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FIGURE 4: foray, > 0,a < b
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Polynomials of degree 4

Let f(x) = ap* + aix® + ax® + asx + ay, with qy # 0, and T; (x)
the tangent line to the graph of f(x) at an inflection point x = a. Then
f’(@@ = 0,f”(a) = 6a, + 24aa; # 0 and f¥ (a) = 24a,. Therefore, by

(2) we have,
6a; + 24aay 24a
F00 T = (- (S22 ) = (- ' - )
forb = -3a - a (We note that b # a because f”(a) # 0.)

do
Consequently the area between the graphs of f (x) and T (x) is
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This value is the same as the area between the graph of
g(®¥) = ap(x — a)’(x — b) and the x-axis (Figure 5).

a _ \ a ‘ b
5 '

@)

g ()

FIGURE 5: forayg > 0,a < b
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The full story of invariant lines

The topics of invariant points and lines (for 2 x 2 matrix
transformations) and eigenvalues and eigenvectors appear on some of the
current AS/A level Further Mathematics specifications. These topics are
treated separately in the textbooks. The aim of this short Note is to describe
how the latter enables a full and succinct treatment of the former which also
explains the rather limited range of examples.
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Let A be a2 x 2 matrix with real entries. Then v, an invariant point for
A, satisfies Av = v so corresponds to an eigenvector of A with eigenvalue
1, together with 0.

Suppose now thatr = a + td (d # 0, ¢ € R) is an invariant line for
A. When ¢t = 0, we have Aa = a + r;d and when ¢+ = 1 we have
A(a +d) = a + t,d. From these we deduce that
Ad = A(a +d) — Aa = (1, — 1;)d, so that d is an eigenvector of A
with (real) eigenvalue ¢, — #;. Thus the direction of any invariant line is
parallel to an eigenvector of A. In particular, if A has no real eigenvalues
then it has no invariant lines: a typical example of this is a rotation, centre
O. If A has real eigenvalues, then lines through O in the directions of the
eigenvectors are invariant. An example of this is a matrix describing a pair

of one-way stretches such as ( 7 4 168 ) (with eigenvalues 10, 15).

Could there be other invariant lines not containing O?

Suppose first that A has two linearly independent eigenvectors ¢, d with
Ac = Ac and Ad = ud: this necessarily happens if its two (real)
eigenvalues are different. An invariant line not containing O can then be
written as r = kc¢ + td for some fixed k # 0. When ¢+ = O invariance
means that A (k¢) = kc + t;d. But A (k¢) = kic, so that kAc = ke + t;d
from which 4 = 1, by linear independence, so that A has a line of invariant
points. Reflection in a line through O provides a typical example for this
case, with eigenvalues 1 and —1.

The one remaining case is where A has a repeated eigenvalue A with just
one linearly independent eigenvector d. If the line r = a + rd is invariant
witha # O linearly independent of d, then Aa = a + ¢;d. Hence

Ala=A(@+rd =a+nd+64d=a2a+( +A)d.
On the other hand, from the characteristic equation, (A — AI)2 = 0 or
A% = 2JA — A, so that
A’a = (22A - F1)a = 2Ja + 2rd - 2a = (24 - F)a + 24rd.

Comparing the two expressions for A’a, we deduce that 1 = 24 — 4% so
that A = 1 again. A shear parallel to a line through O is a typical example
of this case.
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