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Self-similar fault slip in response to fluid
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There is scientific and industrial interest in understanding how geologic faults respond
to transient sources of fluid. Natural and artificial sources can elevate pore fluid pressure
on the fault frictional interface, which may induce slip. We consider a simple boundary
value problem to provide an elementary model of the physical process and to provide
a benchmark for numerical solution procedures. We examine the slip of a fault that is
an interface of two elastic half-spaces. Injection is modelled as a line source at constant
pressure and fluid pressure is assumed to diffuse along the interface. The resulting problem
is an integro-differential equation governing fault slip, which has a single dimensionless
parameter. The expansion of slip is self-similar and the rupture front propagates at a factor
λ of the diffusive length scale

√
αt. We identify two asymptotic regimes corresponding to

λ being small or large and perform a perturbation expansion in each limit. For large λ, in
the regime of a so-called critically stressed fault, a boundary layer emerges on the diffusive
length scale, which lags far behind the rupture front. We demonstrate higher-order matched
asymptotics for the integro-differential equation, and in doing so, we derive a multipole
expansion to capture successive orders of influence on the outer problem for fault slip for
a driving force that is small relative to the crack dimensions. Asymptotic expansions are
compared with accurate numerical solutions to the full problem, which are tabulated to
high precision.

Key words: boundary layer structure, boundary integral methods, porous media

1. Introduction

The coupling of fluid flow and fracture of an elastic medium has an extensive history in
the context of open-mode fractures, specifically hydraulic fracture, in which an injected
fluid drives crack opening. Early work presumed laminar flow of the fluid in a planar
crack (Khristianovic & Zheltov 1955; Barenblatt 1956) leading to similarity solutions and
crack-tip asymptotics (Spence & Sharp 1985; Desroches et al. 1994) that depart from the
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square-root asymptotic behaviour of classical linear elastic fracture mechanics. Further
developments include explicit consideration of fluid leak-off into the elastic medium
(Lenoach 1995; Adachi & Detournay 2008), the possibility of fluid lagging behind the
crack tip (Garagash & Detournay 2000) and turbulent flow (Lister 1990b; Tsai & Rice
2010), with Detournay (2016) providing a more complete review of related progress. In
addition to applications to oil and gas extraction from subsurface reservoirs, such models
have also been widely applied to magmatic intrusions (Lister 1990a,b; Rubin 1995; Bunger
& Cruden 2011; Michaut 2011).

The interplay between fluid flow and elasticity has received renewed interest in a
comparable problem of fluid-driven delamination of a thin elastic sheet from a rigid
substrate. In this problem, the sheet’s elastic response is represented by classical beam
theory, such that elastic interactions are local and solutions are found in a relatively
straightforward manner. In comparison, hydraulic fracture in a full space, in which elastic
interactions are non-local, reduces to singular integro-differential equations, requiring
more specialized solution techniques. A peculiarity of the thin-sheet problem is that
the inherent neglect of variations over distances on the order of the sheet thickness
necessitates regularization of fluid flow near the fracture tip (Flitton & King 2004). This
regularization may either take the form of a fluid lag behind the tip (Hewitt, Balmforth
& de Bruyn 2015; Ball & Neufeld 2018; Wang & Detournay 2018) or a pre-existing
thin film of fluid, such that a rupture front is no longer precisely defined (Flitton &
King 2004; Hosoi & Mahadevan 2004; Lister, Peng & Neufeld 2013; Hewitt et al. 2015;
Peng & Lister 2020), or may be bypassed altogether by explicit consideration of near-tip
phenomena over distances comparable to the sheet thickness (Lister, Skinner & Large
2019).

We now look to examine the shear-fracture counterpart to the above problems, in the
context of fluid-induced slip of geologic faults, the thin-sheet limit of which is of interest in
the modelling of landslides (Palmer & Rice 1973; Puzrin & Germanovich 2005; Viesca &
Rice 2012), snow-slab avalanches (McClung 1979) and short-time scale ice-sheet motion
(Lipovsky & Dunham 2017), among other problems. A source of fluid in the subsurface
can drive the sliding-mode fracture of a geologic fault by locally reducing the fault’s
frictional shear strength below an ambient level of shear stress such that the fault must
slide. The fluid source may be natural, such as from mineral dehydration of subducted
sediments (Peacock 2001) or from a mantle source (Kennedy et al. 1997), or artificial,
such as from the subsurface injection of fluids at kilometre scale depths for the disposal
of wastewater (Healy et al. 1968) or for the enhancement of permeability in geothermal,
oil or gas reservoirs. Despite wide interest, simple solutions for fluid-induced fault slip are
scarce.

In the context of frictional fracture, much of the development of fluid-fracture
interaction has focused on geologic fault phenomena, including earthquakes and slow,
aseismic slip. Fluid-driven fault slip has been studied in the context of earthquake
nucleation via the initiation of aseismic slip (Garagash & Germanovich 2012; Viesca &
Rice 2012; Jha & Juanes 2014; Ciardo & Lecampion 2019; Zhu et al. 2020; Garagash
2021), or strictly stable, aseismic slip (Rutqvist et al. 2007; Garipov, Karimi-Fard &
Tchelepi 2016; Bhattacharya & Viesca 2019; Dublanchet 2019; Yang & Dunham 2021).
In addition, there has been substantial focus on fluid-involved feedback mechanisms
during seismic or aseismic fault rupture, in which the role of fluids is in response to
sliding such that rupture is fluid assisted or fluid inhibited. These including dilatancy
(Rice 1973; Brantut 2021; Yang & Dunham 2021), thermal pressurization by frictional
heating (Rice 2006; Noda, Dunham & Rice 2009; Schmitt, Segall & Matsuzawa
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2011; Garagash 2012; Viesca & Garagash 2015) and chemical decomposition (Platt,
Viesca & Garagash 2015). Within this body of work, solutions are nearly entirely
numerical.

We examine a model for fluid-driven fault rupture, in which the condition of fluid
flow is rudimentary but physically plausible and comparable to the starting assumption
of laminar flow in hydraulic fracture. We consider a planar fault in an unbounded, linearly
elastic medium under a uniform state of stress prior to injection. Quasi-static deformation
is in-plane or anti-plane, such that the corresponding fault slip is mode-II or mode-III
rupture. We use a boundary integral formulation to relate the crack-face displacement and
traction. Injection is modelled as a line source of fluids at constant pressure following
which fluid migration, and the concomitant rise in pore fluid pressure, is restricted to
occur along the fault plane. The fault strength is frictional and is the product of a constant
coefficient of friction and the local effective normal stress, the difference between the
fault-normal traction and the local pore fluid pressure.

This problem was presented in Bhattacharya & Viesca (2019) and is a variation of
one considered in depth by Garagash & Germanovich (2012) (hereafter referred to as
GG12). Garagash & Germanovich (2012) examined the response to injection of a fault
under the same elastic and fluid conditions considered here. However, GG12 considered a
fault friction coefficient that weakens with slip, a feature that gives rise to rich behaviour,
including the possibility of dynamic rupture nucleation and arrest, corresponding to an
earthquake source. Garagash & Germanovich (2012) found two end-member regimes
corresponding to marginally pressurized and critically stressed faults, which reflect the
pre-injection state of stress. The authors showed that these regimes lead to a rupture front
lagging or outpacing fluid diffusion, respectively, and that, in the critically stressed regime,
fault slip can be described by a boundary layer analysis. However the slip-dependent
strength in that problem required numerical solution, even in end-member regimes, and
growth of the slipping region was non-trivial and dependent on at least two problem
parameters.

A constant Coulomb friction coefficient necessitates stable growth of fault rupture.
Furthermore, the propagation of fault slip occurs in a self-similar manner in response
to a self-similar source. Additionally, the problem has a single dimensionless parameter,
with the same two end-member regimes as in the problem considered by GG12. The
simpler problem admits closed-form perturbation expansions in these regimes, and readily
allows for higher-order asymptotic matching of the boundary layer problem in the critically
stressed regime. In this regime, where the rupture front races ahead of the elevated fluid
pressure distribution, the problem provides for the development of a multipole expansion
to consider the higher-order source effects. The problem is also amenable to accurate
numerical solutions for the cases intervening the two end-member regimes and we provide
tabulated solutions to high precision.

We begin in §§ 2 and 3 by providing a problem statement and summary of asymptotic
solutions to leading order in the critically stressed and marginally pressurized limits.
Subsequently, we return to the full problem and summarize its solution in § 4. Finally,
we revisit the end-member regimes and derive the asymptotic solutions to second order.
In the marginally pressurized limit, the solution can be written as a single perturbation
expansion (§ 5). In the critically stressed limit, inner and outer perturbation expansions
are found and the two solutions are matched to construct a composite solution (§§ 6–8).
We compare the asymptotic expansions to numerical solutions to the full problem
throughout.
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2. Problem formulation

2.1. Fluid mechanics
A planar fault slip surface along y = 0 is modelled as an interface within a poroelastic layer
of thickness h that is itself embedded within an elastic body. The layer corresponds to a
fault core that is presumed to be much more permeable than the surrounding host rock, but
having comparable elastic properties. We assume that fluid flow within the layer follows
Darcy’s law and we examine the injection of fluid directly into the fault core as a source
of constant pressure distributed across the layer thickness at x = 0. For this poroelastic
configuration, which is an in-plane version of an axisymmetric case considered by Marck,
Savitski & Detournay (2015), the pore fluid pressure distribution is uniform across the
layer thickness and its distribution p(x, t) along the fault coordinate x satisfies a diffusion
equation

pt = αhy pxx, (2.1)

where αhy is the hydraulic diffusivity of the fault core and where the pore pressure is
subject to the conditions of the initial state and injection at constant pressure �p at x = 0,

p(x, 0) = po, p(0, t > 0) = �p, (2.2a,b)

the known solution to which is

p(x, t) = po + �p erfc(|x|/√αt), (2.3)

where we adopt a nominal diffusivity

α = 4αhy (2.4)

in which the hydraulic diffusivity αhy = k/(βη), where k is the Darcy permeability of the
layer, η is the viscosity of the permeating fluid and β is a storage coefficient reflecting
the compressibility of the fluid and porous matrix. As noted by Marck et al. (2015), when
the diffusive distance

√
αt is much larger than the layer thickness h, the local response of

the poroelastic layer is effectively that of uniaxial vertical strain in proportion to the local
pore fluid pressure.

2.2. Solid mechanics
We assume that the poroelastic layer thickness h is small such that the condition

√
αt � h

is quickly achieved. In this case, the presence of the layer, apart from its role in conducting
fluids, needs not be explicitly considered and the shear and normal traction conditions on
the layer-medium boundary may be directly applied to the sliding interface. Furthermore,
provided

√
αt is sufficiently greater than h, we may reasonably neglect any fault-normal

stress changes due to the swelling of the poroelastic layer about the source (Marck
et al. 2015). The medium containing the fault is assumed to be linearly elastic and its
deformation, along with slip on the fault, may be in-plane or anti-plane. The in-plane case
is illustrated in figure 1(a). The shear modulus of the medium is μ and the Poisson ratio
ν. We define the effective elastic modulus μ′ = μ/[2(1 − ν)] for the in-plane (mode-II)
case and μ′ = μ/2 for the anti-plane (mode-III) case. We denote the initial (pre-injection)
fault shear stress τ (in-plane or anti-plane), the fault friction coefficient f , the initial total
fault-normal compressive stress σ and the initial effective normal stress σ ′ = σ − po,
where po is the pre-injection pore fluid pressure in the layer. The initial fault strength
is τp = f σ ′.
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Figure 1. Counter-clockwise: (a) Unbounded elastic body containing a fault, loaded remotely with
fault-normal and shear stress σ , τ . The fault is embedded within a thin poroelastic layer, assumed to be
much more permeable than the surroundings. Fluid injected at x = 0 diffuses along the fault as

√
αt, inducing

quasi-static slip out to a distance a(t). The fault has constant friction coefficient f . (c) Black: relation between
rupture growth factor λ and a parameter reflecting the initial state of stress and injection pressure, where
σ ′ = σ − po and po is pre-injection fault fluid pressure. Dashed: asymptotic behaviours, (3.5) and (3.8).
(d) Same as bottom left, with abscissa arranged to occupy a finite interval. (b) Plot of self-similar slip
distributions at three instants in time after the start of injection, t = 1, 5 and 10 min, for the specific choices
σ = 50 MPa, τ = 12 MPa, po = 20 MPa, �p = 12 MPa, f = 0.5, αhy = 0.01 m2 s−1, μ = 30 GPa, ν = 1/4,
μ′ = 20 GPa. For these choices, the parameter (1 − τ/τp)σ

′/�p = 0.5. The corresponding self-similar slip
distribution and factor λ are given in table S1 in the supplementary material available at https://doi.org/10.
1017/jfm.2021.825.

The fault obeys a Coulomb friction law: the local shear strength of the fault τs is a
constant proportion of the local effective normal stress, with a constant coefficient of
friction f ,

τs(x, t) = f [σ − p(x, t)]. (2.5)

Where sliding occurs, this strength must equal the shear stress on the fault. The shear stress
can be decomposed into a sum of the initial shear stress τ plus quasi-static changes due to
a distribution of slip δ (e.g. Rice 1968), such that the stress–strength condition is

τs(x, t) = τ + μ′

π

∫ a(t)

−a(t)

∂δ(s, t)/∂s
s − x

ds, (2.6)

where x = ±a(t) are the crack-tip locations.
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3. Summary of results

After non-dimensionalizing, the problem is found to have the sole parameter(
1 − τ

τp

)
σ ′

�p
(3.1)

that is bounded between 0 and 1. The upper bound denotes a marginally pressurized fault,
where the fluid pressure increase is just sufficient to initiate sliding: f [σ − ( po + �p)] =
τ . The lower bound denotes a critically stressed fault, where the initial shear stress is equal
to the initial shear strength: τ = τp.

The solution consists of a self-similar distribution of slip, in which the crack front grows
as

a(t) = λ√αt (3.2)

and the slip distribution can be written as

δ(x, t) ⇒ δ(x̄), (3.3)

where the similarity coordinate is

x̄ = x/a(t). (3.4)

The factor λ, to be solved for, determines whether the crack lags (λ < 1) or outpaces
(λ > 1) the diffusion of pore pressure, which stretches as

√
αt. Here λ depends uniquely

on the sole parameter (3.1), and that dependence is illustrated in figure 1(b) and tabulated
at the top of table S1 in the supplementary material. The self-similar profile of slip, as
it depends on |x|/a(t), is also presented in the bottom of table S1 for several values of
the parameter (3.1). Scaled plots of the self-similar profile for various values of λ are
shown in figure 2. In the limit that the parameter (3.1) approaches its end-member values,
closed-form expressions for λ and δ are available and provided below to leading order,
with detailed derivations in the sections that follow.

3.1. Marginally pressurized faults, τ → f (σ ′ − �p)

In this limit the parameter (1 − τ/τp) σ ′/�p → 1, the factor λ� 1 (i.e. the rupture
lags the diffusion of pore fluid pressure) and the relation between the two follows the
asymptotic expansion

(1 − τ/τp)σ
′/�p ≈ 1 − 4

π3/2λ+ O(λ3). (3.5)

The slip distribution in this limit is

δ(x̄) ≈ λ
2√αt f �p

μ′
2

π3/2

(√
1 − x̄2 − x̄2 atanh

√
1 − x̄2

)
+ O(λ4) (3.6)

and the accumulation of slip at the centre is

δ(0) ≈ 2
π3/2

λ2√αt f �p
μ′ + O(λ4). (3.7)

The derivation of this solution is detailed in § 5.
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Figure 2. (a) Self-similar distributions of slip δ with distance from injection point x, which is scaled by
the crack half-length a(t) = λ√αt. Solid red and black curves are numerical solutions to the full problem.
Dashed curves are leading-order asymptotic solutions. Each curve corresponds to one value of λ in the
range λ = 10−3, 10−2, . . . , 103. Black curves correspond to λ = 10−3, 10−2, 10−1, 100 from top to bottom,
with the first three indistinguishable on this scale; red curves correspond to λ = 101, 102, 103 from top to
bottom. Cyan-dashed: solution for small λ, (3.6). Blue-dashed: ‘outer’ solutions for large λ, (3.9). To facilitate
comparisons, two vertical scales are used: one for black and cyan-dashed curves, and another for red and
blue-dashed curves. (b) For large values of λ, the distribution of slip is plotted over distances scaled by

√
αt,

which is much smaller than the crack length a(t). This ‘inner’ behaviour is described by (3.10), a single
numerical solution shown here as black-dashed curves. Curves correspond to λ = 101, 102, 103 from bottom to
top.

3.2. Critically stressed faults, τ → τp

In this limit (1 − τ/τp) σ ′/�p → 0, λ� 1 (i.e. the rupture outpaces the diffusion of fluid
pressure), and the asymptotic relation is

(1 − τ/τp) σ ′/�p ≈ 2
π3/2

1
λ

+ O(λ−3). (3.8)

Similarly to the problem considered by GG12, the solution for slip can be decomposed
into an outer solution on distances comparable to the rupture distance a(t), and an inner
solution on distances comparable to the diffusion length scale

√
αt. The two solutions are

matched at an intermediate distance.
The outer solution for the slip distribution is

δ(x̄) ≈
√

αt f �p
μ′

2
π3/2

(
atanh

√
1 − x̄2 −

√
1 − x̄2

)
+ O(λ−2), (3.9)

where x̄ is the similarity coordinate used above. The derivation of this solution may be
found in § 6.

The inner solution is given by the expression

δ(x/
√

αt) ≈ δ(0) −
√

αt f �p
μ′

∫ x/
√

αt

0

[
1
π

∫ ∞

−∞
erfc(|ŝ|)

x̂ − ŝ
dŝ
]

dx̂ + O(λ−2). (3.10)

The underlined portion is evaluated numerically and provided as a supplementary function
f (x/

√
αt) in table S2 with the similarity coordinate

x̂ = x√
αt

. (3.11)

For large distances x/
√

αt, f behaves as

f (x̂) ≈ 2
π3/2

(
ln
∣∣x̂∣∣+ γ

2
+ 1

)
+ O

(
x̂−2

)
, (3.12)
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Figure 3. The maximum slip, which occurs at x = 0, as it relates to the factor λ shown as (a) semi-log and
(b) log–log plots. Red-dashed: end-member scalings at small λ, (3.7), and at large λ, (3.13). Blue-dashed:
approximation of δ(0) for all λ, (3.16).

where γ = 0.57721566 . . . is the Euler–Maraschoni constant. Using this asymptotic
behaviour to match the inner solution at large x/

√
αt with the outer solution at small

x/a(t) provides the slip at the centre

δ(0) ≈
√

αt f �p
μ′

2
π3/2 [ln(2λ) + γ /2 + O(λ−2)] (3.13)

in the large λ limit.
Other properties of f (x/

√
αt) include

f ′′(x̂) = − 2
π3/2 exp(−x̂2)Ei(x̂2), (3.14)

where Ei(x) = − ∫∞
−x exp(−u)/u du is the exponential integral, and in the limit that x/

√
αt

is small, f behaves as

f (x̂) ≈ 2
π3/2 x̂2

(
ln

1
|x̂| − γ

2
+ 3

2

)
+ O

(
x̂4 ln |x̂|

)
. (3.15)

A detailed discussion of the inner solution and its matching to the outer solution, can be
found in §§ 7 and 8.

3.3. Accumulation of slip at the injection point
Figures 3 and 4 show the solution for the peak slip, located at the injection point, as
it depends on the parameter (3.1) or the factor λ. An approximation of peak slip at
the injection point that respects the asymptotic behaviour at both critically stressed and
marginally pressurized limits – (3.7) and (3.13) – and is to within 5 % error over the
intervening range of λ, is

δ(0) ≈ λ
√

αt f �p
μ′

2
π3/2

λ

1 + λ2/[ln(6 + 2λ) + γ /2]
. (3.16)
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Figure 4. The peak slip as it relates to the problem parameter (1 − τ/τp) σ ′/�p. Red-dashed: scalings as
the parameter approaches its bounds, derived from (3.7) and (3.13) and the asymptotic relations between the
parameter and λ, (3.5) and (3.8).
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Figure 5. Self-similar distribution of slip δ, less the first-order term, (5.6), in the asymptotic expansion for
slip (5.4) in the marginally pressurized limit (small λ). From top to bottom, black curves correspond to the
difference for λ = 2, 1, 1/2, 1/4, 1/8. The cyan-dashed curve is the second-order term of the expansion, (5.7).

4. Non-dimensionalization and solution to full problem

Combining (2.3)–(2.6) and rearranging leads to the non-dimensionalized equation(
1 − τ

τp

)
σ ′

�p
− erfc |λx̄| = − 1

π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄, (4.1)

where we have used x = a(t)x̄, a(t) = λ√αt and δ(x, t) = δ̄[x/a(t)]a(t)f �p/μ′. The
solution we seek is the slip distribution δ̄ and the crack-growth prefactor λ, including their
dependence on the problem parameter (1 − τ/τp)/σ

′/�p.
We begin by looking for the solution for λ. To do so, we first note that to avoid a

singularity in shear stress ahead of the crack tips, which is necessary because the Coulomb
friction requirement implies a finite shear strength of the interface, the crack-tip stress
intensity factors of the rupture must be zero. This condition implies (Appendix A)(

1 − τ

τp

)
σ ′

�p
= 1

π

∫ 1

−1

erfc|λx|√
1 − x2

dx (4.2)

which provides an implicit solution for λ as it depends on the problem parameter.
This relation is easily determined numerically since, for a given λ, the integrand on
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R.C. Viesca

the right-hand side can be evaluated by Gauss–Chebyshev quadrature (Appendix B).
The behaviour at large and small values of λ, (3.5) and (3.8), is found by asymptotic
approximation of the integral.

To solve for δ̄, we note that (4.1) may be inverted for dδ̄/dx̄ (Appendix A),

dδ̄

dx̄
= −

√
1 − x̄2

π

∫ 1

−1

erfc|λs̄|√
1 − s̄2

1
x̄ − s̄

ds̄. (4.3)

After having determined λ via (4.2), the right-hand side may be numerically evaluated
and integrated to arrive to δ̄(x̄) using a Gauss–Chebyshev quadrature for singular integrals
(Erdogan, Gupta & Cook 1973; Viesca & Garagash 2018). The numerical solution of (4.2)
and (4.3) for λ and δ̄(x̄) is detailed in Appendix B.

5. Solution in the marginally pressurized limit

For λ� 1, we may use the expansion of the function

erfc|λx̄| ≈ 1 − 2√
π

|λx̄| + 2
3
√

π
|λx̄|3 + . . . (5.1)

to expand the integral in (4.2) as(
1 − τ

τp

)
σ ′

�p
=
∫ 1

−1

erfc|λx|√
1 − x2

dx ≈ 1 − 4
π3/2λ+ 8

9π3/2λ
3 + O(λ5). (5.2)

In turn, we use (5.1) and (5.2) to reduce (4.1) to

1
π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄ ≈ λ
(

4
π3/2 − 2√

π
|x̄|
)

+ λ3
(

− 8
9π3/2 + 2

3
√

π
|x|3

)
+ O(λ5). (5.3)

We write the solution to the above equation as the perturbation expansion

δ̄(x̄) ≈ λδ0(x̄) + λ3δ1(x̄) + O(λ5), (5.4)

where δ0 and δ1 satisfy

1
π

∫ 1

−1

dδ0/ds̄
x̄ − s̄

ds̄ = 4
π3/2 − 2√

π
|x̄|, 1

π

∫ 1

−1

dδ1/ds̄
x̄ − s̄

ds̄ = − 8
9π3/2 − 2

3
√

π
|x̄|3.

(5.5a,b)

The solutions to which

δ0(x̄) = 2
π3/2

(√
1 − x̄2 − x̄2 atanh

√
1 − x̄2

)
, (5.6)

δ1(x̄) = 1
3π3/2

(
(x̄2 − 2)

√
1 − x̄2 + x̄4 atanh

√
1 − x̄2

)
(5.7)

are found by the linear superposition of particular solutions to the general problem

g(x) = 1
π

∫ 1

−1

h′(s)
x − s

ds (5.8)

that are provided in table 1 and found following Appendix A. Using (5.4), the slip at the
injection point in the marginally pressurized limit evaluates to

δ(0) ≈ λ
√

αt f �p
μ′

(
2

π3/2λ− 2
3π3/2λ

3 + O(λ5)

)
. (5.9)
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Self-similar fault slip in response to fluid injection

g(x) h(x)

1
√

1 − x2

δ′′
D(x)

1
π

√
1 − x2

x2

δ′
D(x) − 1

π

√
1 − x2

x

δD(x)
1
π

atanh
√

1 − x2

sign(x)/2
1
π

x atanh
√

1 − x2

|x| − 1
π

1
π

x2 atanh
√

1 − x2

|x|x 2
3π

x3 atanh
√

1 − x2 + 2
3π

x
√

1 − x2

|x|3 − 1
3π

1
2π

x4 atanh
√

1 − x2 + 1
2π

x2
√

1 − x2

Table 1. Select solutions h(x) to the problem g(x) = (1/π)
∫ 1
−1(h

′(s)/(x − s)) ds, with h(±1) = 0.

6. Outer solution in the critically stressed limit

We now look for an asymptotic expansion of the solution in the critically stressed limit, in
which the rupture front outpaces fluid pressure diffusion, λ� 1. As noted by GG12 for
their problem, the solution consists of an outer solution on distances comparable to the
rupture distance a(t) and an inner solution on distances comparable to

√
αt. To look for

the outer solution, we solve for the slip distribution satisfying (4.1) after expanding the two
terms on the left-hand side in the large λ limit. We begin by considering the expansion of
the following function as λ→ ∞:

erfc|u|√
1 − (u/λ)2

≈ erfc|u| + 1
2λ2 u2 erfc|u| + O(λ−4). (6.1)

This function appears in the integral (4.2) following the change of variable u = λx̄, such
that

(
1 − τ

τp

)
σ ′

�p
= 1

πλ

∫ λ
−λ

erfc|u|√
1 − (u/λ)2

du ≈ 2
π3/2

1
λ

+ 1
3π3/2

1
λ3 + O(λ−5). (6.2)

In addition, we perform a multipole expansion of the distribution (Appendix C)

erfc|λx̄| ≈ p0δD(x̄) − p1δ
′
D(x̄) + p2δ

′′
D(x̄) + O(λ−5), (6.3)

where δD is the Dirac delta and its first and second derivatives, δ′
D(x) and δ′′

D(x), with the
properties

∫ ∞

−∞
δD(x) dx = 1,

∫ ∞

−∞
xδ′

D(x) dx = 1,

∫ ∞

−∞
x2

2
δ′′

D(x) dx = 1, (6.4a–c)
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and where the coefficients

p0 =
∫ 1

−1
erfc|λx̄| dx̄ = 1

λ

∫ λ
−λ

erfc|x̂| dx̂ = 2√
π

1
λ

+ O(exp(−λ2)/λ), (6.5)

p1 =
∫ 1

−1
x̄ erfc|λx̄| dx̄ = 0, (6.6)

p2 =
∫ 1

−1

x̄2

2
erfc|λx̄| dx̄ = 1

3
√

π

1
λ3 + O(exp(−λ2)/λ3) (6.7)

exhibit beyond-all-orders decay at large λ at the rate exp(−λ2), following the leading-order
term. With (6.2) and (6.3), the equation governing the slip distribution (4.1) becomes

1
π

∫ 1

−1

dδ̄/ds̄
x̄ − s̄

ds̄ ≈ 1
λ

(
− 2

π3/2 + 2√
π

δD(x̄)
)

+ 1
λ3

(
− 1

3π3/2 + 1
3
√

π
δ′′

D(x̄)
)

+ O(λ−5).

(6.8)

As for the marginally pressurized case, we look for a solution in the form of a
perturbation expansion

δ̄(x̄) ≈ 1
λ
δ0(x̄) + 1

λ3 δ1(x̄) + O(λ−5), (6.9)

where δ0 and δ1 now satisfy

1
π

∫ 1

−1

dδ0/ds̄
x̄ − s̄

ds̄ = − 2
π3/2 + 2√

π
δD(x̄),

1
π

∫ 1

−1

dδ1/ds̄
x̄ − s̄

ds̄ = − 1
3π3/2 + 1

3
√

π
δ′′

D(x̄)

(6.10a,b)
and the solutions

δ0(x̄) = 2
π3/2

(
atanh

√
1 − x̄2 −

√
1 − x̄2

)
, (6.11)

δ1(x̄) = 1
3π3/2

(√
1 − x̄2

x̄2 −
√

1 − x̄2

)
(6.12)

are again found by superposing solutions provided in table 1.
From the above, the outer solution for slip near x̄ = 0 has the behaviour

δ(x̄) ≈ λ
√

αt f �p
μ′

[
1
λ

2
π3/2

(
log

2
|x̄| − 1 + x̄2

4
+ O(x̄4)

)

+ 1
λ3

1
3π3/2

(
1
x̄2 − 3

2
+ O(x̄2)

)
+ O(λ−5)

]
. (6.13)

7. Inner solution in the critically stressed limit

To examine the behaviour of slip on the diffusive length scale
√

αt, we perform a change
of variable to the scale distance x̂ = λx̄ = x/

√
αt, such that (4.3) becomes

λ
dδ̄

dx̂
= −

√
1 − (x̂/λ)2

π

∫ λ
−λ

erfc|ŝ|√
1 − (ŝ/λ)2

1
x̂ − ŝ

dŝ. (7.1)
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Self-similar fault slip in response to fluid injection

Rescaling slip as δ̂ = λδ̄ = δ/(
√

αt f �p/μ′), we perform a series expansion of the
square-root terms for large λ,

dδ̂

dx̂
≈ − 1

π

(
1 − 1
λ2

x̂2

2
+ O(λ−4)

)∫ λ
−λ

(
erfc|ŝ| + 1

λ2
ŝ2

2
erfc|ŝ| + O(λ−4)

)
1

x̂ − ŝ
dŝ,

(7.2)
and regroup terms of similar order,

dδ̂

dx̂
≈ − 1

π

∫ λ
−λ

erfc|ŝ|
x̂ − ŝ

dŝ + 1
λ2

(
x̂2

2
1
π

∫ λ
−λ

erfc|ŝ|
x̂ − ŝ

dŝ − 1
π

∫ λ
−λ

(ŝ2/2)erfc|ŝ|
x̂ − ŝ

dŝ
)

+ O(λ−4).

(7.3)

Given the beyond-all-orders decay, for modestly large values of ŝ, of the term erfc|ŝ| ≈
exp(−ŝ2)/(

√
πŝ) appearing in all of the integrands above, the limits of the integrals may

pass to ∞ without consequence for the above expansion in powers of λ. Hence,

dδ̂

dx̂
≈ − 1

π

∫ ∞

−∞
erfc|ŝ|
x̂ − ŝ

dŝ + 1
λ2

(
x̂2

2
1
π

∫ ∞

−∞
erfc|ŝ|
x̂ − ŝ

dŝ − 1
π

∫ ∞

−∞
(ŝ2/2)erfc|ŝ|

x̂ − ŝ
dŝ
)

+ O(λ−4). (7.4)

The above integrals are Hilbert transforms, defined as

H[ f (s)] = 1
π

∫ ∞

−∞
f (s)

x − s
ds (7.5)

which have the property

H[s2f (s)] = H[(s2 − x2 + x2)f (s)]

= x2H[ f (s)] + H[(s − x)(s + x)f (s)]

= x2H[ f (s)] − 1
π

∫ ∞

−∞
sf (s) ds − x

π

∫ ∞

−∞
f (s) ds (7.6)

that, when applied to the third integral in (7.4),

1
π

∫ ∞

−∞
(ŝ2/2)erfc|ŝ|

x̂ − ŝ
dŝ = x̂2

2
1
π

∫ ∞

−∞
erfc|ŝ|
x̂ − ŝ

dŝ − x̂
π3/2 , (7.7)

leads to the reduction of (7.4) to

dδ̂

dx̂
≈ − 1

π

∫ ∞

−∞
erfc|ŝ|
x̂ − ŝ

dŝ + 1
λ2

x̂
π3/2 + O(λ−4). (7.8)

Subsequently integrating from 0 to x̂, we find the inner solution to within a
yet-undetermined constant δ(0),

δ̂(x̂) ≈ δ̂(0) −
∫ x̂

0

[
1
π

∫ ∞

−∞
erfc|s|
x − s

ds
]

dx + 1
λ2

x̂2

2π3/2 + O(λ−4). (7.9)

We define the underlined term as the function f (x̂) whose first derivative is the Hilbert
transform

f ′(x̂) = 1
π

∫ ∞

−∞
erfc|s|
x̂ − s

ds. (7.10)
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Figure 6. Spatio-temporal component, f (x/
√

αt), of ‘inner’ solution for slip δ in the critically stressed limit,
(3.10). Shown in black on linear (a), log–linear (b) and logarithmic (c) axes. Red- and blue-dashed curves:
outer and inner asymptotic behaviour of f , (3.12) and (3.15).

Since the transform commutes with derivatives, [H(g)]′ = H(g′), we find that f ′′ has the
concise expression

f ′′(x̂) = − 2
π3/2

∫ ∞

−∞
sign(s) exp(−s2)

x̂ − s
ds (7.11)

which may be further simplified to

f ′′(x̂) = − 2
π3/2 exp(−x̂2)

∫ ∞

0

exp(x̂2 − s2)

x̂2 − s2 2s ds

= − 2
π3/2 exp(−x̂2)

∫ ∞

−x̂2

exp(−u)

u
du

= − 2
π3/2 exp(−x̂2)Ei(x̃2), (7.12)

with the change of variable u = s2 − x̂2 used in the intermediate step. In figure 6 we plot
f (x̂) found by numerically integrating twice the expression for f ′′(x̂), (7.12).

For x̂ near 0,

f ′′(x̂) = − 2
π3/2

(
ln |x̂| + γ

)+ O(x̂2) (7.13)

and upon integrating twice with f (0) = f ′(0) = 0, the behaviour of f in this region is

f (x̂) = 2
π3/2 x̂2

(
ln

1
|x̂| − γ

2
+ 3

2

)
+ O(x̂4 ln |x̂|). (7.14)

928 A29-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.825


Self-similar fault slip in response to fluid injection

For large x̂,

f ′′(x̂) = − 2
π3/2

(
1
x̂2 + 1

x̂4

)
+ O(x̂−6). (7.15)

Upon integrating twice with the condition that f ′(∞) = 0,

f (x̂) = c + 2
π3/2

(
ln |x̂| − 1

6x̂2

)
+ O(x̂−4), (7.16)

where c is a yet-undetermined constant of integration.
We determine the constant c following an approach used by GG12, in which the order

of integration in (7.9) is swapped leading to an alternative expression for f (x̂),

f (x̂) =
∫ x̂

0

[
1
π

∫ ∞

−∞
erfc|s|
x − s

ds
]

dx = 1
π

∫ ∞

−∞
erfc|s| ln

∣∣∣∣1 − x̂
s

∣∣∣∣ ds, (7.17)

and the expansion ln |1 − x̂/s| = ln |x̂| − ln |s| + ln |s/x̂ − 1| is used to decompose the
latter integral for f (x̂) into the sum

f (x̂) = 1
π

∫ ∞

−∞
erfc|s| ds ln |x̂| − 1

π

∫ ∞

−∞
erfc|s| ln |s| ds + 1

π

∫ ∞

−∞
erfc|s| ln

∣∣∣ s
x̂

− 1
∣∣∣ ds

(7.18)

= 2
π3/2 ln |x̂| + 2

π3/2

(
1 + γ

2

)
+ 1

π

∫ ∞

−∞
erfc|s| ln

∣∣∣ s
x̂

− 1
∣∣∣ ds. (7.19)

Comparing (7.16) and (7.19), we see that the asymptotic behaviour of the last integral in
(7.19), for large x̂, is given by the terms in (7.16), excluding the constant and the logarithmic
terms. We also retrieve the value of the constant c,

c = 2
π3/2

(
1 + γ

2

)
(7.20)

from which we conclude that the inner solution for slip has the asymptotic behaviour at
large x̂,

δ(x̂) ≈ δ(0) −
√

αt f �p
μ′

[
2

π3/2

(
1 + γ

2
+ ln |x̂| − 1

6|x̂|2 + O(x̂−4)

)

− 1
λ2

x̂2

2π3/2 + O(λ−4)

]
. (7.21)

8. Matching inner and outer solutions

We match the outer and inner solutions by equating (6.13) and (7.21) and solving for δ(0),
the slip at the centre in the critically stressed limit

δ(0) ≈
√

αt f �p
μ′

2
π3/2

[
γ

2
+ ln(2λ) − 1

4λ2 + O(λ−4)

]
(8.1)

which completes the expression for the inner solution (7.9). In figure 7 we overlay the
inner and outer solutions, to first and second order, above the full solutions for several
large values of λ. The intermediate matching of the solutions is evident in the overlap
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Figure 7. Self-similar distribution of slip in the critically stressed limit (large λ). In this limit the rupture extent
a(t) outpaces the diffusive distance

√
αt. (a,b) Black curves from right to left correspond to full solutions for

the self-similar slip profiles for λ = 10, 100, 1000. (a) Red-dashed and blue-dashed lines correspond to outer
and inner solution expansion to first order. (b) Red-dashed and blue-dashed lines correspond to outer and inner
solution expansion to second order. Outer solution is given by (6.9)–(6.12). Inner solution given by (7.9).

10–1 100 101
0.04

0.1

0.2

0.4

λ

δ(
0
)

a(
t)

f�
p/

μ
′

Figure 8. Comparison of approximations to the full solution of peak fault slip (black curve) in the vicinity
of λ = 1. First- and second-order approximations in the marginally pressurized and critically stressed limits,
given respectively by (5.9) and (8.1), are shown as red-dashed and red-dot–dashed curves. Blue-dashed curve:
approximation provided for all values of λ, (3.16).

of the dashed curves. As an aside, we can now show approximations to the slip at the
centre to first and second order in both the critically stressed and marginally pressurized
limits in figure 8. For comparison, we also show the full solution, as well as the ad hoc
approximation (3.16) constructed using the first-order asymptotics.

Using the inner and outer solutions, we construct a composite approximation (e.g. Hinch
1991)

δcomp(x̄) = δin(λx̄) + δout(x̄) − δoverlap(x̄), (8.2)

where δin and δout are the inner and outer solutions, (7.9) and (6.9), and

δoverlap(x̄) = 2
π3/2

(
log

2
x̄

− 1 + x̄2

4

)
+ 1
λ2

1
3π3/2

(
1
x̄2 − 3

2

)
+ O(λ−4) (8.3)

is their common intermediate form. In figure 9 we compare the full numerical solution
against the inner, outer and composite solutions for a modestly large value of λ = 5. The
composite solution has an approximate error of O(λ−(n+2)), where n = 2 or 4 is the order
neglected in the asymptotic expansion.
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Figure 9. Solution for self-similar slip profile in black for λ = 5. (a,b) Superimposed blue- and red-dashed
curves, respectively, showing inner and outer solutions to (a) leading and (b) next order. (c) Superposition
of leading and next-order composite solutions as blue- and red-dashed curves. (d) The difference between
the self-similar solution and the composite solutions at leading and next order are respectively the blue and
red-dashed curves. (e, f ) Semi-logarithmic plots comparing the leading- and next-order composite solutions,
in blue- and red-dashed curves, to the self-similar solution, in black.

9. Summary and conclusion

The quasi-static rupture of a fault driven by a source of fluids has been studied in detail.
Tracking the rupture of the fault corresponds to a free boundary problem for which both
the size of the slipping domain and the distribution of slip within must be solved. Both
depend on a single dimensionless parameter whose limits correspond either to a fault
whose initial, pre-injection shear stress is relatively close to the fault’s pre-injection shear
strength or to a fluid pressure increase that is marginally sufficient to induce sliding.
Because the problem involves contact between elastic half-spaces, interactions between
points on the fault are non-local, in that slip in one location induces changes in the
shear stress over the entire fault plane. The resulting equation governing slip evolution
is an integro-differential equation. In addition to the crack-tip boundary condition that slip
vanishes at the rupture front, the condition determining the free boundary is the absence of
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a stress singularity ahead of the rupture front, which corresponds to the boundary condition
that the gradient of slip also vanishes at the rupture front. Moreover, because the friction
coefficient is held constant, there is an absence of an elasto-frictional length scale that
may be otherwise present in problems for which friction depends explicitly on slip or its
history. Correspondingly, the only length scale in the problem is the diffusive length

√
αt

with the consequence that spatial dependence of slip scales directly with this length scale,
implying the self-similar propagation of slip.

In a fashion similar to the earthquake-nucleation problem considered by GG12, we
present asymptotic perturbation expansion solutions in the marginally pressurized and
critically stressed limits and tabulate numerical solutions for the intervening cases. In the
critically stressed limit, the problem has both an inner solution on the scale of diffusion and
an outer solution on the scale of the crack front. An advantage of the posed problem is that
the marginally pressurized expansion and the outer solution of the critically stressed limit
are expressible in concise closed form. For the latter, we develop a multipole expansion
method to develop successive approximations of a distributed loading beyond a point-force
approximation. The leading-order term of the inner solution of the critically stressed
limit is solved numerically and tabulated. Key findings include that the rupture run-out
distance from the point of injection follows a(t) = λ√αt, where λ is an amplification
factor, originally solved for and presented by Bhattacharya & Viesca (2019). As noted
there, if we denote the dimensionless problem parameter as T ≡ (1 − τ/τp)σ

′/�p, then
in the marginally pressurized limit λ ≈ (π3/2/4)(1 − T) and in the critically stressed limit
λ ≈ (2/π3/2)T−1. Furthermore, in the marginally pressurized limit, slip accumulates as
δ ∼ λ2√αt f �p/μ′. In the critically stressed limit, slip accumulates as δ ∼ √

αt f �p/μ′
on inner distances of the order

√
αt from the injection point and as δ ∼ λ−2√αt f �p/μ′

at distances comparable to the rupture length λ
√

αt.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.825.
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Appendix A. Finite Hilbert transform solutions

The problem for slip posed as (4.1) has the form of a finite Hilbert transform

g(x) = 1
π

∫ 1

−1

h′(s)
x − s

ds, (A1)

where, here, g(x) corresponds to a prescribed loading and h of the distribution slip on the
interface that is in quasi-static equilibrium with the loading. The solution to (A1) is the
known inversion (e.g. Mushkhelishvili 1958; King 2009)

h′(x) = C√
1 − x2

− 1√
1 − x2

1
π

∫ 1

−1

√
1 − s2g(s)

x − s
ds C = 1

π

∫ 1

−1
h′(s) ds. (A2a,b)

Since slip vanishes at the rupture boundaries, the corresponding condition on h is h(±1) =
0 and, hence, C = 0.
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As an example solution, consider the distribution g(x) = δD(x), which is equivalent to a
distribution of a point force at the origin in the corresponding crack problem. The inversion
for h′(x) is

h′(x) = − 1√
1 − x2

1
π

∫ 1

−1

√
1 − s2δD(s)

x − s
ds = − 1

π

1

x
√

1 − x2
(A3)

and integrating again with respect to x, with the condition h(±1) = 0, we find that

h(x) = 1
π

arctanh
√

1 − x2. (A4)

In table 1 we present a number of similarly derived solutions from which we draw in the
main text.

From (A2a,b) we find that h′(x) has the behaviour in the limit x → ±1,

h′(x) = − 1√
2(1 ∓ x)

1
π

∫ 1

−1

√
1 ± s
1 ∓ s

g(s) ds. (A5)

We may compare this behaviour to the leading-order term in the Williams (1957) solution
for slip near the tip of a crack located at x = ±a,

δ(x) = K
μ′

√
2(a ∓ x)

π

dδ

dx
= ∓ K

μ′

√
1

2(a ∓ x)
, (A6a,b)

where K is the conventionally defined mode-II or mode-III stress intensity factor and the
corresponding leading-order term in the distribution of stress ahead of the tip is τtip(x) =
K/

√
2π(x ∓ a). We may define a quantity k corresponding to the stress intensity factor K

by k = K/(μ′√a), and in comparing the latter expression in (A6a,b) with (A5), we can
derive an analogous expression for an intensity factor k± at x = ±1,

k± = 1√
π

∫ 1

−1

√
1 ± s
1 ∓ s

g(s) ds. (A7)

Requiring that this intensity factor vanish at both tips, hence implies that two conditions
be satisfied by the distribution g(s),∫ 1

−1

√
1 ± s
1 ∓ s

g(s) ds = 0 (A8)

which can be recast as the sum and the difference of these two conditions, leading
respectively to ∫ 1

−1

g(s)√
1 − s2

ds = 0,

∫ 1

−1

sg(s)√
1 − s2

ds = 0. (A9a,b)

In the problem for the slip distribution, (4.1), we identify

g(s) = erfc|λs| −
(

1 − τ

τp

)
σ ′

�p
. (A10)

The first condition of (A9a,b) to be satisfied by (A10) corresponds to (4.2) in the main text,
which provides the direct relation between λ and the problem parameter (1 − τ/τp)σ

′/�p.
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The second condition of (A9a,b) is trivially satisfied by (A10), since g(s) is an even
function for that case.

The non-singular stress conditions (A9a,b), if present, can be taken into account in the
inversion for h′(x), (A2a,b), which may be rewritten as

h′(x) = − 1√
1 − x2

1
π

∫ 1

−1

√
1 − s2g(s)

x − s
ds + 1√

1 − x2

1
π

∫ 1

−1

(x + s)g(s)√
1 − s2

ds

= −
√

1 − x2

π

∫ 1

−1

1√
1 − s2

g(s)
x − s

ds. (A11)

Upon substituting (A10) in (A11), the contribution of the constant parameter (1 −
τ/τp)σ

′/�p vanishes, and we retrieve (4.3) in the main text.
As another example, we again consider the distribution g(x) = δD(x), for which the

inversion for h′(x) with the non-singular condition on h′(x) is

h′(x) = −√
1 − x2

π

∫ 1

−1

1√
1 − s2

δD(s)
x − s

ds = − 1
π

√
1 − x2

x
= − 1

π

(
1

x
√

1 − x2
− x√

1 − x2

)

h(x) = 1
π

(
arctanh

√
1 − x2 −

√
1 − x2

)
⎫⎪⎪⎬
⎪⎪⎭

(A12)

to which we may compare, (A4), the inversion for the same distribution g(x) without the
non-singular condition.

In writing an asymptotic expansion for slip in powers λ in the marginally pressurized and
critically stressed limits, we derived spatial distributions for slip at each order (δ0 and δ1)
using results presented in table 1. Note that the compilation of inversions in table 1 used
(A2a,b) and did not incorporate the non-singular crack conditions (A9a,b) in the inversion
for h′(x) from g(x). However, when solving for δ0 and δ1, the non-singular conditions
are implicitly incorporated in the expansion for the stress parameter (1 − τ/τp)σ

′/�p in
terms of λ. The resulting expressions for δ0 and δ1 are fully equivalent to the solutions
that would have been found had the conditions (A9a,b) been incorporated directly into the
inversion. In other words, we would have arrived to the same expressions for δ0 and δ1 in
§§ 5 and 6 had we instead used the non-singular inversion (A12) to construct the functions
h(x) in table 1 and subsequently applied them to solve for δ0 and δ1. We recognize this,
for instance, in noting that the first term in the expansion for slip in the critically stressed
limit, (6.11), is given, to within the factor p0 = 2/

√
π by (A12).

Appendix B. Numerical solution procedure

To numerically solve for the slip distribution δ̄(x̄) from (4.3), given a value of λ, we
use Gauss–Chebyshev quadrature for singular integrals (Erdogan et al. 1973; Viesca &
Garagash 2018). We begin by separating the singular integral in (4.3),

φ(z̄) = − 1
π

∫ 1

−1

erfc|λs̄|√
1 − s̄2

1
z̄ − s̄

ds (B1)

and note that the slip distribution is given by the integration

δ̄(x̄) =
∫ x̄

−1

√
1 − z̄2φ(z̄) dz̄. (B2)
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We numerically approximate the integral (B1) at a discrete set of points zi,

φ(z̄i) ≈ −1
n

n∑
j=1

erfc|λs̄j|
z̄i − s̄j

, (B3)

where the quadrature points s̄j and z̄i are

z̄i = cos(πi/n), i = 1, . . . , n − 1,

s̄j = cos[π(j − 1/2)/n], j = 1, . . . , n.

}
(B4)

We again use Gauss–Chebyshev quadrature (Mason & Handscomb 2002) to approximate
the integral (B2) at a set of points xk,

δ̄(x̄k) ≈ 1
n

n−1∑
i=1

(1 − z̄2
i )φ(z̄i)H(x̄k − z̄i), (B5)

where x̄k = s̄k for k = 1, . . . , n and H(·) is the Heaviside step function.
We may similarly approximate the relation between (1 − τ/τp)σ

′/�p and λ by
first prescribing a value of λ and then numerically evaluating the integral (4.2) by
Gauss–Chebyshev quadrature

(
1 − τ

τp

)
σ ′

�p
≈ 1

n

n∑
j=1

erfc|λsj|, (B6)

where sj is defined as before.

Appendix C. Multipole expansion

Here we derive the multipole expansion of (6.3)–(6.7). This expansion was used to derive
the outer solution in the critically stressed limit, for which the rupture extent a(t) � √

αt,
such that the fluid pressure source appears localized about the origin. We begin by noting
that the solution to the problem for h(x),

g(x) = 1
π

∫ 1

−1

h′(s)
x − s

ds (C1)

with the boundary conditions h(−1) = h(1) = 0, may be also written in terms of the
Green’s function G(x, x′) satisfying

δD(x − x′) = 1
π

∫ 1

−1

G(s, x′)
x − s

ds. (C2)

Using the inversion (A2a,b), the Green’s function is

G(x, x′) = − 1√
1 − x2

1
π

∫ 1

−1

√
1 − s2δD(s − x′)

x − s
ds

= − 1
π

√
1 − x′2

1 − x2
1

x − x′ (C3)
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and the solution to (C1) can be written as

h′(x) =
∫ 1

−1
G(x, x′)g(x′) dx′. (C4)

We derive a multipole expansion for (C1) by considering that a Taylor series expansion
of the Green’s function in (C4) about the origin x′ = 0,

h′(x) =
∫ 1

−1

[
G(x, 0) + x′ ∂G

∂x′

∣∣∣∣
x′=0

+ x′2

2
∂2G
∂x′2

∣∣∣∣
x′=0

+ · · · + x′n

n!
∂nG
∂x′n

∣∣∣∣
x′=0

]
g(x′) dx′

(C5)
reduces to

h′(x) = p0G(x, 0) + p1
∂G
∂x′

∣∣∣∣
x′=0

+ p2
∂2G
∂x′2

∣∣∣∣
x′=0

+ · · · + pn
∂nG
∂x′n

∣∣∣∣
x′=0

, (C6)

where the coefficients of this series are

p0 =
∫ 1

−1
g(x′) dx′, p1 =

∫ 1

−1
x′g(x′) dx′,

p2 =
∫ 1

−1

x′2

2
g(x′) dx′, . . . , pn =

∫ 1

−1

x′n

n!
g(x′) dx′.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C7)

The expansion of g(x) implied by (C6) is found by first noting that, from (C3),

∂nG
∂x′n = − 1√

1 − x2

1
π

∫ 1

−1

√
1 − s2[(−1)nδ

(n)
D (s − x′)]

x − s
ds, (C8)

where δ
(n)
D is the nth derivative of δD with respect to its argument. When evaluating (C8)

at x′ = 0 and comparing with (A2a,b), we see that (C8) is the inverted solution for h′(x)
when g(x) = (−1)nδ

(n)
D (x), hence substituting (C6) into (C1) yields

g(x) = p0δD(x) − p1δ
′
D(x) + p2δ

′′
D(x) − · · · + (−1)npnδ

(n)
D (x), (C9)

where the leading two terms are the source monopole and dipole approximations,
respectively. For n = 0, 1, 2, the first few functions of x in (C6) are

G(x, 0) = − 1
π

1

x
√

1 − x2
,

∂G
∂x′

∣∣∣∣
x′=0

= − 1
π

1

x2
√

1 − x2
,

∂2G
∂x′2

∣∣∣∣
x′=0

= x2 − 2

x3
√

1 − x2
.

(C10a–c)

Multiplying these functions by (−1)n and integrating with respect to x, we find the
expressions in table 1 for h(x) when g(x) = δD(x) or one of its first two derivatives.
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