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Hydrothermal Emergence Model for Ripgut Brome (Bromus diandrus)
Addy L. Garcla, Jordi Recasens, Frank Forcella, Joel Torra, and Aritz Royo-Esnal*

A model that describes the emergence of ripgut brome was developed using a two-season data set from a no-tilled field in
northeastern Spain. The relationship between cumulative emergence and hydrothermal time (HTT) was described by a
sigmoid growth function (Chapman). HTT was calculated with a set of water potentials and temperatures, iteratively used,
to determine the base water potential and base temperature. Emergence of ripgut brome was well described with a
Chapman function. The newly-developed function was validated with four sets of data, two of them belonging to a third
season in the same field and the other two coming from independent data from Southern Spain. The model also
successfully described the emergence in different field management and tillage systems. This model may be useful for
predicting ripgut brome emergence in winter cereal fields of semiarid Mediterranean regions.

Nomenclature:
Key words:

Ripgut brome, Bromus diandrus Roth.

Emergence is considered the most important event in the
life of an annual species because it determines subsequent
survival and success of the plant (Forcella et al. 2000). The
ability to predict weed emergence could enhance crop
management, facilitating implementation of more effective
strategies by optimizing the timing of weed control (Leblanc
et al. 2004; Myers et al. 2004); this is becoming increasingly
relevant for growers because of current pressure to reduce
chemical input or to adopt nonchemical methods (Grundy
et al. 2000). Emergence of several weed species can be
predicted using modeling techniques (Colbach et al. 2005). A
principal goal of emergence modeling for wild species is to
predict germination timing under fluctuating field conditions
(Meyer and Allen 2009). Seed germination and emergence are
strongly influenced by soil temperature and water potential,
and they can be predicted by using modeling techniques based
on hydrothermal time (Bair et al. 2006; Haj Seyed Hadi and
Gonzalez-Andujar 2009). Hydrothermal time mechanistically
relates the weed seed bank to seedling emergence using soil
microclimate simulations (Spokas and Forcella 2009).

Temperature, when converted to thermal time, or growing
degree days (GDD), has been used to predict seedling
emergence. The use of average air or soil temperature above a
specified threshold is accumulated over days untl weed
emergence (Royo-Esnal et al. 2010a). Hydrothermal time is a
GDD-like measurement that accumulates when daily average
soil water potentials and temperatures are greater than
threshold values below which seedling emergence cannot
occur (Schutte et al. 2008). According to Forcella et al.
(2000), hydrothermal time (HTT) models are frequently
better for predicting emergence than GDD.

The modeling of emergence of winter weeds from arable
land should be especially valuable for climatic conditions of
Mediterranean-type environments, where initial weed emer-
gence and crop sowing are governed by the timing of
precipitation in autumn, and later emergence is likely to be
regulated by soil temperature in addition to soil moisture
(Kleemann and Gill 2006).

Models, as those based on hydrothermal time, have been
used to predict the emergence of several winter cereals weeds,
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oat (Avena sterilis ssp. ludoviciana) (Leguizamén et al. 2005)
and Galium species (Royo-Esnal et al. 2010a), under the
climatic conditions of dry-land agricultural systems of Spain. In
the last decades, the adoption of continuous winter cereal
production and the implementation of conservation agriculture
techniques, such as direct drilling, have turned ripgut brome
(Bromus diandrus Roth) into one of the most important weeds
in these cereal systems (Riba and Recasens 1997). Although
implementation of models that predict the emergence of
Bromus species could have great implications for integrated
weed management programs, no model has been developed yet.

In no-till systems the absence of soil disturbance permits
the seeds to remain near the soil surface, which is a more
favorable condition for seedling establishment of some species.
Furthermore, some seeds of ripgut brome may be dormant
(Gill and Carstairs 1988; Kleemann and Gill 2006; Kon and
Blacklow 1989), and those low percentages that remain in the
soil from one season to the next could hinder control
methods. In this sense, chemical control of ripgut brome is
more restricted and difficult than for other weeds because
herbicides effective against ripgut brome usually damage the
crop as well (Peeper 1984).

Accordingly, in this scenario, new strategies are needed to
manage ripgut brome populations in reduced tillage systems
that currently are being adopted in northeastern Spain. For
example, delay of sowing date is one of the most practical
methods that can be used by growers, as it effectively controls
weeds that emerged in October and early November (Cirujeda
et al. 2008). However, its efficacy depends on the climatic
conditions during autumn, mainly rainfall regimes and soil
temperature, and on subsequent emergence of seedlings from
the remaining soil seed bank.

To improve these strategies and obtain more effective
management, models capable of providing information about
the timing of emergence as functions of soil moisture and soil
temperature may be useful. Consequently, the objectives of
this research were to develop a hydrothermal time seedling
emergence model for ripgut brome using data derived from
observations in rain fed winter cereals, and to validate and apply
the model with independent data from other growing seasons.

Materials and Methods

Experimental Site. Field experiments were conducted from
autumn to spring 2008 to 2009, 2009 to 2010, and 2010 to
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2011 in an experimental cereal field that was managed since
2006 to 2007 under no-tillage. The field was located in
Agramunt, Lleida, in northeastern Spain (41°48'N, 1°07'E).
The soil was a Fluventic Xerocrept (100 to 120 cm deep),
with 30.1% sand, 51.9% silt, 17.9% clay, 2.3% organic
matter, and pH of 8.5.

Experimental Designs. Two experiments were used to first
develop the model for the emergence of ripgut brome and its
validation, and second for the practical application with
different field and soil management systems. The first
experiment (trial 1) consisted in a randomized complete
block design with three replications. Plot size was 6 by 50 m.
One factor was considered, the cereal sowing date. The first
sowing date (F1) had been on October 20, 19, and 14; the
second sowing date (F2) on November 7, 12, and 18; and the
third sowing date (F3) on December 12, 3, and 13 in 2008,
2009, and 2010, respectively. Barley (Hordeum vulgare L.) cv.
‘Sunrise’ and ‘Hispanic’ were sown in 2008 and wheat
(Triticum aestivum L.) cv. ‘Bokaro’ and ‘Artur Nick’ in 2009
and 2010. Each year, crops were sown at 180 kg-seed ha !
(400 to 450 plants'm %). Sowing was performed with a no-
dll disc drill in rows 19 cm apart. Plots were sprayed with
glyphosate (Roundup Plus) at 540 g ai ha™ " one to six days
before each sowing date (October 14, 16, and 13 in FI;
November 6, 4, and 12 in F2; and December 5, 2, and 9 in F3,
in 2008, 2009, and 2010, respectively). In 2008 to 2009, a
POST tank mix of 1soproturon plus diflufenican (1243 +
69 g-ha™") was applied in February. In 2009 to 2010 POST
weed control was accomplished by iodosulfuron- methyl
sodium plus mesosulfuron-methyl-sodium (3 + 15 g ai ha ™!
plus wetting agent). In 2010 to 2011, broadleaf and grass weeds
were controlled POST by tribenuron-methyl plus metsulfuron-
methyl(10 + 5 g ‘ha™! plus wetting agent) in March.
Iodosulfuron- methyl sodium plus mesosulfuron-methyl-sodi-
um (3+ 15 gaiha ' plus wetting agent) was applied February
9 in F1 (dllering) and April 13 in F2 and F3 (2 to 5 leaves).
Fertilizer was apphed cach year in February to March at 150 kg
N-32% -ha™'

The second experiment (trial 2) also consisted of a
randomized complete block with three replications. This
experiment was designed to study three different soil
management systems: subsoiler (SS), chisel plough (ChP),
and moldboard plough (MbP). The sowing date in this
experiment corresponds each year to the second sowing dates
of trial 1. Crop type and sowing density were the same as in
trial 1, except in 2009 to 10 in which was sown barley cv.
‘Hispanic’.

Weed emergence was estlmated in each plot in ten
permanent quadrats, each 0.1 m?. After each sowing date,
destructive counting of seedlings started and continued weekly
until the end of May, except for the third season in trial 1,
when counting of seedlings began in mid September (F0),
before sowing, and ended in April.

Weather Data. Daily rainfall and maximum and minimum
air temperatures were obtained from a standard meteorolog-
ical station located at the experimental fields.

Model Development. The model was developed with data
from F1 in seasons 2008 to 2009 and 2009 to 2010.
Simulated soil temperatures (thermal time, TT) and water
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potentials (hydrotime, HT) were used to calculate hydrother-
mal time (HTT) based on the equation described by Roman
et al. (2000):

HTT=> (HTxTT) 1]

where HT = 1 when {y > /b, otherwise HT = 0; and TT =
T — Tbh when T > Tb, otherwise TT = 0. { is the daily
average water potential in the soil layer from 0 to 5 cm; Wb is the
base water potential for seedling emergence; 7'is the daily average
soil temperature in the soil layer from 0 to 5 cm and 7% is the
base temperature for seedling emergence (Martinson et al. 2007;
Royo-Esnal et al. 2010a). With this formula, growing degree-
days are accumulated only when the water potental and
temperature conditions were higher than the base water potential
and base temperature. The HTT was estimated using the Soil
Temperature and Moisture Model (STM?) (Spokas and Forcella
2009). STM? requires as input daily maximum and minimum
air temperatures and daily precipitation, along with information
on the geographical location and soil texture and organic matter.
HTT were accumulated over days beginning on the date when
the main rainfall occurred prior to the first sowing date. The base
water potential and base temperature were determined iteratively
calculating HT'T using a set of water potentials (—2.0 MPa to
—0.5 MPa, at —0.1 MPa intervals) and temperatures (0 to 2 C
at 1C intervals). Namely, the scale of HTT was changed by
modifying the /6 and the 75 undl the highest accuracy was
obtained for the relationship between HTT and cumulative
emergence of ripgut brome. Typically, ripgut brome emergence
begins mid- to late summer, but because all emerged seedlings
were killed before sowing, hydrothermal time was calculated
from the first autumn rains each year.

The functional relationship between cumulative emergence
and HTT was described by a sigmoid equation with the best
fit. A Chapman equation was used,

y=K(1—lexp{ —bx}])’ 2]

where y is the percentage of emergence, x is time expressed as
HTT, and K, b, and a are empirically derived constants. K is
the maximum percentage of emergence recorded, & is the rate
of increase and # is a shape parameter. Fitting of the Chapman
function for cumulative emergence was performed using SAS
9.1 (PROC NLIN; SAS Institute Inc., Cary, NC, USA).
Model parameters were further adjusted by nonlinear least-
squares regression and the goodness of curve fitting by
contrast of joint hypothesis (P < 0.05).

Cumulative Emergence Model Validation and Readjust-
ment. In the third season (2010 to 2011), emergence data of
ripgut brome were also taken before the first sowing date in
trial 1 (described as FO). For this reason, the model developed
for describing the emergence of ripgut brome was validated
with these data (F0), as well as with F1 in 2010 to 2011 and
data from Cao et al. (2011), obtained in two other localities of
Huelva (South of Spain) in 2005 to 2006 and 2006 to 2007.
Agreement between predicted and actual emergence values
was determined with the root-mean-square error (RMSE):

RMSE=[1/n Z (e — ) 3]

where x; represents actual cumulative percent emergence, y; is
predicted cumulative percent emergence, and 7 is the number
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Figure 1. (a) Air temperature (C) and rainfall (mm). (b) Soil temperature (C) and soil water potential (MPa) in the first five cm of depth for seasons 2008 to 2009,

2009 to 2010 and 2010 to 2011.

of observations (Mayer and Butler 1993). RMSE provided a
measurement of the typical difference between predicted and
actual values in units of percentage seedling emergence. The
RMSE ranges to evaluate the accuracy of the model are based
on Royo-Esnal et al. (2010b): < 5, excellent prediction; 5 to
10, very good prediction; 10 to 15, good prediction; > 15,
insufficient prediction. When RMSE were not optimally
described by these models (RMSE>15) the Chapman
equation was modified by adding a lag-phase (2):

y=K(1—[exp{—bx—2z}])’ (4]

The lowest RMSE values indicated that the emergence model
fit had been optimized.

Cumulative Emergence Practical Model Application. Dif-
ferent sowing dates (F2 and F3 in trial (1) and types of tillage
(SS, ChP, and MbBP in trial (2) of the three growing seasons
were used to evaluate the practical application of the
emergence model defined above.

Correction factors were calculated to adjust the cumulative
emergence in F2 and F3. Both factors consider prior
emergence during the F1. The corrections were 69% and
92% for F2 and F3, respectively, and they represent the
percentages of seedling emergence that were eliminated with
the delay of the sowing date through seedbed preparation.
The correction factor 69% was also used in trial 2 as the crop
was sown on the same date as in F2 in trial 1 each year.
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Results

The three seasons differed considerably in terms of rainfall
(Figure 1a), which represents an ideal situation for develop-
ment of robust microclimate-based models, but not in
temperature. Figure 1b represents the soil temperature and
soil water potential in the first 5 cm of depth, calculated with
the STM? using daily maximum and minimum air temperature
(represented as mean air temperature in Figure 1a) and rainfall.
Total rainfall from September to harvest (June) in 2008 to
2009 was 500 mm, while in 2009 to 2010 it was 637 mm, and
in 2010 to 2011 only 190 mm. Besides the rainfall quantity,
number of rainy days also differed between the three seasons
(64 in 2008 to 2009, 77 in 2009 to 2010, and 27 in 2010 to
2011, Figure 1a), which is reflected in the soil water potential
as long wet or dry periods (Figure 1b). The first season, the
average of autumn-winter precipitation was 234 mm (October
to February), which fell mainly in October (84 mm). Spring
was rainy, with 155 mm between April and May (150 mm in
April). In the second season, autumn-winter was wetter
(357 mm), while spring was dryer than the previous season
(85 mm). In these two seasons there had been short drought
periods that are reflected in the soil water potential (Figure 1b).
Finally, in 2010 to 2011 autumn-winter resulted extremely dry
(13 mm), which decreased considerably the soil water potential,
while spring was rainy (156 mm between March and June). For
modeling purposes, such great natural variability in magnitudes
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Figure 2. Cumulative emergence of ripgut brome (seedling-mfZ) in (a) three sowing dates (FO = previous to first sowing date, F1 = first sowing date, F2 = second
sowing date, and F3 = third sowing date) and in (b) three different soil managements throughout the three growing seasons (ChP = chisel plow, SS = subsoiler, and

MbP = moldboard plow).

of driving variables is highly desirable. In the three years, the
average winter air temperature (December through February)
was 4 C. Overall, the soil and air temperature did not vary
significantly from each other as the depth at which soil
temperature had been calculated (five cm) is highly influenced
by air temperature.

The cumulative emergence in trial 1 was always higher in
F1 than in F2 and F3. The beginning of emergence was
coincident in 2008 to 2009 and 2009 to 2010 with rainfalls
occurring in October. In 2010 to 2011 rainfalls in autumn
only occurred in September. Each growing season shows a
decreasing gradient from F1 to F3. In 2008 to 2009, the
cumulative emergence of ripgut brome differed according to
the delay in sowing date (Figure 2a.). Delay of sowing from
F1 to F2 entailed an 82% reduction in the cumulative
emergence, and 81% reduction in F1 to F3. Between F2 and
F3, percentage of cumulative emergence increased by 7%. In
2009 to 2010, the emergence of ripgut brome in F1 was
higher than the year before. The percentage of reduction from
F1 to F2, F1 to F3, and F2 to F3 was of 98%, 99%, and 49%,
respectively. In general, cumulative emergence in 2010 to
2011 was lower than in 2008 to 2009 and 2009 to 2010 for
the three sowing dates, and rainfall was almost nil from
October to January. Percentage reduction in cumulative
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emergence was 73%, 88%, and 56%, respectively, from F1 to
F2, F1 to F3 and F2 to F3.

In erial 2, cumulative emergence in ChP was higher than SS
and MDbP in the three growing seasons and consistently lowest
in MbP (Figure 2b). Cumulative emergence was higher in
2009 to 2010 than in 2008 to 2009 and 2010 to 2011.
Considering that higher cumulative emergence occurred in
ChP than in SS and MbP, a percentage of 100% was assigned
to ChP. Accordingly, reductions in cumulative emergence
were 59% in SS and 97% in MbP in 2008 to 09. In 2009 to
10 reductions reached 56% in SS and 98% in MbP, and in
2010 to 2011 they were about 48% in SS and 99% in MbP.

Seedling Emergence Model Development. The emergence
model (Chapman function) calculated using data from F1 in
2008 to 2009 and 2009 to 2010 is shown in Figure 3. In both
seasons, emergence was characterized by a quick flush followed
by a more gradual pattern. To optimize emergence model fit, a
unique base temperature and base water potential was required.
The base temperature and base water potential for HT'T were
estimated iteratively. The best fitting 7}, was determined to be
0 C and the best fitting ¥, was —1.35 MPa (R* = 0.80).
Estimates of the variables K] 4, z, and 4 fitted to HT'T for ripgut
brome are 100, 0.013, *£55, and 21.4, respectively.
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Figure 3. Observed cumulative emergence of ripgut brome in 2008 to 2009
and 2009 to 2010 and representation of the model developed with these data as
a function of hydrothermal time (HTT). Emergence fitted using the
Chapman function.

Seedling Emergence Model Validation. Figure 4 shows
observed and predicted emergence using the Chapman
function (above), based on FO and F1 during 2010 to
2011. Both descriptions showed good fit and reasonable
accuracy with predicted emergence (RMSE of 11.4 and 10.9
respectively for FO and F1). In both cases a lag phase (z) was
determined by repeatedly testing RMSE, with a final fix at 55
HTT. The model was also validated with emergence data
from two locations in Huelva province (Figure 4c).

Practical Application. The emergence model successfully
predicted the emergence of F2 and F3 from trial 1 (Figure 5)
and those from SS, ChP and MbP from trial 2 (Figure 6)
during the three growing seasons.

In trial 1, according to the scale established for the RMSE
values, out of six simulations, two were excellent (RMSE
<'5), three were very good (RMSE 5 to 10), and one was
good prediction (Figure 5). In season 2008 to 2009 and 2009
to 2010, values from F3 were better described (RMSE = 2.2
and 3.3, respectively) than those from F2 (RMSE = 5.3 and
10.1, respectively). In contrast, in season 2010 to 11, F2
showed a slightly better RMSE (5.6) than F3 (7.5). Finally,

for F3 values, the 2008 to 2009 growing season (RMSE =
2.2) showed the best fit (Figure 5). Thus, the model described
the emergence of F2 and F3 accurately, without adding any
lag-phase, however, in some cases the use of a lag phase
(established at 55 HTT) improves the fit, as in F2 and F3 in
2009 to 2010.

Sowing date in the different soil management plots (trial 2)
was coincident with F2 in trial 1; therefore the 69% factor
correction, explained above, was applied to the emergence
values. The model described emergence successfully in the three
soil management systems during the three years with
completely different weather situations (Figure 6). In the
model application in F2 and F3 in trial 1, the use of a lag phase
was not necessary because the fits were good. However, in trial
2, the use of a lag phase of 55 HTT, in 2008 to 2009 and 2009
to 2010 improved the fits. This did not happen in 2010 to
2011, when the exclusion of a lag phase was the best option for
the description of emergence. The accuracy of this model
developed for the emergence of ripgut brome was excellent in
two situations, very good in another five and good in the last
two situations. The RMSE values of this experiment ranged
from 4.4 to 14.2%. ChP was generally better described in the
sequence of the three seasons (2008 to 2009, 2009 to 2010, and
2010 to 2011), with RMSE values of 5.9, 6.0, and 4.4,
respectively; followed by SS, 7.6, 6.1, and 5.7, respectively; and
MbD, 4.1, 14.1, and 11.9, respectively) (Figure 6).

Discussion

Germination and emergence are basic processes in the
survival and success of a plant (Del Monte and Dorado 2011)
and the ability to predict weed emergence could enhance crop
management by facilitating the implementation of more
effective weed control strategies through the optimization of
the timing of weed control (Leblanc et al. 2004; Myers et al.
2004). Cumulative emergence of ripgut brome in trial 1 was
higher in F1 than in F2 and F3 regardless of the season.
According to some reports, the first cohort of seedlings
contributes more to stand biomass and subsequent seed
production as well as stronger competition with associated
crops, thereby having the largest contribution to the next
generation (Cao et al. 2011). Total cumulative emergence was
higher in 2009 to 2010 than in 2008 to 2009. The absence
of a sclective herbicide in barley, favored the growth and
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development of ripgut brome and, therefore, its contribution
to the soil seed bank was higher in the following year. The use
of selective herbicides for ripgut brome control in wheat
provoked a reduction of fecundity (data not shown) in 2009
to 2010. For this same reason, together with the drought
suffered in autumn 2010 to 2011, a reduction of total
cumulative emergence occurred that season.

Kleemann and Gill (2006) showed rapid germination of
seeds of ripgut brome following initial autumn rains. In these

https://doi.org/10.1614/WS-D-12-00023.1 Published online by Cambridge University Press

experiments similar trends were observed, i.e., beginning of
ripgut brome emergence was coincident with rainfall periods.
According to Riba (1993) germination and emergence could
occur under a wide period of time, ranging from late summer
to mid-winter, although it is concentrated in the autumn.

In trial 2 cumulative emergence was higher in chisel plow
followed by the subsoiler and moldboard plow. An
explanation for this order in soil management systems is that
seeds may need only a superficial covering of soil to perceive
151
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Figure 6. Hydrothermal seedling emergence model application for ripgut brome in different tillage systems (SS, ChP, MbP) in Agramunt (Spain) for three growing
seasons 2008 to 2009, 2009 to 2010 and 2010 to 2011. Root Mean Square Error is shown without (RMSE) and with lag phase of +55HTT (*RMSE). Lines represent

predicted emergence without a lag phase. Symbols represent observed emergence.

darkness. As long as the embryo remains buried, it is likely to
germinate, and this is facilitated by the way the seed falls to
the ground and can be wedged into the soil (Del Monte and
Dorado 2011). Thus, the chisel plow deposits a thin layer of
soil over the seeds, which allows germination. In contrast, in
moldboard ploughed plots, which had the lowest cumulative
emergence observed, soil inversion positioned seeds too deep
to emerge. This also occurs in the related rigid brome (Bromus
rigidus Roth) (Gleichsner and Appleby 1989).

Hydrothermal Time Seedling Emergence. Hydrothermal
time emergence models that base predictions on field
observations during previous growing seasons offer relatively
robust predictions and with simple inputs and development
(Forcella et al. 2000). The model developed in this work
seems to be strong enough, as it was developed with data from
two completely different seasons in terms of rainfall, and it has
been validated with a third season in the same field, as well as
with independent data from the south of Spain (Huelva).
The water potential with which emergence of ripgut brome
was best explained was —1.35 MPa. In contrast, Del Monte
and Dorado (2011) observed in a lab conditions that high
germination percentages (above 75%) of ripgut brome were
obtained in darkness with water potentials = —0.4 MPa.
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Germination in the lab was significantly lower, but still
appreciable at —1.25 MPa. Thus, our field- and simulation-
derived value of —1.35 MPa may be deduced as the base
water potential while = —0.4 MPa is the optimal water
potential for the germination (and emergence) of this weed.
To optimize emergence model fit, a unique base water
potential is required (Schutte et al. 2008). This base water
potential may not be the best for any particular season, but it
is the best overall for describing the three seasons with a robust
model.

An advantage of the Chapman equation is the use of only
three parameters that, in turn, makes it a simple model. The
model predicted seedling emergence in different locations
(Agramunt and Huelva) with reasonable accuracy. The RMSE
values of this experiment calculated for model validation, (11.4
in FO, 10.9 in F1, and 12.6 and 14.0 in Huelva) were similar to
RMSE values for model validation in other studies for common
lambsquarters (Chenopodium album) (Roman et al. 2000),
tropic ageratum (Ageratum conyzoides L.) (Ekeleme et al. 2005),
and Galium spp. (Royo-Esnal et al. 2010a).

Practical Application. An interesting part of this model is
that it could have been applied in other management systems
(in the same locality where it was developed), which implies a
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wide range of situations where it probably can be used. All of
the RMSE values obtained in the practical applications were
below 15, indicating a very good predictive capability. The
use of the lag phase in some cases further improved the fit of
the model to the observed data.

The model applied to F2 and F3 in the three growing
seasons showed slightly better accuracy for F3 than for F2.
This could have happened because 92% of the population was
destroyed by seedbed preparation and the correction factor left
very low variation for K values (100%). The lack of need of a
lag phase in these results is remarkable and gives a more robust
basis to the model, which we believe is valid for rainfed cereal
systems where sowing dates are often variable.

Ripgut brome is a common weed present in many tillage
systems, although it is associated with no-till (Kleemann and Gill
2006). For this reason showing how the model predicted the
emergence of ripgut brome in other soil managements was
important. Therefore, the model also was applied to chisel
ploughed, subsoiled and moldboard ploughed areas. In fact, the
RMSE values obtained from these comparisons strengthened the
petceived value of the model, as all were below 15 (without use of
a lag phase). In some cases, however, the use of a lag phase did
improve the fit of the model to the observed data. This might
imply that the description of the emergence could sdll be
improved, maybe with the inclusion of other factors that have
not been used here, such as remnant seed dormancy alleviation.
Regarding differences in accuracy of the model among tillage
systems, it was somewhat less accurate in MbP than in SS and
ChP. This likely happened because of the much lower seedling
densities in MbP than the other soil management systems, with a
corresponding decrease in reliability of the MbP data.

To summarize, soil temperature and soil moisture seem to be
the determinant factors driving emergence of ripgut brome, as
they are in other weeds (Forcella et al. 2000; Roman et al. 2000;
Royo-Esnal et al. 2010a). With these two factors, a model that
describes the emergence of this weed was developed and
demonstrated to be robust and reliable, as it was validated
with four different data sets and put into practice in five
management systems (two sowing delays and three soil tillage
practices) over three years. The model can be used henceforth to
improve control and management of ripgut brome.
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