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We consider a coating flow of nematic liquid crystal (NLC) fluid film on an inclined substrate.

Exploiting the small aspect ratio in the geometry of interest, a fourth-order nonlinear partial

differential equation is used to model the free surface evolution. Particular attention is paid

to the interplay between the bulk elasticity and the anchoring conditions at the substrate and

free surface. Previous results have shown that there exist two-dimensional travelling wave

solutions that translate down the substrate. In contrast to the analogous Newtonian flow,

such solutions may be unstable to streamwise perturbations. Extending well-known results for

Newtonian flow, we analyse the stability of the front with respect to transverse perturbations.

Using full numerical simulations, we validate the linear stability theory and present examples

of downslope flow of nematic liquid crystal in the presence of both transverse and streamwise

instabilities.

Key words: Thin films; liquid crystals; contact lines; and gravity driven flow.

1 Introduction

In many industrial applications involving fluid films, the geometry is such that the film

thickness is small relative to typical lateral dimensions of the film. Exploiting this difference

in scales, a long wave (lubrication) approximation to the governing equations for fluid

flow may be derived and the spatial dimension of the problem reduced by one. Within

this framework, the flow of thin layers (films) of fluids has been studied under a variety

of physical configurations, e.g. [3, 5, 7–10, 12–18, 22, 23, 26].

Nematic liquid crystals (NLC) are fluid-like substances typically composed of rod like

molecules with a dipole moment associated with the anisotropic axis (the axis parallel

with the length of the rod-like molecule). The interactions of the dipole moments cause

molecules to align locally, giving rise to an elastic response; however, in general, fluid

flow and external forces may distort the local alignment. Therefore, liquid crystals behave

as a state of matter intermediate between a fluid and a solid, having some short-range
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order to their molecular structure. In addition, due to the anisotropic rheology (rod-like

molecules), viscosity depends on fluid flow relative to the local orientation of molecules.

At a surface or interface, NLC molecules have a preferred orientation, a phenomenon

known as anchoring. The local molecular orientation is characterized by a director field:

a unit vector representing the average direction of the long axis of the molecules. Liquid

crystal in the hybrid aligned nematic (HAN) state has a specific molecular orientation: the

polar angle (with respect to the normal to the substrate), θ, of the liquid crystal molecules

varies linearly over the film thickness, that is, θ = c1z + c2, where c1 and c2 are constants

determined by the anchoring conditions and z is aligned with the polar axis θ = 0.

This paper is a continuation of previous work [10] which focused on two-dimensional

flow of NLC down an inclined substrate. Within the long wave approximation, a fourth-

order nonlinear partial differential equation was derived for the evolution of the free

surface height. In the absence of the contact line instability, (streamwise) instabilities are

observed that appear analogous to those found for Newtonian fluid flowing down an

inverted substrate [13] and flow of a Newtonian fluid on the outer surface of a vertical

cylinder [17]. Using linear stability analysis, three classes of solutions were identified:

Type 1, a travelling front that translates stably down the substrate; Type 2, a travelling

front where instabilities occur behind the travelling front, but propagate forwards so that

they are always confined to the region ahead of the initial front location (convective

instability); and Type 3, instabilities propagate backwards, eventually destabilizing the

entire film (absolute instability). In this paper, we examine three-dimensional flow and

analyse the stability of the fluid front subject to perturbations transverse to the direction of

flow. Adapting techniques applied to a Newtonian fluid [8], an asymptotic expression for

the dispersion relationship is derived in the long-wavelength limit, and compared to full

numerical simulations. In addition, full simulations are carried out to study the interaction

of streamwise and transverse instabilities. The present work, therefore represents a three-

dimensional extension of our previous work [10], which focused on the two-dimensional

(streamwise) instabilities. Earlier works, such as [15], focused on spreading of NLC

droplets on a horizontal substrate.

2 Governing equations

In this section, we present a long wave model for the flow of NLC down an inclined plane.

The model is an asymptotic approximation to the Leslie–Ericksen equations [11], a set

of partial differential equations modelling conservation of mass, momentum and energy

for the NLC. The dependent variables are the velocity field, v̂ = (û, v̂, ŵ); and the director

field, n = (sin θ cosφ, sin θ sinφ, cos θ). Hatted symbols denote dimensional quantities and

unaccented symbols are dimensionless. The reader is referred to our earlier work [10] for

a complete derivation of the long wave model used in this paper; a brief overview is given

in what follows.

The momentum equations in the Leslie–Ericksen model may be thought of as an

extension to the Navier–Stokes equations, where the total stress tensor is composed of

an isotropic component due to pressure, p̂; and two anisotropic components: viscous

effects, characterized by six coefficients, α̂i (i = 1, 6); and elastic response, characterized

by three constants, K̂i (i = 1, 2, 3). The elastic constants are of the same order of
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magnitude, and we follow many other authors in making the so-called one constant

approximation [3, 4, 15, 18, 21, 24, 27], K̂ = K̂1 = K̂2 = K̂3.

The coordinates (x̂, ŷ, ẑ) are defined such that (x̂, ŷ) are in the plane of the inclined

substrate, with x̂ pointing down the line of greatest descent, and ẑ is normal to the

substrate. The angle of inclination of the substrate to the horizontal is denoted by χ.

In addition, five scaling parameters are defined: Ĥ , a representative film height; L̂, a

typical lengthscale in the x̂ direction; Û, a characteristic velocity in the x̂ direction; μ̂, a

representative viscosity scale; and Δθ, the difference in the preferred anchoring angles at

the substrate and at the free surface. Defining the fluid film aspect ratio, δ = Ĥ/L̂ � 1,

we scale variables as follows:

(x̂, ŷ, ẑ) = L(x, y, δz), (û, v̂, ŵ) = U(u, v, δw), t̂ =
L̂

Û
t, and α̂i = μαi, (2.1)

where μ̂ = α̂4/2 is the viscosity of an analogous simple fluid i.e. with α4 = 1 and αi = 0

for i� 4, the viscous stress tensor is isotropic and models a simple fluid with viscosity μ̂.

We neglect inertia (which will be insignificant for the type of coating flows we consider),

but retain the effects of surface tension and gravity, both of which will be important in

our model. Under the scalings given by equation (2.1), five nondimensional parameters

are defined: B, the Bond number; C, the inverse capillary number; N, the scaled inverse

Ericksen number; η, a scaled effective anisotropic viscosity; and b � 1, the dimensionless

precursor layer thickness. In terms of the physical parameters, these nondimensional

quantities are given by

B =
δ3ρ̂ĝL̂2

μ̂Û
, C =

δ3γ̂

μ̂Û
, N = Δθ2 K̂

μ̂ÛL̂
, η =

α̂3 + α̂6

μ̂
, and b =

b̂

Ĥ
, (2.2)

where b̂ is the dimensional precursor layer thickness, ĝ is the gravitational acceleration, γ̂

is surface tension, and ρ̂ is the density. In the present work, we consider the precursor film

thickness, b, as a given parameter, fixing its value at 0.1 throughout. Detailed discussion

regarding the influence of the value of b on simulation behaviour for Newtonian flows

may be found in [6].

In equation (2.2), we assume elasticity is of moderate strength, N = O(δ0). One could

of course consider different limits; for example strong elasticity, N = O(δ−1); and weak

elasticity, N = O(δ). The case of strong elasticity is not within the scope of this paper and

with the exception of neglecting lower order terms, it is unclear whether an analytically

tractable model could be obtained. A weak elasticity model was considered by Carou et

al. [1] in the framework of blade coating of a NLC.

2.1 Energetics: weak anchoring model

In the case of moderate elasticity, the time scale on which elastic reorientation occurs

across the layer, μ̂Ĥ2/K̂ , is much faster than the time scale of fluid flow, L̂/Û. Under this

assumption, a variational approach may be used to minimize the energy with respect to

variations in θ and φ. In the minimal energy state, the director field satisfies,

φ = c3(x, y, t), θ = c1(x, y, t)z + c2(x, y, t). (2.3)
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As mentioned in the Introduction, liquid crystal molecules have a preferred orientation

with respect to an interface (anchoring); therefore, the functions ci(x, y, t) (i = 1, 2, 3) must

satisfy appropriate anchoring (boundary) conditions. Two observations may be made:

First, φ is independent of z, thus may only be determined by the anchoring imposed by

the substrate or free surface. Second, in general, the anchoring condition on the polar

angle θ differs between the substrate S and the free surface F; therefore, for very thin

films, there may be a large energy penalty in the bulk. To simplify the modelling, and

in line with available experimental data, we assume that anchoring at the substrate is

planar, and much stronger than the homeotropic (perpendicular) anchoring at the free

surface [2, 16, 19]. Furthermore, to avoid an elastic stress singularity as the film height

h → 0, we allow the free surface anchoring, θF, to relax to the substrate anchoring, θS,

for very thin films. Under these rather general assumptions, equation (2.3) takes the form

φ = φS(x, y) and θ = θS + (θF − θS)
m(h)

h
z, (2.4)

where m(h) is a monotonically increasing function such that m(0) = 0 and m(∞) = 1. The

function m(h) is related to the free surface energy G(h)1 by [3, 10, 15],

∂G(h)

∂h
= −Nm(h)m′(h)

h
. (2.5)

We use the following functional form for m(h) (see [10, 15] for motivation)

m(h) = f(h)
hα

hα + βα
, f(h) =

1

2

[
1 + tanh

(
h − 2b

w

)]
, (2.6)

where α, β, w > 0 are parameters to be chosen. The parameter β is a characteristic film

thickness, above which free surface anchoring effects are dominant and below which

free surface anchoring is relaxed; whereas α influences the rate of change of anchoring

relaxation with respect to film height. The value of w corresponds to a characteristic

range of film heights around the precursor thickness, below which free surface anchoring

corresponds to that on the substrate, and above which the weak anchoring controlled by

α and β applies. Note that with our chosen form of m(h), the free surface energy G may

be shown to be close to that proposed by Rapini and Papoular [20].

2.2 Long wave equation

Asymptotic reduction of the momentum equations of the Leslie–Ericksen model [11]

using small aspect ratio and neglecting inertial effects, see [10] for more details, leads

to the following fourth-order nonlinear partial differential equation for the free surface

height, h(x, y, t),

ht + ∇ ·
(
Ch3∇̃∇2h −

[
Dh3 + NM (h)

]
∇̃h

)
+ ULh3 = 0, (2.7)

1 The more usual expression for surface energy as a function of anchoring angle at the free

surface, G(θ), may be obtained by use of equation (2.4).
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where

M(h) = m2 − hmm′, (2.8)

U = B sin χ, D = B cos χ, (2.9)

∇̃ =

[
λI + ν

(
cos 2φ sin 2φ,

sin 2φ − cos 2φ

)] (
∂x

∂y

)
, (2.10)

L = [λ + ν cos 2φ] ∂x + ν sin 2φ∂y + 2ν[φy cos 2φ − φx sin 2φ], (2.11)

λ =
2 + η

4 (1 + η)
, ν = − η

4 (1 + η)
, (2.12)

and m(h) is defined by equation (2.6). Several properties of the above model should be

noted; first, λ and ν are both singular at η = −1. Furthermore, if η < −1, ∇̃ has negative

coefficients, which would result in surface tension having a destabilizing effect. However,

for those NLCs for which data are available, −1 < η < 0; therefore, only values within

this range are considered in this paper. There are two parameters in the above model that

differentiate it from the analogous Newtonian model: N, a measure of the elastic response

due to the antagonistic anchoring conditions (between the free surface and substrate);

and η, a measure of non-Newtonian viscous effects due to the azimuthal anchoring on the

substrate, φ. If η = N = 0, we recover a model for a Newtonian fluid; therefore, within

the framework of the present model, the response due to antagonistic polar anchoring

conditions and azimuthal substrate anchoring may be analysed independently.

For direct numerical simulations, the governing equation (2.7) is solved on a rectangular

domain Ω = [x0, xL] × [y0, yL]. To reduce the influence of the boundaries on fluid flow,

in the streamwise (x) direction the free surface height is assumed constant at the ends of

the domain (modelling conditions in the far field); and in the transverse (y) direction, we

prescribe periodic boundary conditions. Specifically,

h(x0, y, t) = H0, h(xL, y, t) = b, hx(x0, y, t) = hx(xL, y, t) = 0, (2.13)

and hy(x, y0, t) = hy(x, yL, t) = hyyy(x, y0, t) = hyyy(x, yL, t) = 0, (2.14)

where H0 is the film thickness behind the front and b is the precursor film thickness

ahead of the front. For linear stability analysis, the governing equation is solved on the

unbounded domain and equation (2.13) is modified as follows:

h(−∞, y, t) = H0, h(∞, y, t) = b, and hx(−∞, y, t) = hx(∞, y, t) = 0. (2.15)

The linear stability analysis assumes the solution is periodic in y.

We consider only two cases of azimuthal surface anchoring in this paper: substrate

anchoring parallel to flow, φ = 0 (mod π); and perpendicular to flow, φ = π/2 (mod

π). Note that either choice of azimuthal substrate anchoring permit two-dimensional

travelling waves solutions (discussed in the following section). Under this restriction,
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equations (2.10) and (2.11) simplify to

∇̃ =

(
κ1 0

0 κ2

)
∇, L = κ1∂x, (2.16)

where

κ1 =

{
1

2(1+η)
φ = 0 mod π

1
2

φ = π
2

mod π
, κ2 =

{
1
2

φ = 0 mod π
1

2(1+η)
φ = π

2
mod π

. (2.17)

3 Two-dimensional flow revisited

For two-dimensional flow, equation (2.7) simplifies to,

ht + κ1

(
Ch3hxxx −

[
Dh3 + NM (h)

]
hx + Uh3

)
x

= 0. (3.1)

In previous work [10], which we now briefly review, it was shown that there exists a

travelling wave solution, h(x, t) = h0(x − Vt) = h0(s), where V is the travelling speed. The

travelling solution h0(s) satisfies,

−Vh0 + κ1

[
Ch3

0h
′′′
0 − Dh3

0h
′
0 − NM(h0)h

′
0 + Uh3

0

]
= c, (3.2)

where c is a constant of integration. Imposing the far field conditions (2.15), c and V are

found to satisfy

c = −κ1UH0b (H0 + b) , V = κ1U
(
H2

0 + H0b + b2
)
. (3.3)

To understand the dynamics behind the travelling front, the stability of a perturbed,

travelling flat film was analysed: the flat film was found to be unstable if

H3
0 D + NM(H0) < 0, (3.4)

where, recall, M(h) is defined by equation (2.8). Since N > 0 the elastic response is

stabilizing for M(H0) > 0 and destabilizing for M(H0) < 0. In the unstable regime, the

growth rate of the most unstable mode is given by

ωm = κ1
H3

0

4C

[
D +

NM(H0)

H3
0

]2

. (3.5)

In addition, within the unstable regime, an expression for the velocity of the boundaries

of an imposed disturbance, or wave packet, was derived,

(x

t

)
±

= 3κ1UH2
0 ± 1.622κ1

√
− [DH3

0 + NM(H0)]3

CH3
0

, (3.6)

where ‘+’ and ‘−’ denote the velocity of the right and left wave packet boundaries

respectively. Comparing V in equations (3.3) to (3.6), the three classes of solutions defined

in [10, 14] are obtained: Type 1 (stable; V < (x/t)−), Type 2 (convectively unstable;
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Table 1. Values of the parameters chosen for the simulations (except where specified

otherwise). Here, Δx and Δy are the partition spacings in the x and y domains respectively

(a) Parameters used for all simulations.

Parameter Value Parameter Value Parameter Value

C 2 β 0.5 Δx 0.1

U 2 α 2 Δy 0.1

H0 0.4 w 0.05

b 0.1

(b) Additional parameters for flow

down an inclined substrate.

Parameter Value

D 1

B
√

5

χ tan−1(2)

(c) Additional parameters for flow

down a vertical substrate.

Parameter Value

D 0

B 2

χ π/2

Table 2. Streamwise stability regimes in N domain with all other parameters fixed

(a) Stability regimes for flow down

an inclined substrate. Paramet-

ers are given in Tables 1(a) and (b).

Stability regime Value of N
Type 1 N < 7.1

Type 2 7.1 < N < 11.4

Type 3 11.4 < N

(b) Stability regimes for flow down

a vertical substrate. Parameters

are given in Tables 1(a) and (c).

Stability regime Value of N
Type 1 N < 8.9

Type 2 8.9 < N < 12.2

Type 3 12.2 < N

0 < (x/t)− < V ), and Type 3 (absolutely unstable; (x/t)− < 0). Note that both V and

(x/t)− share a common factor of κ1, thus the transitions between stability regimes are

independent of κ1.

To simplify the parameter study when we extend our results to three-dimensional flow,

we vary η, N, and D and fix the remaining parameters as in Table 1(a). Furthermore, we

restrict D (which, together with U, fixes χ and B, see equation (2.9)) to just two values,

corresponding to flow down an inclined substrate or flow down a vertical substrate, as

given in Tables 1(b) and (c), respectively. The streamwise stability regimes in the N
domain (with other parameters as fixed in Tables 1) are given in Tables 2(a) and (b) for

flow down an inclined and vertical substrate, respectively. Note that, with the chosen values

of α, β, b, w, the choice of H0 corresponds to an unstable elastic response, M(H0) < 0.

4 Transverse stability of a travelling front

In this section, we expand our analysis of the two-dimensional problem [10] to three-

dimensional flow; in particular, we study the transverse stability of a travelling fluid

front. A travelling Newtonian front flowing down an inclined plane (N = η = 0,D > 0)

is known to be unstable with respect to transverse perturbations [23]. With U fixed,

increasing D has a stabilizing effect. Negative values of D (corresponding to flow on

an inverted plane) have also been studied for Newtonian flow: in the two-dimensional
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case [13] such flow can exhibit the Types 1, 2 and 3 streamwise instability described in

Section 3, while in the three-dimensional case [14], increasing |D| has a destabilizing effect

on transverse perturbations. We proceed to analyse transverse perturbations within the

context of the present model.

Following standard techniques applied to thin films [8], we begin the analysis by

assuming a solution of the form

h(x, y, t) = h0(s) + εh1(s, y, t), (4.1)

where |ε| � 1, s = x − Vt, V is given by equation (3.3), h0(s) is a stable (Type 1)

travelling front solution and h1(s, y, t) is a perturbation. Substituting equation (4.1) into

the governing equation (2.7) and integrating with respect to s, the travelling wave equation

(3.2) is obtained at the leading order. At order ε, we derive the following (linear) equation

for h1,

∂h1

∂t
+ ∇ · (CLC[h1] − DLD[h1] − NLN[h1]) + ULU[h1], (4.2)

where

LC = h3
0∇̃∇2 + 3h2

0∇̃∇2h0, LD = h3
0∇̃ + 3h2

0∇̃h0,

LN = M(h0)∇̃ + M ′(h0)∇̃h0, and LU = 3h2
0∂s + 6h0∂sh0.

The operators Li (i = C,D,N,U) are linear with respect to h1; therefore, assuming

that h1 is a composition of Fourier modes, each mode may be considered separately, i.e.

h1 = g(s, t)eiqy . To derive the dispersion relationship, we let g(s, t) = ζ(s)eσt, where σ is the

growth rate. Substituting this form into equation (4.2), we obtain

σζ = c4(h0)∂ssssζ + c3(h0)∂sssζ + c2(h0; q)∂ssζ + c1(h0; q)∂sζ + c0(h0; q)ζ, (4.3)

where

c4(h0) = −Cκ1h
3
0,

c3(h0) = −3Cκ1h
2
0∂sh0,

c2(h0; q) = 2Cλq2h3
0 + κ1

[
Dh3

0 + NM(h0)
]
,

c1(h0; q) = 3κ1

[
Ch2

0

(
∂sh0q

2 − ∂sssh0

)
+ 6Dh2

0∂sh0 + 2N∂sh
′
0M

′(h0) − 3Uh2
0

]
+ V ,

c0(h0; q) = c00(h0; q) + c01(h0; q) + c03(h0; q) + c04(h0),

c00(h0; q) = −Ch0

[
κ2h

2
0q

4 + κ1 [6∂sh0∂sssh0 + 3h0∂ssssh0]
]
,

c01(h0; q) = Dh0

[
−κ2h

2
0q

2 + κ1

[
6 (∂sh0)

2 + 3h0∂ssh0

]]
,

c02(h0; q) = N
[
−κ2M(h0)q

2 + κ1

[
M ′(h0)∂ssh0 + (∂sh0)

2 M ′′(h0)
]]
,

c03(h0) = −6Uκ1h0∂sh0,

where λ is given by equation (2.12), and κi (i = 1, 2) by equation (2.17). To extract the

growth rate, σ, for a fixed q, equation (4.3) is discretized, implementing a finite difference

method to estimate the derivatives of ζ. For some partition {sn} of s, equation (4.3) is
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approximated by

(A(h0; q) − σ) ζn = 0, (4.4)

where ζn = ζ(sn) and A(h0, q) is the finite difference matrix. Since only the largest

eigenvalue is required, a power iterative method is sufficient to calculate the growth rate

for each value of q, as was done by Lin and Kondic [14].

4.1 Small wavelength approximation

To validate the results obtained by solving the eigenvalue problem (4.4), in this section we

present an asymptotic approximation to the dispersion relation in the limit of small wave

numbers, |q| � 1. Note that equation (4.3) contains only even powers of q; therefore, we

asymptotically expand ζ and σ in q2,

σ = σ0 + q2σ1 + O(q4) and ζ = ζ0 + q2ζ1 + O(q4). (4.5)

For a fixed q, the front position is modified from s = 0 (unperturbed) to s = sb(y, t) =

εeiqy+σt. At the front position, the film height is given by, h(sb, y, t) = b. Linearizing about

the unperturbed front position, s = 0,

εeiqy+σt
[
ζ0(0) − ∂sh0(0)

]
+ O

(
ε2

)
+ O

(
q2

)
= 0. (4.6)

Setting ζ0(0) = ∂sh0(0), the boundary condition at the fluid front is satisfied to the

second-order in ε and q. It is then reasonable to assume that ζ0(s) takes the form

ζ0(s) = ∂sh0(s). (4.7)

Substituting equations (4.5) and (4.7) into equation (4.2), order εq0 terms of the dispersion

relationship may be expressed as

σ0∂sh0 =
[
−Vh0 + κ1

[
Ch3

0h
′′′
0 − Dh3

0h
′
0 − NM(h0)h

′
0 + Uh3

0

]]
ss
, (4.8)

and recalling the two-dimensional travelling wave equation, (3.2), σ0 = 0.

To simplify the order εq2 terms, it is assumed that perturbations only occur near the

front position (the fluid flow is undisturbed in the far-field); therefore, subject to the

boundary conditions (2.15), h0 and ζ1 must satisfy

h0(s → −∞) = H0, h0(s → ∞) = b, and ζ1(s → ±∞) = 0. (4.9)

To proceed, we integrate the order εq2 terms of equation (4.2) with respect to s over the

infinite line. The majority of the terms may be integrated exactly and, applying the far

field conditions (4.9), evaluate to zero. The remaining non-zero terms may be expressed

as

σ1 =
κ2

H0 − b

∫ ∞

−∞

[
Ch3

0∂sssh0 − Dh3
0∂sh0 − NM(h0)∂sh0

]
ds. (4.10)

Substituting equation (3.2) in the integrand of the above expression, the small q
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approximation to the dispersion relation is

σ = q2 κ2U
H0 − b

∫ ∞

−∞
[(h0 − H0) (h0 − b) (h0 + H0 + b)] ds + O(q4). (4.11)

In two dimensions, κ1 and κ2 (which depend on η; see equation (2.17)) influence only

the travelling wave speed, V , given by equation (3.3). The functional form of H(s)

is independent of η; hence the integral equation (4.11) does not depend on η. Note,

for parallel substrate anchoring, κ2 is a constant, thus the small q analysis is this case is

independent of η. Recalling η ∈ (−1, 0), we see from equation (2.17) that for perpendicular

anchoring, increasing |η| strengthens transverse instabilities.

To analyse the effect of other parameters, note that while the solution h0(s) depends

on C, D, N and U, the integrand in equation (4.11) is not directly dependent on these

parameters. This suggests that the effect of these parameters on transverse stability may

be predicted by knowing their influence on the shape of the travelling wave solutions,

h0(s). The integrand in equation (4.11) is zero for h0(s) = h0 and h0(s) = b; thus, the main

contribution to the integrand comes from the region near the front. For a Newtonian fluid,

increasing D (while keeping other parameters fixed) decreases the size of the capillary

ridge in two-dimensional numerical simulations [8]. Furthermore, analysis of transverse

perturbations for Newtonian fluids predicts that increasing D has a stabilizing effect. In the

model presented, for a destabilizing elastic response in a flat film (M(h0) < 0), increasing

N increases the size of the capillary ridge in two-dimensional simulations [10]; therefore,

increasing N is expected to have a destabilizing effect on transverse perturbations. For a

stabilizing elastic response, M(h0) > 0, the opposite is expected.

4.2 Influence of elastic response and substrate anchoring

To compute the growth rates predicted by the linear stability analysis, a (Type 1) travelling

wave solution, h0(s), is required. Since equation (3.2) is highly nonlinear, an analytical

solution is not feasible. Therefore, subject to the boundary conditions given by equation

(2.13), the two-dimensional governing equation, (3.1), is evolved numerically until the

initial condition has converged to a stable travelling wave. The initial condition is given

by

h(x, 0) =
(H0 − b)

2
tanh[−5(x − xf)] +

H0 + b

2
, xf =

2(x0 + xL)

3
, (4.12)

a film profile that at xf transitions from a film of thickness h0, to a film of thickness b,

the precursor layer.

The numerical method employed to evaluate the two-dimensional governing equation,

(3.1), is based on a Crank–Nicolson type discretization scheme coupled with an adaptive

time stepping method. To account for the nonlinear terms, a Newton–Raphson iterative

solver is implemented. The reader is referred to the paper by Lin et al. [15] for further

information about the numerical method employed.

In addition to the small-q analysis described above, we also solve the eigenvalue

problem (4.4) numerically for a range of q-values. To do this we adapt the method of Lin

and Kondic [14] which computes only the largest eigenvalue σ for each value of q. As

https://doi.org/10.1017/S0956792515000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000091


3D coating flow of NLC on an inclined substrate 657

0 0.5 1 1.5

0

0.02

0.04

0.06

q

σ

 

 

N = 0
N = 1
N = 2
N = 3
N = 4
N = 5

(a)

0 0.1 0.2 0.3
0

0.005

0.01

0.015

q

σ

 

 

N = 0
N = 1
N = 2
N = 3
N = 4
N = 5

(b)

Figure 1. (a) Influence of N on the dispersion relationship as given by the numerical solution

of the full eigenvalue problem, (4.4). (b) Comparison between numerical results of the eigenvalue

problem (solid lines) and small-q approximation (dashed lines), (4.11). Arrows denote increasing N.

Dispersion curves ignore azimuthal substrate anchoring (η = 0) and describe flow down a vertical

substrate. Parameters are given in Tables 1(a) and (c).

0 0.5 1

0

0.02

0.04

0.06

q

σ

 

 η = 0
η = −0.2
η = −0.4
η = −0.6
η = −0.8

Figure 2. Influence of η, in the case of planar substrate anchoring parallel to the flow direction, on

the dispersion relationship as given by the eigenvalue problem, (4.4). Arrow denotes the direction

of increasing |η|. Here N = 2 with other parameters given in Tables 1(a) and (c).

mentioned in Section 2.2, the effects of the elastic response, N, and azimuthal substrate

anchoring, η, may be studied independently; therefore, to begin the analysis, we consider

flow down a vertical substrate with η = 0. Figure 1(a) plots the dispersion relationship

for various values of N computed using numerical solutions to the eigenvalue problem,

(4.4). The results are compared to the small-q approximations, (4.11), in Figure 1(b). It

may be seen that there is a good agreement between the two methods for small q and

both methods capture the expected influence of N.

To analyse the influence of azimuthal substrate anchoring, we continue to consider

flow down a vertical substrate but now fix N = 2 and vary η. In the case of parallel

anchoring, η has no influence on the small q approximation, (4.11); therefore, only the

dispersion relation calculated using the eigenvalue problem, (4.4), is shown. In Figure 2,

which shows the results for the case of substrate anchoring parallel to the flow direction,

we observe that increasing |η| has negligible influence for small q (as we would anticipate,

since the small q analysis results were independent of η in this case); however, for larger q,

increasing |η| has a destabilizing effect. In the case of perpendicular substrate anchoring,

the effect of η on the dispersion relation computed from the eigenvalue problem is shown
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Figure 3. (a) Influence of η, in the case of planar substrate anchoring perpendicular to the flow

direction, on the dispersion relation as given by the numerical solution of the full eigenvalue

problem, (4.4). (b) Comparison between numerical results of eigenvalue problem (solid line) and

small-q approximation (dashed line), (4.11). Arrows denote the direction of increasing |η|. Here

N = 2 with other parameters given in Tables 1(a) and (c).

in Figure 3(a) and compared to the small-q approximation in Figure 3(b). We observe

three trends as |η| increases: the maximum growth rate increases; the wave number, q,

corresponding to the maximum growth rate decreases; and the range of unstable modes

decreases.

5 Numerical simulations: three-dimensional flow

In this section, we present direct numerical simulations of equation (2.7), which describes

the evolution of the free surface for NLC flowing down an incline. We implement an

Alternating Direction Implicit (ADI) type method with adaptive time stepping; see [14]

for the details of implementation, and [25] for a more general discussion of the use of

ADI method in the context of nonlinear high-order parabolic equations. To reduce the

size of the computational domain, the grid is expanded dynamically in the streamwise (x)

direction such that the free surface height is always sufficiently flat at the boundaries of

the computational domain. The grid is shifted so that the lengths of the flat regions at the

boundaries are equal. This corresponds to undisturbed flow at the boundaries (2.13). The

initial length of the x domain, Lx = xL − x0, is fixed at Lx = 40 for all simulations. In

the y direction, symmetry boundary conditions are imposed. The length of the y domain

is fixed according to the initial condition of interest.

To generate an initial condition, for a fixed y, the numerical travelling wave solution is

shifted and then interpolated to an equispaced (x, y) grid. Specifically, if {x̂i} is the partition

of the travelling wave solution, the shifted partition is defined as x̃i(y) = x̂i + Δxf(y),

where Δxf(y) is the perturbation to the front position. Using cubic splines, the solution

at nodes {x̃i(y)} is interpolated to an equispaced partition, {xj}. This is equivalent to

h(x, y, t = 0) = h0(x − Δxf(y)). (5.1)

In addition, the initial condition is shifted such that the initial unperturbed front position,

xf0, is the same for all simulations i.e. xf(y) = xf0 + Δxf(y), where xf0 = 24.
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To analyse transverse instabilities, we fix the length of the y domain to be one wavelength

of a plane wave, i.e.

xf(y) = −A cos (q [y − y0]) , q =
2π

yL − y0
, (5.2)

where A = 0.1 is the magnitude of the perturbation and for simplicity y0 = 0. Furthermore,

with the exception of extracting growth rates to validate the dispersion relation for different

q, yL is set to correspond approximately to the most unstable mode for the Newtonian

case (N = 0 and η = 0). Specifically, for flow down an inclined substrate, yL = 13, and

for flow on a vertical substrate, yL = 11.

To simulate coating flows that appear in practice, we also consider the flow of a NLC

on a wider y domain. In this case, the front position is perturbed by a superposition of

cosine waves with random coefficients. Specifically, the perturbed front position and y

domain are defined as

xf(y) =

N=20∑
n=1

an cos (qn [y − y0]) , qn =
nπ

yL − y0
, yL = 100, (5.3)

where an are randomly chosen in the interval [−0.1, 0.1].

Note that with double precision arithmetic (round-off error on the scale of 10−16),

numerical noise is expected to grow on the time scale

TM =
14 ln 10

τ
, (5.4)

where τ is the growth rate of an instability (streamwise or transverse). It is assumed that

numerical noise becomes significant when the magnitude of numerical noise instability

grows to that of the numerical accuracy of the ADI method, Δx2 = Δy2 = 0.01. Our

simulations focus on the time scales that are short compared to TM and therefore

numerical noise is not expected to influence the results.

5.1 Streamwise stable flow (Type 1)

In this section, we present numerical simulations of a Newtonian flow and a NLC flow

in the Type 1 regime (stable to streamwise perturbations), on an inclined and vertical

substrate. The influence of the azimuthal anchoring is ignored, η = 0. The height profiles

of a Newtonian flow on a vertical substrate (D = 0) are shown in Figure 4. It is observed

that the initial perturbation present in Figure 4(a) grows into a finger, which eventually

evolves to a stable size and then translates steadily down the substrate. The existence of

the steady travelling solution may be similar as discussed in [9], where it is predicted

that stable nontrivial travelling waves may exist for certain parameter values. Analysis

of this phenomenon is not within the scope of this paper and we refer the reader to [9]

for further discussion. Figure 5 shows the corresponding results for a film of NLC, with

N = 2. Initially a single central finger forms and at later times, secondary fingers evolve

along the y boundaries. Recalling Figure 1(a), for N = 2, the critical wavelength is
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Figure 4. Height profile of a Newtonian (N = 0 and η = 0) flow down a vertical substrate

(D = 0) at various times. TM = 3, 000 and other parameters are given in Tables 1(a) and (c).

Figure 5. Height profile of a Type 1 (N = 2) flow down a vertical substrate (D = 0) at various

times. Here the azimuthal substrate anchoring is ignored (η = 0), and other parameters are given

in Tables 1(a) and (c). The initial front position, xf ≈ 24, and the initial condition is similar to

Figure 4(a).

approximately 6. This suggests that the y domain, 0 � y � 11, is large enough to allow

other modes (secondary fingers) to develop.

Figure 6 shows the results for Newtonian and Type 1 NLC flow down an inclined

substrate (D = 1). The dynamics are qualitatively similar to those for the vertical substrate,

hence we show film height profiles only at the final time, corresponding to the solution

snapshots of Figures 4(c) and 5(b). Increasing D is observed to have stabilizing effect, as

evidenced by the smaller finger lengths observed in Figure 6.
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Figure 6. Height profiles of (a) Newtonian (N = 0 and η = 0) flow; and (b) Type 1 (N = 2) flow

down an inclined substrate (D = 1) where the azimuthal substrate anchoring is ignored (η = 0). For

earlier times, the evolution of the height profile are qualitatively similar to Figures 4 and 5. Other

parameters are given in Tables 1(a) and (b).

5.1.1 Growth rate of transverse perturbations

To extract the growth rate from simulation results, we track the position (along the

x-axis) of the central finger’s tip and root, xt(t) and xr(t), respectively. The location of the

centre of the finger is defined as xc(t) = [xt(t) + xr(t)]/2, and the length of the finger as

L(t) = xt(t) −xr(t). Following the investigation of Section 4.2, we first consider flow down

a vertical substrate where the azimuthal substrate anchoring is ignored (η = 0) and vary

the elastic response parameter, N.

Changing the reference frame to one moving with the speed of the two-dimensional

travelling wave, V given in equation (3.3), the position of the fingertip and root are

shown in Figures 7(a) and (b). It may be seen that there exist at least two spreading

regimes; initially, the fingertip and root travel at velocities close to the two-dimensional

travelling wave speed, V . As the finger evolves, the velocities deviate from V , but appear

to be nearly constant in time. The centre of the finger, xc(t), in the reference frame of

the travelling wave, is shown in Figure 7(c). At first, the centre of the finger travels at

the two-dimensional travelling wave speed, suggesting that the velocities of the fingertip

and root are equal but opposite. For later times, the finger centre velocity may vary

depending on the value of N; however, the centre of the finger always remains near

the two-dimensional travelling wave front position. This suggests that while the tip of

the finger travels further down the substrate than the two-dimensional travelling wave

solution, the area of the substrate coated by a film of uniform thickness is less than it

would be if the film were stable with respect to transverse perturbations.

Figure 7(d) plots the finger length normalized by the initial length, L0 = 2A = 0.2,

on a semi-log scale. It may be seen that initially fingers grow exponentially in time,

as anticipated, but at later times, growth rates decrease. Extracting the growth rate, σ,

from the linear regions observed in Figure 7(d), the dispersion relation found numerically

by solving equation (4.4) may be validated. To proceed, we consider a Type 1 flow

(N = 2) with three types of azimuthal substrate anchoring: substrate anchoring where
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Figure 7. Effect of N on (a) position of perturbation tip, (b) position of perturbation root, (c)

centre of perturbation and (d) length of perturbation. The arrows denote increase of N. Note the

positions in (a), (b) and (c) are plotted in the reference frame x− s = x− Vt where V = 0.21, given

by equation (3.3). Here η = 0 and other parameters are given by Tables 1(a) and (c).

the azimuthal angle is ignored (η = 0), planar substrate anchoring that is parallel to

flow with η = −0.8, and planar substrate anchoring that is perpendicular to flow with

η = −0.8. Figure 8 shows that there is excellent agreement between growth rates extracted

from direct simulations of equation (4.4), and the growth-rate given by numerically solving

the discretized eigenvalue problem for all three cases considered. These results validate

the influence of η and N on transverse stability predicted by the eigenvalue problem in

the both cases of the azimuthal substrate anchoring.

5.2 Streamwise and transverse instability (Type 2 and Type 3)

In this subsection, we discuss several numerical simulations where transverse and stream-

wise instabilities are present simultaneously. We ignore the azimuthal substrate anchoring

initially and consider flow down a vertical substrate (D = 0) and inclined substrate

(D = 1). The values of N are chosen such that either Type 2 or Type 3 solutions are

expected [10] (see Table 2). Other parameters are given in Table 1. In the case of a vertical

substrate (Table 1(c)), Figures 9 and 10 show the evolution of the free surface height for a

Type 2 flow (N = 9) and Type 3 flow (N = 12), respectively. For flow down an inclined
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Figure 8. Comparison of dispersion relation computed using the eigenvalue problem (4.4) and

growth rate extracted from direct numerical simulations, described in Section 5.1.1. Dispersion

curves are calculated for a Type 1 (N = 2) down a vertical substrate where (a) azimuthal substrate

anchoring has been ignored (η = 0), (b) parallel azimuthal substrate anchoring with η = −0.8

and (c) perpendicular azimuthal substrate anchoring with η = −0.8. Other parameters are given in

Tables 1(b) and (c).

substrate (Table 1(b)), the evolution of the height profiles for Type 2 flow (N = 10)

and Type 3 flow (N = 16) is shown in Figures 11 and 12, respectively. Comparing the

numerical results, first note the initial perturbed front position, xf ≈ 24, relative to the

unstable region. For Type 2 flows, it is expected that the streamwise instability behind the

front does not propagate (in the x direction) beyond the initial front position; Figures 9

and 11 confirm this expectation. By contrast, Figures 10 and 12 show that for a Type

3 flow, the streamwise instabilities propagate beyond the initial front position, a result

expected from the two-dimensional analysis (presented in detail in [10] and summarized

in Section 3). These results suggest that the classifications of solutions in two dimensions

(Type 1, 2 and 3) carry over to the three-dimensional case.

In the simulations presented, we observe two types of qualitative dynamics: tear form-

ation (e.g. x ≈ 80 in Figure 9(a)) and semi-stable travelling ridges (e.g. x ≈ 40 in

Figure 12(a)). Examining Figures 9–11, it may be seen that streamwise instabilities occur

behind the front, resulting in dewetting in the centre. The dewetted region grows in

the x and y directions, resulting in the initial finger breaking from the front, forming

a tear like shape. Behind the dewetting region, analogous instabilities occur near the y

boundaries and form secondary tears. This process alternates between the two types of

tear formation. Newly formed tears appear to briefly accelerate after breakup; however,

tears will eventually elongate and connect with other tears in the streamwise direction.

Considering a larger domain in the y-direction, Figure 13 shows the height profiles for

a Type 3 flow down a vertical substrate where the front position has been perturbed by

the superposition of cosine waves with random coefficients (see equation (5.3)). It may be

seen that similar tear formation occurs.

For a Type 3 flow down an inclined substrate, Figure 12, we observe the formation

of travelling ridges behind the front. The ridges appear to be analogous to solitary-like

waves observed in two-dimensional simulations [10, 13]. Similarly to the tear formation

flows, streamwise instabilities occur behind the front; however, the dewetting regions grow

rapidly in the transverse direction, splitting the film in the streamwise direction. This may

be seen in Figure 12(a), where the dewetted region behind the newly forming ridge is
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Figure 9. Height profile of a Type 2 (N = 9) flow down a vertical substrate at various times. Here

the azimuthal substrate anchoring is ignored (η = 0), and other parameters are given in Tables 1(a)

and (c). The initial front position, xf ≈ 24, and the initial condition is similar to Figure 4(a).

Figure 10. Height profile of a Type 3 (N = 12) flow down a vertical substrate at various times.

Here the azimuthal substrate anchoring is ignored (η = 0), and other parameters are given in

Tables 1(a) and (c). The initial front position, xf ≈ 24, and the initial condition is similar to

Figure 4(a).

elongated. This suggests that the instability in the streamwise direction is stronger than

the instability in the transverse direction. Newly formed ridges, however, do not persist

and eventually destabilize in the transverse direction. For later times, Figure 12(b), it

appears that the formation of new ridges terminates. Simulating this type of flow on a

larger y domain with a randomly-perturbed front position, Figure 14 shows that ridge

formation still occurs for a Type 3 flow down an inclined surface.

The existence of the semi-stable travelling ridges may be due to the initial competition

between transverse instability and streamwise instability. When tear formation is observed,

Figure 12, the transverse perturbation of the front grows by a non-negligible amount before

the streamwise instability occurs. In the case of ridge formation, the streamwise instability

occurs well before the transverse perturbation has time to grow sufficiently. This suggests

that instability is stronger in the streamwise direction, which is supported by the rapid

breakup observed in the x direction. Therefore, initially, the shape of the patterns that
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Figure 11. Height profile of a Type 2 (N = 10) flow down an inclined substrate at various

times. Here the azimuthal substrate anchoring is ignored (η = 0), and other parameters are given

in Tables 1(a) and (b). The initial front position, xf ≈ 24, and the initial condition is similar to

Figure 4(a).

Figure 12. Height profile of a Type 3 (N = 16) flow down an inclined substrate at various

times. Here the azimuthal substrate anchoring is ignored (η = 0), and other parameters are given

in Tables 1(a) and (b). The initial front position, xf ≈ 24, and the initial condition is similar to

Figure 4(a).

form behind the front seems to be governed by the streamwise instability. This results

in a film profile that is similar to two-dimensional solutions, but has been extended and

perturbed in the y direction. For later times, the ridges destabilize at a rate similar to that

of the originally perturbed front.

5.2.1 Influence of azimuthal substrate anchoring

For a spreading NLC drop on a horizontal substrate, it is known that, for radially-

asymmetric azimuthal substrate anchoring φ(x, y), the anchoring pattern imposed on the

substrate is reflected in the shape and structure of the spreading droplet [15]: broadly

speaking, for planar substrate anchoring patterns the flow is fastest in the direction parallel

to the anchoring direction, and slowest in the direction perpendicular to the anchoring.
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Figure 13. Height profile of a Type 3 (N = 12) flow down a vertical substrate (D = 0) at various

times. Here the azimuthal substrate anchoring is ignored (η = 0) and other parameters are given in

Tables 1(a) and (c). The initial front position, xf0 = 24.

Figure 14. Height profile of a Type 3 (N = 16) flow down a inclined substrate (D = 1) at various

times. Here the azimuthal substrate anchoring is ignored (η = 0) and other parameters are given in

Tables 1(a) and (b). The initial front position, xf0 = 24.

Figures 15 and 16 show the influence of parallel and perpendicular substrate anchoring,

respectively, on a Type 2 flow down a vertical substrate (N = 9) for various values of

η. For the parameters considered, the height profiles at t = 80 are shown in Figures 15

and 16. In the case of parallel substrate anchoring, Figure 15 shows that increasing |η|
elongates the finger in the direction of anchoring. For perpendicular substrate anchoring,

it may be seen that structure behind the finger, observed in Figure 16(a), is destroyed

in Figures 16(b) and (c). Given that tear formation eventually occurs, the earlier onset

of the breakup suggests that increasing |η| strengthens the instability in the transverse

direction.
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Figure 15. Influence of η and parallel azimuthal substrate anchoring on the evolution of the height

profile of a Type 2 flow (N = 9) down a vertical substrate. Height profiles are at a fixed later time,

t = 80. Other parameters are given in Tables 1(a) and (c).

Figure 16. Influence of η and perpendicular azimuthal substrate anchoring on the evolution of the

height profile of a Type 2 flow (N = 9) down a vertical substrate. Height profiles are at a fixed

later time, t = 80. Other parameters are given in Tables 1(a) and (c).

6 Conclusions

To summarize, we have analysed the flow of a NLC film down an inclined substrate,

with weak homeotropic anchoring at the free surface, and strong planar anchoring at

the substrate. Two specific cases of substrate anchoring were considered: parallel or
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perpendicular to the streamwise direction. The model we derive admits two-dimensional

travelling waves for these simple anchoring scenarios. These travelling waves may be

unstable to both transverse and streamwise perturbations. For flows that are streamwise

stable, we have derived an asymptotic approximation to the dispersion relationship for

transverse perturbations and validated the analysis by extracting the growth rates of

transverse perturbations from direct numerical simulation of the governing equation. In

the presence of streamwise and transverse instabilities, we observe rich dynamics when

considering the evolution of the free surface height. In addition, simulations suggest that

the influence of azimuthal substrate anchoring is similar to that observed for spreading

NLC drops on a horizontal substrate [15]. We hope that our computational results will

inspire future experimental investigations that may provide additional insight regarding

the model used.
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