measured after the completion of 5-year rotation cycle and the following year. Crop
diversity did not affect soil pH, CWC, CWN, HWC, HWN and SWR. Cropping systems that
contained CC increased SOC at shallow depths compared to the systems that did not have CC.
Crop diversity increased WAS, MBC, and urease and β-glucoside enzyme activity compared
with the MC. Comparison of electrical conductivity (EC) measured in this study to the base-
line values at the research site prior to the establishment of treatments revealed that crop rota-
tion decreased EC over time. Results indicate that crop diversity can improve soil quality, thus
promoting sustainable agriculture.

Introduction

Soil degradation due to increasingly intensive farming has drawn researchers’ attention in
recent years (Mekonnen et al., 2015; Khaledian et al., 2017). It has been reported that approxi-
mately 60% of the soil ecosystem services have undergone soil degradation by varying degrees
since the 1950s (Lal, 2015), with agricultural activity being one of the principal factors
(Oldeman et al., 2017). Consequently, taking action to minimize the loss of soil fertility and
improve soil structure is a priority (Khaledian et al., 2017). Crop management practices greatly
influence soil properties by changing microbial activity and carbon (C) sequestration (Zuber
et al., 2018). Crop diversification has been treated as an implementable practice to enhance
crop production, soil quality (Cook, 2017) and agricultural sustainability (Congreves et al.,
2015; Yadav et al., 2016).

Increasing diversity cropping system has the potential to maintain or improve soil quality
with the help of increased crop residue and varied root systems, thereby increasing and
diversifying the microbial activity (Studdert, 2000). A number of studies have reported that
crop diversity increased soil water storage, wet soil aggregate stability (WAS), plant available
nutrients, C cycling and soil enzyme activity compared to less intensive crop management
systems (mono-cropping or fallow) (Dick, 1984; Tiemann et al., 2015; Zuber et al., 2015;
Nunes et al., 2018). It was reported by Karlen et al. (2006) that crop diversity decreased
soil bulk density (BD), resulting in increased crop yield when compared to the continuous
corn (Smith et al., 2008).

Further, crop diversity can enhance soil nitrogen (N) concentrations, which is considered
the main nutrient for plant growth (Stanger and Lauer, 2008), and increase microbial biomass
C (MBC), which is an important index of soil quality (McDaniel et al., 2014). Crop diversity
can reduce pest pathogens by breaking the pest cycle (Rusch et al., 2013) and making full use
of nutrients in different soil layers with different crop root systems (O’Rourke et al., 2014).
Crop diversity can increase soil C content, which makes a great contribution to recovering,
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creating and binding soil aggregate structure (Chateil et al., 2013;
McDaniel et al., 2014; Tiemann et al., 2015). Soil organic C
(SOC), one of the most important soil quality components, has
a significant impact on physical, chemical and biological proper-
ties (King and Blesh, 2018). Soil property responses to crop diver-
sity may vary due to different soil types, topography, climate,
tillage intensity, irrigation and fertilizer rate (Al-Kaisi et al.,
2005; Gál et al., 2007). Therefore, an improved understanding
of soil physical, chemical and biological properties as impacted
by crop diversification is important. Several studies have com-
pared soil quality from a crop grown in crop diversity with a simi-
lar crop grown in mono-cropping (Tiemann et al., 2015; Zuber
et al., 2015; Nunes et al., 2018).

Corn (Zea mays L.) and soybean (Glycine max L.) sequence is
the most common agricultural practice in many places worldwide
(Hoss et al., 2018). However, interest in adopting crop diversity
has been increasing among producers to enhance crop production.
Farming practices have changed from conventional systems to con-
tinuous cropping with a variety of cropping systems (Sindelar et al.,
2017). Including cover crops (CC) in a diverse system has the
potential to relieve soil compaction, erosion, nutrient leaching,
and alter C cycling and microbial activity, and could therefore regu-
late the ecosystem functioning and soil structure maintenance
(Schipanski et al., 2014; Lewis et al., 2018). Utilizing leguminous
crops in arable cropping systems was suggested as an implementa-
ble practice to enhance soil C and N sequestration in rainfed areas
(Bhattacharyya et al., 2009; Zhou et al., 2017).

There are few studies investigating the effect of crop diversity
on soil quality from different crop species within the system.
Therefore, the objective of this research was to investigate the
impacts of the crop diversity that are part of a rotation on some
selected soil chemical, physical and biological properties. It was
hypothesized that diverse cropping system would improve soil
quality due to the inputs of the below and aboveground biomass,
thus increasing soil C content, microbial biomass, soil enzymes
activity and soil quality.

Materials and methods

Experimental site

This study was initiated in 2011 at the Dickinson Research
Extension Center located near Dickinson, North Dakota
(46°53′N, 102°49′W). Soils data for this study were collected in
2016–2017. The site consists of 18 uniform rectangular 1.74 ha
(31.3 ha in total) plots. This experimental site was established to
investigate the soil quality responses to the adoption of diversified
cropping (DC) system under a no-till system. Soils of the study site
are Vebar Series (coarse-loamy, mixed, superactive, frigid Typic
Haplustolls) and Savage Series (fine, smectitic, frigid Vertic
Argiustolls). To minimize the impact of soil on the data analysis,
two replicates were assigned to Savage Series and the third replicate
was assigned to Vebar Series for each treatment (Abagandura et al.,
2019). The treatments were laid out in a randomized complete
block design with three replications. Additional details of the site
were described in Abagandura et al. (2019).

The cropping system investigated here included mono-
cropping (MC) system [wheat (Triticum aestivum L.)] grown con-
tinuously for 5 years and 5-year crop sequences [wheat–cover
crop (CC)–corn (Z. mays L.)–pea (Pisum sativum L.)/barley
(Hordeum vulgare L.)–sunflower (Helianthus annuus L.)].
Wheat, sunflower and corn were used as cash crops, while

legumes (pea/barley) was used to increase nutrient and organic
matter inputs, CC was used to supply nutrients for the following
crop, balance the soil moisture and reduce soil erosion. Each crop
was present every year. The cropping sequence over the study per-
iod is presented in Fig. 1. Cover crop species used in this study are
listed in online Supplementary Table S1. Crop agronomic infor-
mation, including planting time, planting population, row spacing
and seeding depth is listed in Table 1. Wheat was harvested in
August and the other crops were harvested between October
and November. No fertilizer was applied in 2016 and 2017
according to the soil test results from North Dakota State
University Laboratory, and pesticides were applied as needed to
control pests. All crops were grown under rainfed conditions,
and no irrigation was applied. Average minimum and maximum
air temperature and total precipitation (mm) for 2016 and 2017
(online Supplementary Fig. S1) were collected from a weather sta-
tion located approximately 25 km from the field (Abagandura
et al., 2019). Climate is between dry season and semi-arid climate,
caused by low precipitation and a monthly mean temperature of
−8.7°C in January and 20°C in July. Average (30-year) air tem-
perature at the site was 6.2°C, and mean annual precipitation
was 610 mm (Abagandura et al., 2019).

Sample collection and laboratory analysis

Soil samples were collected in June 2010 to measure the baseline
values at the research site prior to the establishment of treatments.
Although a 5-year rotation cycle was completed in 2015 (Fig. 1),
yet, it was not possible to take soil samples after harvesting in
2015 due to the cold weather in the study area. When the snow
melted around May 2016, soil samples were taken in June 2016
to represent the end of the 5-year rotation cycle. Soil samples
were also collected when a new cycle of the 5-year rotation
began in 2016. Again it was not possible to take soil samples
after harvesting in 2016; therefore, soil samples were taken in
June 2017 to represent the beginning of the second cycle of the
5-year rotation.

Soil samples were collected from six random spots from 0–5
cm depth in 2010 and from 0–5, 5–15, 15–30, 30–45 and 45–
60 cm depths in 2016 and 2017 using a soil auger (3.2 cm
diam.) from each plot. In addition, a separate soil core (5 cm
i.d.) was taken from each plot for soil water retention (SWR)
and BD analyses in 2016 and 2017. All the soil samples were
kept in plastic zip-lock bags, transported to the lab and stored
in a cold room (4°C) for further analysis. Soil samples for all
depths were air dried, ground and sieved to pass through a 2
mm sieve. A total of 10 g of soil was placed in a centrifuge tube
with 10 ml of distilled water (the ratio of soil to water being
1:1), the suspension was stirred with a vortex mixer for 30 s,
and then a pH and EC meter (Thermo Scientific Orion,
model-Orion Star A215) was used to measure the soil pH
(Kalra, 1995). Electrical conductivity (EC) was measured with
1:2.5 of soil:water slurry through pH and EC meter. Total C
and N were determined using the TruSpec CHN analyser
(LECO Corporation, St. Joseph, MI, USA) with the dry combus-
tion method. Inorganic C was determined for all the soil samples
by reaction with hydrochloric acid (Schumacher, 2002). Soil
organic C was calculated by subtracting the soil inorganic C
from total C. There were not sufficient samples in 2010; therefore,
the following analyses were conducted on 2016 and 2017 soil
samples only.
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Labile C and N fractions [cold water-extractable C (CWC),
cold water-extractable N (CWN), hot water-extractable C
(HWC), hot water-extractable N (HWN) and microbial biomass
C (MBC)] were determined in this study. Labile C and N fractions
(except for MBC) were extracted for 0–5 and 5–15 cm depths
using cold water and hot water extraction methods (Ghani
et al., 2003) and analysed with the TOC-L analyser (Shimadzu
Corporation, Columbia, MD, USA, model-TNM-L-ROHS). To
summarize the methodology, 3 g of soil and 30 ml of distilled
water were taken into 50 ml centrifuge tubes, then moved to an
end-over-end shaker for 30 min at 40 rpm. The suspension was
centrifuged at 3000 rpm for 25 min, and the supernatant was sub-
sequently separated from the soil with 0.45 μm pore-size filter
paper to get CWC and CWN. Thirty millilitres of distilled
water was added to the leftover suspension and kept in a water
bath at 80°C for 12 h, centrifuged at 3000 rpm for 25 min and fil-
tered to get HWC and HWN. The microbial biomass C was deter-
mined for 0–5 cm depth by chloroform fumigation direct
extraction method (Beck et al., 1997).

For SWR measurements, a cheesecloth was fixed at the bot-
tom of the intact cores with a rubber band, then the soil core
was saturated with water for 1–3 days. Soil water retention was
measured for 0–5 cm depth at seven different matric potentials;
0, −0.4, −1.0, −2.5 and −5 kPa using the tension table and −10
and −30 kPa using the ceramic pressure plate. After this, soil
cores were oven dried at 105°C for at least 48 h to get the dry
mass for measuring soil BD. This dry mass was divided by the
known soil volume. The WAS was measured for the top two
depths (0–5 and 5–15 cm) using the method described by
Kemper and Rosenau (1986). Three grams of 1–2 mm air-dry
soil were saturated with a cold vapour machine, then transferred
to shaking slots for 5 min to get unstable aggregates, the sonica-
tor breaking down the remaining soil particles to get the stable
aggregates. Then, the soil suspension was kept in the oven to
dry overnight at 105°C to get to a constant weight. The percent-
age of soil stable aggregates was calculated by dividing the oven
dry stable aggregates by the stable and unstable aggregates
weight.

To study the microbial activity response to the cropping sys-
tems, urease and β-glucosidase enzymes activity were analysed
for 0–5 cm depth for both years. Urease enzymes activity was
ascertained with the colorimetric determination of ammonium
method described by Kandeler and Gerber (1988) using the

following equation:

Urease activity[mg NH4-N/g/h] = (NCS−NCC)× DF× V

× T/DW

where NCS is the NH4-N concentration of the sample average (μg
NH4-N/ml), NCC is the NH4-N content of the control (μg
NH4-N/ml), DF is dilution factor (10), V is the volume of urea
solution used (2.5 ml), T is incubation time (2 h), and DW is
the dry weight of the soil taken (5 g). The β-glucosidase enzyme
activity was determined with the method described by Eivazi
and Tabatabai (1988) using the following equation:

b-glucosidase activity(mg p-nitrophenol/g/h)

= (NCS-NCC)× V× T/DW

where NCS is the p-nitrophenol content of sample average (μg
NH4-N/ml), NCC is the p-nitrophenol content of control (μg
NH4-N/ml), V is the volume of p-nitrophenyl-β-D-glucosidase
solution used (1 ml), T is incubation time (1 h), and DW is the
dry weight of soil taken (1 g).

Statistical analysis

Data were normal (Skewness and Kurtosis’s tests) and homoge-
neous (Levene’s test) for all the soil parameters. Data in 2016
and 2017 were analysed using the MIXED model, with replication
considering as a random effect, treatments and year considering
as fixed effects. Four orthogonal linear contrasts were conducted:
(1) mono-cropping (MC: which refers to the continuous wheat)
compared to diverse cropping system (DC: wheat in diversified
cropping system, CC, corn, pea/barley, and sunflower) (MC v.
DC); (2) MC compared to wheat in diversified cropping system
present in 2016 and 2017 (DC(w)) (MC v. DC(w)); (3) the CC pre-
sent in 2016 and 2017 (CC) compared to the non-cover crops
(NCC: wheat in diversified cropping system, corn, pea/barley
and sunflower) (CC v. NCC); and (4) the legume present in
2016 and 2017 (LG) compared to non-legume crops (NLG:
wheat in diversified cropping system, CC, corn and sunflower)
(LG v. NLG). Mean values were separated by using pairwise dif-
ferences method (adjusted by Tukey) using the GLIMMIX

Fig. 1. Colour online. Layout of the crop sequences used in this study from 2011 to 2017. The cropping systems investigated in this study included continuous
wheat, and five crop sequences (wheat–cover crop–corn–pea/barley–sunflower).
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procedure. To evaluate the effect of crop rotation on certain soil
properties, data on 2010, 2016 and 2017 were analysed using a
Student’s test. Differences were considered significant at 0.05
probability. All analyses were performed using SAS 9.4 software
(SAS Institute Inc., Cary, NC, USA).

Results

Data on soil pH under different cropping systems at 0–5, 5–15,
15–30, 30–45 and 45–60 cm depths in 2016 and 2017 are sum-
marized in online Supplementary Table S2. Soil pH ranged
from 5.2 to 7.9 in 2016 and from 5.4 to 7.9 in 2017. The effect
of cropping systems on soil pH was not significant in either
year (online Supplementary Table S2). Data on SOC (g/kg)
under different cropping systems for the five depths in 2016
and 2017 are represented in Fig. 2. There is a significant difference
for the SOC values between 2016 and 2017, especially under CC
(Fig. 2). Comparing CC and NCC at the 5–15 and 15–30 cm
depths in 2017 indicated that SOC was higher under CC than
NCC (Fig. 2). The other cropping system did not affect SOC at
any depth in 2016 and 2017 (Fig. 7). Cold water C, CWN,
HWC and HWN under different cropping systems for the 0–5
and 5–15 cm depths in 2016 and 2017 are listed in Table 2.
The means for these soil C and N fractions had similar perform-
ance within each contrast group (Table 2). Data on MBC (g/kg)
under different cropping systems at 0–5 cm depth in 2016 and
2017 are shown in Fig. 3. Although the MBC values (regardless
of the cropping system) seem to be higher in 2016 than in
2017, no significant differences (P≥ 0.05) on MBC between
years were recorded. The effects of cropping system on MBC
were significant for MC v. DC, MC v. DC(w) and LG v. NLG con-
trasts in both years (Fig. 3). Comparing MC to DC and MC to
DC(w) showed that the mean MBC under MC was significantly
lower than that under DC and DC(w) in both years (Fig. 3).
The contrast of LG v. NLG indicated that LG recorded signifi-
cantly lower MBC than that of the NLG in 2016; however, the
trend was opposite in 2017 with LG recording higher MBC
than NLG (Fig. 3). Data on soil TN (g/kg) at all five depths in
both years are presented in online Supplementary Table S3.
Total N values range from 0.8 to 2.4 g/kg across all depths. The
effect of the cropping systems was not significant at any depth
in either year (online Supplementary Table S3). Thus, TN results
will not be discussed any further.

Data on BD (mg/m3) under different cropping systems at five
depths in 2016 and 2017 are shown in Fig. 4. The effects of the
cropping systems on BD were significant only for the MC and
DC(w) contrasts at 0–5 and 30–45 cm depths in 2016 (Fig. 4),

with MC recording significantly higher BD than DC(w) at these
depths (Fig. 3). Data on SWR (m3/m3) under different cropping
systems at 0.0, −0.4, −1.0, −2.5, −5.0, −10.0 and −30.0 kPa in
2016 and 2017 are represented in online Supplementary Fig. S2.
No differences were observed on the SWR for any pressures
among all comparisons of each contrast group for either year.
Data on WAS (%) under different cropping systems for the 0–5
and 5–15 cm depths in 2016 and 2017 are represented in Fig. 5.
No differences were observed on WAS at either depth for any con-
trast group treatment in 2016. However, the contrast between MC
v. DC and MC v. DC(w) in 2017 showed that DC and DC(w) had
higher WAS compared to MC at the 0–5 cm depth (Fig. 5).

Data on urease and β-glucosidase (μg/g/h) under different
cropping systems at 0–5 cm depth in both years are shown in
Fig. 6. Regardless of the cropping system, both urease and
β-glucosidase were lower (P values ≥0.05) in 2016 than in 2017
(Fig. 6). No significant differences were observed in urease
among each contrast group in 2016 (Fig. 6). However, the results
of MC v. DC and MC v. DC(w) contrasts in 2017 showed that DC
and DC(w) had higher urease than MC (Fig. 6). The effects of
cropping systems on β-glucosidase were significant for MC v.
DC contrast in 2017 and for MC v. DC(w) contrast in 2016,
with β-glucosidase being higher under DC compared to MC in
2017 and under DC(w) compared to MC in 2016 (Fig. 6).

Comparison of pH, EC and TN measured in 2016 and 2017 to
baseline values at the research site prior to the establishment of
treatments is represented in Fig. 7. Although only three para-
meters were included, it gave an overall picture of the soil quality
changes over time. Soil pH and TN values in 2010 were similar to
the average of 2016 and 2017 (Fig. 7). However, EC in 2010 was
significantly higher compared to the average of 2016 and 2017
(Fig. 7).

Discussion

The absence of significant effects due to crop diversity on soil pH
in the current study (online Supplementary Table S2) may be due
to the strong buffering capacity of the soil of the present study.
Soils with a high amount of clay have a larger number of surface
sites, and thus can hold hydrogen ions and resist changes in
hydrogen ion concentration in the soil solution (Weaver et al.,
2004; McCauley et al., 2017). Similarly, Sharma et al. (2018) con-
ducted a study on silt loam soil and reported that CC with corn or
soybean recorded similar soil pH as that with corn or soybean
without CC over the 4 years of the experiment. Roldán et al.
(2003) also reported that the pH of sandy loam soil did not
change with or without leguminous Vici asp. and leguminous P.

Table 1. Agronomic management information at the study site performed during 2016 and 2017 (adapted from Abagandura et al., 2019)

Crop

Planting date
Population (plants/ha)

Seeding depth (cm) Hybrid Row spacing (cm)2016 2017 2016 and 2017

Continuous wheat 9-May 3-May 3 087 500 2.54 Barlow 19.1

Wheat 9-May 3-May 3 087 500 2.54 Barlow 19.1

Sunflower 9-May 15-May 49 400 5.08 60ME80 76.2

Pea/barley 9-May 1-May 3 087 500 2.54 Mixed 19.1

Corn 21-May 9-May 49 400 5.08 Master graze BMR 76.2

Cover crops 13-Jul 15-Jun 3 730 170 2.54 13 species 19.1
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vulgaris. However, Zuber et al. (2015) reported that soil pH after
15–20 years of rotation was significantly different from that of the
MC for clay loam soil.

Soil organic C is an essential indicator of soil quality and fer-
tility (Lal, 2015; Fu et al., 2017). Crop diversity is considered one
of the management practices that can best increase SOC by
increasing soil aggregate, soil moisture, nutrient cycling and bio-
logical activities (Studdert, 2000; Karlen et al., 2006; Aller et al.,
2017). The large increments in SOC from 2016 to 2017 may be
due to the increase in β-glucosidase activity in the latter compared
to the former (Fig. 6), which can enhance C storage (Adetunji
et al., 2017). Similar SOC between DC and DC(w) and MC were
recorded at the time when a 5-year rotation cycle was completed
and even when a new rotation cycle began afterwards (Fig. 2).
Significant changes in SOC may need long-term study to be
detected. Van Eerd et al. (2014) conducted a study for 11 years
and reported no SOC differences were observed between continu-
ous corn, continuous soybean, soybean-corn, soybean–wheat, and
soybean–wheat–corn systems. Jarecki et al. (2018) found that corn
grown with oats (Avena sativa L.)–alfalfa (Medicago sativa) in a
sequence for 57 years recorded higher SOC than continuous
corn. Diverse cropping systems input more crop residues than
MC (Gál et al., 2007), resulting in higher SOC. However, CC
increased SOC compared to NCC in 2017 (Fig. 2), which may
be associated with diversified microbial communities more pre-
sent in CC than in NCC plots (Sainju and Singh, 1997; Dabney
et al., 2001; Kabir and Koide, 2002; Sarrantonio and Gallandt,
2003) and rapid decay of the CC residues compared to the
other crops (Buchanan and King, 1993). This finding suggested
that alternating long-term CC has the potential to increase SOC
(Poeplau et al., 2015). There were no noticeable SOC changes

between LG and NLG in this study (Fig. 2), which was in agree-
ment with Drinkwater et al. (1998), who reported that the C stor-
age was not quantitatively different among legume-based and
conventional (corn–soybean) treatments.

Total soil C and N pools consist of the labile and stable C and
N (Liu et al., 2013). The labile C and N breakdown faster and
active food source for microorganisms (Juan et al., 2008;
Ciampitti et al., 2011; Uchida et al., 2012). The stable C cannot
be directly used by microbes, but makes a great contribution in
soil aggregation, water holding capacity, the maintenance of soil
structure and soil C sequestration (Li et al., 2018). Labile C and
N fractions are considered a sensitive index of changes in soil
quality due to the fast turnover rate (Soon et al., 2007).
Compared with CWC and CWN, HWC and HWN have higher
biodegradability rate and can supply higher nutrients and energy
for plant and microbes (Gregorich et al., 2003). The findings in
the current study showed that all labile C and N fractions under
all cropping systems had similar performance in both years
(Table 2), also associated with the turnover rate of labile C and
N fractions (Jandl and Sollins, 1997; Zhang et al., 2017). These
findings are consistent with the results of a long-term study in
the USA conducted by Alhameid et al. (2017) who reported
that DC did not impact soil C and N fractions compared to
MC under similar weather conditions. Another long-term study
conducted in Canada indicated that crop diversity [pea–wheat–
canola (Brassica rapa L.)–wheat] did not affect CWC compared
to continuous wheat, which was attributed to the unstable charac-
ter of CWC (Soon et al., 2007). A study conducted in Mexico
showed that including the leguminous P. vulgaris CC did not
make significant changes regarding the water-soluble C (Roldán
et al., 2003).

Fig. 2. Colour online. Mean value of soil organic carbon (SOC g/kg) under different cropping systems. MC, mono-cropping (continuous wheat); DC, diversified crop-
ping system (wheat, cover crop, corn, pea/barley and sunflower); DC(w), wheat in diversified cropping system; CC, cover crop; NCC, no cover crop (wheat, corn, pea/
barley and sunflower); LG, legume; NLG, no legume (wheat, cover crop, corn and sunflower). Different letters in the graphs at each depth indicate significant dif-
ferences at that depth. Horizontal bars indicate standard errors of the means.
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Microbial biomass C is an important living component of soil
labile C, which directly involves crop nutrient supply and cycling
(Moore et al., 2000; Guimarães et al., 2013; Bongiorno et al.,
2019). Numerous studies have reported that MBC is easily affected
by crop management and cultural treatments (de Moraes Sá et al.,
2001; Chu et al., 2007; Chen et al., 2009; Liang et al., 2012). In the
current study, MBC under MC was lower than that under DC and
DC(w) at the 0–5 cm depth in both years (Fig. 3), likely because
crop diversity can increase quantity and health of plant residues
entering the soil, thus accelerating the growth of microorganisms.
Several studies have reported that crop diversity increased MBC
compared to MC (Moore et al., 2000; Balota et al., 2004a;
Govaerts et al., 2007). Cover crops can stimulate soil microbial
activity and can change the amount of soil microbial biomass
(Wang et al., 2007; Frasier et al., 2016). However, CC did not affect
MBC compared to NCC in this reported study (Fig. 3). Based on

published literature, the effects of CC on MBC are not consistent
because of several factors, including climate conditions, CC type,
soil temperature and moisture, pH, and aeration (Finney et al.,
2017; Kumar et al., 2018). For example, Garcia et al. (2013)
reported that a high C content or C:N ratio in CC may inhibit
soil microbial activity. Although the MBC values (regardless of
the cropping system) seem to be higher in 2016 than in 2017, no
significant differences in MBC between years were recorded. The
reasons for higher MBC from NLG compared to LG in 2016
were not known in this study. As it was expected LG increased
MBC compared to NLG in 2017, supporting the results of
Loeppmann et al. (2016) and Soon et al. (2007), who reported
that residues from legumes have a higher N content, which can
enhance MBC. The increase in microbial activity under one crop-
ping system compared to another in this study was not always
accompanied with differences in C between these systems as seen

Table 2. Soil cold water-extractable C (CWC, μg/g), cold water-extractable N (CWN, μg/g), hot water-extractable C (HWC, μg/g) and hot water- extractable N (HWN,
μg/g) at 0–5 and 5–15 cm depths under different treatments in 2016 and 2017

Treatment contrasts

CWC CWN HWC HWN
μg/g

Soil depth (cm)

0–5 5–15 0–5 5–15 0–5 5–15 0–5 5–15

2016

MC 26.6 20.4 3.1 2.2 72.2 54.6 7.9 5.5

DC 24.9 15.0 3.4 2.0 77.3 39.4 8.4 4.0

P value NS NS NS NS NS NS NS NS

MC 26.6 20.4 3.1 2.2 72.2 54.6 7.9 5.5

DC(w) 24.1 15.2 3.4 1.8 76.0 42.8 8.9 4.2

P value NS NS NS NS NS NS NS NS

CC 25.9 15.9 3.2 1.6 85.2 40.4 9.0 4.1

NCC 24.7 14.8 3.4 2.1 75.3 39.1 8.2 4.0

P value NS NS NS NS NS NS NS NS

LG 26.0 15.4 4.3 2.4 81.6 36.7 8.4 3.7

NLG 24.7 15.0 3.1 1.9 76.2 40.1 8.4 4.1

P value NS NS NS NS NS NS NS NS

2017

MC 29.0 19.4 1.5 1.0 69.8 34.9 2.9 1.3

DC 30.0 20.3 1.8 1.0 77.5 37.7 3.3 1.5

P value NS NS NS NS NS NS NS NS

MC 29.0 19.4 1.5 1.0 69.8 34.9 2.9 1.3

DC(w) 33.3 19.5 1.7 1.0 69.7 36.9 2.5 1.4

P value NS NS NS NS NS NS NS NS

CC 29.5 23.5 1.8 1.0 86.2 45.7 4.0 2.0

NCC 30.2 19.5 1.7 0.9 75.3 35.6 3.1 1.4

P value NS NS NS NS NS NS NS NS

LG 29.6 19.3 1.9 0.9 71.6 33.6 3.3 1.4

NLG 30.1 20.6 1.7 1.0 79.0 38.7 3.3 1.6

P value NS NS NS NS NS NS NS NS

MC, mono-cropping (continuous wheat); DC, diverse cropping system (average of wheat, cover crop, corn, pea/barley and sunflower); DR(w), wheat in the diverse system; CC, cover crop; NCC,
average of wheat, corn, pea/barley and sunflower; LG, legume; NLG, average of wheat, cover crop, corn and sunflower.
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in the SOC results. Increasing microbial activity can increase C and
N mineralization, which may cause an increase in the loss of C into
the atmosphere (Bardgett et al., 2008).

Soil BD is an indispensable indicator of soil quality and prod-
uctivity, which reflects the degree of soil compaction and influ-
ences the air, water and nutrient movement and retention (De
Vos et al., 2005; Rodríguez-Lado et al., 2015; Chen et al., 2018).
Crop diversity is one of the most important managements that
can influence BD (Calonego and Rosolem, 2008; Nascente
et al., 2015; Rorick and Kladivko, 2017). Crop diversity decreased
BD compared to MC when a 5-year rotation cycle was completed
(Fig. 4), supporting the results reported by Feng et al. (2011) and
Shrestha et al. (2013). A study conducted by Garcia et al. (2013)
recommended DC as a management practice to reduce soil BD.
This reduced BD in DC is likely related to greater aggregate sta-
bility and greater residue accumulation from DC compared to
MC (Kazula et al., 2017). However, this decrease in BD from
DC compared to MC was not observed when a new rotation
cycle began afterwards (Fig. 5). Differences in weather conditions
between 2016 and 2017 (Fig. 2) may result in differences in the
response of BD to the cropping systems in these 2 years.

Soil water retention is an important hydraulic property asso-
ciated with soil porosity; therefore, it can influence water and
nutrient transport and storage and crop usage efficiency (Saxton
and Rawls, 2006; Kazula et al., 2017). Crop diversity may indir-
ectly impact SWR by altering the soil porosity, soil C content
and its turnover rate (McVay et al., 2006). However, the findings
in the current study showed that the SWR was not affected by
crop diversity (online Supplementary Fig. 2S). The non-
significant effect from crop diversity on SOC at the surface
depth may explain the lack of effect on SWR from crop diversity.
Irmak et al. (2018) reported that CC–corn system did not impact

SWR compared to corn without CC. However, Qi et al. (2011)
reported that in the USA, the corn–soybean system with winter
rye as a CC increased the SWR compared with the corn–soybean
system without CC.

Diversifying the cropping system is considered one of the agri-
cultural practices that can best increase soil C and ultimately
improve aggregate development (Wright and Anderson, 2000;
Kazula et al., 2017). Soils with weak aggregate structure are highly
susceptible to wind and water erosion (Williams et al., 2018). The
findings in the current study showed that WAS under MC and
DC and DC(w) were similar when a 5-year rotation cycle was com-
pleted, but it was expected WAS under MC was lower compared
to DC and DC(w) when a new rotation cycle began afterwards
(Fig. 5). Increasing the underground biomass production through
crop diversity can loosen soil and improve soil structure
(Holeplass et al., 2004). Nouwakpo et al. (2018) reported that
soybean under corn–soybean system recorded significantly higher
WAS compared to continuous soybean at 0–15 and 15–30 cm
depths. Alhameid et al. (2017) reported that corn–soybean–
wheat and corn–soybean–wheat–oat systems had significantly
increased WAS compared with corn–soybean system at 0–15 cm
depth. Cover crop root exudates alter the quality and quantity
of SOC, biological activity and environment (Congreves et al.,
2015); however, CC did not affect WAS compared to NCC in
this study. Rorick and Kladivko (2017) reported that corn–soy-
bean system with CC increased the WAS compared with NCC
systems at 0–10 and 10–20 cm depths after 4-year rye CC appli-
cation. As discussed above, CC effects on soil properties may be
influenced by climate conditions and CC type.

Compared to soil physical and chemical properties, soil bio-
logical properties such as microbial activity are easier to change
(Ajwa et al., 1999; Wang et al., 2015). Therefore, microbiological
properties such as soil enzyme activity can be used as a sensitive
potential index for maintaining soil biological diversity and soil
quality. Urease can promote the hydrolysis of urea in soil, thus
supplying nutrients to plants (Lloyd and Sheaffe, 1973;
Dharmakeerthi and Thenabadu, 2013). The β-glucosidase is con-
sidered a sensitive soil biological indicator which reflects short-
term changes in soil quality (Melero et al., 2011; Sanaullah
et al., 2016). Higher precipitation was received in May of 2017
compared to May of 2016 (online Supplementary Fig. S1)
which caused an increase in soil moisture in June of 2017 com-
pared to 2016 (data not showed), thus increasing decomposition
rate and microbial activities, perhaps explaining why both urease
and β-glucosidase were lower in 2016 than in 2017 in this study.
Soil moisture is the major factor influencing enzyme activity as
reported by Brockett et al. (2012).

The results reported here showed that urease activity was simi-
lar under DC and DC(w) compared to MC at the time when a
5-year rotation cycle was completed, but as it was expected, urease
activity was higher under DC and DC(w) compared to MC when a
new rotation cycle began afterwards (Fig. 6), due to the fact that
lower diversity crops had less soil C and underground biomass
inputs (Eivazi et al., 2003). A study conducted by Balota et al.
(2004b) reported that crop diversity with a high input and diver-
sity of organic materials can directly influence the activity of
microbial populations and enzymes in soils compared with MC
systems. Similarly, Klose and Tabatabai (2000) reported that the
urease activity was higher in 4-year oats–meadow systems as com-
pared to continuous corn. In addition, Zhong et al. (2015)
reported that banana–papaya (Carica) system had higher urease
activity than banana MC.

Fig. 3. Colour online. Mean value of soil microbial biomass carbon (MBC mg/kg) at 0–
5 cm depth under different cropping systems in 2016 and 2017. MC, mono-cropping
(continuous wheat); DC, diversified cropping system (wheat, cover crop, corn, pea/
barley and sunflower); DC(w), wheat in diversified cropping system; CC, cover crop;
NCC, no cover crop (wheat, corn, pea/barley and sunflower); LG, legume; NLG, no leg-
ume (wheat, cover crop, corn and sunflower). Vertical bars indicate standard errors of
the means. Different letters in the graphs at each depth indicate the significant dif-
ferences at that depth.
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Lower β-glucosidase under MC compared to DC(w) at the time
when a 5-year rotation cycle was completed under MC compared
to DC when a new rotation cycle began afterwards (Fig. 6) can
be attributed to the fact that DC can modify the soil C content
and, thereby, increasing the available energy source for crop growth
(Acosta-Martínez et al., 2003; Qin et al., 2017). Differences in wea-
ther conditions between 2016 and 2017 (Fig. 2) may result in dif-
ferences in the response of β-glucosidase to the cropping system in
these 2 years as discussed earlier. Zhang et al. (2014) reported that
the bacterial community and β-glucosidase activity under corn–
soybean system and continuous corn treatment were similar. The
effect of CC and legumes on urease and β-glucosidase activity
was not observed in the current study (Fig. 6). However,
Mbuthia et al. (2015) found that cropping systems including CC
(vetch) significantly increased the β-glucosidase content compared
to treatments without CC, most likely because different quantities
of SOC input and microbial respiration are produced by different
types of CC. Liang et al. (2014) found that the Austria winter
pea had a significantly positive effect on β-glucosidase compared
to NCC and other types of CC (hairy vetch and crimson). The dif-
ferent results between these cited studies and the current study may
be attributed to the different kinds of legumes and CC utilized.

In this study, comparison of data measured to baseline values
in this study at the research site prior to the establishment of
treatments revealed that crop rotation did not affect pH
and TN, but decreased EC over time (Fig. 7). The results of
soil pH and TN were consistent with that reported by
Neugschwandtner et al. (2020) that observed no significant
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Fig. 5. Colour online. Average soil wet soil aggregate stability (WAS %) at 0–5 and 5–
15 cm depths under different cropping systems in 2016 and 2017. MC, mono-cropping
(continuous wheat); DC, diversified cropping system (wheat, cover crop, corn, pea/
barley and sunflower); DC(w), wheat in diversified cropping system; CC, cover crop;
NCC, no cover crop (wheat, corn, pea/barley and sunflower); LG, legume; NLG, no leg-
ume (wheat, cover crop, corn and sunflower). Vertical bars indicate standard errors of
the means. Different small letters indicate significance at 0–5 cm depth, and different
capital letters indicate a significant difference at 5–15 cm depth.

Fig. 4. Colour online. Average soil bulk density (BD, mg/m3) at 0–5, 5–15, 15–30, 30–45 and 45–60 cm depths under different cropping systems in 2016 and 2017. MC,
mono-cropping (continuous wheat); DC, diversified cropping system (wheat, cover crop, corn, pea/barley and sunflower); DC(w), wheat in diversified cropping sys-
tem; CC, cover crop; NCC, no cover crop (wheat, corn, pea/barley and sunflower); LG, legume; NLG, no legume (wheat, cover crop, corn and sunflower). Vertical bars
indicate standard errors of the means. Different letters in the graphs at each depth indicate the significant differences at that depth.
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difference in soil pH and TN after 15 years of different crop rota-
tion managements. However, salt levels in the soil were decreased
over time. This reduction over time can be attributed to the
removal of nutrients by crops (Drury et al., 2004), supporting
the results reported by Gura and Mnkeni (2019), who found
that crop rotation had positive effects in reducing salinity levels.

Conclusions

This study was conducted to explore the response of soil quality to
crop diversity under no-till system. Soil properties were compared

between DC and MC, DC(w) and MC, CC and NCC, and LG and
NLG for 2 years. The soil pH, SWR, TN, CWC, CWN, HWC and
HWN were not affected by cropping systems for both years. Crop
diversity improved SOC, MBC, WAS and urease and β-glucosidase
activity, and lowered BD. Crop diversity, especially cropping sys-
tems including cover crops, can sustain soil quality by enhancing
SOC and reducing soil BD, making a great contribution for agroe-
cosystems sustainable for soils. Future studies are needed to charac-
terize the long-term crop diversity influence on soil quality.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859620000994

Fig. 6. Colour online. Average soil urease (μg/g/h) and β-glucosidase (μg/g/h) enzymes activity at 0–5 cm depth under different cropping systems in 2016 and 2017.
MC, mono-cropping (continuous wheat); DC, diversified cropping system (wheat, cover crop, corn, pea/barley and sunflower); DC(w), wheat in diversified cropping
system; CC, cover crop; NCC, no cover crop (wheat, corn, pea/barley and sunflower); LG, legume; NLG, no legume (wheat, cover crop, corn and sunflower). Vertical
bars indicate standard errors of the means. Different letters in the graphs at each depth indicate the significant differences at that depth.

Fig. 7. Colour online. Average values of soil pH, electrical conductivity (EC, ds/m) and total nitrogen (TN, g/kg) under different cropping systems for 2010, and 2016–
2017 at 0–5 cm depth. Vertical bars indicate standard errors of the means. Different letters in the graphs indicate significant differences.
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