
J. Fluid Mech. (1998), vol. 377, pp. 151–168. Printed in the United Kingdom

c© 1998 Cambridge University Press

151

Vaporizing gravity currents in a superheated
porous medium

By A N D R E W W. W O O D S
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(Received 4 October 1996 and in revised form 24 July 1998)

We analyse the motion of a current of water migrating under gravity into a hot
vapour-saturated porous rock accounting for the vaporization which occurs as the
water invades the hot rock. We present a series of similarity solutions to describe
the rate of advance of both planar and axisymmetric currents when the total mass
of water injected after time t is proportional to tγ . Three distinct cases arise. When
γ > 1/2 (planar) or γ > 1 (axisymmetric), the depth of the current increases at all
points from the source, and therefore vaporization occurs at all points on its surface.
This case is described by a simple extension of the well-known similarity solutions
for non-vaporizing currents. When 0 < γ < 1/2 (planar) or 0 < γ < 1 (axisymmetric),
there is a region near the source where the depth of the current decreases. The depth
only increases at the more distant points. Vaporization therefore only occurs in the
leading part of the current where it is advancing into the superheated rock. In this
case, we develop modified similarity solutions which account for the vaporization in
the distal part of the current. The third case involves the finite release of fluid. Owing
to the vaporization, the mass of the current decreases with time. Since there is no
injection, the rate of advance of the current can no longer be found by comparing the
exponents of time in the local and global equations for mass conservation. Instead,
the motion is described by a class of similarity solutions of the second kind, analogous
to those described by Barenblatt (1997), in which the total mass of the current is
proportional tγ , where γ is a function of the mass fraction which vaporizes, F, such
that γ → 0 as F → 0 and γ → −1 as F → 1. The model is extended to include the
effects of capillary retention of fluid in the pore spaces and we discuss the relevance
of our results to the process of liquid reinjection in the geothermal power industry.

1. Introduction
Power is generated from vapour-saturated geothermal reservoirs by drawing vapour

from the reservoir and passing it through turbines and heat exchangers. Important
commercial reservoirs include the Geysers reservoir in California, the Wairaki reservoir
in New Zealand and the Lardarello field in Italy. In order to maintain the useful
operating life of such reservoirs, vapour must be continually regenerated in the
reservoir and to this end water is often injected into the reservoir. To improve
understanding of this reinjection process, a number of theoretical and experimental
studies have analysed vapour production as water invades the hot permeable reservoir
rock (Fitzgerald & Woods 1994, 1995; Pruess et al. 1987; Woods & Fitzgerald 1993,
1997). The relevance of such porous flow models for geothermal systems has been
described in more detail by Fitzgerald & Woods (1995), who argue that it provides
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152 A. W. Woods

a useful simplification for modelling flow through a multiply fractured rock, and we
adopt this model herein.

The studies have shown that as liquid invades a superheated porous layer, the
heat transfer from the hot matrix to the liquid may cause some vaporization. The
mass fraction which vaporizes depends upon the superheat of the reservoir and the
rate of advance of the liquid front in comparison with the speed of both (i) the
isotherms in the liquid and (ii) the isobars in the vapour (Woods & Fitzgerald 1993,
1997). In superheated permeable rocks, pressure anomalies migrate through the rock
according to a nonlinear diffusion equation with effective diffusivity DP = KP∞/φµ ∼
10−2 m2 s−1 where P∞ ∼ 106 Pa is the far-field pressure and µ ∼ 10−5 Pa s is the
vapour viscosity (Fitzgerald & Woods, 1995) while heat is conducted through the
system with diffusivity κ ∼ 10−6 m2 s−1. Since DP ∼ 104κ, it is possible for the liquid
flow speed to be in excess of the thermal diffusion speed but to fall below the effective
isobar diffusion speed. In this intermediate regime, there is a negligible amount of
heat conduction from the far field and the interface pressure remains very close to
that in the far field. The mass fraction of liquid which vaporizes is then determined
by the superheat of the rock at the interface. The superheat is a function of the
initial reservoir temperature and the interface temperature, which in this intermediate
regime is approximately equal to the saturation temperature associated with the far-
field pressure (Woods & Fitzgerald 1993). The mass fraction of liquid which vaporizes
is therefore given by

F =
1

1 + Sφ
, (1.1)

where S = L/Cp(Ts − Tb) is the ratio of the latent heat of vaporization L to the
initial superheat of the rock, Cp(Ts − Tb). In many geothermal systems, the rate of
advance of the liquid–vapour interface has a value which lies in this intermediate
regime. Therefore, in this paper, we restrict attention to situations in which condition
(1.1) applies so thatF may be assumed to be independent of time and position. In §7
we describe the range of liquid injection rates for which this approximation is valid,
and show that these span most regimes of interest for geothermal systems.

Although the thermodynamics of the phase change and subsequent vapour motion
have been studied in some detail, there has been little investigation of the dynamics
of the liquid as it migrates through the porous layer and vaporizes. Instead, the liquid
has been assumed to have a prescribed velocity field, corresponding to a planar,
cylindrical or spherically spreading front. However, in many situations, gravity exerts
a dominant control on the advance of the liquid region from the source. For example,
in some preliminary numerical calculations of the motion of water leaving a source,
Pruess et al. (1991) has shown that a downward sinking plume falls to the base of
the reservoir where it spreads out under gravity. In the present work, we examine
the dynamics of vaporizing liquid currents spreading under gravity, and we develop
a series of similarity solutions to describe the motion.

We focus on the spreading of a source of water along the horizontal base of a
reservoir and consider both planar and radially symmetric currents. These repre-
sent end-member models for a range of different reservoir geometries. The case of
constant injection rate (§3) involves a simple re-interpretation of the solutions for non-
vaporizing currents (Huppert & Woods 1995), and the present discussion extends the
analysis of Woods & Fitzgerald (1995). The more complex case of a waning injection
rate is described by a new class of similarity solutions in which only the leading part
of the current vaporizes (§4). The case of a finite release with no injection is described
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Vaporizing gravity currents in a superheated porous medium 153

by similarity solutions of the second kind in which the decay rate depends on the mass
fraction vaporizing (§5). The models have some connection with the classic model of
liquid slumping in a porous layer with non-zero capillary forces (Barenblatt 1997). In
§6, we extend the approach to include the effects of both capillarity and vaporization.
Although the solutions are equivalent, our formulation of the problem differs from
that of Barenblatt in that we use global mass conservation for the solutions of both
the first and second kind; in contrast Barenblatt (1997) introduced an additional
boundary condition when seeking similarity solutions of the second kind.

2. Non-vaporizing gravity currents
2.1. Uni-directional currents

The motion of non-vaporizing planar gravity currents in porous layers has been
described by Barenblatt (1952), Bear (1971) and Huppert & Woods (1995). A planar
gravity current, propagating in the x-direction, with depth y = h(x, t), in a layer of
uniform permeability K and porosity φ with fluid of viscosity µ may be described by
the relations (figure 1)

φ
∂h

∂t
+

∂

∂x
(uh) = 0 (2.1)

and

u = −Kρg
µ

∂h

∂x
, (2.2)

where g is the gravitational acceleration and ρ is the fluid density. If the total
volume of fluid injected up to time t is Qot

γ (per unit width of current), then global
conservation of mass requires

φ

∫ L(t)

0

h(x, t)dx = Qot
γ, (2.3)

where L(t) is the current length and h(L(t), t) = 0. In addition, local conservation of
mass at the source requires

γQot
γ−1 = −Kρg

µ

[
h
∂h

∂x

]
at η = 0. (2.4)

Huppert & Woods (1995) have demonstrated that this system admits similarity
solutions of the form

h = H(Dt)αf(η), (2.5)

where H = (Qo/S
γ)1/(2−γ), D = (S2/Qo)

1/(2−γ), S = Kρg/µ and η = x/H(Dt)β . In these
solutions, the shape factor f(η) satisfies the equation

φ

(
αf − ηβ df

dη

)
=

d

dη

(
f

df

dη

)
(2.6)

and the exponents α and β are related according to α = 2β−1. The global conservation
of mass reduces to

φ

∫ λ

0

f(η)dη = 1 (2.7)

and α and β are related to γ according to α+ β = γ. Note therefore that in the limit
γ = 2, HD = S and h = Stf(η) (cf. (2.5)).
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Pumping station
Power station: vapour

passes through turbines

Figure 1. Schematic illustrating the evolution of a vaporizing gravity current in which the leading
part of the current ascends and vaporizes while the trailing part of the current descends.

Conservation of mass at the source requires

f
df

dη

∣∣∣∣
0

= −γ (2.8)

and the leading edge of the current is located at position η = λ where f(λ) = 0.
In these solutions, the current ascends throughout its length when ∂h/∂t > 0 for
0 < η < λ, and this requires γ > 1/2. If γ < 1/2, then the current descends near the
source and only ascends near the leading edge.

Note that such solutions are only physically relevant once the current has spread
sufficiently that L(t) � H(Dt)α and the hydrostatic approximation (cf. (2.2)) ap-
plies. Indeed, laboratory experiments show that once L(t) > H(Dt)α, these similarity
solutions provide a very accurate description of the flow (Huppert & Woods 1995).

A simple but instructive fundamental solution to this nonlinear problem arises in
the case of a finite release of fluid. Now γ = 0, α = −β = −1/3 and the shape of the
current is (Pattle 1959)

f(λ) = (λ2 − η2)/6 (2.9)

with λ = (9/φ)1/3. In this solution, ∂h/∂t = 0 at η = 3−1/2λ.

2.2. Radial currents

The motion of radial non-vaporizing gravity currents is described in a similar manner.
If r is the radial coordinate, then the mass conservation equation (2.1) becomes

φr
∂h

∂t
+
∂hru

∂r
= 0 (2.10)

while the velocity field is still given by equation (2.2). If the volume injected after
time t is Qot

γ , then the current is described by similarity solutions of the form
h = Ha(Dat)

αfa(ηa), ηa = r/Ha(Dat)
β whereHa = (Qo/S

γ)1/(3−γ) and Da = (S3/Qo)
1/(3−γ).

The shape factor fa satisfies the modified similarity equation

φ

(
αηafa − βη2

a

dfa
dηa

)
=

d

dηa

(
ηafa

dfa
dηa

)
(2.11)
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Vaporizing gravity currents in a superheated porous medium 155

with boundary conditions

−2πηafa
dfa
dηa

= γ at ηa = 0, (2.12)

and at the leading edge of the current, ηa = λa, the depth fa(λa) = 0. The exponents
α and β again satisfy the relation α = 2β − 1.

The global conservation of mass has the form

2πφ

∫ λa

0

ηfa(η)dη = 1 (2.13)

and the exponents α and β are related to γ according to α+ 2β = γ. It is readily seen
that if γ > 1 then the current ascends throughout its length, ∂h/∂t > 0 for 0 < η < λa.

Again, there is an instructive analytical solution corresponding to the case of a
finite release of fluid, γ = 0. In this case α = −2β = −1/2 and fa has the form
(Barenblatt 1952)

fa(ηa) = (λ2
a − η2

a)/8, (2.14)

where λa = (6/πφ)1/3.
We now build upon this model to describe the motion of such currents when they

invade a superheated reservoir and partially vaporize.

3. Vaporizing gravity current
As a gravity current spreads through a superheated geothermal system, a fraction

of the liquid may vaporize; in all solutions below we assume that the fraction which
vaporizes is a constant F as explained in §1. The vaporization modifies the motion
of the residual current. Two different regimes may occur depending on the rate of
injection. If the liquid injection rate is sufficiently high then the interface ascends
everywhere as the current spreads and a constant fraction F of the injected liquid
vaporizes. However, if the liquid injection rate is slower, then the liquid near the
source descends and vaporization only occurs near the leading edge of the current
as it invades the hot rock. We first analyse the fast injection case for which the
whole interface ascends and produces vapour. In §4, we consider the more complex
slow-injection case in which only the leading part of the current vaporizes. In §6 we
extend the analysis to include the possible effects of capillary retention of fluid in the
pores as well as boiling at the front.

3.1. One-dimensional currents

If throughout the current, ∂h/∂t > 0, then a fraction F of the current vaporizes at
each position along its upper surface, and the rate of deepening of the current is
given by

φ
∂h

∂t
= (1−F)

Kρg

µ

∂

∂x

(
h
∂h

∂x

)
. (3.1)

Also, if the total volume injected after time t is Qot
γ per unit width, then the global

conservation of mass satisfies the equation

(1−F)Qot
γ = φ

∫ L(t)

0

hdx, (3.2)

where the leading edge of the current, x = L(t), has zero depth, h(L(t), t) = 0. As
in §2, such currents may be described by similarity solutions of the form h(x, t) =
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Figure 2. Shape of a self-similar uni-directional current, f(η), propagating from a constant source
of fluid in the cases F = 0.25, 0.5 and 0.75. The current profiles are shown at that time at which
the equivalent non-vaporizing current would extend unit distance from the source.

Hv(Dvt)
αfv(η) (e.g. Huppert & Woods, 1995) but subject to the constraint

∂h/∂t > 0, (3.3)

where η = x/Hv(Dvt)
β with α = (2γ − 1)/3 and β = (γ + 1)/3. The constraint (3.3)

requires that throughout the current

HvD
α
v t
α−1

(
αfv(η)− βηdfv

dη

)
> 0. (3.4)

Since the current becomes progressively shallower with distance from the source,
∂h/∂t > 0 throughout the current if it is positive at the source, η = 0. Therefore this
model applies when α > 0 and hence γ > 1/2.

If Hv and Dv are defined as (cf. §2)

Hv =
(
Qo(1−F)(1−γ)/Sγ

)1/(2−γ)
= H(1−F)(1−γ)/(2−γ) (3.5)

and

Dv = (S2(1−F)/Qo)
1/(2−γ) = D(1−F)1/(2−γ) (3.6)

then fv(η) is formally identical to the solution f(η) presented in §2. The dependence of
Hv and Dv on F identifies that the effect of the vaporization is identical to reducing
both the effective supply rate, Qot

γ , and also the natural speed, S = Kρg/µ, of the
current by the factor 1 −F. This fraction corresponds to that part of the injectate
which remains as liquid. In figure 2, the profile of the spreading vaporizing current is
shown for three values of F in the case γ = 1. As expected, for a given source flux,
the depth and extent of the current increases as F decreases. Figure 3 illustrates the
profile of the current forF = 0.25 at three succesive times, showing how the interface
ascends at all positions along the current as it advances forwards.

In the limiting case γ = 1/2 the interface has a fixed depth at the source, x = 0, but
everywhere ahead of the source the interface ascends and therefore the above model
may be used to describe the propagation. The case of slower injection rates, γ < 1/2,
in which a part of the interface descends, is described in §5.

3.2. Radial currents

In the fast injection case, for which ∂h/∂t > 0 throughout the current, the model of
axisymmetric spreading currents (§2.2) may also be extended to account for vaporiza-
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Figure 3. The evolution of the current profile at three dimensionless times 1, 8 and 27 showing
how it becomes more elongate as it advances and deepens. This figure corresponds to injection at a
constant rate with F = 0.25. The injection rate is such that the equivalent non-vaporizing current
would extend unit distance from the source at t = 1.

tion (cf. Woods & Fitzgerald, 1995). By analogy with uni-directional spreading and
vaporizing currents (§3.1), the motion of an axisymmetrically spreading and vaporiz-
ing current is described by the similarity solutions of §2.2, h = Hav(Davt)

αfa(η), where

Hav and Dav are now defined as (cf. (3.5), (3.6)) Hav =
(
Qo(1−F)(1−γ)/Sγ

)1/(3−γ)
and

Dav = (S3(1 − F)2/Qo)
1/(3−γ) = D(1 − F)2/(3−γ). In the axisymmetric geometry, the

condition ∂h/∂t > 0 throughout the current requires γ > 1, and therefore includes the
limiting case of a steady injection rate.

In figure 4, the profiles of three axisymmetric currents driven by a constant source
of liquid, γ = 1, but corresponding to three values of F, are shown. For such
axisymmetric currents, the depth of the current increases as fa ∼ (2|lnη|)1/2 as η → 0,
in order to match the flux supplied from model source at η = 0. Although the
similarity solution predicts that the current depth is singular at r = 0, the mass
of fluid in the current near r = 0 is in fact negligible. Note that in a real system,
the actual source would have finite size (e.g. a well-bore), r = ro, so that current
depth would be finite but time dependent at the source. The real current profile then
asymptotes to the similarity solution ahead of the source.

As for the uni-directional currents, the size of the region filled with liquid increases
for a given injection rate as F becomes smaller.

4. Slow injection – partially vaporizing currents
4.1. Planar flow

In §3, we identified that if the liquid supply rate is sufficiently slow, 0 < γ < 1/2, then
a region develops around the source where ∂h/∂t < 0 so that the current descends
and there is no vaporization. As the current descends, vapour flows into the pore
spaces and cools. The temperature of this vapour may be inferred from that of
the liquid. When the liquid is emplaced into the porous layer, it flows towards the
boiling front and therefore, owing to the effects of thermal inertia, it rapidly attains
the vaporization temperature (Pruess et al. 1987). The liquid remains close to the
injection temperature only in a narrow boundary region near the source, of relative
size φ (Woods & Fitzgerald 1996). Therefore, to good approximation, the vapour
which replaces the descending liquid cools to the vaporization temperature and there
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Figure 4. Profile of an axisymmetric current produced by a constant source of fluid for the values
F = 0.25, 0.5 and 0.75. In this axisymmetric geometry the current depth becomes singular at
the origin corresponding to the source of fluid. The flow rate is chosen so that the equivalent
non-vaporizing current would extend unit distance from the source.

is little condensation of the invading vapour. Note that some condensation may occur
as liquid drains from the small region near the source which has been cooled to the
liquid injection temperature; however, in a typical geothermal reservoir, this cold
region represents a fraction ∼ φ = 0.01–0.1 of the region invaded by liquid and may
therefore be neglected, to leading order.

In the region, 0 < x < L1(t) say, in which the current is descending, h satisfies the
equation

φ
∂h

∂t
=
Kρg

µ

∂

∂x

(
h
∂h

∂x

)
(4.1)

while in the region L1(t) < x < L2(t), in which the current is ascending, h satisfies the
equation

φ
∂h

∂t
= (1−F)

Kρg

µ

∂

∂x

(
h
∂h

∂x

)
. (4.2)

The point x = L1(t) dividing the ascending and descending regions is defined by
∂h/∂t = 0. At the leading edge of the current, x = L2(t), the current depth h = 0 while
at the source, x = 0, the conservation of mass requires (Kρg/µ)h(∂h/∂x) = −γQotγ−1

(cf. equation (2.4)).
If liquid is continually injected into the system, γ > 0, then the global conservation

of mass may be expressed as

γQot
γ−1 = φ

d

dt

∫ L2(t)

0

hdx+ φ
F

1−F
∫ L2(t)

L1(t)

∂h

∂t
dx. (4.3)

The first term on the right-hand side accounts for the advance of the current and the
second term for the production of vapour.

Such currents may be described by similarity solutions, h = H(Dt)αfp(η), where
η = x/H(Dt)β and H and D are as in §2.1. If the points x = L1(t) and L2(t) are
denoted by η = λ1 and λ2 then the boundary conditions on the current may be
expressed as

fp(λ2) = 0, (4.4)
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Figure 5. The profile of a planar current, fp(η), produced with an injection rate 1/t forF = 0.2, 0.5
and 0.9. The region of the current which is descending is shown by the solid line, while the ascending
leading edge of the current is shown by the dashed line.

fpdfp/dη

∣∣∣∣
η=0

= −γ. (4.5)

At the point η = λ1, fp and dfp/dη are continuous and

∂h

∂t

∣∣∣∣
L1(t)

= αfp(λ1)− βηdfp
dη

∣∣∣∣
λ1

= 0. (4.6)

The global conservation of mass (4.3) may be re-expressed as

γ = φ

∫ λ2

0

(αfp − βηfp)dη +
φF

1−F
∫ λ2

λ1

(αfp − βηfp)dη. (4.7)

When γ > 0, the area occupied by the current continually increases.
In the next section, §5, we describe the situation in which there is a finite release

of fluid; in that case, owing to the vaporization, the volume of fluid continually
decreases. However, the present model may in fact be extended for application to
the intermediate case in which the area of the current remains constant (the first
term on the right-hand side of (4.3) and (4.7) vanishes). For this to occur, we require
dQ/dt = Qo/t so that the total volume injected from time to to t is Q = Qo ln(t/to).
This is of different functional form to the power law injection rates described above.
Now, α = −1/3, β = 1/3 and the left-hand side of (4.3) becomes Qo/t, while the left-
hand side of (4.7) becomes unity. Since the liquid saturated region is of fixed volume,
the addition of new liquid at the source is exactly balanced by the vaporization at
the leading edge of the current as it spreads along the base of the reservoir.

In figure 5, the current profile for three values of F is shown for the case
dQ/dt = Qo/t. The ascending part of the current, where vaporization occurs, is
shown by the dashed lines, while the descending part of the current near the source
is shown with solid lines. The current tends to steepen and occupies a smaller area
as F increases. In §3 we showed that the effective speed of a vaporizing current is
smaller than a non-vaporizing current by the factor 1 −F. This causes the leading
part of the current, η > λ1, to steepen as F increases and as a result of the greater
vaporization the current fills a smaller volume.

Figure 6 illustrates the time evolution of the current for the caseF = 0.5. Again, the
dashed part of the current surface denotes the region in which vaporization occurs.
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Figure 6. The shape of the current at the dimensionless times t∗ = 1, 8, 64 for injection at a rate
1/t such that the current extends unit distance from the source at t∗ = 1. For this injection rate,
the area of the current remains constant, but the liquid-filled region continually migrates through
the rock, with the leading edge invading new superheated rock (dashed lines), and the trailing part
of the current descending (solid lines) to leave a region of rock which is just saturated. The locus
of the region which is occupied with liquid at some point during the current evolution is shown by
the dotted line.

As the rear of the current slumps, the point at which ∂h/∂t = 0 and the current
starts to vaporize, migrates forwards and downwards. As a result, a region of rock
whose temperature is close to the saturation temperature develops above the current
near the source. This is marked by the dotted line in figure 6. The thermal energy
released from this region of rock when it was invaded by the current and cooled was
used to vaporize the liquid injected at earlier times. Therefore, even though the region
occupied by the current is of fixed area (in this two-dimensional current), the region
of rock providing the heat for vaporization grows.

In the next section we consider the case in which there is no injection so that the
area occupied by the current continually decreases.

4.2. Radial flow

The same approach may be used to describe the motion of partially vaporizing
currents which are radially symmetric. For axisymmetric currents, whenever 0 < γ < 1
a region near the source develops in which the current descends, ∂h/∂t < 0. The shape
function now satisfies the radially symmetric nonlinear diffusion equation (cf. §2), and
as noted in §3.2, for finite injection rate the current depth becomes singular as η → 0.
Figure 7 illustrates the shape of such radially spreading currents for three values of
F for the limiting injection rate dQ/dt ∼ Qo/t. Again, the leading part of the current,
where vaporization occurs, is shown by the dashed line. As for the planar spreading
current, the vaporization reduces the effective current propagation speed by the factor
1−F and so the leading edge of the flow steepens.

5. Vaporization of a current involving a finite release
5.1. Planar currents

When a finite release of fluid, injected at t = 1, spreads through a superheated domain,
the mass of fluid in the current progressively decreases owing to the vaporization. As
in the previous sections, to describe this motion, we seek similarity solutions of the
form h = H(Dt)αff(η) where η = x/H(Dt)β and α = 2β − 1. However, since there is
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Figure 7. The profile of an axisymmetric spreading current supplied with fluid at a rate Qo/t.
Curves are shown for F = 0.2, 0.9 and 0.99.

no further injection of liquid, the value of α does not simply emerge from comparison
of the time exponents in the equation for the global conservation of mass (equation
(4.3)). Instead, if the liquid region has volume Vot

γ per unit width, then the exponent
γ now emerges as an eigenvalue for the problem and is therefore a function of the
mass fraction which vaporizes, F.

Before solving the problem, we first note from §2 that, with no vaporization,F = 0,
the solution (2.9) with α = −1/3 describes the spreading of a current of finite mass
and no injection, γ = 0. This suggests that if the current vaporizes as it spreads, then
α < −1/3 and γ < 0. Secondly, we note that in the limit F → 1, all the current
vaporizes, β → 0 and α, γ → −1. Therefore, we expect that for vaporizing currents
produced from a finite release, γ lies in the range −1 < γ < 0 and α in the range
−1 6 α 6 1/3.

For each value of α, the shape factor ff(η;F) is the solution of the system

φ

(
αff − βηdff

dη

)
=

d

dη

(
ff

dff
dη

)
for 0 < η < λ1, (5.1)

φ

(
αff − βηdff

dη

)
= (1−F)

d

dη

(
ff

dff
dη

)
for λ2 > η > λ1 (5.2)

with boundary conditions

dff
dη

= 0 at η = 0, (5.3)

αff − β dff
dη

η = 0 and ff(η−) = ff(η+) at η = λ1 (5.4)

and

ff = 0 at η = λ2. (5.5)

In order that the solution ff is physically realisable, it should also satisfy the equation
for global conservation of mass, (4.3), which for no injection may be expressed as∫ λ2

0

(
αff − βηdff

dη

)
dη +

F
1−F

∫ λ2

λ1

(
αff − βηdff

dη

)
dη = 0. (5.6)
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Figure 8. Variation of the exponent γ for a current of finite mass Qot
γ released at t = 1, as a

function of the mass fraction which vaporizes, F. Results for both the planar and axisymmetric
currents are shown.
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Figure 9. Profile of a planar current, released at t = 1, and spreading through a superheated porous
layer in which the mass fraction which vaporizes is F = 0.3, 0.6 and 0.9. Curves are shown for
currents of depth f = 1 at η = 0.

For each value of F, equation (5.6) follows directly from (5.1)–(5.5). Solution of
(5.1)–(5.5) thus involves the selection of the value α(F) and hence γ(F) = (3α+ 1)/2.

We have solved equations (5.1)–(5.6) numerically and in figure 8 we illustrate the
variation of γ with F. As expected, for small values of F the current decays slowly
|γ| � 1 and therefore advances relatively rapidly along the ground. In contrast, in the
limit F → 1, the current decays rapidly, γ → −1, and hence advances very slowly,
β � 1. Figure 9 illustrates the shape of the associated currents for several values of
F. As F increases, more of the current vaporizes as it invades the hot rock, and
therefore the current becomes increasingly steep at the leading edge.

It is interesting to compare this solution method, based on the global equation for
mass conservation, with that described by Barenblatt for the related problem of a
finite volume of fluid spreading through a porous layer but with a fraction of the
fluid remaining trapped in pore spaces by capillary action. Again the mass of the
current gradually wanes with time, and the motion is described by similarity solutions
of the second kind. Barenblatt (1997) derives these solutions by introducing a third
boundary condition, rather than the equation for global conservation of mass; the
third boundary condition, introduced at the leading edge of the current, follows from
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Figure 10. Profile of an axisymmetric current, released at t = 1, and spreading through a superheated
porous layer in which the mass fraction which vaporizes is F = 0.3, 0.6 and 0.9. Curves are shown
for currents of depth f = 1 at η = 0.

(5.2) and has the form

dff
dη

= − φβλ2

(1−F)
.

This is directly analogous to our integral constraint, (5.6), which is readily derived
by integrating (5.1) and (5.2) across the current. The advantage of the integral
constraint is that the problem formulation is directly related to that described in
§4 to find similarity solutions of the first kind in which the same equation for the
global conservation of mass was adopted, but including a term for the source of
fluid. Further details of the mathematical properties of these similarity solutions of
the second kind may be found in the articles by Aronson & Vazquez (1994, 1995)
and Hulshof & Vazquez (1994).

5.2. Axisymmetric currents

The axisymmetric motion of a finite release of fluid may also be described by a family
of similarity solutions in which the total mass of the current has value Qot

γ where
γ = γ(F) with 0 < γ < −1. The shape function for the current, fa(ηa), is however
described by the radially symmetric analogue of equations (5.1)–(5.6) (cf. §§2, 3). We
now find that γ → 0 and α → 0 as F → 0 while γ → −1 and α → −1/2 as F → 1,
and the curve γ(F) is also shown in figure 8. For the axisymmetric current, γ(F) is
smaller than the equivalent value for the planar current as a result of the different
geometry of the currents. It is worth noting that since there is no flux supplied to
these axisymmetric currents, then in contrast to the solutions presented in §§3.2 and
4.2 (figures 4, 7), the depth of the current remains finite as ηa → 0, as illustrated in
figure 10.

6. Effects of capillarity
We have so far neglected the effects of capillarity, although some of the liquid may

remain trapped in the pore spaces as the fluid sinks and spreads laterally. This trapped
fraction, R, will depend on the interfacial tension and the pore size. In a uniform
porous layer, after any transients associated with the descent of the liquid, the mass
of trapped liquid is expected to be independent of position. Thus, although detailed
discussion of this process is beyond the scope of the present analysis, it is interesting
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to illustrate the possible effect of capillarity through a very simple model in which we
assume the retained fraction of fluid takes a constant value R (cf. Barenblatt 1997).
Now in any region in which ∂h/∂t < 0, the equation governing the spreading of the
current takes the modified form

(1− R)φ
∂h

∂t
=
Kρg

µ

∂

∂x

(
h
∂h

∂x

)
, (6.1)

while in the region in which the current ascends and boils, the motion is governed by
equation (5.2). The boundary conditions at η = 0, λ1 and λ2 again depend on the flux
condition at the source, but have the same form as described in §§4 and 5. As well
as equation (6.1), the other main change to the model is the equation for the global
conservation of mass (cf. (4.3)) which takes the modified form

dQ

dt
= φ

d

dt

∫ L2(t)

0

hdx− Rφ
∫ L1(t)

0

∂h

∂t
dx+ φ

F
1−F

∫ L1(t)

L2(t)

∂h

∂t
dx, (6.2)

where the new second term on the right-hand side accounts for the loss of fluid by
capillary retention in the descending part of the flow.

The method of solution for this model is identical to that described in §§3–5, and
depends on the injection rate. For fast injection (§3), the current ascends throughout
its length, L1 = 0 and no capillary retention occurs. For slower injection (§4), the effect
of capillary retention is important near the source, where ∂h/∂t < 0, and leads to a
modification of the shape of the current, although the exponent of time controlling
the spreading remains the same. In the case of a finite release of fluid (cf. §5), the effect
of the capillary retention alters the exponent γ determining the rate of decay of the
volume of the current, V = Vot

γ . This exponent now depends on both the fraction of
fluid retained by capillary effects in the sinking region, and also the fraction of fluid
which vaporizes. In figure 11, we present a series of calculations of the dependence
of γ on both R and F. It is seen that, as expected, the effect of capillary retention
of a part of the descending fluid is to increase the rate of decay of the fluid volume.
Indeed, for large values of R and small values of F the capillary retention may
dominate the effect of boiling off of the current. Note that in the present content, this
trapped liquid will have a temperature close to the boiling point, leaving a two-phase
zone in the wake of the spreading region of liquid.

7. Discussion
The solutions described in §§3–6 all assume that the mass fraction of liquid which

vaporizes as the current invades the hot rock is a constant given by (3.1). This
condition requires the speed of the liquid front (i) to exceed the rate of heat conduction
and (ii) to be smaller than the rate of vapour migration ahead of the front (§1). In
each solution we have discussed, the vertical speed of the current has value

∂h

∂t
= HνD

α
ν t
α−1

(
αf(η)− βηdf

dη

)
while the horizontal speed has value βDβ

ν t
β−1. Therefore, except for very rapid injection

rates, γ > 2 (planar) and γ > 3 (radial), the currents are long and thin. Hence, to
determine conditions under which equation (3.1) applies, we compare the vertical
ascent speed of the current with the rate of heat transfer (κ/t)1/2 and the rate of
vapour migration (DP/t)

1/2. For both planar and axisymmetric currents, two cases
arise, depending on the injection rate.
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Figure 11. Variation of the exponent γ for the volume of a finite release of fluid, V = Vo(t/to)
γ , in

the case that a fraction F of the current vaporizes and that a fraction R (0, 0.4, 0.6, 0.8, as shown
on curves) is retained in the pores which are vacated as the current descends.

7.1. Planar currents

Comparing the conduction and pressure speeds with the ascent speed of the current,
we find that the present model solutions apply for times(

DP

H2
ν D

2α
ν

)1/(1−2α)

� t�
(

κ

H2
ν D

2α
ν

)1/(1−2α)

(7.1)

if γ < 5/4 (α < 1/2). As in §3, κ is the thermal diffusion coefficient κ ∼ 10−6 m2 s−1

and DP = KP∞/φµ is the effective vapour diffusion coefficient (cf. Fitzgerald &
Woods 1995) with typical values of order DP ∼ 10−1–10−3 m2 s−1 in a geothermal
system of permeability K = 10−12 m2, pressure P∞ ∼ 106 Pa, void fraction φ = 0.1
and viscosity µ = 10−4 Pa s. Referring to §2, it may be shown that, in the typical case
F ∼ 0.1–0.5, condition (7.1) reduces to the simpler form

D
−1/2
P Q2/3

o S−1/3 � t(5−4γ)/6 � κ−1/2Q2/3
o S−1/3, (7.2)

where the liquid velocity scale S ∼ 10−3–10−5 m s−1 in a geothermal system.
Equation (7.1) identifies that if γ < 5/4 then the currents propagate relatively slowly

and so eventually the effects of heat conduction from the surrounding rock become
important. This increases the mass fraction which vaporizes and eventually nearly all
of the current vaporizes (cf. Woods & Fitzgerald 1996). We now examine two specific
cases to illustrate condition (7.2), which identifies the times (i) before which vapour
pressure effects suppress the vaporization; and (ii) after which the effects of thermal
diffusion begin to increase the rate of vaporization of the current,

First, consider the case of a constant injection rate so that γ = 1. Equation (7.2)
then takes the form

D−6
P Q

4
oS
−2 � t� κ−6Q4

oS
−2. (7.3)

Substituting the above values for DP , κ and S we find that the similarity solutions
apply for times 1–104 < t < 108–1012 s if 10−5 < Qo < 10−4 m2 s−1. This case
represents a simplified model of uniform liquid injection from a large horizontal
fracture (or horizontal injection well) into an adjoining permeable layer: if the
fracture intersects the permeable layer over a length L ∼ 10–100 m and the current
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propagates through the permeable layer away from the fracture, then the total volume
injection rate V into the permeable layer, corresponding to LQo, would therefore be
10−3 < V < 10−1 m3 s−1. This lies within the typical range of liquid injection rates
into geothermal systems. Therefore, the model can capture a significant part of the
spreading of the current. For higher or smaller flow rates, Qo, the model only applies
for very small or very long times.

Next, we consider the evolution of a finite release of fluid QoL which is supplied
along a length L of a fracture into a permeable layer and which then propagates
through the permeable layer away from the fracture (figure 10). As shown in §6, the
mass fraction which vaporizes depends on F. If for example γ(F) = −1/2, and the
planar current has initial volume (at t = 1) 10L < Qo < 104L, then the model (§6.1)
applies for times 1–102 < t < 102–104 s. This range of values of Qo represent currents
of initial depth 1–100 m and lateral extent 1–100 m in the permeable layer. At longer
times, only a small fraction of order 1/10 of the initial liquid will remain.

If the injection rate increases with time sufficiently rapidly, γ > 5/4, then the
current propagates so rapidly that the vapour pressure gradually builds up and the
mass fraction which vaporizes falls to zero. Now the effects of thermal diffusion are
only important at very early times so that the similarity solutions presented herein
apply when (

κ

H2
ν D

2α
ν

)1/(2α−1)

� t�
(

DP

H2
ν D

2α
ν

)1/(2α−1)

. (7.4)

Note however, that in most practical situations, it is unlikely that the injection rate
will increase with time (i.e. γ > 5/4).

7.2. Axisymmetric currents

The range of times for which the approximation F is constant may again be found
by comparing the ascent speed of the current, ∂h/∂t, with the effective thermal and
pressure diffusion speeds (cf. (7.1)). In this case we find that if the injection rate γ < 2,
then at long times, thermal diffusion becomes important and vapour pressure effects
are negligible (cf. equation (7.1)). It is unlikely that in a practical situation γ > 2 (cf.
(7.4)) and therefore we focus on the case γ < 2. In this case, the solutions remain
valid for times t in the range

D−1
P QoS

−1 � t(2−γ) � κ−1QoS
−1. (7.5)

We now consider two cases to illustrate the range of validity of the results. First,
we consider steady injection γ = 1 at a rate 10−5 − 10−2 m3 s−1 from a central
injection well into a horizontally bounded permeable layer, as is typical of many
industrial injection schemes. In this case, the model (§3.2) holds for times t such that
10–104 < t < 105–108 s and may therefore be of considerable practical relevance.

Second we consider the case of a finite release which is then allowed to spread
through the reservoir with no further injection. The rate of decay of the current
depends on the reservoir superheat. If this is such that, for example γ(F) = −1/2
(§5.2), then for a current of initial volume (at t = 1) Qo = 1–105 m3, the model of the
spreading and vaporizing current applies for times 1–104 < t < 102–106 s after which
time the current mass will have decayed by a factor of about 1/10. The model (§5.2)
therefore provides a useful description of the vaporization and spreading of finite
current of initial radial extent 1–100 m and depth 1–100 m.
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8. Conclusions
We have presented a new series of similarity solutions to describe the migration of

idealized vaporizing gravity currents propagating through a superheated permeable
rock. Of particular note, we have shown that for the case of a finite release, the
similarity solutions are of the second kind with the mass of the current being
proportional to tγ where γ is a function of F. We have also shown how capillary
retention of fluid in the pore spaces can modify these solutions, increasing the decay
rate of the current volume in the case of a finite release of fluid. The similarity
solutions describe the long time dynamics of the current, to which real currents will
tend to converge as they spread from the source.

The present model provides a useful starting point for developing insight and un-
derstanding of some aspects of the complex flow dynamics associated with vaporizing
liquid currents in geothermal systems. However, it is important to remember that
the model is idealized and relaxation of a number of key assumptions merits further
investigation. Amongst other real world complicating effects, heterogenities in the
structure of the porous rock and regions of the permeable strata dominated by large
fractures rather than a uniform porous layer are likely to lead to significant differences
in the flow. Also, there is the possibility of viscous instability at the leading edge of
the current (cf. Fitzgerald & Woods 1994), the temperature gradient in the environs
may not be uniform and as the currents evolve thermal diffusion or the dynamic
vapour pressure may become important (§7). We plan to report of some of these
issues in future work.

I have had numerous valuable discussions with Shaun Fitzgerald about this and
other problems related to liquid injection in geothermal systems. The paper has
benefitted from comments of two anonymous referees.
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