

FIGURE 4: for $a_0 > 0, a < b$

Polynomials of degree 4

Let $f(x) = a_0x^4 + a_1x^3 + a_2x^2 + a_3x + a_4$, with $a_0 \neq 0$, and $T_f(x)$ the tangent line to the graph of f(x) at an inflection point x = a. Then $f''(a) = 0, f'''(a) = 6a_1 + 24aa_0 \neq 0$ and $f^{(4)}(a) = 24a_0$. Therefore, by (2) we have,

$$f(x) - T_f(x) = (x - a)^3 \left(\frac{6a_1 + 24aa_0}{6} + \frac{24a_0}{24}(x - a)\right) = a_0(x - a)^3(x - b)$$

for $b = -3a - \frac{a_1}{a_0}$. (We note that $b \neq a$ because $f'''(a) \neq 0$.)

Consequently the area between the graphs of f(x) and $T_f(x)$ is

$$\left|\int_{a}^{b} a_{0}(x-a)^{3}(x-b) dx\right| = \left|\frac{1}{20}a_{0}(b-a)^{5}\right| = \left|\frac{1}{20}a_{0}\left(4a+\frac{a_{1}}{a_{0}}\right)^{5}\right|.$$

This value is the same as the area between the graph of $g(x) = a_0(x - a)^3(x - b)$ and the x-axis (Figure 5).

FIGURE 5: for $a_0 > 0, a < b$

10.1017/mag.2022.142 © The Authors, 2022 Published by Cambridge University Press on behalf of The Mathematical Association FÉLIX MARTÍNEZ de la ROSA Department of Mathematics, University of Cádiz, Spain e-mail: felix.martinez@uca.es

The full story of invariant lines

The topics of invariant points and lines (for 2×2 matrix transformations) and eigenvalues and eigenvectors appear on some of the current AS/A level Further Mathematics specifications. These topics are treated separately in the textbooks. The aim of this short Note is to describe how the latter enables a full and succinct treatment of the former which also explains the rather limited range of examples.

Let A be a 2 \times 2 matrix with real entries. Then v, an invariant point for A, satisfies Av = v so corresponds to an eigenvector of A with eigenvalue 1, together with 0.

Suppose now that $\mathbf{r} = \mathbf{a} + t\mathbf{d} \ (\mathbf{d} \neq \mathbf{0}, t \in \mathbb{R})$ is an invariant line for A. When t = 0, we have $A\mathbf{a} = \mathbf{a} + t_1\mathbf{d}$ and when t = 1 we have $A(\mathbf{a} + \mathbf{d}) = \mathbf{a} + t_2\mathbf{d}$. From these we deduce that $A\mathbf{d} = A(\mathbf{a} + \mathbf{d}) - A\mathbf{a} = (t_2 - t_1)\mathbf{d}$, so that \mathbf{d} is an eigenvector of A with (real) eigenvalue $t_2 - t_1$. Thus the direction of any invariant line is parallel to an eigenvector of A. In particular, if A has no real eigenvalues then it has no invariant lines: a typical example of this is a rotation, centre O. If A has real eigenvalues, then lines through O in the directions of the eigenvectors are invariant. An example of this is a matrix describing a pair of one-way stretches such as $\begin{pmatrix} 7 & 6 \\ -4 & 18 \end{pmatrix}$ (with eigenvalues 10, 15).

Could there be other invariant lines not containing O?

Suppose first that A has two linearly independent eigenvectors c, d with $Ac = \lambda c$ and $Ad = \mu d$: this necessarily happens if its two (real) eigenvalues are different. An invariant line not containing O can then be written as $\mathbf{r} = k\mathbf{c} + t\mathbf{d}$ for some fixed $k \neq 0$. When t = 0 invariance means that $A(kc) = kc + t_1 \mathbf{d}$. But $A(kc) = k\lambda c$, so that $k\lambda c = kc + t_1 \mathbf{d}$ from which $\lambda = 1$, by linear independence, so that A has a line of invariant points. Reflection in a line through O provides a typical example for this case, with eigenvalues 1 and -1.

The one remaining case is where A has a repeated eigenvalue λ with just one linearly independent eigenvector d. If the line $\mathbf{r} = \mathbf{a} + t\mathbf{d}$ is invariant with $\mathbf{a} \neq 0$ linearly independent of d, then $A\mathbf{a} = \mathbf{a} + t_1 \mathbf{d}$. Hence

$$\mathbf{A}^{2}\mathbf{a} = \mathbf{A}(\mathbf{a} + t_{1}\mathbf{d}) = \mathbf{a} + t_{1}\mathbf{d} + t_{1}\lambda\mathbf{d} = \mathbf{a} + t_{1}(1 + \lambda)\mathbf{d}.$$

On the other hand, from the characteristic equation, $(\mathbf{A} - \lambda \mathbf{I})^2 = 0$ or $\mathbf{A}^2 = 2\lambda \mathbf{A} - \lambda^2 \mathbf{I}$, so that

$$\mathbf{A}^{2}\mathbf{a} = (2\lambda\mathbf{A} - \lambda^{2}\mathbf{I})\mathbf{a} = 2\lambda\mathbf{a} + 2\lambda t_{1}\mathbf{d} - \lambda^{2}\mathbf{a} = (2\lambda - \lambda^{2})\mathbf{a} + 2\lambda t_{1}\mathbf{d}.$$

Comparing the two expressions for A^2a , we deduce that $1 = 2\lambda - \lambda^2$ so that $\lambda = 1$ again. A shear parallel to a line through *O* is a typical example of this case.

Acknowledgement

I am very grateful to the referee for advice about the presentation of the results in this Note.

10.1017/mag.2022.143 $\ensuremath{\mathbb O}$ The Authors, 2022	NICK LORD
Published by Cambridge University Press on	Tonbridge School,
behalf of The Mathematical Association	Tonbridge TN9 1JP
	e-mail: njl@tonbridge-school.org