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Abstract

Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v)

their Euclidean distance and by dG(u, v) their graph distance. The problem of finding
upper bounds on dG(u, v) conditional on dE(u, v) that hold asymptotically almost surely
has received quite a bit of attention in the literature. In this paper we improve the known
upper bounds for values of r = ω(

√
log n) (that is, for r above the connectivity threshold).

Our result also improves the best known estimates on the diameter of random geometric
graphs. We also provide a lower bound on dG(u, v) conditional on dE(u, v).
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1. Introduction

Given a positive integer n and a nonnegative real function r = r(n), a random geometric
graph G on n vertices and radius r is defined as follows. The vertex set V = V (G) is obtained by
choosing n points independently and uniformly at random in the square Sn = [−√

n/2,
√

n/2]2

(note that, with probability 1, no point in Sn is chosen more than once, and thus we assume
that |V | = n). For notational purposes, we identify each vertex v ∈ V with its corresponding
geometric position v = (xv, yv) ∈ Sn, where xv and yv denote the usual x- and y-coordinates
in Sn. For every two points u, v ∈ Sn, we write dE(u, v) for their Euclidean distance. Finally,
the edge set E = E(G) is constructed by connecting each pair of vertices u, v ∈ V by an edge
if and only if dE(u, v) ≤ r . We denote this model of random geometric graphs by G(n, r),
and use the notation G ∈ G(n, r) (or often simply G(n, r)) to refer to a random outcome of
this distribution. We will always assume that r ≤ √

2n, as for r ≥ √
2n the graph obtained is

always a clique.
Random geometric graphs were first introduced in a slightly different setting by Gilbert [3] in

order to model the communications between radio stations. Since then, several closely related
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Figure 1: Graph distance versus Euclidean distance between two points u and v in V .

variants of these graphs have been widely used as a model for wireless communication, and
have also been extensively studied from a mathematical point of view. The basic reference on
random geometric graphs is Penrose [9] (see [10] for a more recent survey).

The properties of G(n, r) are usually investigated from an asymptotic perspective, as n

grows to ∞ and r = r(n). Throughout the paper we use the following standard notation
for the asymptotic behavior of sequences of nonnegative numbers an and bn: an = O(bn) if
lim supn→∞ an/bn ≤ C < +∞; an = �(bn) if bn = O(an); an = �(bn) if an = O(bn)

and an = �(bn); an = o(bn) if limn→∞ an/bn = 0; and an = ω(bn) if bn = o(an). We also
use an 	 bn and bn 
 an to denote an = o(bn). Finally, a sequence of events Hn holds
asymptotically almost surely (a.a.s.) if limn→∞ P(Hn) = 1.

It is well known that rc = √
log n/π is a sharp threshold function for the connectivity of a

random geometric graph (see, e.g. [5] and [8]). This means that for every ε > 0, if r ≤ (1−ε)rc
then G(n, r) is a.a.s. disconnected, whilst if r ≥ (1 + ε)rc then it is a.a.s. connected.

Given a connected graph G, we define the graph distance between two vertices u and v,
denoted by dG(u, v), as the number of edges on a shortest path from u to v. Observe first that
any pair of vertices u and v must satisfy dG(u, v) ≥ dE(u, v)/r deterministically by the triangle
inequality, since each edge of a geometric graph has length at most r . The goal of this paper
is to provide upper and lower bounds that hold a.a.s. for the graph distance of two vertices in
terms of their Euclidean distance and in terms of r (see Figure 1).

Related work. This particular problem has given rise to quite a bit of interest in recent years.
Given any two vertices u, v ∈ V , most of the work related to this problem has been devoted to
studying the upper bounds on dG(u, v) in terms of dE(u, v) and r , that hold a.a.s. Ellis et al. [2]
showed that there exists some large constant K such that for every r ≥ (1 + ε)rc, G ∈ G(n, r)

satisfies a.a.s. the following property: for every u, v ∈ V such that dE(u, v) > r ,

dG(u, v) ≤ K
dE(u, v)

r
. (1.1)

Their result is stated in the unit ball random geometric graph model, but it can be easily adapted
into our setting. This result was extended by Bradonjić et al. [1] for the range of r for which
G(n, r) has a giant component a.a.s., under the extra condition that dE(u, v) = �(log7/2 n/r2).
Friedrich et al. [4] improved this last result by showing that the result holds a.a.s. for every u

and v satisfying dE(u, v) = ω(log n/r). They also proved that if r = o(rc), a linear upper
bound of dG(u, v) in terms of dE(u, v)/r is no longer possible. In particular, a.a.s. there exist
vertices u and v with dE(u, v) ≤ 3r and dG(u, v) = �(log n/r2).

The motivation for the study of this problem stems from the fact that these results provide
upper bounds for the diameter of G ∈ G(n, r), denoted by diam(G), that hold a.a.s., and
the runtime complexity of many algorithms can often be bounded from above in terms of the
diameter of G. For a concrete example, we refer the reader to the problem of broadcasting
information (see [1] and [4]).
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One of the important achievements of our paper is to show that one can take the constant K

for which (1.1) holds as K = 1 + o(1) a.a.s., provided that r = ω(rc). By the aforementioned
result in [4], we know that the statement does not hold if r = o(rc).

A similar problem has been studied by Muthukrishnan and Pandurangan [7]. They proposed
a new technique to study several problems on random geometric graphs—the so-called bin-
covering technique—which tries to cover the endpoints of a path by bins. They considered,
among others, the problem of determining DG(u, v), which is the length of the shortest
Euclidean path connecting u and v. Recently, Mehrabian and Wormald [6] studied a similar
problem to the one in [7]. They deployed n points uniformly in [0, 1]2, and connected any
pair of points with probability p = p(n), independently of their distance. In this model, they
determined the ratio of DG(u, v) and dE(u, v) as a function of p.

The following theorem is the main result of our paper.

Theorem 1.1. Let G ∈ G(n, r) be a random geometric graph on n vertices and radius 0 < r ≤√
2n. For every pair of vertices u, v ∈ V (G) with dE(u, v) > r (as otherwise the statement is

trivial) a.a.s., we have

(i) if dE(u, v) ≥ max{12(log n)3/2/r, 21r log n} then

dG(u, v) ≥
⌊

dE(u, v)

r

(
1 + 1

2(rdE(u, v))2/3

)⌋
;

(ii) if r ≥ 224
√

log n then

dG(u, v) ≤
⌈

dE(u, v)

r
(1 + γ r−4/3)

⌉
,

where

γ = γ (u, v) = max

{
1358

(
3r log n

r + dE(u, v)

)2/3

,
4 × 106 log2 n

r8/3 , 30 0002/3
}
.

Proof. (i) We first observe that all the short paths between two points must lie in a certain
rectangle. Then we show that, by restricting the construction of the path on that rectangle, no
very short path exists.

(ii) We proceed similarly. We restrict our problem to finding a path contained in a narrow strip.
In this case, we show that a relatively short path can be constructed. We believe that the ideas
in the proof can be easily extended to show the analogous result for d-dimensional random
geometric graphs for all fixed d ≥ 2. �
Remark 1.1. (i) Note that the condition dE(u, v) ≥ max{12(log n)3/2/r, 21r log n} in the
lower bound of Theorem 1.1(i) can be replaced by dE(u, v) ≥ 21r log n if r ≥ √

4/7(log n)1/4,
and by dE(u, v) ≥ 12(log n)3/2/r if r ≤ √

4/7(log n)1/4. We do not know whether this
condition can be made less restrictive, besides improving the multiplicative constants involved
(which we did not attempt to optimize).

(ii) Similarly, the constant 224 in the condition r ≥ 224
√

log n of Theorem 1.1(ii) (as well
as those in the definition of γ ) is not optimized either, and could be made slightly smaller.
However, our method as is cannot be extended all the way down to r ≥ √

log n/π = rc.

(iii) Moreover, the error term in Theorem 1.1(i) is (2(rdE(u, v))2/3)−1 = O(1/ log n) = o(1).
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(iv) Finally, the error term in Theorem 1.1(ii) is

γ r−4/3 = �

(
max

{(
log n

r2 + rdE(u, v)

)2/3

,

(√
log n

r

)4

, r−4/3
})

,

which is o(1) if and only if r = ω(
√

log n) = ω(rc). Hence, for r = ω(rc), Theorem 1.1(ii)
implies that a.a.s.

dG(u, v) ≤
⌈
(1 + o(1))

dE(u, v)

r

⌉
,

thus improving the result in [2].

Theorem 1.1 gives an upper bound on the diameter as a corollary. First, observe that
dE(u, v) ≤ √

2n. From [2, Theorem 10] for the particular case d = 2, one can deduce that if
r ≥ (1 + ε)rc a.a.s.

diam(G) ≤
√

2n

r

(
1 + O

(√
log log n

log n

))
. (1.2)

Directly from Theorem 1.1, we have, for r ≥ 224
√

log n,

diam(G) ≤
⌈√

2n

r
(1 + γ̂ r−4/3)

⌉
, (1.3)

where

γ̂ = �

((
r log n√

n

)2/3

+ log2 n

r8/3 + 1

)
.

(In fact, (1.3) holds for all r ≥ (1+ε)rc as a consequence of (1.2).) From straightforward com-
putations, one can check that (1.3) improves (1.2) provided that r = �(log5/8 n/(log log n)1/8).

On the other hand, for the lower bound on the diameter, observe that for any function ω

growing arbitrarily slowly with n, we can a.a.s. find two vertices u and v, each at distance at
most ω from one corner (opposite from each other) of the square Sn. For two such vertices, we
trivially (and deterministically) have

diam(G) ≥ dG(u, v) ≥
⌈√

2n(1 − �(ω/
√

n))

r

⌉
. (1.4)

Assuming that
√

log3 n/n 	 r 	 √
n/ log n, applying the bound from Theorem 1.1 to these

vertices, we have a.a.s.

diam(G) ≥ dG(u, v) (1.5)

≥
⌊√

2n(1 − �(ω/
√

n))

r
(1 + �(r−2/3n−1/3))

⌋
≥

⌈√
2n(1 − �(ω/

√
n) + �(r−2/3n−1/3))

r
− 1

⌉
. (1.6)

Assuming the additional constraint r 	 n1/10, we have r−2/3n−1/3 
 r/
√

n, and also
r−2/3n−1/3 
 ω/

√
n (for ω tending to ∞ sufficiently slowly). In this case, our bound in (1.5)

improves upon the trivial lower bound (1.4), and can be written as

diam(G) ≥
⌊√

2n

r
(1 + �(r−2/3n−1/3))

⌋
. (1.7)
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Note that this is a.a.s. still valid if we drop the constraint r 

√

log3 n/n, since for r =
O(

√
log3 n/n) the random geometric graph is a.a.s. disconnected (and has infinite diameter).

Hence, by (1.3) and (1.7), we obtain the following corollary.

Corollary 1.1. Let G ∈ G(n, r) be a random geometric graph on n vertices and radius 0 <

r ≤ √
2n. We have a.a.s.

(i) if r ≥ (1 + ε)rc then

diam(G) ≤
⌈√

2n

r
(1 + γ̂ r−4/3)

⌉
,

where

γ̂ = �

((
r log n√

n

)2/3

+ log2 n

r8/3 + 1

)
;

(ii) if r 	 n1/10 then

diam(G) ≥
⌊√

2n

r
(1 + �(r−2/3n−1/3))

⌋
.

2. Proof of Theorem 1.1

In order to simplify the proof of Theorem 1.1 we will make use of a technique known as
de-Poissonization, which has many applications in geometric probability (see, e.g. [9] for a
detailed account of the subject). Here we sketch it.

Consider the following related model of a random geometric graph G with two distinguished
vertices u, v. The vertex set of G is V = V (G) = {u, v} ∪ V ′, where the position of u and v is
selected independently and uniformly at random in Sn, and where V ′ is a set obtained from a
homogeneous Poisson point process of intensity 1 in the square Sn of area n. Observe that V ′
consists of N points in the square Sn chosen independently and uniformly at random, where N

is a Poisson random variable of mean n. Exactly as we did for the model G(n, r), we connect
u1, u2 ∈ V by an edge if and only if dE(u1, u2) ≤ r . We denote this new model by G̃u,v(n, r).

The main advantage of defining V ′ = V \ {u, v} as a Poisson point process is motivated
by the following two properties: the number of points of V ′ that lie in any region A ⊆ Sn of
area a has a Poisson distribution with mean a; and the number of points of V ′ in disjoint regions
of Sn are independently distributed. Moreover, conditional on N = n − 2, the distribution of
G̃u,v(n, r) is the one of G(n, r). Therefore, since P(N = n−2) = �(1/

√
n), any event holding

in G̃u,v(n, r) with probability at least 1 − o(fn) must hold in G(n, r) with probability at least
1 − o(fn

√
n). We make use of this property throughout this paper, and perform all the analysis

for a graph G ∈ G̃u,v(n, r) or related models of Poisson point processes.
We will need the following concentration inequality for the sum of independently and

identically distributed exponential random variables. For the sake of completeness we provide
the proof here.

Lemma 2.1. Let X1, . . . , Xm be independent exponential random variables of parameter
λ > 0 (that is, expectation 1/λ) and let X = X1 + · · · + Xm. Then, for every ε > 0,
we have

P(X ≥ (1 + ε)E(X)) ≤
(

1 + ε

eε

)m

,

and for any 0 < ε < 1, we have

P(X ≤ (1 − ε)E(X)) ≤ ((1 − ε)eε)m ≤ e−ε2m/2.
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Proof. We will prove the bound for the upper tail. The bound for the lower tail is proved in
a similar way and its proof is omitted. We have EX = mEX1 = m/λ. By Markov’s inequality,
for every 0 < β < λ and every ε > 0, we have

P(X ≥ (1 + ε)EX) = P(eβX ≥ eβ(1+ε)m/λ) ≤
∏

E(eβXi )

eβ(1+ε)m/λ
= (ϕX1(β))me−β(1+ε)m/λ,

where ϕX1(β) = E(eβX1) = λ/(λ − β) is the moment generating function of an exponentially
distributed random variable with parameter λ. Thus,

P(X ≥ (1 + ε)EX) ≤
(

λ

λ − β

)m

e−β(1+ε)m/λ.

Now we set β = (ε/(1 + ε))λ to obtain

P(X ≥ (1 + ε)EX) ≤
(

1 + ε

eε

)m

. �

2.1. Proof of Theorem 1.1(i)

In this section we prove the lower bound in Theorem 1.1. For every t ≥ 0, we introduce the
following model of infinite random geometric graphs. The vertex set is constructed by adding
two vertices u = (0, 0) and v = (t, 0) to a homogeneous Poisson point process of intensity 1
in the infinite plane R

2. We denote this new model by G̃∞
u,v(r, t).

The main task in the sequel is to show that, for any t ≥ max{12(log n)3/2/r, 21r log n},
the lower bound of Theorem 1.1(i) holds with probability at least 1 − o(n−5/2) in G̃∞

u,v(r, t)

for the distinguished vertices u = (0, 0) and v = (t, 0). Combining this with an appropriate
de-Poissonization argument will allow us to conclude the desired result for G(n, r).

In our next lemma we show that short paths connecting u and v are contained in small strips.
The lemma is stated in the more general context of a deterministic geometric graph G = (V , E)

of radius r , where the vertex set V is an arbitrary subset of points in R
2 (containing u and v)

and edges connect (as usual) every pair of vertices at Euclidean distance at most r . For a given
r > 0, for every k ∈ N and α > 0, consider the rectangle

R(k, α) =
[−α2

kr
, kr

]
× [−α, α].

Lemma 2.2. Given any r, t, α > 0 and any k ∈ N satisfying t ≥ kr − 2α2/kr , let G be a
geometric graph of radius r in R

2, and suppose that u = (0, 0) and v = (t, 0) are two vertices
of G. Then all paths of length at most k from u to v are contained in R(k, α).

Proof. If there is no path of length at most k from u to v, the statement of the lemma trivially
holds. Thus, we suppose that P = (u = z0, z1, . . . , z� = v) is a path of length � ≤ k, where
zi = (xi, yi) for every 0 ≤ i ≤ �. Also, note that it suffices to prove the lemma for α satisfying
t = kr − 2α2/kr , since this trivially implies the statement for larger α. In particular, we have
α2 < (kr)2/2.

Write x+ = max{xi : 0 ≤ i ≤ �} and x− = min{xi : 0 ≤ i ≤ �}. It is clear that
x+ ≤ �r ≤ kr since every edge has length at most r . Let 0 ≤ j ≤ � be such that xj = x− and
observe that x− ≤ x0 = 0. Then

kr ≥ dE(u, zj ) + dE(zj , v) ≥ −x− + (t − x−) ≥ kr − 2

(
x− + α2

kr

)
,

and we obtain x− ≥ −α2/(kr).
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Figure 2: Example of some values of xi and their corresponding ai (i ∈ {1, 2, 3}).

Now write y+ = max{yi : 0 ≤ i ≤ �} and y− = min{yi : 0 ≤ i ≤ �}. We will show that
y+ ≤ α and that y− ≥ −α. For every 0 ≤ i ≤ �, we have

kr ≥ dE(u, zi) + dE(zi, v) =
√

x2
i + y2

i +
√

(t − xi)2 + y2
i ≥

√
t2 + 4y2

i ,

where we used the fact that the left-hand side of the last inequality is minimized at xi = t/2.
Using the fact that t ≥ kr − 2α2/kr , we obtain

(kr)2 ≥ t2 + 4y2
i ≥

(
kr − 2α2

kr

)2

+ 4y2
i .

Thus, for every 0 ≤ i ≤ �, we have |yi | ≤ α
√

1 − α2/(kr)2 ≤ α, and so, in particular,
−α ≤ y− ≤ y+ ≤ α. Using the bounds on x+, x−, y+, and y−, we conclude that P is
contained in R(k, α). �

Proposition 2.1. For every t > r , let G ∈ G̃∞
u,v(r, t) be a random geometric graph on R

2 with
additional vertices u = (0, 0) and v = (t, 0). Then, for every 0 < δ < 2−1/3, we have

P

(
dG(u, v) ≤

⌊
t

r

(
1 + δ

(tr)2/3

)⌋)
≤ (1 + o(1))t

r
exp

(
−

√
δ

2
(tr)2/3

)
+ exp

(
−(1 −

√
2δ3 − o(1))2 t

2r

)
.

Proof. We first set

k =
⌊

t

r

(
1 + δ

(tr)2/3

)⌋
and α =

√
δ

2

(
k3r2

t

)1/3

.

Observe that since t > r , we have k ≥ 1. Let A1 be the event that dG(u, v) ≤ k; that is,
there exists a path P in G̃∞

u,v(r, t) from u to v of length at most k. Our goal is to show that the
probability of A1 is small.

Let x1 be the largest x-coordinate of the vertices inside the rectangle R1 = [0, r] × [−α, α]
(possibly x1 = 0 if u is the only vertex in R1). Define the random variable a1 = r − x1. We
proceed similarly for every 2 ≤ i ≤ k. We define xi as follows. If Ri = (xi−1 + ai−1, xi−1 +
r]× [−α, α] is nonempty, let xi be the largest x-coordinate of the vertices inside Ri ; otherwise,
set xi = xi−1 + ai−1 (see Figure 2). Then also define ai = xi−1 + r − xi .
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Claim 2.1. If A1 holds then t ≤ xk .

Proof. Suppose that A1 holds and let P = (u = z0, z1, . . . , z� = v) be one such path, and
for every 0 ≤ i ≤ � let x̂i be the x-coordinate of zi . We will prove by induction on i that we
have x̂i ≤ xi . In particular, this implies that t = x̂� ≤ x� ≤ xk , and proves the claim.

Observe that

t ≥ kr

(1 + δ/(tr)2/3)
≥ kr

(
1 − δ

(tr)2/3

)
= kr − 2α2

kr
. (2.1)

Thus, we can use Lemma 2.2 to show that the path P is contained in the strip R × [−α, α].
Moreover, we must have x̂1 − x̂0 ≤ r (since u = z0 and z1 are adjacent vertices). Therefore,
our choice of x1 and the fact that z1 ∈ R×[−α, α] imply that x̂1 ≤ x1. So, the statement holds
for i = 1. Now we inductively assume that x̂i−1 ≤ xi−1. We must have x̂i ≤ x̂i−1 + r (since
zi−1 and zi are adjacent vertices), and, therefore, x̂i ≤ xi−1 + r . Similarly as before, since
zi ∈ R × [−α, α] and by the choice of xi , we conclude that x̂i ≤ xi , as desired. �

Thus, it suffices to show that xk ≥ t with very small probability. We first study the random
variables ai . Define a0 = 0. By the choice of xi , for every 1 ≤ i ≤ k, we have 0 ≤ ai ≤
r −ai−1. Recall that Ri = (xi−1 +ai−1, xi−1 +r]×[−α, α]. Since G ∈ G̃∞

u,v(r, t), the number
of vertices from V inside a region of R

2 is a Poisson random variable with mean equal to the
area of that region. So, for every 2 ≤ i ≤ k, we have

P(ai ≥ β) =

⎧⎪⎨⎪⎩
P((xi−1 + r − β, xi−1 + r]

×[−α, α] empty) = e−2αβ if 0 ≤ β ≤ r − ai−1,

0 if β > r − ai−1.

(2.2)

Thus, ai is stochastically dominated by an exponentially distributed random variable ãi of
parameter 2α. We assume that ai and ãi are coupled together in the same probability space, so
that ai = min{̃ai, r − ai−1} ≤ ãi .

Moreover, since the regions R1, R2, . . . , Rk that define the random variables ai are disjoint,
the joint distribution of a1, a2, . . . , ak is stochastically dominated by the joint distribution
of ã1, ã2, . . . , ãk; that is, the distribution of k independent exponentially distributed random
variables of parameter 2α.

Define

a =
k∑

i=1

ai and ã =
k∑

i=1

ãi .

Expanding recursively from the relations xi = xi−1 + r − ai and x1 = r − a1, we have

xk =
k∑

i=1

(r − ai) = kr − a.

Consider the event A2 defined by ãi ≤ r/2 for all 1 ≤ i ≤ k. Since we aim to bound the
probability that xk is large (or, equivalently, that a is small), we cannot use the fact that the joint
distribution of the ais is stochastically dominated by the ones of the ãis. Nevertheless, note that
conditional on A2, we have ai = ãi for all 1 ≤ i ≤ k; if ai−1 ≤ r/2 then ai ≤ r/2 ≤ r − ai−1,
and from (2.2), ai = ãi . In other words, for every β ≥ 0,

P(a ≤ β, A2) = P(̃a ≤ β, A2).
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Since each ãi is exponentially distributed with parameter 2α and stochastically dominates ai ,
we can bound the probability that A2 does not occur; that is,

P(A2) ≤
k∑

i=1

P

(
ai >

r

2

)
≤

k∑
i=1

P

(
ãi >

r

2

)
= ke−αr . (2.3)

Therefore, using the bound on t given in (2.1), we have

P(xk ≥ t) ≤ P(A2) + P(xk ≥ t, A2)

≤ ke−αr + P(kr − a > t, A2)

≤ ke−αr + P

(
a ≤ 2α2

kr
, A2

)
= ke−αr + P

(
ã ≤ 2α2

kr
, A2

)
≤ ke−αr + P

(
ã ≤ 2α2

kr

)
. (2.4)

Thus, it remains to provide a good upper bound on the lower tail of ã. Note that E(̃a) =∑k
i=1E(̃ai) = k/2α. We use the definition of k and α, as well as Lemma 2.1 with ε =

(1 − √
2δ3/2 − o(1)), to show that

P

(
ã ≤ 2α2

kr

)
= P

(
ã ≤ 4α3

k2r
E(̃a)

)
≤ P(̃a ≤ (

√
2δ3/2 + o(1))E(̃a)) ≤ e−ε2k/2. (2.5)

Finally, we use (2.4), (2.5) and the definition of k, α, and ε to obtain

P(xk ≥ t) ≤ (1 + o(1))t

r
exp

(
−

√
δ

2
(tr)2/3

)
+ exp

(
−(1 −

√
2δ3 − o(1))2 t

2r

)
.

Since the event A1 implies that xk ≥ t , P(A1) ≤ P(xk ≥ t) and the proposition follows. �
Proposition 2.2. Let G̃∞

u,v(r, t) be a random geometric graph in R
2 with two additional distin-

guished vertices u = (0, 0) and v = (t, 0) such that

t = dE(u, v) ≥ max

{
12(log n)3/2

r
, 21r log n

}
.

Then we have

dG(u, v) ≤
⌊

t

r

(
1 + 1

2(rt)2/3

)⌋
with probability at most o(n−5/2).

Proof. Set δ = 1
2 . Since t ≥ 12(log n)3/2/r , we have√

δ

2
(tr)2/3 − log

(
1 − o(1)t

r

)
>

5

2
log n,

and since t ≥ 21r log n,

(1 −
√

2δ3 − o(1))2 t

2r
>

5

2
log n.
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By Proposition 2.1, this implies that

P

(
dG(u, v) ≤

⌊
t

r

(
1 + 1

2(rt)2/3

)⌋)
= o(n−5/2). �

The same conclusion in Proposition 2.1 must hold (for t ≤ √
2n) if we restrict G̃∞

u,v(r, t) to
any arbitrary square Ŝn of area n containing u = (0, 0) and v = (t, 0) (that is, we consider the
subgraph induced by the vertices lying inside of that square), since the graph distance between u

and v can only increase when doing so. Moreover, by rotating and mapping an appropriate
square Ŝn to Sn = [−√

n/2,
√

n/2]2, we conclude that Theorem 1.1(i) holds in G̃u,v(n, r) with
probability 1 − o(n−5/2). Hence, in view of the de-Poissonization argument described at the
beginning of Section 2, this same property holds in G(n, r) with probability 1 − o(n−2), for a
given pair of vertices u, v. The statement follows by taking a union bound over all at most n2

pairs of vertices.

2.2. Proof of Theorem 1.1(ii)

In this section we complete the proof of Theorem 1.1. To derive the bound on the upper
tail on the graph distance between u, v ∈ V , we first assume that u = (0, 0) and v = (t, 0)

(for some 0 < t ≤ √
2n), and analyze G̃∞

u,v(r, t) restricted to a suitable rectangle. Our goal is
to find a path P from u to v inside of that rectangle that gives an appropriate upper bound on
dG(u, v). Then, we will use similar ideas to those at the end of Section 2.1 to derive the desired
conclusion about G(n, r).

For every measurable set S ⊆ R
2 containing u and v, let G̃S,u,v(r, t) denote the random

geometric graph obtained as the subgraph of G̃∞
u,v(r, t) induced by the vertices contained in S.

Observe that G̃S,u,v(r, t) can also be constructed by taking as the vertex set a Poisson point
process of intensity 1 in S, adding the vertices u = (0, 0) and v = (t, 0), and connecting any
two vertices by an edge if they are at Euclidean distance at most r .

For every 0 < α ≤ r , we define the rectangle

S(t, α) = [0, t] × [0, α].
(The precise value of α will be specified later; it will be different to the one given in the previous
section.) Given α and r , we write ρ = r − α2/r . Then, for every point z = (xz, yz) ∈ S, we
define the rectangle

Sz = Sz(α) := [xz, xz + ρ] × [0, α].
We need the following auxiliary lemma.

Lemma 2.3. Let t > 0 and 0 < α ≤ r . Then, for every pair of points z ∈ S(t, α) and
z′ ∈ Sz(α), we have dE(z, z′) ≤ r (see Figure 3).

Proof. It is enough to show that the upper-left corner z1 = (xz, α) and the bottom-right
corner z2 = (xz + ρ, 0) of Sz(α) satisfy dE(z1, z2) ≤ r . Then all the points inside Sz(α) lie at
distance at most r , and, in particular, dE(z, z′) ≤ r .

We have

(dE(z1, z2))
2 = ρ2 + α2 = r2 − α2

(
1 −

(
α

r

)2)
≤ r2,

and the lemma follows. �
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Figure 3: The rectangle Sz.

Our next task is to bound the graph distance between u and v in G̃S(t,α),u,v(r, t) by finding
a path of length at most �(t/r)(1 + δr−4/3)� from u to v, for some δ that will be made precise
in the following proposition.

Proposition 2.3. Let F > 0 and J > 3(F +1) be constants and define g(x) = x − log(1+x).
For every J ≤ δ ≤ Fr4/3, there exists an α such that the following holds. Fix t ≥ 0 and
consider G̃S,u,v(r, t) to be a random geometric graph with u = (0, 0), v = (t, 0) in the
rectangle S = S(t, α). Then we have

P

(
dG(u, v) >

⌈
t

r

(
1+δr−4/3

)⌉)
≤ n exp

(
− (F + 1)δ1/2r4/3

2J 3/2

)
+exp

(
−g

((
δ

J

)3/2)
t

r

)
.

Proof. We will first define some parameters that will be useful in our analysis. SetC = J−3/2

and let B be an arbitrary positive constant satisfying

B2 + 2C

B
<

1

F + 1
. (2.6)

Elementary analysis shows that such a B must exist. In fact, B2 + 2C/B = 1/(F + 1) has
exactly two positive solutions B1 and B2 for any 0 < C = J−3/2 < 1/(3(F + 1))3/2, and any
0 < B1 < B < B2 < 1/

√
F + 1 satisfies (2.6).

Fix some δ with J ≤ δ ≤ Fr4/3, and set

α = Bδ1/2r1/3. (2.7)

In order to use Lemma 2.3, let us first show that α ≤ r . Since δ ≤ Fr4/3 by hypothesis of the
proposition, we have

α ≤ (B
√

F)r, (2.8)

and B
√

F < 1, since B < 1/
√

F + 1. Moreover, we have

ρ = r − α2

r
≥ (1 − B2F)r. (2.9)

We will consider the integer k = �(t/r)(1 + δr−4/3)� and let A1 be the event dG(u, v) ≤ k;
that is, there exists a path P = (u = z0, z1, . . . , z�, v) in G̃S,u,v(r, t) from u to v of length
at most k. Such a path will only use vertices inside S = S(t, α), but due to some technical
considerations in the argument, we extend the Poisson point process of our probability space
to the semiinfinite strip S(α) = [0, ∞) × [0, α]. Our goal is to show that the probability of A1
is large.

As we did in the proof of Proposition 2.1, now we define random variables xi and ai for
every i ≥ 1. Set x0 = 0 and a0 = 0. For each i ≥ 1, consider the rectangle Ri = Ri(α) :=
(xi−1 + ρ/2, xi−1 + ρ] × [0, α]. If Ri contains at least a vertex, let zi be the vertex with
largest x-coordinate inside Ri . In such a case, define xi to be the x-coordinate of zi and
ai = xi−1 + ρ − xi . Otherwise, we stop the process.

Let τ = min{i ≥ 1 : Ri contains no points} be the stopping time of the process.
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Claim 2.2. Conditional on τ ≥ k, if xk−1 + ρ ≥ t then A1 holds.

Proof. Assume that τ ≥ k and that xk−1 + ρ ≥ t . Observe that for every i < k, we have
0 ≤ ai ≤ ρ/2. Moreover, by construction of the process, for every 1 ≤ i < k, we have
zi ∈ Ri ⊆ Szi−1 and, since α ≤ r , Lemma 2.3 implies that zi is adjacent to zi−1. Thus, the
vertices z0, z1, . . . , zk−1 form a path. In particular,

x1 ≥ ρ

2
. (2.10)

Since xk−1 + ρ ≥ t , we know that there exists a value � ≤ k − 1 such that x�−1 + ρ ≥ t

and also x�−1 ≤ t , and, thus, by Lemma 2.3, z� and v are connected by an edge. The path
P = (u = z0, z1 . . . , z�, v) has length �+ 1 ≤ k, connects u and v, and is fully contained in S.
Therefore, A1 is satisfied, which completes the proof of the claim. �

It suffices to show that we have with high probability τ ≥ k, and that conditional on it, with
high probability xk−1 + ρ ≥ t .

For every 0 ≤ i < τ , let A
(i)
2 be the event that aj ≤ ρ/2 for every 1 ≤ j ≤ i and

let A2 = A
(k−1)
2 be the event that τ ≥ k. Conditional on A2, it follows that the regions

R1, . . . , Rk−1 are disjoint. Hence, we deduce that conditional on A2, the joint distribution
of a1, . . . , ak−1 is the same as the joint distribution of ã1, . . . , ãk−1, with ã1, . . . , ãk−1 being
k − 1 independent exponentially distributed random variables with parameter α. In particular,
conditional only on A

(i−1)
2 , we also have that ai is stochastically dominated by ãi , and, hence,

P(A2) =
k−1∑
i=1

P

(
ai ≥ ρ

2

∣∣∣∣ A
(i−1)
2

)
≤

k−1∑
i=1

P

(
ãi ≥ ρ

2

)
.

Since αρ/2 ≥ (1 − B2F)αr/2 = (1 − B2F)Bδ1/2r4/3/2, we have

P

(
ãi ≥ ρ

2

)
= e−αρ/2 ≤ e−(1−B2F)Bδ1/2r4/3/2,

and that

P(τ < k) = P(A2) ≤ ne−(1−B2F)Bδ1/2r4/3/2. (2.11)

Also, if we let a = ∑k−1
i=1 ai and ã = ∑k−1

i=1 ãi , conditional on A2 (or in other words, on τ ≥ k),
by the same argument, for every β ≥ 0, we have

P(a ≥ β, A2) = P(̃a ≥ β, A2). (2.12)

Observe that now E(̃a) = (k − 1)/α. Let A3 be the event that ã ≤ (1 + Cδ3/2)((k − 1)/α).
We first show that A3 implies the event {kρ − ã > t}. Conditional on A3, using the definition
of α, the fact that δ−3/2 ≤ C, and that δ ≤ Fr4/3, we have

kρ − ã > kρ − (1 + Cδ3/2)(k − 1)

α

≥ kr

(
1 − α2

r2 − (1 + Cδ3/2)

αr

)
≥ t (1 + δr−4/3)

(
1 − δr−4/3

(
B2 + (δ−3/2 + C)

B

))
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≥ t (1 + δr−4/3)

(
1 − δr−4/3

(
B2 + 2C

B

))
= t

[
1 + δr−4/3

(
1 −

(
δr−4/3 + 1

)(
B2 + 2C

B

))]
≥ t

[
1 + δr−4/3

(
1 − (F + 1)

(
B2 + 2C

B

))]
> t. (2.13)

Now, we can use (2.12) and the upper-tail bound in Lemma 2.1 to prove

P(A3) = P

(
ã ≥ (1 + Cδ3/2)

k − 1

α

)
≤ e−g((δ/J )3/2)(k−1) ≤ e−g((δ/J )3/2)(�t/r�−1). (2.14)

By expanding the definition of xk−1, we can write xk−1 = (k − 1)ρ − a. Thus, using
(2.11)–(2.14), we obtain

P({τ < k} ∪ {xk−1 + ρ ≤ t}) = P(A2) + P(xk−1 + ρ ≤ t, A2)

≤ ne−(1−B2F)Bδ1/2r4/3/2 + P(kρ − a ≤ t, A2)

≤ ne−(1−B2F)Bδ1/2r4/3/2 + P(kρ − ã ≤ t)

≤ ne−(1−B2F)Bδ1/2r4/3/2 + P(A3) + P(kρ − ã ≤ t, A3)

≤ ne−(1−B2F)Bδ1/2r4/3/2 + e−g((δ/J )3/2)(�t/r�−1). (2.15)

Moreover, by the properties of B and the definition of C, we have

(1 − B2F)B > (1 − B2(F + 1))B > 2C(F + 1) = 2(F + 1)J−3/2.

Thus,

P(xk−1 + ρ ≤ t) ≤ n exp

(
− (F + 1)δ1/2r4/3

J 3/2

)
+ exp

(
−g

((
δ

J

)3/2)(⌈
t

r

⌉
− 1

))
,

concluding the proof of the proposition. �
Remark 2.1. Observe the trade-off between δ and the success probability in the proof of
Proposition 2.3: for a given value of δ, we set α = �(

√
δr1/3). That is, for a given radius r ,

the smaller δ, the smaller α. Proposition 2.3 computes the probability that a path using vertices
only within a strip of width α can be found. Clearly, the smaller δ, the straighter a path has to
be, and the smaller the rectangle in which we have to find a path has to be, therefore making
also α smaller. On the other hand, for smaller α, the probability of indeed finding a path in
such a small strip also gets smaller.

Proposition 2.4. Given t > 0 and the vertices u = (0, 0) and v = (t, 0), let γ = γ (t) be
defined as in Theorem 1.1(ii). Let G̃S,u,v(r, t) be a random geometric graph in the rectangle
S = S(t, α), with additional vertices u and v. Suppose that r ≥ 224

√
log n. Then, we have

dG(u, v) >

⌈
t

r

(
1 + γ r−4/3

)⌉
with probability at most o(n−5/2).
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Proof. First, observe that, if t ≤ r then dG(u, v) = 1 with probability 1 and the statement of
the proposition holds trivially. Thus, we assume henceforth that t > r . SetB = 0.01/(2.02

√
2),

C = 10−4, F = 1, D = 4 × 106, E = 1358, and J = 108/3. Set

γ ′ = max

{
E

(
log n

�t/r� − 1

)2/3

, D
log2 n

r8/3 , 32/3J

}
.

Note that γ ′ ≤ γ for γ as given in Theorem 1.1: indeed, the second and the third term are equal,
and for the first term, for t > r , it holds that(3/(1 + t/r)) > (1/(�t/r� − 1)). Therefore, it
suffices to apply Proposition 2.3 with δ = γ ′. It is straightforward to check that the restrictions
in (2.6) and J > 3(F + 1), required in Proposition 2.3, hold. We also need to show that
J ≤ γ ′ ≤ Fr4/3. Note that D log2 /nr8/3 ≤ Fr4/3, since

r ≥ 224
√

log n ≥ D1/4
√

log n;
also

E

(
log n

�t/r� − 1

)2/3

≤ Fr4/3,

since �t/r� − 1 ≥ 1, and since r2 ≥ E3/2 log n, which follows from our assumption of
r ≥ 224

√
log n; and finally 32/3J ≤ Fr4/3 since r = �(

√
log n). Moreover, γ ′ ≥ 32/3J ≥ J .

Note that this choice of constants combined with (2.8) and (2.9) implies that

α ≤ 0.01

2.02
√

2
r ≤ r

3
and ρ ≥ 8r

9
≥ 8α

3
. (2.16)

We will now apply (2.15) in the proof of Proposition 2.3 with this given δ, in order to show that
P(dG(u, v) > k) = o(n−5/2). On the one hand, δ ≥ D log2 /nr8/3 implies that

(1 − B2F)Bδ1/2r4/3

2
− log n ≥ (1 − B2F)BD1/2 log n

2
− log n

>
7.0009

2
log n − log n

= 5.0009

2
log n.

On the other hand, δ ≥ 32/3J and δ ≥ E(log n/(�t/r� − 1))2/3 imply that

g

((
δ

J

)3/2)(⌈
t

r

⌉
− 1

)
>

(δ/J )3/2

2

(⌈
t

r

⌉
− 1

)
≥ 1

2
CE3/2 log n >

5.004

2
log n,

where we have used the fact that g(x) ≥ x/2 if x ≥ 3, and that C = J−3/2.
Therefore, P(dG(u, v) > k) ≤ n−5.0009/2 + n−5.004/2 = o(n−5/2). �

Corollary 2.1. The statement in Theorem 1.1(ii) holds.

Proof. We will use an argument similar to that at the end of Section 2.1 to relate the models
G̃S(t,α),u,v(r, t) and G̃u,v(n, r). However, such an endeavor entails extra difficulties. Given
two vertices u, v ∈ Sn = [−√

n/2,
√

n/2]2 at Euclidean distance t > 0, there are exactly
two isometries that map them to (0, 0) and (t, 0), denoted by π+ and π−. Unfortunately, the
preimage of the rectangle S(t, α) under such isometries may not be entirely contained in the
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square Sn. In order to overcome this obstacle, we just need to show that the internal vertices of
the path from (0, 0) to (t, 0) that we constructed in the proof of Proposition 2.3 are contained
in a smaller rectangle whose preimage under either π+ or π− is contained in Sn. This will
be enough for us to conclude the existence (with sufficiently high probability) of a path in
G̃u,v(n, r) between u and v of the desired length.

Recall the definition of α given in (2.7). Observe that from (2.10) together with (2.16),
x1 ≥ ρ/2 > 4α/3 with probability at least 1 − o(n−5/2). In particular, this event implies
that z1 is outside of the square [0, 1.01α] × [0, α]. If z� (the last internal vertex of the path P

found) is outside [t −1.01α, t]×[0, α], we obtain a path connecting u and v of length �+1 ≤ k

with all its internal vertices in R := [1.01α, t −1.01α]×[0, α]. Otherwise, suppose that z� lies
in [t − 1.01α, t] × [0, α]. Then, also with probability 1 − o(n−5/2), we can find some point ẑ�

in [t − 1.01α − r/2, t − 1.01α) × [0, α]: indeed, since ρ ≤ r , the region in which we want ẑ�

is bigger than the regions Si in the proofs of Proposition 2.3 and Proposition 2.4. We can now
use Lemma 2.3 to show that z� can be replaced by ẑ� in P . Observe that ẑ� is connected to v,
since 1.01α + r/2 ≤ ρ, and also ẑ� is connected to z�−1, since its x-coordinate x̂� satisfies

|x̂� − x�−1| ≤ max

{
ρ,

r

2
− ρ

2

}
≤ ρ.

Thus, we can replace z� with ẑ�, and obtain a new path connecting u and v of length � + 1 ≤ k

with all its internal vertices in R. We will show that either π+(R) or π−(R) is always contained
in Sn. We first introduce some definitions.

Consider two points u = (xu, yu) and v = (xv, yv) in Sn. By symmetry we may assume
that xu < xv and yu ≤ yv . Let β be the angle of the vector uv with respect to the horizontal
axis. Again by symmetry, we may consider β ∈ [0, π/4].

We consider now two rectangles of dimensions α × t placed on each side of the segment uv.
Let R+ be the rectangle to the left of uv (that is, R+ = π+(R)), and let R− be the rectangle to
the right of uv (also, R− = π−(R)). We will show that at least one of these rectangles contains
a copy of R fully contained in Sn. This choice will determine which of the isometries, π+
or π−, map R inside Sn.

Note that the intersection of R+ and R− with each of the half-planes x ≤ xu, x ≥ xv , y ≤ yu,
and y ≥ yv gives four triangles. We call them T +

u , T −
v , T −

u , and T +
v , respectively. All these

triangles are right-angled, and denote by t+u , t−v , t−u , and t+v the side of the corresponding triangle
that is parallel to the segment uv. Note that |t+u | = |t−v | and |t−u | = |t+v |. Call a triangle T ∗

w ,
with w ∈ {u, v} and ∗ ∈ {+, −}, safe if |t∗w| ≤ 1.01α. Note that if T +

u and T +
v are safe or fully

contained in the square, then R+ contains the desired rectangle R, and analogously for R−.
Since we assumed that β ≤ π/4, we have |t+u | = |t−v | = α| tan β| ≤ 1.01α. Thus, T +

u

and T −
v are safe. If yu = yv; that is, β = 0, it is clear that either R+ or R− contain the desired

copy of R. Thus, we may assume that β > 0.
We can also assume that both u and v are on the boundary of Sn, as otherwise we extend the

line segment uv to the boundary of the square, and the original rectangles are contained in the
new ones.

Recall that T +
u and T −

v are safe. If yv <
√

n/2 − α then T +
v is completely contained in the

square, and, hence, R+ satisfies the conditions. Similarly, if yu > −√
n/2+α, R− satisfies the

conditions. Thus, assume that yv ≥ √
n/2 − α and yu ≤ −√

n/2 + α. We will show that R−
contains the desired copy of R. As before, T −

v is safe, so it remains to consider T −
u . We have

|t−u | = α tan (π/2 − β). For 0 < β ≤ π/4, tan (π/2 − β) is decreasing in β, and it therefore
suffices to show that T −

u is safe for the smallest possible value of β. Note that the minimal
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Figure 4: The dark shaded area represents the copy of R contained in Sn.

angle β under our assumptions on yu and yv is obtained for u = (−√
n/2, −√

n/2 + α) and
v = (

√
n/2,

√
n/2 − α), and, thus, β ≥ arctan((

√
n − 2α)/

√
n), or, equivalently,

tan

(
π

2
− β

)
≤

√
n√

n − 2α
.

In this case,

|t−u | ≤ α

( √
n√

n − 2α

)
= α

(
1 + 2α√

n − 2α

)
≤ 1.01α,

where the last inequality follows from the fact that

α ≤
(

0.01

2.02
√

2

)
r ≤

(
0.01

2.02

)√
n

since we assumed that r ≤ √
2n (see also (2.16)), and, therefore, 2α/(

√
n − 2α) ≤ 0.01.

Again, by de-Poissonizing G̃u,v(n, r), we can use Proposition 2.4 to show that for a given u

and v in G ∈ G(n, r), Theorem 1.1(ii) holds with probability at least 1 − o(n−2). By taking a
union bound over all at most n2 possible pairs of vertices, Theorem 1.1(ii) follows. �
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