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UNIVERSAL COUNTABLE BOREL QUASI-ORDERS

JAYWILLIAMS

Abstract. In recent years, much work in descriptive set theory has been focused on the Borel complexity
of naturally occurring classification problems, in particular, the study of countable Borel equivalence
relations and their structure under the quasi-order of Borel reducibility. Following the approach of Louveau
and Rosendal for the study of analytic equivalence relations, we study countable Borel quasi-orders.
In this paper we are concerned with universal countable Borel quasi-orders, i.e., countable Borel quasi-

orders above all other countable Borel quasi-orders with regard to Borel reducibility. We first establish that
there is a universal countable Borel quasi-order, and then establish that several countable Borel quasi-orders
are universal. An important example is an embeddability relation on descriptive set theoretic trees.
Our main result states that embeddability of finitely generated groups is a universal countable Borel

quasi-order, answering a question of Louveau andRosendal. This immediately implies that biembeddability
of finitely generated groups is a universal countable Borel equivalence relation. The same techniques are
also used to show that embeddability of countable groups is a universal analytic quasi-order.
Finally, we show that, up to Borel bireducibility, there are 2ℵ0 distinct countable Borel quasi-orders,

which symmetrize to a universal countable Borel equivalence relation.

§1. Introduction. A countable Borel quasi-order Q is a quasi-order defined on
a Polish space X (or more generally, a standard Borel space) such that Q is Borel
when viewed as a subset of X 2 and for every x ∈ X , the set of predecessors of x,
{y | yQ x}, is countable. There are several natural examples, such as≤T and≤1 on
2N, as well as the embeddability relation on the space G of finitely generated groups.
As in the case of Borel equivalence relations, we are largely interested in how
countable Borel quasi-orders are related to each other under Borel reducibility.

Definition 1.1.
a) Suppose that Q is a Borel quasi-order on a Polish space X and Q′ is a Borel
quasi-order on a Polish space Y . We say that Q is Borel reducible to Q′, written
Q ≤B Q′, if there is a Borel function f : X → Y such that

x Q y ⇔ f(x)Q′ f(y).

b) A countable Borel quasi-order Q′ is universal if for every countable Borel
quasi-order Q, Q ≤B Q′.

Borel reducibility is intended to capture the notion of the relative complexity
of quasi-orders, so that if Q ≤B Q′, then we consider Q′ to be more compli-
cated than Q. A universal countable Borel quasi-order can then be thought of as
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a countable Borel quasi-order which is as complicated as possible. It was shown
by Dougherty, Jackson, and Kechris in [3] that there is a universal countable Borel
equivalence relation, and in [9] Louveau and Rosendal showed there is a universal
analytic quasi-order. In section 2, using an analog of the Feldman-Moore Theorem,
we prove the following result.

Theorem 1.2. There is a universal countable Borel quasi-order.

Given a quasi-order Q on X , the corresponding equivalence relation EQ on X is
defined by

x EQ y ⇔ x Q y ∧ y Q x.
For example, Turing equivalence≡T isE≤T . It is easily checked that ifQ is a univer-
sal countable Borel quasi-order, then EQ is a universal countable Borel equivalence
relation, and this provides another source of examples for such equivalence relations.
Much of this paper is dedicated to proving that various countable Borel quasi-

orders are universal.Oneuniversal countableBorel quasi-order, in particular, is used
in several of these proofs. Recall that given a discrete space X , a subset T ⊆ X<N is
said to be a tree on X if it is closed under initial segments.

Definition 1.3. Given a discrete space X , the quasi-order �treeX on the space of
trees on X is defined by

T �treeX T ′ ⇔ (∃u ∈ X<N) T = T ′
u,

where T ′
u = {v ∈ X<N | u�v ∈ T ′}. (Here, u�v indicates the string u followed

by v.)

Theorem 1.4. �tree2 is a universal countable Borel quasi-order.

This quasi-order is combinatorially simple and thus easy to work with. This
makes it useful for establishing other quasi-orders are universal.
Our ultimate goal is to show the biembeddability relation for finitely gener-

ated groups is a universal countable Borel equivalence relation. Although it may
be possible to prove this only using results on countable Borel equivalence rela-
tions, the use of quasi-orders seems to be the most direct route to this result. We
first use small cancellation methods from group theory to establish the following
theorem.

Theorem 1.5. Embeddability of countable groups is a universal analytic quasi-
order.

It follows that biembeddability of countable groups is a universal analytic equiva-
lence relation. This is strictly more complex than isomorphism of countable groups;
for a more thorough exploration of the relation between biembeddability and iso-
morphism in the Borel reducibility context see [6]. The ideas developed to prove
Theorem 1.5 are then used to reduce �tree2 to the embeddability relation for finitely
generated groups. Thus we have the following theorem.

Theorem 1.6. Embeddability of finitely generated groups is a universal countable
Borel quasi-order.

Thus the embeddability structure of finitely generated groups is as complicated
as possible. We find as a corollary that the biembeddability relation for finitely
generated groups is a universal countable Borel equivalence relation. This answers
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a question of Louveau and Rosendal in [9]. It was previously shown in [12] that
the isomorphism relation for finitely generated groups is a universal countable
Borel equivalence relation, and so this result can be seen as saying the two rela-
tions have precisely the same complexity, in contrast with the case of countable
groups.
The rest of the paper is organized as follows. In section 2, we establish that
there is a universal countable Borel quasi-order by proving a Feldman-Moore-type
result relating countable Borel quasi-orders to Borel actions of countable monoids.
In section 3, we show that �tree2 is universal. In section 4, we show that various
group-theoretic countable Borel quasi-orders, which arise as simple generalizations
of well-known universal countable Borel equivalence relations, are universal. In
sections 5 and 6, we prove the theorems on the embeddability relations for countable
groups and finitely generated groups. Finally, in section 7 we show that, up to
Borel bireducibility, there are 2ℵ0 countable Borel quasi-orders, which give rise to a
universal countable Borel equivalence relation.

§2. A universal countable Borel quasi-order. We start by proving an analog of
the Feldman-Moore Theorem [5] for countable Borel quasi-orders. Although to the
author’s knowledge, this result is not in the literature, it is a straightforward appli-
cation of the well-known Lusin-Novikov theorem (see Theorem 18.10 in Kechris
[8]), and should perhaps be considered as folklore.

Theorem 2.1. If � is a countable Borel quasi-order on the Polish space X , there is
a monoidM which acts on X in a Borel way such that

x � y ⇐⇒ (∃m ∈M ) x = m · y.
Proof. First, note that by definition for all y ∈ X ,�y= {x | x � y} is countable,
which implies the set �⊆ X × X has countable sections with respect to its second
coordinate. By the Lusin-Novikov theorem, �= ∪nfn, where each fn : En → X is
a Borel function, with En ⊆ X Borel.
We can extend these to functions defined on all of X by letting fn(y) = y for
y ∈ X \ En. These functions are still Borel, and their union is still equal to � by
reflexivity.Wemay also add the identity function to our collection without changing
the union, again by reflexivity. With all this in place, the collection fn generates a
monoidM under composition, andM acts on X by m · x = m(x). If x � y, then
there exists m ∈ M such that x = m · y = m(y), and the transitivity of � ensures
that for all m ∈M and x ∈ X , m · x � x. 

We wish to use this result to show that there is a universal countable Borel quasi-
order. Our approach closely follows the proof of Dougherty, Jackson, and Kechris
in [3] that there is a universal countable Borel equivalence relation.

Definition 2.2. For every standardBorel spaceX and countable monoidM , the
corresponding canonical Borel action ofM onXM is defined by (m ·f)(s) = f(sm)
for m, s ∈ M and f ∈ XM . We denote the corresponding quasi-order by �XM , i.e.,
for f, g ∈ XM ,

f �XM g ⇐⇒ (∃m ∈M ) f = m · g.
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To see that this is an action, let m, n ∈M and f ∈ XM . Then
(m · (n · f))(s) = (n · f)(sm)

= f(smn)

= (mn · f)(s),
as desired.

Note that in the above definition, ifM is a group, then�XM is in fact an equivalence
relation. In particular,�2

F2
is the universal countable Borel equivalence relationE∞.

Definition 2.3 (The quasi-order��). LetM� be the free monoid on countably
many generators. Then define �� to be �2

N

M�
.

Theorem 2.4. �� is a universal countable Borel quasi-order.
Proof. Let� be a countable Borel quasi-order on a Polish spaceX . By Theorem

2.1, there is a countable monoid M such that � is the quasi-order induced by a
Borel action ofM on X . Let f : M� → M be a surjective homomorphism. Then
we can define an action ofM� on X by

m · x = f(m) · x.
This action is Borel and also induces �, and so without loss of generality we may
assume thatM =M� .
Let {Ui}i∈N be a sequence of Borel sets in X , which separates points. Then we

define φ : X → (2N)M� by x �→ φx, with
φx(s)(i) = 1 ⇐⇒ s · x ∈ Ui .

This map is Borel, and since the collection Ui separates points, we see it is injective.
Furthermore, if t ∈ M� , then t · φx = φt·x . To see this, let s ∈ M� , and i ∈ N.
Then

φt·x(s)(i) = 1 ⇐⇒ s · t · x ∈ Ui
⇐⇒ φx(st)(i) = 1

⇐⇒ t · φx(s)(i) = 1.
Now suppose that x � y. Then there exists m ∈ M� such that x = m · y. It

follows that φx = φm·y = m · φy , and so φx �� φy . The same reasoning works in
reverse, and hence φx �� φy implies that x � y. Thus φ is a Borel reduction. 

Thus there exists a universal countable Borel quasi-order. Next we wish to find

universal countable Borel quasi-orders which are easier to work with. We proceed
by a series of easily proven lemmas, which are the analogs of propositions 1.4–1.8
in Dougherty, Jackson, and Kechris [3]. The proofs of most of them are virtually
the same, and so we omit them here.

Lemma 2.5. If M,N are monoids and M is a homomorphic image of N , then
�XM≤B �XN .
Lemma 2.6. For any countable monoidM , �2Z−{0}

M ≤B �3M×Z
.

Lemma 2.7. For any countable monoidM , �3M≤B�2M×Z2
.
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Lemma 2.8. LetM2 denote the free monoid on 2 generators. Then

�2M� ≤B �2M2 .
Proof. We start by embedding M� intoM2 in order to view it as a submonoid
ofM2. LetM� = 〈x1, x2, . . .〉 andM2 = 〈a, b〉. We define our embedding by e �→ e
and xn �→ abn for all n ∈ N+.
Next we note that if h ∈ M2, then we can canonically write h as a product
h = h′g, with g ∈M� and h′ ∈M2 \M� , possibly with g = e or h′ = e, by finding
the longest word inM� at the end of h. Define L : M2 → N by

L(h) = the length of h′,

where h = h′g is the canonical form of h. This function has the desirable property
that multiplying an element h ∈ M2 on the right by an element g ∈ M� does not
change the given length, i.e., L(h) = L(hg).
Define f : 2M� → 2M2 by p �→ p∗, where

p∗(h) =

⎧⎪⎨
⎪⎩
p(h) if L(h) = 0
1 if L(h) = 1,
0 if L(h) > 1.

Suppose that p �2M� q. Then ∃g ∈M� such that p = g · q. So if h ∈M� ,
(g · q∗)(h) = q∗(hg)

= q(hg)
= (g · q)(h)
= p(h)
= p∗(h).

If h ∈M2 \M� , then since L(h) = L(hg), we find
(g · q∗)(h) = q∗(hg)

= p∗(h).

So p∗ �XM2 q
∗.

Now suppose that p∗ �2M2 q
∗. Then there exists g ∈ M2 such that p∗ = g · q∗.

Clearly if g ∈ M� , then p = g · q. If instead g ∈ M2 \ M� , then L(g) ≥ 1,
and we should have that p∗(b) = (g · q∗)(b) = q∗(bg). But p∗(b) = 1, while
L(bg) > 1, and so q∗(bg) = 0. Thus this case cannot happen, and hencef is a Borel
reduction. 

Theorem 2.9. �� ≤B �2M2 . It follows that�2M2 is universal.
Proof. Using the preceding lemmas, we find that

�2NM� ≤B �2Z−{0}
M�

≤B �3M�×Z by Prop. 2.6

≤B �2M�×Z×Z2
by Prop. 2.7

≤B �2M� by Prop. 2.5
≤B �2M2 by Prop. 2.8. 
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The quasi-order �2M2 is easier to work with than ��, as both the monoid and
the space being acted on are simpler. Using �2M2 , we will find another universal
countable Borel quasi-order, this one of a more combinatorial nature.

§3. A quasi-order on trees. In this section, we will reduce�2M2 to�tree2 , the quasi-
order on descriptive-set-theoretic trees from definition 1.3. This has the advantage
of moving us away from working with monoids and towards more classical areas of
mathematics. We must first make a few intermediate reductions.

Definition 3.1. The quasi-order�s2 (the s is for “suffix”) onP(M2) is defined by
A �s2 B ⇐⇒ (∃m ∈M2) Am = Bm,

where
Bm = B ∩M2m.

Remark 3.2. Note that if we made a similar definition for a groupM , then we
would always have that Bm = B, since in this caseMm = M . So this definition is
only interesting when dealing with a monoid.

If we identifyP(M2) with 2M2 , then this quasi-order is the same as�2M2 .Writing it
in this way brings out the fact that knowing a setA ∈ P(M2) and thatA �2M2 B only
gives partial information aboutB. This differs fromE∞, the analogous equivalence
relation, since knowing A ∈ P(F2) and that A E∞ B gives information about all
of B.
Next, we modify this quasi-order slightly, in order to make it somewhat easier to

work with.

Definition 3.3. The quasi-order�p2 (thep is for “prefix”) onP(M2) is defined by
A �p2 B ⇐⇒ (∃m ∈M2) mA = Bm,

where
Bm = B ∩mM2.

As before, this definition is only interesting when working with a monoid.

Theorem 3.4. �s2∼B �p2
Proof. Every nontrivial element w ∈ M2 may be written as w =

an0bm0 . . . ankbmk , where ni ,mj ∈ N, and only n0 or mk may be 0. Define
w̄ = bmkank . . . bm0an0 , and ē = e. Then the bijection f : M2 → M2 defined by
f(w) = w̄ induces a Borel bijection f∗ : P(M2)→ P(M2) such that if Am = Bm,
then m̄f∗(A) = f∗(B)m̄ . Similarly, if wf∗(A) = f∗(B)w , then Aw̄ = Bw̄ . Thus
f∗ is a Borel reduction from �s2 to �

p
2 . Since f

∗ is its own inverse, we see that it is
also a Borel reduction from �p2 to �s2. 

One can viewM2 as the complete binary tree 2<N, with each word inM2 corre-

sponding to a node in the tree. From this point of view, when looking atA ⊆M2, we
see thatAm is simply the set of words in A, which are above the node corresponding
to m. (See figure 1.) This natural interpretation of one of the sets involved in �p2
in terms of trees leads us to consider the quasi-order �treeX . Recall that for a count-
able discrete space X , a tree on X is a (nonempty) collection of finite sequences of
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Figure 1. The set A = {a, b, aa, abb, bab, . . .} in the binary tree
corresponding toM2. Note that, for example, Aba = {bab, . . .} is
the set of words in A above ba.

elements of X , which is closed under initial segments. Let Λ(X ) be the Borel set of
infinite trees in Tr(X ), the Polish space of trees on X .
Note that if we have A,B ∈ P(M2) and m ∈ M2 such that mA = Bm, and
furthermore A,B are both trees on {a, b}, then m witnesses that A �tree{a,b} B. If
A or B is not a tree, then it does not make sense to compare them using �tree{a,b}, but
this is only a minor difficulty, as we will see in the proof of Theorem 3.5.

Theorem 3.5. �p2 ≤B �tree2 � Λ(2). It follows that�tree2 is universal.
Proof. We will create our Borel reduction in two parts. First we will define a
Borel reduction from �p2 to �tree3 � Λ(3). Given A ∈ P(M2), we define the tree
TA ∈ Tr(3) as follows. We start with the complete binary tree 2<N, and add to it
the sequence ŵ�2 iff w ∈ A, where ŵ is the sequence in 2<N corresponding to the
word w inM2. This set is closed under initial segments and so is a tree. Clearly it is
infinite. Let TA be this collection of sequences.
Suppose that A �p2 B. Then there exists m ∈M2 such thatmA = Bm. First note
that 2<N is contained in both TA and (TB )m̂. Next suppose that w ∈M2. Then

ŵ�2 ∈ TA ⇐⇒ w ∈ A
⇐⇒ m�w ∈ B
⇐⇒ m̂�w

�
2 = m̂�ŵ�2 ∈ TB

⇐⇒ ŵ�2 ∈ (TB )m̂.
So TA = (TB )m̂.
Conversely, suppose that TA = (TB )α for some α ∈ 3<�. If α contains a 2, then
(TB )α is {∅} or ∅, since the only sequences in TB containing 2 are leaves of the tree.
However, TA is infinite. So α ∈ 2<� , which means that there is a word w ∈M2 such
that ŵ = α. Now

wx ∈ B ⇐⇒ ŵx
�2 ∈ TB

⇐⇒ x̂�2 ∈ (TB )ŵ
⇐⇒ x̂�2 ∈ TA
⇐⇒ x ∈ A,

sowA = Bw . Thus themap t : P(M2)→ Tr(3) sendingA toTA is a Borel reduction.
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Next, we define a map C : Tr(3) → Tr(2), which when composed with t will
be a Borel reduction from �p2 to �tree2 � Λ(2). First we inductively define a map
c : 3<N → 2<N. Let c(e) = e, c(0) = 00, c(1) = 01, and c(2) = 10.Nowassume that
c has been defined for all words of length≤ n, and letw = x�u, where x ∈ {a, b, c}
and u ∈ 3<N has length n. Define c(w) = c(x)�c(u). Given T ∈ Tr(3), apply c
to the elements of T and close the resulting set under initial segments to get a tree
C (T ) ∈ Tr(2).
Suppose that t(A) �tree3 t(B), so there exists u ∈ 3<N (in fact, u ∈ 2<N) such that

t(A) = t(B)u . Then for all w ∈ 3<N
c(w) ∈ c(t(A)) ⇐⇒ w ∈ t(A)

⇐⇒ u�w ∈ t(B)
⇐⇒ c(u�w) = c(u)�c(w) ∈ c(t(B)).

Hence C (t(A)) = C (t(B))c(u) and thus C (t(A)) �tree2 C (t(B)).
Now suppose that C (t(A)) �tree2 C (t(B)), and so there exists w ∈ 2<N such that

C (t(A)) = C (t(B))w . Suppose thatw is not in the image of c. Then we either have
C (t(B))w = ∅, which is impossible, or w is an initial segment of odd length of
something in the image of c. If w ends in a 0, then 100 ∈ C (t(B))w , but this is not
in C (t(A)). If w ends in a 1, then 00 /∈ C (t(B))w , but 00 ∈ C (t(A)). Thus w is in
the image of c, say w = c(u). Then

u�v ∈ t(B) ⇐⇒ c(u)�c(v) ∈ C (t(B))
⇐⇒ c(v) ∈ C (t(A))
⇐⇒ v ∈ t(A).

Thus t(A) = t(B)u , and so t(A) �tree3 t(B). 


§4. Universal quasi-orders from group theory. Wehave seen thatE∞ is the same as
the quasi-order�2

F2
, and so our universal quasi-order�2M2 is a natural generalization

of E∞. At this point, we will turn our attention to other quasi-orders, which can be
seen as generalizations of E∞. The most obvious generalization is the quasi-order
⊆F2,t

P(F2) on P(F2) defined by
A ⊆F2,t

P(F2) B ⇐⇒ (∃g ∈ F2) gA ⊆ B.
Replacing the ⊆ symbol on the right-hand side of the definition with the = symbol
gives E∞. Unfortunately for our purposes, the above quasi-order is clearly not
countable, and in fact has been shown to be a universalK� quasi-order (seeLouveau-
Rosendal [9]).Consequently,⊆F2,t

P(F2) ismuchmore complex than any countableBorel
quasi-order. So we instead consider the following (countable Borel) quasi-order.

Definition 4.1. If G is a countable group, then�Gt is the countable Borel quasi-
order on P(G) defined by

A �Gt B ⇐⇒ (∃g1, . . . , gn ∈ G) A = g1B ∩ · · · ∩ gnB.
For any group G , let Ω(G) be the set of infinite subsets of G . In order to show

that �F2
t is a universal countable Borel quasi-order, we will reduce �tree2 � Λ(2) to

�F2
t � Ω(F2).
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Every tree on 2 is isomorphic to a tree T on {a, b}, and these can easily be
identified with subsets of F2 = 〈a, b〉. If we take a subset T ⊂ F2 corresponding
to a tree and multiply it on the left by w−1, then the positive words in w−1T are
precisely Tw . Unfortunately, there is no natural way to pick out the positive words
from w−1T simply by intersecting it with other shifts of T , and so we instead will
define a set based on T for which Tw is easy to find simply by intersecting its shifts.
In order to do this, we will look at subsets of F∞, the free group on countably many
generators. We list the generators of F∞ as

{a, b, xa, xb, xaa , xab, xba , xbb, xaaa , . . .}.
Using the two generators a, b we identify T with a subset of the group, to which
we add the sets xwwTw for w ∈ T . Call this new set T ′. Note that for all w ∈ T ,
w�Tw is a subset of T , and so xwwTw ⊆ T ′. Then T ′ ∩ x−1w T ′ = wTw , since wTw
is the set of positive words in x−1w T ′. We can then multiply by wTw by w−1 to find
Tw . However, the map sending T to T ′ is not a Borel reduction. Although we can
now find Tw by intersecting shifts of T ′, Tw maps to (Tw)′, so that is the set we need
to find. The following proof addresses this issue.
Theorem 4.2. �F∞

t � Ω(F∞) is a universal countable Borel quasi-order.
Proof. We will construct the reduction in a few steps. We start with trees
on {a, b}, which we then map to trees on {a, b, c, d} for technical reasons.
Next we define a map f : {a, b, c, d}<N → P(F∞), which will induce a map
F : Tr({a, b, c, d}) → P(F∞). The composition of these two maps will be our
reduction.
If T ∈ Tr({a, b}), define

ta(T ) = {w ∈ T | w�a /∈ T}.
Similarly define tb(T ). These sets are elements of T , which are “along the edge” of
the tree, i.e., some immediate extension of these words is not in the tree. We define
S : Tr({a, b})→ Tr({a, b, c, d}) by

S(T ) = T ∪ (ta(T )�c) ∪ (tb(T )�d ), (4.1)

where X�z = {x�z | x ∈ X}. Here, S “outlines” the tree using the letters c and
d . The following property of S will be important later.
Lemma 4.3. If T,T ′ ∈ Tr({a, b}) and S(T ) ⊆ S(T ′), then T = T ′.
Proof. It is easily seen that S(T ) ⊆ S(T ′) implies T ⊆ T ′, as

S(T ) ∩ {a, b}<N = T and S(T ′) ∩ {a, b}<N = T ′.

Suppose w ∈ {a, b}<N \ T . Then there is some initial segment of w ′ ⊂ w (possibly
the empty string) and some x ∈ {a, b} such that w ′ ∈ tx(T ), i.e., w = w ′�x�t,
where w ′ ∈ T , w ′�x /∈ T , and t ∈ {a, b}<N. Then w ′�y ∈ S(T ) for some
y ∈ {c, d}, and sow ′�y ∈ S(T ′). This is only possible ifw ′�x and all its extensions
are not in T ′, and in particular w /∈ T ′. 

We list the generators of F∞ as

{a, b, c, d, xa, xb, xc, xd , xaa , xab, xac . . .},
i.e., every string in {a, b, c, d}<N (except the empty string) has a unique generator
associated with it in addition to generators corresponding to the letters in our trees.
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The empty string in {a, b, c, d}<N and the identity element inF∞will both bewritten
as e. This should not cause confusion, although both uses will appear close to each
other. Finally, we recall that if A,B ∈ P(F∞), then AB = {ab | a ∈ A, b ∈ B}. We
can now define f : {a, b, c, d}<N → P(F∞) inductively.

f(e) = {e}
f(a) = {a, xaa}
f(b) = {b, xbb}
f(c) = {c, xcc}
f(d ) = {d, xdd}

f(w) =

⎛
⎜⎝ ⋃
w=s�t
s,t �=e

f(s)f(t)

⎞
⎟⎠ ∪ {xww}.

The idea here is that every set f(w) contains elements, which encode the relation
of w to its initial segments. Then define F : Tr({a, b, c, d})→ P(F∞) by

F (T ) =
⋃
w∈T
f(w).

There are a few helpful facts to record at this point. The simplest one is that
w ∈ f(w), which follows by a simple induction. The others we record as lemmas.
Lemma 4.4. If u, v ∈ {a, b, c, d}<N are not equal, the sets f(u) and f(v) are

disjoint.
Proof. Define the function Φ: F∞ → {a, b, c, d}<N as
Φ(g) =the word in {a, b, c, d}<N obtained by removing all other letters

from the freely reduced representation of g.

By a simple inductive argument we see that for all w ∈ {a, b, c, d}<N, Φ is constant
on f(w) and equal to w. Thus the sets are disjoint. 

Lemma 4.5. If a word starting with xw is in f(u), then w ⊂ u.
Proof. This follows from a straightforward induction on the length of u. 

Lemma 4.6. If � ∈ f(u) starts with xww and u = w�t, then � = xww�, with

� ∈ f(t).
Proof. We prove this by an induction on the length of t. If t = e, then � = xww.

Otherwise, there must be some α, 	 such that u = α�	 and � ∈ f(α)f(	). We can
then split � into two words, � = 
�, where 
 starts with xww and 
 ∈ f(α), while
� ∈ f(	). By the Lemma 4.5, w ⊂ α, say α = w�z. Then u = w�z�	 . We write
t = z�	 . As |z| < |t|, by assumption 
 = xww
′ with 
′ ∈ f(z). Then � = xww
′�,
and 
′� ∈ f(z)f(	) ⊆ f(t) by definition. 

We define the map G : Tr({a, b})→ P(F∞) by

G(T ) = F (S(T )),

where S is the map defined in (4.1).
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Lemma 4.7. For all w ∈ {a, b}<N and all nonempty T ∈ Tr({a, b, c, d}),
G(T ) ∩ x−1w G(T ) = wG(Tw)

and hence
w−1G(T ) ∩ (xww)−1G(T ) = G(Tw).

Proof. First, we will show that G(T ) ∩ x−1w G(T ) ⊆ wG(Tw). Every element of
G(T ) is a positive word in the generators of F∞, so any word not starting with xw
will be freely reduced in x−1w G(T ) and so begin with x

−1
w , and thus not be in G(T ).

So we need only focus on the words that start with xw .
Suppose g ∈ f(u) ⊆ G(T ) and g = xwα for some α ∈ F∞. By our inductive
definition, this implies g = xww	 for some 	 ∈ F∞. By Lemma 4.5, we must
have u = w�t for some t ∈ {a, b, c, d}<N. By Lemma 4.6, 	 ∈ f(t). Also, w	
is in f(w)f(t), so w	 ∈ G(T ) ∩ x−1w G(T ). In addition, 	 ∈ G(Tw), since t ∈
(S(T ))w = S(Tw) (since w ∈ {a, b}<N) and so f(t) ⊆ G(Tw). Thus G(T ) ∩
x−1w G(T ) ⊆ wG(Tw).
If g ∈ G(Tw), then there is some u ∈ S(Tw) such that g ∈ f(u). Then

xwwg,wg ∈ f(w)f(u) ⊆ G(T ),
so wg ∈ G(T ) ∩ x−1w G(T ). Thus G(T ) ∩ x−1w G(T ) ⊇ wG(Tw). 

Lemma 4.7 shows that forT,S ∈ Λ(2), if T �tree2 S, thenG(T ) �F∞

t G(S). Next
we check the other direction.
Suppose that G(T ) = g1G(T ′) ∩ . . . ∩ gnG(T ′). We know that e ∈ G(T ) (since
T is nonempty), whichmeans that each gi must be an inverse of an element inG(T ′),
say g−1i = hi ∈ G(T ′). Fix some 1 ≤ i ≤ n and suppose that Φ(hi) = w, i.e., hi ∈
f(w). If u ∈ S(T ), then xuu ∈ G(T ). This implies hixuu ∈ G(T ′)∩f(w�u), and,
in particular, the intersection is nonempty, sow�u ∈ S(T ′). Thus S(T ) ⊆ S(T ′)w .
If w /∈ {a, b}<N, then S(T ′)w is either empty or a single element, but S(T ) is
infinite. Thusw ∈ {a, b}<N, and soS(T ′)w = S(T ′

w). It follows thatS(T ) ⊆ S(T ′
w),

and so by Lemma 4.3, T = T ′
w . Thus G is a Borel reduction. This completes the

proof of Theorem 4.2. 

Corollary 4.8. �F2

t � Ω(F2) is a universal countable Borel quasi-order, and so�F2
t

is a universal countable Borel quasi-order.

Proof. Let φ : F∞ → F2 be an embedding. Then φ induces a map

Φ: Ω(F∞)→ Ω(F2)
A �→ {φ(a) | a ∈ A}.

If A,B ∈ Ω(F∞) and there exist g1, . . . , gn ∈ F∞ such that

A = g1B ∩ · · · ∩ gnB,
then Φ(A) = φ(g1)Φ(B) ∩ · · · ∩ φ(gn)Φ(B).
Conversely, suppose that

Φ(A) = h1Φ(B) ∩ · · · ∩ hnΦ(B). (*)

If some hi is not in the image of φ, then hiΦ(B) is disjoint from any set in the image
of Φ, and so the right hand side cannot equal the left hand side unless Φ(A) = ∅,
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which is impossible. This implies that every hi in (∗) is in the image of φ. It follows
that A = φ−1(h1)B ∩ · · · ∩ φ−1(hn)B. 

Remark 4.9. The above proof shows that ifG is any countable group containing

F2 as a subgroup, then �Gt � Ω(G) is a universal countable Borel quasi-order.
LetEc(G) denote the conjugacy equivalence relation on the standardBorel space

Sg(G) of subgroups of G , i.e., for A,B ∈ Sg(G),
A Ec(G) B ⇐⇒ (∃g ∈ G)A = gBg−1.

In [7], Gao used a simple coding technique to prove the following result.

Theorem 4.10 (Gao). IfG = K ∗H , whereK has a nonabelian free subgroup and
H is nontrivial cyclic, then Ec(G) is a universal countable Borel equivalence relation.
In light of the relationship between E∞ and �F2

t , it is natural to consider the
following countable Borel quasi-order:

Definition 4.11. Let G be a countable group. Then �Gc is the countable Borel
quasi-order on Sg(G) defined by

A �Gc B ⇐⇒ (∃g1, . . . , gn ∈ G) A = g1Bg−11 ∩ · · · ∩ gnBg−1n .
Let Γ(G) be the standard Borel space of infinite subgroups of G . Then the proof

of the following result is a straightforward adaptation of Gao’s argument in [7].

Theorem 4.12. Suppose that G is a countable group containing a nonabelian free
subgroup and thatH is a nontrivial cyclic group. Then�G∗Hc � Γ(G ∗H ) is a universal
countable Borel quasi-order, and so �G∗Hc is a universal countable Borel quasi-order.
Proof. Let h ∈ H be a generator ofH .Wedefine themapK : Ω(G)→ Sg(G∗H )

by
K(A) = 〈xhx−1 : x ∈ A〉.

This map is Borel, so we need only check that it is a reduction from �Gt � Ω(G) to
�G∗Hc � Γ(G ∗H ). We will make use of the observation thatK(A) = ∗

g∈A
gHg−1.

IfA,B ∈ P(G), then clearlyK(A∩B) ⊆ K(A)∩K(B). Wewill show thatK(A)∩
K(B) ⊆ K(A∩B), soK(A∩B) = K(A)∩K(B). Suppose that g ∈ K(A) ∩K(B),
and so can be written both as g = x1hx−11 . . . xnhx

−1
n with x1, . . . , xn ∈ A and

as g = y1hy−11 . . . ymhy
−1
m with y1, . . . , ym ∈ B. Then clearly x1 = y1, and so

multiplying g on the left by y1h−1y−11 = x1h
−1x−11 we find that

x2hx
−1
2 . . . xnhx

−1
n = y2hy

−1
2 . . . ymhy

−1
m .

Thus x2 = y2, and repeating this argument we find that xi = yi for
1 ≤ i ≤ min{n,m}. If for example m < n, then we would have the equation

xm+1hx
−1
m+1 . . . xnhx

−1
n = e,

which is impossible. Similarly it cannot be that n < m. Thus m = n, and it follows
that g ∈ K(A ∩ B).
Also note that if g ∈ G , then K(gA) = gK(A)g−1. Thus

K(g1A ∩ · · · ∩ gnA) = K(g1A) ∩ · · · ∩K(gnA)
= g1K(A)g−11 ∩ · · · ∩ gnK(A)g−1n .
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Suppose thatA,B ∈ P(G) and thatA �Gt B, i.e., there exist g1, . . . , gn ∈ G such
that A = g1B ∩ · · · ∩ gnB. Then

K(A) = K(g1B ∩ · · · ∩ gnB) = g1K(B)g−11 ∩ · · · ∩ gnK(B)g−1n .
Thus A �Gt B implies thatK(A) �G∗Hc K(B).
Next, suppose that A,B ∈ P(G) and that K(A) �G∗Hc K(B), so there exist
�1, . . . , �n ∈ G ∗ H such that K(A) = �1K(B)�−11 ∩ · · · ∩ �nK(B)�−1n . For each
x ∈ A and 1 ≤ i ≤ n, let wx,i ∈ K(B) be the element such that xhx−1 = �iwx,i�−1i .
Clearly for each i = 1, . . . , n the map x �→ wx,i is an injection.
Note that xhx−1 is a reduced word in G ∗H . For 1 ≤ i ≤ n, we may assume that
�i is a reduced word in G ∗H , and that wx,i ∈ K(B) can be written as

wx,i = z1hm1z−11 . . . zkh
mk z−1k (zj ∈ B,mk ∈ Z).

We can rewrite this word as

wx,i = u1hm1u2hm2 . . . uthmt ut+1,

wheremj ∈ Z\{0}, uj ∈ G and the product u1u2 . . . uj = zj ∈ B for 1 ≤ j ≤ t+1.
Furthermore, wx,i is never the trivial word.
The equation xhx−1 = �iwx,i�−1i implies that starting with the right-hand side,
there is a cancellation procedure which eventually leads to the left-hand side. In any
such procedure, there must be some occurrence of h in the right-hand side, which
is never cancelled. We call this the preserved occurrence of h. Let Δi ⊆ A be the
set of elements x ∈ A for which the preserved occurrence of h in some cancellation
procedure is in the original expression for wx,i .
We claim thatA \Δi is finite for each 1 ≤ i ≤ n. If x ∈ A \Δi , then the preserved
occurrence of h is in either �i or �−1i . Suppose that x1, x2 ∈ A \ Δi are both words
such that the preserved occurrence of h is in �i . Then the preserved occurrence of h
must be the first h in �i , since �i is assumed to be reduced. Thus �i = khu for some
k ∈ G, u ∈ G ∗H , and this gives us the two equations

x1hx
−1
1 = khuwx1,i �

−1
i ,

x2hx
−1
2 = khuwx2,i �

−1
i ,

which implies that x1 = k = x2. Thus there is at most one element in A \ Δi such
that the preserved occurrence of h is in �i . A similar argument shows that there is
at most one element in A \ Δi such that the preserved occurrence of h is in �−1i . So
|A \ Δi | ≤ 2 for 1 ≤ i ≤ n.
As A is infinite, this implies that Δ = ∩1≤i≤nΔi is infinite. If we fix some x0 ∈ Δ,
then for each i = 1, . . . , n, we can write

x0hx
−1
0 = �iwx0,i �

−1
i

= �iui(zihz−1i )vi�
−1
i ,

with zi ∈ B, ui , vi ∈ K(B), and the displayed h is the preserved occurrence in
some cancellation procedure. This implies that x0 = �iuizi , and x−10 = z−1i vi �

−1
i .
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Let 	i = x0z−1i ∈ G . Then �i = 	iu−1i . Thus
K(A) = 	1u−11 K(B)u1	

−1
1 ∩ · · · ∩ 	nu−1n K(B)un	−1n

= 	1K(B)	−11 ∩ · · · ∩ 	nK(B)	−1n
= K(	1B ∩ · · · ∩ 	nB)

and so A = 	1B ∩ · · · ∩ 	nB, with each 	i ∈ G . Thus A �Gt B, as desired. 

The following result is an immediate consequence of Theorem 4.12.

Corollary 4.13. If n ≥ 3, then �Fn
c � Γ(Fn) is a universal countable Borel quasi-

order.

Finally, the proof of the following result is a straightforward adaptation of the
proof of Proposition 1 of Thomas-Velickovic [12].

Corollary 4.14. �F2
c � Γ(F2) is a universal countable Borel quasi-order.

Proof. Recall that a subgroup H of a group G is said to be malnormal if
gHg−1 ∩ H = {1} for all g ∈ G \ H , and that F3 can be embedded as a mal-
normal subgroup of F2. Arguing as in Corollary 4.8, we see this embedding induces
a Borel reduction from �F3

c � Γ(F3) to �F2
c � Γ(F2). 


§5. Embeddability of countable groups. Our ultimate goal is to show that embed-
dability of finitely generated groups is a universal countable Borel quasi-order. The
techniques we will use in the proof are easier to understand in the more general
setting of arbitrary countable groups. With this in mind, we first turn our attention
to the embeddability relation for countable groups, �Gp. By removing the restric-
tion that the groups we work with should be finitely generated, we are allowed more
freedom with regards to how we construct groups for our Borel reduction. At the
same time, removing this restriction means that �Gp is an analytic quasi-order,
rather than a countable Borel quasi-order. We will prove the following result.

Theorem 5.1. �Gp is a universal analytic quasi-order.
Corollary 5.2. The biembeddability relation for countable groups ≡Gp is a

universal analytic equivalence relation.

This is in contrast with the isomorphism relation for countable groups∼=Gp, which
is known to be universal among all analytic equivalence relations induced by a Borel
action of S∞. (This is due to Mekler in [11].) However, such equivalence relations
are known not to be universal among all analytic equivalence relations.
Before we prove Theorem 5.1, we need to make a few definitions. We will write

C for the set of countable graphs whose vertex set is N. By identifying each graph
with its edge relation, we see that C is a closed subset of 2N2 and so is a Polish space.
Definition 5.3. If S,T ∈ C, then we write S �C T if S embeds into T , i.e., there

exists f : N → N such that for all m, n ∈ N, (m, n) ∈ S ⇔ (f(m), f(n)) ∈ T .
In [9], it was shown that�C is a universal analytic quasi-order. Thus to show that

�Gp is universal, we only need to show that �C Borel reduces to it. To do this, we
will use small cancellation techniques to create groups that encode the edge relations
of graphs. We recall the following definitions and theorems from small cancellation
theory. (See Chapter V of [10] for a fuller treatment of small cancellation theory.)
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Definition 5.4. Let R be a subset of a free group F . We sayR is symmetrized if
every element ofR is cyclically reduced and whenever r ∈ R, all cyclic permutations
of r and r−1 are in R.

Theorem 5.5 (Theorem V.4.4 in [10]). Let F be a free group. Let R be a sym-
metrized subset of F andN its normal closure. If R satisfies C ′(�) for some � ≤ 1/6,
then every nontrivial element w ∈ N contains a subword s of some r ∈ R with
|s | > (1− 3�)|r| ≥ 1

2 |r|.
Theorem 5.6 (Theorem V.10.1 in [10]). Suppose thatG = 〈x1, x2, . . . | R〉 is such
thatR is a symmetrized subset of 〈x1, x2, . . .〉 satisfying theC ′(1/6) small cancellation
condition. If w represents an element of finite order in G , then there is some r ∈ R
of the form r = vn such that w is conjugate to a power of v.
Note that this implies that if furthermore w is cyclically reduced, then w is a
cyclic permutation of some power of v with vn ∈ R. We will often refer to this
consequence of Theorem 5.6.
Now we can proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. Let T ∈ C. Although the vertices of T are in fact ele-
ments of N, to avoid confusion we will call the vertices of T v0, v1, v2, . . .. Then
GT is defined to be the group with generators v0, v1, . . . and relators

• v7i for all i ∈ N

• (vivj)11 if (vi , vj) ∈ T
• (vivj)13 if (vi , vj) /∈ T .
Let RT be the symmetrization of the set of defining relations forGT . Note that if
T is any graph, thenRT satisfies theC ′(1/6) condition. Now suppose that S,T ∈ C
are such that S embeds into T , say via the map f. Then f extends to a group
homomorphism from GS to GT , as it sends the relations of GS to relations of GT .
To see that f is an embedding, let α = vk1i1 v

k2
i2
. . . vknin be a word in the generators

of GS , so that
f(α) = f(vi1 )

k1f(vi2)
k2 . . . f(vin)

kn

and suppose that f(α) = 1 in GT . Then by the C ′(1/6) condition, f(α) must
contain more than 1/2 of a relation inRT . Note that any such relation must involve
only generators in the image of the graph embeddingf : S → T . Suppose thatf(α)
contains more than half of a relation of the form f(vi)±7. Since f is one-to-one,
this cannot happen unless α already contained more than half of v±7i .
Suppose that f(α) contains more than 1/2 of the relation (f(vi)f(vj))k , where
the value of k depends on whether or not (f(vi), f(vj)) ∈ T . Since

(vi , vj) ∈ S ⇔ (f(vi), f(vj)) ∈ T,
it must be the case that (vivj)k ∈ RS , and α already contained more than 1/2 of
(vivj)k . Thus f(α) does not contain more than 1/2 of a relation in RT unless α
contains more than 1/2 of the corresponding relation in RS . Since every nontrivial
element in GS may be written as a word which does not contain more than 1/2 of a
relation in RS , every nontrivial element in GS maps to a nontrivial element in GT .
Thus if S embeds into T , then GS embeds into GT .
Conversely, suppose that � : GS → GT is an embedding. By Theorem 5.6, after
adjusting the embedding � by an inner automorphism of GT if necessary, we may
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assume �(v0) = tk0 for some k such that |k| < 7, where t0 is some vertex of T , since
�(v0) must have order 7. Let vj �= v0 be some vertex of S. Again by Theorem 5.6,
we find that �(vj) = utlju

−1 for some l such that |l | < 7, where u ∈ GT and tj is
some vertex of T . Unfortunately we cannot eliminate u by an inner automorphism
without possibly changing the value of �(v0).Wemay assume thatu is freely reduced
and does not start with any power of t0. To see this, note that if u began with tm0 ,
then we would be able to follow � by the inner automorphism corresponding to tm0
without changing the value of �(v0). Thus �(v0vj) = tk0 ut

l
ju

−1 is cyclically reduced.
Since v0vj is a torsion element, so is �(v0vj). By Theorem 5.6, �(v0vj) must be a
cyclic permutation of some power of (vmvn), m, n ∈ N. It immediately follows that
u = 1, since no such words contain a mix of positive and negative powers. Thus
�(v0vj) = tk0 t

l
j .

From this we find that t0 �= tj , since otherwise �(v0vj) would have order 1 or 7,
which is impossible since � is an embedding and v0vj has order 11 or 13. Again, by
Theorem 5.6, we find that tk0 t

l
j has finite order only if k = l = ±1. As the orders of

v0vj and �(v0vj) = t±10 t
±1
j are equal, we see that

(v0, vj) ∈ S ⇐⇒ (t0, tj) ∈ T.
Let vm �= vn be arbitrary vertices in S. Repeating the above argument with v0

and vm, as well as v0 and vn, we find there are inner automorphisms �1, �2 of GT ,
corresponding to conjugating by suitable powers of t0, such that �1(�(vm)) = t±1m
and �2(�(vn)) = t±1n , where tm �= t0 and tn �= t0. A priori it may be the case that,
for example, �1(�(vn)) = tk0 t

±1
n t

−k
0 , with k �= 0. But then

�1(�(vmvn)) = t±1m t
k
0 t

±1
n t

−k
0

has infinite order, which is impossible. Thus�1 = �2, and so�1(�(vmvn)) = t±1m t
±1
n ,

and the above argument shows tm �= tn and that
(vm, vn) ∈ S ⇐⇒ (tm, tn) ∈ T.

As vm and vn were arbitrary, the function g : S → T defined by g(vi) = ti for all
i ∈ N is an embedding. Thus �G ≤B �Gp, which establishes the result. 


§6. Embeddability of finitely generated groups. We now turn our attention to the
embeddability relation for finitely generated groups.

Definition 6.1. Let G denote the Polish space of finitely generated groups.
(See [2].) If A, B ∈ G, then we write A �em B if and only if there is a group
embedding from A into B. We write ≡em for the associated equivalence relation.
It can be seen that�em is a countable Borel quasi-order, as any finitely generated

group contains only countablymany finitely generated subgroups, and isomorphism
classes in G are countable. We will show that in fact it is universal by reducing �tree2
to�em. Given a tree T ∈ Tr(2), our general strategy is to define a finitely generated
group GT with subgroups corresponding to the trees Tw for w ∈ 2<N. We will start
with two generators and then add relations to this group according to the nodes
present in T . As in the section 5, these additional relations will allow us to control
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the embeddings that exist between two of these groups and thus ensure thatT �→ GT
is a Borel reduction. Thus we will have shown:

Theorem 6.2. �em is a universal countable Borel quasi-order.
In order to define the relations of GT , we first define the following two
homomorphisms:

f0 : F2 → F2 f1 : F2 → F2

x �→ x5y x �→ x2yxyx
y �→ y5x y �→ y2xyxy.

We also define fe to be the identity map. For any element w ∈ 2<N, we define
fw to be the corresponding composition of f0 and f1, e.g., f01 = f0 ◦ f1 and
f110 = f1 ◦f1 ◦f0. In other words, if we can write w as u�v, then fw = fu ◦ fv .
The associativity of function composition ensures that this is well-defined.
One basic property of these maps is that for all u ∈ 2<N, the first letter of fu(a)
is different for each a ∈ {x±1, y±1}, and the same is true for the last letter. This
can be established through an easy induction on the length of u. If u = e, then
this is immediate, and for u = 0 or u = 1, we quickly check that it holds. Now
suppose that this is true for u. Then for i ∈ {0, 1}, consider fu�i(a) = fu(fi(a)).
We have already seen that the first and last letters of fi(a) are different for each a.
By assumption, fu takes the first and last letters of fi(a) to words with first and
last letters different from those of fi(b) for any b �= a with b ∈ {x±1, y±1}, and
this completes the induction.
With this established, a similar induction shows that everyfu takes freely reduced
words to freely reduced words. In fact, every fu takes cyclically reduced words to
cyclically reduced words, since for a, b ∈ {x±1, y±1}, the first letter of fu(a) is the
inverse of the last letter of fu(b) only if b = a−1, by the uniqueness of the last
letters.
If α ∈ F2, then for any w ∈ 2<N, we can think of fw(α) as a word on

{fw(a) | a ∈ {x±1, y±1}}.
We refer to these special subwords as fw-blocks. See figure 2.
Given T ∈ Tr(2), we define
GT = 〈x, y | {(fw(x))59, (fw(y))61 | w ∈ T}, {(fw(x))67, (fw(y))71 | w /∈ T}〉.
The numbers in the exponents were chosen to be relatively prime and so that the
relations satisfy small cancellation conditions, and they have no significance beyond
that. We will eventually show that the map T �→ GT is a Borel reduction from �tree2
to �em. To see that this is the case, we proceed by a series of lemmas.

x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)︸ ︷︷ ︸

3 times

Figure 2. f00(x)3, with its f00-blocks shown.
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Lemma 6.3. Let u ∈ 2<N, a, b, c ∈ {x±1, y±1}. Suppose fu(a) is a subword of
fu(bc) = fu(b)fu(c). Then fu(a) does not contain letters from both fu(b) and
fu(c). In other words, fu(a) must equal fu(b) or fu(c). It follows that if α, 	 ∈ F2
are nontrivial and fu(α) is a subword of fu(	), then α is a subword of 	 .

Proof. We prove this inductively. It is easily checked to be true in the case that
u ∈ {0, 1}. Now suppose that it is true for all u with |u| < n. Then if u′ = u�i
with |u′| = n and i ∈ {0, 1} we may write fu′(a) = fu(fi(a)) and fu′(bc) =
fu(fi(bc)). By assumption, the fu-blocks in fu′(a) line up with the fu-blocks in
fu′(bc), and since fu′(a) is a subword offu′(bc), it follows thatfi(a) is a subword
offi(bc). This implies thatfi(a) equalsfi(b) orfi(c). Thus we findfu′(a) equals
fu′(b) or fu′(c). 

Lemma 6.4. Let w ∈ 2<N, α, 	 ∈ F2. If fw(α) is a cyclic permutation of fw(	),

then α is a cyclic permutation of 	 .

Proof. We may write α = a1 . . . an and 	 = b1 . . . bn with ai , bj ∈ {x±1, y±1},
1 ≤ i, j ≤ n. Thus fw(α) = fw(a1) . . . fw(an) and fw(	) = fw(b1) . . . fw(bn).
As fw(α) is a cyclic permutation of fw(	), there is some 1 ≤ k ≤ n such that if we
write α = α1akα2, then

fw(b1) . . . fw(bn) = gfw(α2)fw(α1)h,

where hg = fw(ak). By Lemma 6.3, we must have g = e or h = e. Suppose
g = e. (The h = e case is similar.) Then fw(	) = fw(α2α1ak), and so again by
Lemma 6.3, 	 = α2α1ak , which is a cyclic permutation of α. 

Lemma 6.5. Let T ∈ Tr(2). If RT denotes the symmetrization of the defining

relations for GT , then RT satisfies the C ′(1/8) small cancellation condition.

Proof. Weonly need to check the positive relations, since they satisfy theC ′(1/8)
condition iff their inverses do, and there is no overlap between a positive word and
a negative word.
We begin with an easy case. Suppose that w ∈ 2<N and consider fw(x)nx and

fw(y)ny , where nx and ny denote the appropriate exponent, which depends on
whether w ∈ T . As fw(x) and fw(y) do not start with the same letter, they do not
have a common initial segment. We must also consider common initial segments of
cyclic permutations of these two words, since we had to add the cyclic permutations
of fw(x)nx and fw(y)ny to RT to make sure that it was symmetrized.
A picture of sorts helps in the analysis. Before any sort of cyclic permutation,

the two words can naturally be seen as being split into fw-blocks. When a word is
cyclically permuted a bit, the blocks at the beginning and end are truncated, as in
figure 3. Now we cannot determine which word is a power of fw(x) and which is a
power of fw(y) just by looking at the first letter of the words as before.

yx5yx5yx5yy5x x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)

. . . x5yx5yx5yx5yx5yy5x︸ ︷︷ ︸
f00(x)︸ ︷︷ ︸

nx−1 times

x5yx5

Figure 3. f00(x)nx after being cyclically permuted.
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Let r1 be a cyclic permutation of fw(x)nx and r2 be a cyclic permutation of
fw(y)ny and let M = min{|r1|, |r2|}. Suppose that r1 = st1 and r2 = st2 with s
maximal. Permuting both r1 and r2 leftwards by< |fw(x)| letters, we get r∗1 and r∗2 ,
with r∗1 = fw(x)

nx . If the fw-blocks in r∗2 also line up correctly, i.e., r
∗
2 = fw(y)

ny ,
then we know that r∗1 and r

∗
2 disagree at their first letter. Thus |s | < |fw(x)| < 1

8M
if r1 �= r2.
Suppose that r∗2 is not in alignment, i.e., it is not fw(y)

ny . Then for r∗1 and r
∗
2 to

agree for ≥ |fw(x)| letters, fw(x) must be a subword of fw(y)2 containing letters
from each copy of fw(y). But this is not possible, by Lemma 6.3. Thus r∗1 and r

∗
2

agree for< |fw(x)| letters if they are out of alignment and so |s | < 2|fw(x)| < 1
8M .

In fact, the same reasoning shows that two different cyclic permutations of fw(x)nx

or of fw(y)ny also overlap for less than 18M letters.
Now we consider the case when w, v ∈ T are distinct and a, b ∈ {x, y}. Let r1
be a cyclic permutation of (fw(a))na and r2 be a cyclic permutation of (fv(b))nb ,
and let M = min{|r1|, |r2|}. If v = e and w �= e, then we observe that no cyclic
permutation of (fw(a))na agrees with (fe(b))nb = bnb for more than six letters,
which is less than 1/8 of the length of either word. If w and v begin with different
symbols, then one of r1 and r2 will be a cyclic permutation of a word in x5y and
y5x, while the other will be a cyclic permutation of a word in x2yxyx and y2xyxy.
Then the biggest possible common initial segment between r1 and r2 is xyx3 or
yxy3, which is less than 1/8 of the length of either word.
So we may assume that w and v start with the same symbols. Suppose that
w = u�w ′ and v = u�v′, with u maximal. Taking our cue from the notation for
the greatest common divisor, we will write this as u = (w, v). This should not cause
confusion, as there are no ordered pairs (or greatest common divisors!) in what
follows. Then up to some truncated bits at the beginning and end, r1 and r2 are both
words in fu(x) andfu(y), and so we are in a situation very similar to our first case,
except that now r1 and r2 contain a mix of fu(x)- and fu(y)-blocks, rather than
just being conjugates of a power of one or the other. See figure 4 for a picture.
Suppose that r1 and r2 are both made up entirely of fu-blocks, i.e., there are no
truncated fu-blocks at their beginning and end. Because fu(x) and fu(y) start
with different letters, we see that if r1 and r2 agree on the beginning of a block,
then they agree for the entire block. So the largest common initial segment s which
r1 and r2 share is made up of entire fu-blocks. We have r1 = fu(α), r2 = fu(	),
and s = fu(�) with α, 	, � words in x and y, and so by Lemma 6.3, we find
that � is a common initial segment of α and 	 . Furthermore, r1 = fu(α) is a
cyclic permutation of fw(ana ) = fu(fw′(ana )), and so by Lemma 6.4, α is a cyclic
permutation of fw′(ana ). Similarly, 	 is a cyclic permutation of fv′(bnb ).
So � is a common initial segment of a cyclic permutation of fw′(ana ) and a cyclic
permutation of fv′(bnb ). This brings us back to the earlier cases. If w ′ and v′ are

y x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

y5x︸︷︷︸
f0(y)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

. . . x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

x5y︸︷︷︸
f0(x)

y5x︸︷︷︸
f0(y)

x5y︸︷︷︸
f0(x)

x5

Figure 4. f00(x)nx after being cyclically permuted, with f0(x)-
and f0(y)-blocks shown.
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both nontrivial words, then they start with different symbols, which implies that
|�| ≤ 5, and so s is made up of at most 5 fu-blocks. On the other hand, r1 and r2
are made up of at least 6 ·min{|fw′(ana )|, |fv′(bnb )|} fu-blocks, and so |s | < 1

8M .
If w ′ = e and v′ �= e or vice versa, then |�| ≤ 6 and we still find that |s | < 1

8M . If
w ′ = e and v′ = e, then � is empty unless a = b, which implies that r1 = r2.
This leaves only the out of alignment cases to deal with. As before, we may

permute r1 and r2 leftwards by < |fu(x)| letters to get r∗1 and r∗2 , with r∗1 a product
of fu-blocks. If r∗2 is not a product of fu-blocks, then Lemma 6.3 tells us that r

∗
1

and r∗2 agree for < |fu(x)| letters, and so r1 and r2 agree for < 2|fu(x)| letters,
which is < 1/8 of the length of each word. If r∗2 is a product of fu-blocks, then we
are in the previous case, and we have seen that either r∗1 = r

∗
2 or the corresponding

common initial segment between them consists of at most 6 fu-blocks. This implies
that |s | < 7|fu(a)| < 1

8M . We have finally exhausted all of the cases and have
shown that RT satisfies the C ′(1/8) condition, as desired. 

Lemma 6.6. If T,T ′ ∈ Tr(2) and there exists w ∈ 2<N such that T = T ′

w , then
GT ↪→ GT ′ .

Proof. This is obvious if w = e, and so we may assume that w is nontrivial. It is
easy to see that fw , viewed as a map from GT to GT ′ , is a homomorphism, since it
will take defining relations in GT to defining relations in GT ′ . In more detail,

fv(x)59, fv(y)61 ∈ RT ⇐⇒ v ∈ T
⇐⇒ w�v ∈ T ′

⇐⇒ fw�v(x)59 = fw(fv(x)59),

fw�v(y)61 = fw(fv(y)61) ∈ RT ′

and similar equivalences hold for fv(x)67 and fv(y)71. It remains to show that fw
is an embedding.
We still need to show that nontrivial elements of GT do not map to the identity

in GT ′ . As in section 5, we will show that if α ∈ F2 is such that fw(α) contains
more than 1/2 of a relation in RT ′ , then α contains more than 1/2 of a relation in
RT , which easily implies the result.
Suppose thatα ∈ F2 and thatfw(α) = 1 inGT ′ . Thenfw(α) contains more than

half of a relation r ∈ RT ′ . We know that r is a cyclic permutation of some fv(ana ),
where v ∈ 2<N, a ∈ {x±1, y±1}, and na ∈ {59, 61, 67, 71}. Let u = (w, v), so that
w = u�w ′ and v = u�v′. Thenfw(α) = fu(fw′(α)), and r is a cyclic permutation
of fu(fv′(ana )). By assumption, the subword of r that both words contain must
be big enough to contain an entire fu-block. Thus Lemma 6.3 tells us that the
fu-blocks of r and fw(α) must line up. The fu-blocks are uniquely identified by
their first or last letters, so once fw(α) and r agree for part of an fu-block, they
agree on the whole thing, unless r begins and ends with a truncated fu-block. In
this case, cyclically permuting r until it is made up of fu-blocks will “complete”
the fu-block at one end of r. This new word is also a relation which agrees with
fw(α) for at least as long as r did, since either only one end of r was in fw(α) and
cyclically permuting increases the length of the word the two agree on, or r was a
subword of fw(α) and this cyclic permutation is also a subword of fw(α).
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Thus we may assume that r = fu(�) for some � ∈ F2, and that r and fw(α)
share a subword of the form fu(�), where � ∈ F2. By Lemma 6.4, we know that �
is a cyclic permutation of fv′(ana ). Then � is a subword of a cyclic permutation of
fv′(ana ) and a subword of fw′(α). If w ′ and v′ are both nontrivial, then they begin
with different symbols, and so |�| ≤ 5. But then

|fu(�)|
|fv(ana )| =

|�|
|fv′(ana )|

≤ 5
|fv′(ana )|

< 1/2,

which is a contradiction. If v′ = e but w ′ �= e, then virtually the same inequalities
hold, since f′

w(α) does not contain any letter to a power greater than 6, and again
we get a contradiction. Thus w ′ = e, meaning w = u, and so α contains> 1/2 of a
cyclic permutation of fv′(ana ). Further, since w�v′ ∈ T ′ ⇔ v′ ∈ T , it follows that
fv′(ana ) ∈ RT . Thus if fw(α) = 1 in GT ′ , then α contains > 1/2 of a word in RT ,
as desired. 

The proof of the converse of Lemma 6.6will depend on the following two lemmas.

Lemma 6.7. Suppose α, 	 ∈ F2 are cyclically reduced, and w, v ∈ 2<N. If r1 is
a cyclic permutation of fw(α) and r2 is both a cyclic permutation of fv(	) and a
subword of r1, then v ⊂ w or w ⊂ v.
Moreover, if w = v�w ′ then a cyclic permutation of fw′(α) contains a cyclic
permutation of 	 , and if v = w�v′, then a cyclic permutation of α contains a cyclic
permutation of fv′(	).

Proof. The result is trivial if w = e or v = e, so we may assume that w and v
are nontrivial. Let u = (w, v), with w = u�w ′ and v = u�v′. If u = e, then w and
v begin with different symbols, which is impossible, since |r1|, |r2| > 5, the length
of the longest possible agreement between r1 and r2. So u is nontrivial, and r1 is a
cyclic permutation of fu(fw′(α)), while r2 is a cyclic permutation of fu(fv′(	)).
The fu-blocks of each word must line up, by Lemma 6.3. Further, since r2 is a
subword of r1, any truncated bits of fu-blocks at the ends of r2 are duplicated in r1.
So we can permute r1 and r2 the same amount to get r∗1 = fu(�) and r

∗
2 = fu(�),

words composed entirely of fu-blocks, with r∗2 contained in r
∗
1 . By Lemma 6.4, we

know � is a cyclic permutation of fw′(α) and � is a cyclic permutation of fv′(	),
and that � is a subword of �.
Ifw ′ and v′ are nontrivial, then they start with different symbols, and as abovewe
reach a contradiction. Thus either w ′ = e, and so w ⊂ v and a cyclic permutation
of α contains a cyclic permutation of fv′(	), or v′ = e, so v ⊂ w and a cyclic
permutation of fw′(α) contains a cyclic permutation of 	 . 

Lemma 6.8. Suppose that t, u, v ∈ 2<N, and some cyclic permutation of ft(xk) is
a product of a cyclic permutation of fu(xl ) and a cyclic permutation of fv(ym), with
k, l,m ∈ Z \ {0} all having the same sign. Then u = v, t = u�0, k = m = ±1,
l = 5k, and ft(xk) = fu�0(x±1) is either

fu(x5)fu(y)
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or
fu(y−1)fu(x−5).

Proof. By Lemma 6.7, either t ⊂ u or u ⊂ t. If t ⊂ u and u = t�u′, then
by the previous lemma, we find that a cyclic permutation of xk contains a cyclic
permutation of fu′(xl ). This is impossible unless u′ = e. So we may assume that
u ⊂ t and t = u�t′. Similarly we find that v ⊂ t and t = v�t′′. It follows that
u ⊂ v or v ⊂ u.
Suppose that u ⊂ v and v = u�v′. We know that the fu-blocks in the cyclic

permutation offu(xl ) and the cyclic permutation offu(fv′(ym)) must line up with
those in the cyclic permutation offt(xk). This means, in particular, that a truncated
fu-block at the end of the cyclic permutation of fu(xl ) must be completed by a
truncated fu-block at the beginning of the cyclic permutation of fu(fv′(ym)),
and vice versa. So we can assume that the cyclic permutations we are considering
are made up of complete fu-blocks. Then by Lemma 6.3 we obtain that a cyclic
permutation of ft′(xk) is a product of xl and a cyclic permutation of fv′(ym).
Now,ft′(xk) is composed offv′-blocks, which must line up with those in the cyclic
permutation of fv′(ym). So it must be the case that xl is a cyclic permutation of
fv′ -blocks. But this can only happen if v′ = e, meaning u = v. Similar reasoning
applies if v ⊂ u. Thus u = v.
It is not possible for a truncated fu(x)-block to be completed by a truncated

fu(y)-block, or vice versa, and so we must have that the cyclic permutation of
ft(xk) we started with is either fu(xl )fu(ym) or fu(ym)fu(xl ).
It follows that xlym is a cyclic permutation of ft′(xk). This can only happen if

t′ = 0 and k, l,m are as in the statement of the lemma, since if t′ = e, then xk

contains no occurrences of y, and if t′ �= 0 is nontrivial, then ft′(xk) must contain
at least two distinct blocks of x’s and y’s. 

We now take up the converse of Lemma 6.6, which will complete the proof of

Theorem 6.2.

Lemma 6.9. If T,T ′ ∈ Tr(2) and GT ↪→ GT ′ , then ∃w ∈ 2<N such that T = T ′
w .

Proof. Suppose that � : GT → GT ′ is a monomorphism. Our main goal is to
prove that � must actually be fw for some w ∈ 2<N, up to an inner automorphism
ofGT ′ . Once we know this, it is easy to recover the relations in each group, and thus
to show that T = T ′

w .
Since x = fe(x), x has some finite order nx in GT . Then �(x) has order nx ,

and so by Theorem 5.6, �(x) must be conjugate to a power of some fw(x), where
w ∈ T ′ ⇔ e ∈ T . If we follow � by an inner automorphism ofGT ′ , we may assume
that �(x) = (fw(x))
 for some nonzero integer 
.
Similarly, �(y) is conjugate to a power of some fv(y) with v ∈ T ′ ⇔ e ∈ T .

We find that �(y) = u(fv(y))� u−1. We can assume that u does not contain more
than half of an element of RT ′ . We may also follow � by the inner automorphism
corresponding to fw(x) as necessary to ensure that u does not begin with a power
of fw(x), and this will not change the value of �(x). After freely reducing we
get that �(y) = u′ru′−1, where r is a cyclic permutation of (fv(y))� . To see this,
suppose that u = α	−1, where (fv(y))� = 	� and 	 is the longest subword of u for
which this is true. Then u(fv(y))�u−1 = α	−1	�	α−1 = α�	α−1. Then u′ = α
and r = �	 . A similar argument works if (fv(y))� cancels with u−1. For example,
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if we had �(y) = xy−1f0(y)yx−1 = xy−1(y5x)yx−1, then after freely reducing we
would find �(y) = xy4xyx−1 = xrx−1, where r = y4xy.
We now proceed much as in the proof of Theorem 5.1. Let mx be the order of
f0(x) in GT . Since � is an embedding, it must take f0(x) to a torsion element of
order mx . We know that

�(f0(x)) = �(x5y) = (fw(x))5
u′ru′
−1

= (fw(x))

′
u′ru′−1,

where |
′| < � nx2 �, since we may eliminate any copies of fw(x)nx in �(x5y), and
replacefw(x)k withfw(x)k−nx for k < nx . Note that, as written, this wordmay not
be freely reduced, so we cannot necessarily use Theorem 5.5 yet. Let z = �(f0(x)).
Suppose that z is cyclically reduced as written and that u′ �= 1. Then z is a
cyclically reducedwordwith finite order inGT ′ , which contains amixture of positive
and negative letters, which is impossible by Theorem 5.6, since the words inRT ′ are
either entirely positive or entirely negative. So either u′ = 1 or else z is not cyclically
reduced.
First suppose that u′ = 1, so that z = (fw(x))


′
r and r is cyclically reduced and

is a cyclic permutation of (fv(y))� . If 
′ and � have the same sign, then z is cyclically
reduced as written. By Theorem 5.6, z is a cyclic permutation of someft(xk). Also,
it is a product of a cyclic permutation of fw(xk) and fv(y�), so by Lemma 6.8,
t = w�0, v = w, and k = ±1. Thus z is a cyclic permutation of fw(x5)fw(y) or
fw(y−1)fw(x−5). Because z begins with an fw(x±1) block and cannot end with
one, it follows that 
′ = 5, which implies that 
 = 1, and so �(x) = fw(x)±1 and
�(y) = fw(y)±1.
Suppose that 
′ and � have opposite signs. There is a (possibly trivial) inner
automorphism � such that �(z) = sr′, where s is a cyclic permutation of fw(x)


′
,

and r′ is a cyclic permutation offv(y)� , and freely reducing sr′ will leave a cyclically
reduced word. Let �(z) = z′ with z′ the result of freely reducing sr′. Since z′ is a
torsion element, it must be a cyclic permutation of some ft(xk), and so its letters
must all have the same sign.
Suppose z′ and s have letters of the same sign. Then z′r′−1 is cyclically reduced
and so we have a cyclic permutation of fw(x)


′
written as a product of a cyclic

permutation of ft(x)k and a cyclic permutation of fv(y)� with k, � having the
same sign. By Lemma 6.8, we get that �(x) = fv�0(x±1) = fv((x5y)±1), and
�(y) = fv(y∓1). But then either �(xy) = fv(x5) or �(xy) = fv(y−1x−5y) =
fv(y)−1fv(x−5)fv(y). Both of these are torsion elements, but xy is not a torsion
element in GT , which contradicts the fact that � is an embedding. So suppose that
z′ and r′ have letters of the same sign. Then z′s−1 is cyclically reduced and so we
have a cyclic permutation of fv(y)� written as a product of a cyclic permutation of
ft(x)k and a cyclic permutation offw(x)


′
with k, 
′ having the same sign. Arguing

as in the proof of Lemma 6.8, we find that w = t and that w ⊂ v. Let v = w�v′.
We obtain that fv′(y�) = x−


′+k , which is absurd.
We still must address the case where u′ �= 1 and z is not cyclically reduced. This
can happen for two reasons. It may be that u′ and fw(x) begin in the same way. We
know that u′ does not begin with an entire copy of fw(x), and we have assumed
that u′ does not further cancel with r, so there is an inner automorphism� such that
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�(�(f0(x))) = su′′ru′′
−1, a cyclically reduced word with s a cyclic permutation of

(fw(x))

′
. If u′′ �= 1, then�(�(f0(x)) contains positive and negative letters, andwe

have already seen that this is impossible. Thus we must have that�(�(f0(x))) = sr,
and as before we see that �(�(x)) = fw(x)±1 and �(�(y)) = fw(y)±1.
The other possibility is that u′ cancels with the end of fw(x). It cannot cancel

with the whole of fw(x), and so again after following � by an appropriate inner
automorphism � we get that �(�(f0(x))) = su′′ru′′

−1, a cyclically reduced word
with s a cyclic permutation of (fw(x))


′
. This case is treated exactly as in the

previous paragraph.
So we have shown that, up to an inner automorphism, �(x) = fw(x)±1 and

�(y) = fw(y)±1 with the signs matching. If �(x) = fw(x) and �(y) = fw(y),
then � = fw , and hence

u ∈ T ⇔ fu(x53) ∈ RT
⇔ fw(fu(x53)) ∈ RT ′

⇔ w�u ∈ T ′.

Thus T = T ′
w , as desired. Thus it only remains is to eliminate the undesirable

case when �(x) = fw(x−1) and �(y) = fw(y−1). In this case we have that

�(f00(x)) = �(x5yx5yx5yx5yx5yy5x)

= fw(x−5y−1x−5y−1x−5y−1x−5y−1x−5y−1y−5x−1)

= fw((xy5yx5yx5yx5yx5yx5)−1).

We will show this is not a torsion element in GT ′ . Since f00(x) is a torsion element
in GT , this implies that � is not a homomorphism, which is a contradiction.
Let α = xy5yx5yx5yx5yx5yx5. It is easy to see that f00(x) is the only torsion

element that has length 36 and that contains 26 xs. However, α is not a cyclic
permutation off00(x). It follows thatfw(α) (and hence �(f00(x))) is not a torsion
element, since otherwise it would have to be a cyclic permutation of some ft(xk)
with t ∈ T ′. Thus by Lemma 6.7, either w ⊂ t or t ⊂ w. Suppose that w ⊂ t and
t = w�t′. Then α must be a cyclic permutation of ft′(xk), which we have already
seen is impossible. If t ⊂ w and w = t�w ′, then xk must be a cyclic permutation
of fw′(α), which is also impossible. Thus we reach a contradiction, eliminating the
final undesirable case. 

Proof of Theorem 6.2. Lemmas 6.6 and 6.9 establish that the map T �→ GT is a

Borel reduction from �tree2 to �em. 

Corollary 6.10. ≡em is a universal countable Borel equivalence relation.
It may have been possible to prove this corollary without any reference to quasi-

orders, by reducing some known universal countable Borel equivalence relation
to ≡em. However, it seems that the most natural and direct route to this result is
through Theorem 6.2. A closer look at the above proof also leads to the following
result, which tells us that the biembeddability relation on the groups constructed
above is much more complicated than the isomorphism relation on these groups.
Corollary 6.11. With the above notation,GT ∼= GS ⇔ T = S.
Proof. One direction is trivial. For the other, suppose thatT,S ∈ Tr(2) are such

that GT ∼= GS , via φ : GT → GS . Then, in particular, φ is an embedding, and by
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the proof of Lemma 6.9, there exists w ∈ 2<N such that T = Sw . Furthermore,
after adjusting by an inner automorphism of GS if necessary, we can suppose that
φ = fw . We will show that if w �= e, then fw : GT → GS is not surjective. Hence
w = e and GT = GS .
Suppose that w ∈ 2<N is nontrivial and that fw : GT → GS is surjective. Then
there is some word α ∈ F2, which we may assume does not contain more than 1/2
of a relation in RT , such that fw(α) = x in GS , where x is one of the generators of
GS . This means that fw(α)x−1 = 1 in GS . By the proof of Lemma 6.6, we know
thatfw(α) does not contain more than 1/2 of a relation inGS . By Theorem 5.5, for
fw(α)x−1 to represent the identity inGS , it must containmore than (1−3/8) = 5/8
of a relation in RT . But fw(α)x−1 has at most one more letter in common with a
relation than fw(α) does. Since fw(α) contains less than 1/2 of a relation in RT ,
fw(α)x−1 contains less than 5/8 of a relation in RT . This is a contradiction. 


§7. Quasi-orders that symmetrize to universal countable Borel equivalence
relations. We have seen that symmetrizing universal countable Borel quasi-orders
produces universal countable Borel equivalence relations. It would be desirable to
be able to strengthen this and say that symmetrizing a non-universal countable
Borel quasi-order produces a nonuniversal countable Borel equivalence relation.
However, it is easy to see that this is not the case. Let E be a universal countable
Borel equivalence relation. Then E is not universal as a quasi-order, as symmetry
is preserved downwards under ≤B , but obviously E symmetrizes to a universal
equivalence relation, i.e., E itself.
If this were the extent of the phenomenon, then it would still be possible to use
negative results about the universality of a given countable Borel quasi-order in
order to prove negative results about the universality of its associated equivalence
relation, so long as the quasi-order was asymmetric somewhere. Unfortunately,
things are as bad as they could be.

Theorem 7.1. There are 2ℵ0 countable Borel quasi-orders Q, distinct up to Borel
bireducibility, for which EQ is a universal countable Borel equivalence relation.

Proof. Recall that Adams and Kechris showed in [1] that there are 2ℵ0 countable
Borel equivalence relations up to Borel bireducibility. The equivalence relations they
produced are all defined on different spaces; we will writeXE for the space on which
E is defined. Further, these equivalence relations have all equivalence classes of size
at least 2, a minor technical point that will be used later.
Given a countable Borel equivalence relationE on a standardBorel spaceX with
a Borel linear order≤, defineE(≤) to beE ∩ ≤.We see thatE(≤) is an asymmetric
countable Borel quasi-order, unless E is just equality on X , written Δ(X ). Note
that

E(≤) ≤B F (≤) =⇒ E ≤B F
and so if E(≤) and F (≤) are Borel bireducible, then so are E and F . Thus by the
result of Adams and Kechris we find that there are 2ℵ0 quasi-orders of the form
E(≤) up to Borel bireducibility.
Now we define the family of quasi-orders {E(≤) ∨ E∞}, where E ranges over
the equivalence relations from the proof of Adams and Kechris and ∨ denotes the
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disjoint union of two equivalence relations. Now suppose that

E(≤) ∨ E∞ ≤B F (≤) ∨ E∞.

Then E(≤) ≤B F (≤), since E(≤) is completely asymmetric, and so any two E(≤)-
comparable elements in XE must map to XF . Since the equivalence classes of E
are all of size at least 2, every element of XE is E(≤)-comparable with some other
element of XE , and so every element of XE is mapped to XF .
Thus there are 2ℵ0 countable Borel quasi-orders of the form E(≤) ∨ E∞. Each

of these symmetrizes to Δ(XE) ∨E∞, which is universal. 

Most of the reducibilities from computability theory, such as Turing reducibility

≤T or 1-reducibility≤1, are countable Borel quasi-orders. The equivalence relations
associated with them have been the subject of a great deal of work in descriptive
set theory; for example, see [4]. It remains open whether ≡T or ≡1 are universal
countable Borel equivalence relations. Thus the following question naturally arises.

OpenProblem 7.2. Are any of≤1,≤T , etc. universal countableBorel quasi-orders?
In light of theorem 7.1, showing that ≤T or ≤1 are not universal countable

Borel quasi-orders would not settle the question of whether≡T or≡1 are universal,
although it may be taken as “evidence” that the answer is no.
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