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Capillary processes increase salt precipitation
during CO2 injection in saline formations
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An important attraction of saline formations for CO2 storage is that their high salinity
renders their associated brine unlikely to be identified as a potential water resource
in the future. However, high salinity can lead to dissolved salt precipitating around
injection wells, resulting in loss of injectivity and well deterioration. Earlier numerical
simulations have revealed that salt precipitation becomes more problematic at lower
injection rates. This article presents a new similarity solution, which is used to study
the relationship between capillary pressure and salt precipitation around CO2 injection
wells in saline formations. Mathematical analysis reveals that the process is strongly
controlled by a dimensionless capillary number, which represents the ratio of the CO2
injection rate to the product of the CO2 mobility and air-entry pressure of the porous
medium. Low injection rates lead to low capillary numbers, which in turn are found
to lead to large volume fractions of precipitated salt around the injection well. For one
example studied, reducing the CO2 injection rate by 94 % led to a tenfold increase in
the volume fraction of precipitated salt around the injection well.

Key words: capillary flows, condensation/evaporation, geophysical and geological flows

1. Introduction
An important aspect of many international CO2 emissions reduction plans involves

storing CO2 within the pore space of brine-containing aquifers, often referred to as
saline formations (Nordbotten & Celia 2006; MacMinn, Szulczewski & Juanes 2010).
The reason for choosing saline formations as opposed to freshwater aquifers is the
idea that brine is sufficiently saline that it is unlikely to be suitable for exploitation
as a future water resource. However, the dissolved salt within the brine can lead to
operational problems (Miri & Hellevang 2016).

When CO2 is injected into a saline formation, there is a high interfacial area
between the CO2 and the brine. Consequently, there is dissolution of CO2 into the
brine and evaporation of the water into the CO2-rich phase (Spycher, Pruess &
Ennis-King 2003). Surrounding the injection well, a dry-out zone develops where
the water in the brine is completely evaporated. A consequence of this evaporation
is that the dissolved salt precipitates as a solid phase, leading to significant loss of
permeability around the injection well. Ultimately, this process can lead to complete
deterioration of the injection well (Miri & Hellevang 2016).

† Email address for correspondence: s.a.mathias@durham.ac.uk
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Capillary processes increase salt precipitation 399

A number of numerical modelling studies have been undertaken to investigate
important controls on salt precipitation in the dry-out zone. Zeidouni, Pooladi-Darvish
& Keith (2009) derived an analytical solution using method of characteristics (MOC)
to estimate the volume fraction of precipitated salt in the dry-out zone (hereafter
referred to as C30) due to CO2 injection in saline formations. They concluded that
the distribution of precipitated salt was uniform within the dry-out zone.

An important limiting assumption was that there is a local pressure equilibrium
between the CO2-rich and aqueous phases. The difference between the pressures of
a non-wetting and wetting phase (the CO2-rich and aqueous phases, respectively, in
this context) is referred to as the capillary pressure. Pruess & Muller (2009) explored
the same problem using the numerical reservoir simulator, TOUGH2, with the CO2
storage module, ECO2N (Pruess & Spycher 2007). When capillary pressure is set to
zero, C30 is found to be insensitive to injection rate. However, when capillary pressure
is accounted for, C30 is found to increase with reducing CO2 injection rate.

A physical explanation is provided as follows (Pruess & Muller 2009): capillary
pressure is significantly increased as the wetting saturation is reduced. This can lead
to a reversing in the direction of the wetting pressure gradient, which in turn results in
counter-current flow, whereby brine flows in the opposite direction to the injected CO2.
The counter-current flow provides additional brine to the dry-out zone leading to an
increased availability of salt for precipitation. The counter-current flow rate is driven
by phase saturation gradients. As the injection rate increases, the counter-current flow
becomes less significant in comparison.

Kim et al. (2012) extended the work of Pruess & Muller (2009) by performing a
wider sensitivity analysis. They found that the value of C30 was significantly increased
for scenarios involving high permeability and low injection rates. Furthermore,
contrary to Zeidouni et al. (2009), they found that C30 was non-uniform, with the
highest values present at the edge of the dry-out zone. This localized increase in salt
precipitation is attributed to the combined effects of gravity and capillary pressure
driven counter-current flow.

Li, Tchelepi & Benson (2013) found that smoother capillary pressure curves lead to
faster dissolution of CO2 into the aqueous phase. This is presumably because smoother
capillary pressure curves lead to more capillary diffusion of the CO2-rich phase and
hence greater interfacial area between the CO2-rich phase and the aqueous phase.

The suite of numerical simulations described by Pruess & Muller (2009) and Kim
et al. (2012) have provided significant insight into the processes that control salt
precipitation during CO2 injection in saline formations. However, probably due to
the perceived computational expense of numerically simulating this problem to an
adequate accuracy, a more widespread sensitivity analysis has not been undertaken to
further understand this process.

Analytical solutions have been developed to better understand many other aspects of
the CO2 storage process. Nordbotten & Celia (2006) developed a similarity solution
to study the propagation rate of a CO2 plume and its associated dry-out zone during
injection of CO2 into a cylindrical saline formation. Hesse et al. (2007), Hesse, Orr
& Tchelepi (2008) and MacMinn et al. (2010), MacMinn, Szulczewski & Juanes
(2011) developed MOC solutions to study the migration of CO2 plumes following
the cessation of injection. Mathias et al. (2011a) extended the analytical solution
of Nordbotten & Celia (2006) to estimate the resulting pressure buildup within an
injection well. Mathias et al. (2011b) combined the work of Zeidouni et al. (2009)
and Mathias et al. (2011a) to study the role of partial miscibility between the CO2
and brine on pressure buildup. More recently, Mathias, McElwaine & Gluyas (2014)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

54
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.540


400 H. L. Kelly and S. A. Mathias

derived a MOC solution to estimate the temperature distribution around a CO2
injection in a depleted gas reservoir. There are many other such examples in the
literature. However, all the analytical solutions presented to date revolve around the
CO2 transport problem reducing to a hyperbolic partial differential equation (PDE),
such that MOC or some variant can be used for the solution procedure. The difficulty
of accounting for capillary pressure is that this leads to a diffusive component within
the equations, rendering MOC inadequate in this regard.

Unrelated to CO2 storage, McWhorter & Sunada (1990) derived a similarity solution
to look at two-phase immiscible flow around an injection well, which explicitly
captures the counter-current flow associated with capillary pressure effects. In the
past, their solution has not been commonly used due to difficulties with evaluating
the necessary nonlinear multiple integrals associated with their equations (Fucik
et al. 2007). However, more recently, Bjornara & Mathias (2013) have provided a
more efficient evaluation procedure by re-casting the equations as a boundary value
problem, which they then solve using a Chebyshev polynomial differentiation matrix
(Weideman & Reddy 2000).

The objective of this study is to use the method of Bjornara & Mathias (2013)
and extend the similarity solution of McWhorter & Sunada (1990) to account for
partial miscibility of phases, so as to study the control of capillary pressure on salt
precipitation during CO2 injection in saline formations.

The outline of this article is as follows. First, a PDE to describe partially miscible
three-phase flow is presented. This is then reduced to an ordinary differential
equation (ODE) by application of a similarity transform. The resulting boundary
value problem is solved using a Chebyshev polynomial differentiation matrix. The
necessary equations are then presented to determine the volume fraction of precipitated
salt in the dry-out zone. A set of verification examples are presented based on a
gas-displacing-oil scenario, previously presented by Orr (2007). A CO2-injection-in-a-
saline-formation scenario is then presented, which is compared with simulation results
from TOUGH2 for verification. Finally, a wider sensitivity analysis is conducted to
better understand the main controls in this context.

2. Mathematical model

A homogenous, cylindrical and porous saline formation is invoked with a thickness
of H [L] and an infinite radial extent. The pore space is initially fully saturated with
a brine of uniform NaCl concentration. Pure CO2 is injected at a constant rate of Q0
[L3T−1] into the centre of the saline formation via a fully penetrating injection well
of infinitesimally small radius. The permeability of the saline formation is horizontally
isotropic. However, a necessary simplifying assumption is that the vertical permeability
is significantly smaller than the horizontal permeability such that gravity effects can
be neglected. In this way, during the injection phase, fluid flow can be treated as a
one-dimensional radially symmetric process.

Now we will describe the material mixture that resides within the pore space.
Consider a mixture of three components: i = 1, 2 and 3. Components 1 and 2 are
mutually soluble and can reside within both a non-wetting fluid phase and a wetting
fluid phase, denoted hereafter as j= 1 and 2, respectively. Component 3 can dissolve
into phase 2 and precipitate to form a solid phase, denoted hereafter as j=3. However,
component 3 is assumed not to be able to reside in phase 1 and components 1 and 2
are assumed not to be able to reside in phase 3. In the context of a CO2–H2O–NaCl
system, i = 1, 2 and 3 for CO2, H2O and NaCl, respectively. All components are
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Capillary processes increase salt precipitation 401

assumed to be incompressible and not to experience volume change on mixing, such
that component densities can be treated as constant throughout.

The volume fraction of component i for the combined mixture, Ci [−], is defined by

Ci =

3∑
j=1

σijSj, (2.1)

where σij [−] is the volume fraction of component i in phase j and Sj [−] is the
volume fraction of phase j for the combined mixture, often to referred to as the
saturation of phase j.

With no additional assumptions, it can be said that

3∑
i=1

Ci =

3∑
i=1

σij =

3∑
j=1

Sj = 1 (2.2)

and

σij =



Ci, C1 /∈ (c12(1− S3), c11(1− S3)), i ∈ {1, 2}, j ∈ {1, 2}
cij, C1 ∈ (c12(1− S3), c11(1− S3)), i ∈ {1, 2}, j ∈ {1, 2}
0, C1 ∈ [0, 1], i ∈ {1, 2}, j= 3
0, C3 ∈ [0, 1], i= 3, j= 1
C3/S2, C3 ∈ [0, c32S2), i= 3, j= 2
c32, C3 ∈ [c32S2, 1], i= 3, j= 2
1, C3 ∈ [0, 1], i= 3, j= 3,

(2.3)

where cij [−] is the constant equilibrium volume fraction of component i in phase j.
It further follows that

S1 =


0, C1 6 c12(1− S3)

C1 − c12(1− S3)

c11 − c12
, c12(1− S3) <C1 < c11(1− S3)

1− S3, C1 > c11(1− S3)

(2.4)

and

S3 =



0, 0 6 C1 6 1, C3 < c32S2

C3 − c32

1− c32
, C1 6 c12(1− S3), C3 > c32S2

(c11 − c12)C3 − (c11 −C1)c32

(1− c32)c11 − c12
, c12(1− S3) <C1 < c11(1− S3), C3 > c32S2

C3, C1 > c11(1− S3), C3 > c32S2.
(2.5)

Under the above set of assumptions, fluid flow is controlled by the following set of
one-dimensional radially symmetric mass conservation equations

φ
∂Ci

∂t
=−

1
r
∂

∂r

(
r

2∑
j=1

qjσij

)
, i ∈ {1, 2, 3}, (2.6)
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402 H. L. Kelly and S. A. Mathias

where φ [−] is the saline formation porosity, t [T] is time, r [L] is radial distance
from the injection well and qj [LT−1] is the flow of phase j per unit area, which can
be found from Darcy’s law

qj =−
kkrj

µj

∂Pj

∂r
, j ∈ {1, 2}, (2.7)

where k [L2] is the saline formation permeability and krj [−], µj [ML−1T−1] and Pj
[ML−1T−2] are the relative permeability, dynamic viscosity and pressure of phase j,
respectively.

A detailed discussion with regards to justification for the above set of assumptions
is provided in § 4 below.

The difference between the non-wetting and wetting phase pressure is referred to
as the capillary pressure, Pc [ML−1T−2], i.e.

Pc = P1 − P2. (2.8)

Because the component densities are assumed to be constant, the system of
equations is divergence free and

2∑
j=1

qj =
Q0

2πHr
. (2.9)

Substituting (2.7) and (2.8) into (2.9), solving for the partial derivatives of Pj and
then substituting these back into (2.7) leads to

qj =
Q0 fj

2πHr
+
(−1)jkkr1 f2

µ1

∂Pc

∂r
, (2.10)

where, with further consideration of (2.4),

fj =


[1+ (−1)j]/2, C1 6 c12(1− S3)

krj

µj

(
2∑

j=1

krj

µj

)−1

, c12(1− S3) <C1 < c11(1− S3)

[1+ (−1)j−1
]/2, C1 > c11(1− S3).

(2.11)

Also note that there is no capillary pressure gradient when only one fluid phase is
present, i.e.

∂Pc

∂r
= 0, C1 /∈ (c12(1− S3), c11(1− S3)). (2.12)

Substituting (2.10) into (2.6), therefore leads to

∂Ci

∂τ
=−

∂Fi

∂ξ
, (2.13)

where

Fi =


σi2, C1 6 c12(1− S3)

2∑
j=1

fjσij +

(
kr1 f2

Ca

2∑
j=1

(−1)jσij

)
ξ
∂ψ

∂ξ
, c12(1− S3) <C1 < c11(1− S3)

σi1, C1 > c11(1− S3)

(2.14)
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Capillary processes increase salt precipitation 403

and

τ =
Q0t

πφHr2
e

, (2.15)

ξ =
r2

r2
e

, (2.16)

ψ =
Pc

Pc0
, (2.17)

where re [L] is an arbitrary reference length, Pc0 [ML−1T−2] is a reference ‘air-entry’
pressure for the porous medium of concern and Ca [−] is a dimensionless constant
often referred to as the capillary number, found from

Ca=
Q0µ1

4πHkPc0
. (2.18)

The capillary number represents the ratio of the CO2 injection rate to the product
of the CO2 mobility and air-entry pressure of the porous medium. It compares the
relative effect of the frictional resistance associated with fluid movement with the
surface tension, which acts across the interface between the CO2-rich phase and the
aqueous phase. Small values of Ca imply that capillary processes are important.

With regards to the initial condition and boundary conditions, let CiI [−] represent
a uniform initial value of Ci in the saline formation and Ci0 [−] represent a constant
boundary value of Ci at the injection well for i ∈ {1, 2, 3}.

2.1. Writing capillary pressure in terms of C1

As CO2 is injected into the saline formation, H2O evaporates from the brine leaving
NaCl behind as a precipitate in a dry-out zone that develops around the injection well.
Following the commencement of CO2 injection, there are therefore three distinct zones
within the saline formation that should be considered (see figure 1): (i) The dry-out
zone, which surrounds the injection well and contains only precipitated salt and CO2
in the non-wetting fluid phase. (ii) The full mixture zone, which surrounds the dry-
out zone and contains CO2, H2O and NaCl, distributed between the wetting and non-
wetting fluid phases. (iii) The initial saline formation fluid zone, which surrounds the
full mixture zone and contains only H2O and NaCl in a wetting fluid phase.

Inspection of (2.13) and (2.14) reveals that the problem is hyperbolic for C1 /∈
(c12(1− S3), c11(1− S3)) and not hyperbolic for C1 ∈ (c12(1− S3), c11(1− S3)), because
of the ∂ψ/∂ξ term. For the CO2 injection scenario described above, both Zones 1
and 3 are hyperbolic. In contrast, Zone 2 is not hyperbolic. The discontinuities that
separate the three zones are shock waves, which must satisfy the Rankine–Hugoniot
condition (e.g. Orr 2007).

Within Zone 2, the displacement of a wetting phase by a non-wetting phase
represents a continuous drainage cycle such that ψ can be treated as a unique
function of S2. Furthermore, because S3 = 0 and S2 = 1 − S1, it follows, from (2.4),
that

S2 =


1, C1 6 c12

c11 −C1

c11 − c12
, c12 <C1 < c11

0, C1 > c11

(2.19)
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Zone 1
Dry-out zone
Salt precipitate Brine containing water,

dissolved salt and
dissolved CO2

Brine containing 
water and
dissolved salt

Full mixture zone Initial formation fluid zone
Zone 2 Zone 3

Pure CO2

CO
2 
-r

ic
h 

ph
as

e 
sa

tu
ra

tio
n

1-C30

1

0
r0 r1

Radial distance from injection well

CO2 -rich phase
containing CO2 
and vaporized
water

FIGURE 1. A schematic diagram illustrating the distribution of CO2, water and salt around
a CO2 injection well in a saline formation.

and
∂S2

∂C1
=

1
(c12 − c11)

, C1 ∈ (c12, c11) (2.20)

such that it can be said that

∂ψ

∂ξ
=

1
(c12 − c11)

∂ψ

∂S2

∂C1

∂ξ
. (2.21)

In this way, equation (2.14) can be substantially simplified to get

Fi = αi − βiξ
∂C1

∂ξ
, (2.22)

where

αi =


Ci, C1 /∈ (c12, c11), i ∈ {1, 2}

2∑
j=1

fjcij, C1 ∈ (c12, c11), i ∈ {1, 2}

f2σ32, C1 ∈ [0, 1], i= 3

(2.23)

βi =


0, C1 /∈ (c12, c11), i ∈ {1, 2, 3}

G
2∑

j=1

(−1)jcij, C1 ∈ (c12, c11), i ∈ {1, 2}

Gσ32, C1 ∈ (c12, c11), i= 3

(2.24)

and

G=
f2kr1

Ca(c11 − c12)

∂ψ

∂S2
. (2.25)
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Capillary processes increase salt precipitation 405

When Ca→∞ and σ32 = 0, the above problem reduces to the hyperbolic problem
solved by Orr (2007) using the MOC. When c11 = 1, c12 = 0 and σ32 = 0, the above
problem reduces to the immiscible two-phase flow problem with capillary pressure,
previously solved by McWhorter & Sunada (1990) and Bjornara & Mathias (2013).
The G term in (2.25) is analogous to the G term in (16) of Bjornara & Mathias (2013).

2.2. Relative permeability and capillary pressure functions
Relative permeability is calculated from Corey curves but with relative permeability
assumed to linearly increase with saturation to one beyond residual saturations:

krj =



0, Sj 6 Sjc

krj0

(
Sj − Sjc

1− S1c − S2c

)nj

, Sjc < Sj < 1− Sic,

krj0 + (1− krj0)

(
Sj − 1+ Sic

Sic

)
, Sj > 1− Sic

i 6= j.
(2.26)

Dimensionless capillary pressure, ψ , is calculated using the empirical equation
of van Genuchten (1980) in conjunction with, following Oostrom et al. (2016) and
Zhang, Oostrom & White (2016), the dry-region extension of Webb (2000):

ψ =


(S−1/m

e − 1)1/n, S2 > S2m

ψd exp
[

ln
(
ψm

ψd

)
S2

S2m

]
, S2 6 S2m,

(2.27)

where Se [−] is an effective saturation found from

Se =
S2 − S2c

1− S2c
(2.28)

and krj0 [−], Sjc [−] and nj [−] are the endpoint relative permeability, residual
saturation and relative permeability exponent for phase j, respectively, m [−] and n
[−] are empirical exponents associated with van Genuchten’s function, ψd = Pcd/Pc0
[−] where Pcd [ML−1T−2] is the capillary pressure at which ‘oven-dry’ conditions are
said to have occurred (according to Webb (2000), this is taken to be 109 Pa) with

S2m = (1− S2c)Sem + S2c (2.29)

and
ψm = (S−1/m

em − 1)1/n, (2.30)

where Sem [−] is a critical effective saturation at which the switch over between
van Genuchten’s function and Webb’s extension take place, defined in the subsequent
sub-section.

Differentiation of (2.27) with respect to S2 leads to

∂ψ

∂S2
=


ψ

(1− S2c)mnSe(S
1/m
e − 1)

, S2 > S2m

ψ

S2m
ln
(
ψm

ψd

)
, S2 6 S2m.

(2.31)
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The van Genuchten capillary pressure function has been widely used in many
previous CO2 injection studies (e.g. Pruess & Muller 2009; Kim et al. 2012; Mathias
et al. 2013; Oostrom et al. 2016; Zhang et al. 2016). The Corey relative permeability
functions have previously been useful in describing CO2-brine relative permeability
data from at least 25 different experiments from the international literature (Mathias
et al. 2013).

2.3. Determination of Sem

Considering (2.31), Webb (2000) defines Sem as the effective saturation at which

ψm

(1− S2c)mnSem(S
1/m
em − 1)

=
ψm

S2m
ln
(
ψm

ψd

)
. (2.32)

Substituting (2.30) and (2.29) into (2.32) and rearranging leads to

Sem =
Sem + S2c(1− S2c)

−1

mn(S1/m
em − 1) ln[(S−1/m

em − 1)1/nψ−1
d ]

, (2.33)

which must be solved iteratively. Webb (2000) suggests that four to five iterations
are sufficient. However, this will be strongly dependent on the initial estimate of Sem0
applied.

For S2c > 0, a good initial estimate of Sem, Sem0, can be obtained by assuming
Sem0� 1 such that (2.33) reduces to

Sem0 =
S2c(1− S2c)

−1

ln[Sem0ψ
nm
d ]

, (2.34)

which can be rearranged to get

W exp(W)= z, (2.35)

where
z=

S2cψ
nm
d

(1− S2c)
(2.36)

and
W =

S2c

(1− S2c)Sem0
. (2.37)

Note that the functional inverse of z(W) in (2.35), W(z), is given by the Lambert W
function. Furthermore, because z is always positive and real, W(z)=W0(z), otherwise
referred to as the zero branch, which has the following asymptotic expansion (Corless
et al. 1996)

W0(z)= L1 − L2 +
L2

L1
+O

([
L2

L1

]2
)
, (2.38)

where L2 = ln L1 and L1 = ln z.
In this way, it can be said that

Sem0 =
S2c

(1− S2c)W0(z)
, (2.39)

where z is found from (2.36).
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Iteration/S2c 0.1 0.3 0.5 0.7

0 0.016496 0.054104 0.11525 0.2472
1 0.018951 0.061087 0.13012 0.29011
2 0.018927 0.061082 0.1305 0.29695
3 0.018927 0.061082 0.13051 0.29825
4 0.018927 0.061082 0.13051 0.29850
5 0.018927 0.061082 0.13051 0.29855
6 0.018927 0.061082 0.13051 0.29856
7 0.018927 0.061082 0.13051 0.29856

TABLE 1. Examples of the iterative calculation of Sem for different values of S2c (as
indicated in the top row) using (2.33) with m = 0.5, Pc0 = 19.6 kPa and Pcd = 109 Pa.
The initial guess, Sem0, is calculated using (2.39).

Examples of the iterative calculation of Sem from initial guesses obtained from (2.39)
are presented in table 1. When S2c 6 0.3, it can be seen that convergence is achieved
after just two iterations. When S2c = 0.5, three iterations are required. When S2c =

0.7, six iterations are required. The increase in the number of iterations required with
increasing S2c is due to reducing validity of the Sem� 1 assumption.

2.4. Application of a similarity transform
The partial differential equation in (2.13) can be reduced to an ordinary differential
equation by application of the following similarity transform

λ=
ξ

τ
. (2.40)

Substituting (2.40) into (2.13) and (2.22) leads to

dFi

dCi
= λ (2.41)

and
Fi = αi − βiλ

dC1

dλ
. (2.42)

Differentiating both sides of (2.41) with respect to Ci yields

d2Fi

dC2
i
=

dλ
dCi

, (2.43)

which on substitution into (2.42), along with (2.41), and rearranging leads to

d2F1

dC2
1
+

β1

(F1 − α1)

dF1

dC1
= 0. (2.44)

In the event that the boundary and initial values of C1, C10 and C1I , respectively,
are /∈(c12, c11), the boundary conditions for (2.44) must satisfy the Rankine–Hugoniot
conditions (similar to Orr 2007, p. 75):

dF1

dC1
=
α10 − F1

C10 −C1
, C1 > c11, (2.45)

dF1

dC1
=
α1I − F1

C1I −C1
, C1 6 c12, (2.46)
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where α10 and α1I represent the boundary and initial values of α1 associated with C10
and C1I , respectively. Alternatively, when C10 and C1I are ∈(c12, c11)

F1 = α10, C1 =C10,

F1 = α1I, C1 =C1I.

}
(2.47)

An efficient way of expressing both (2.46) and (2.47) simultaneously is to state
instead:

(C10 −C1)
dF1

dC1
+ F1 = α10, C1 = C̃10,

(C1I −C1)
dF1

dC1
+ F1 = α1I, C1 = C̃1I,

 (2.48)

where

C̃10 =H(C10 − c11)c11 +H(c11 −C10)C10, (2.49)
C̃1I =H(c12 −C1I)c12 +H(C1I − c12)C1I (2.50)

and H(x) is a Heaviside function.

2.5. Pseudospectral solution
Following Bjornara & Mathias (2013), the boundary value problem described in the
previous section is solved using a Chebyshev polynomial differentiation matrix, D
(Weideman & Reddy 2000).

The coordinate space for the Chebyshev nodes is x∈ [−1, 1]. However, the solution
space for F1 is C1 ∈ [C̃1I, C̃10]. Therefore the Chebyshev nodes, x, need to be mapped
to the C1 space by the following transform

C1 =
C̃10 + C̃1I

2
+

(
C̃10 − C̃1I

2

)
x. (2.51)

Consequently, it is necessary to introduce an appropriately transformed differentiation
matrix, E , where

E =
dx

dC1
D (2.52)

and from (2.51)
dx

dC1
=

2

C̃10 − C̃1I

. (2.53)

By applying the Chebyshev polynomial on the internal nodes and the Robin
boundary conditions in (2.48) on the end nodes, equation (2.44) can be written in
matrix form (similar to Piche & Kanniainen (2009) and Bjornara & Mathias (2013))

R(F)=


E (2)

2:N−1,:F+ I2:N−1,:diag
[

β1

F1 − α1

]
E (1)F

(CN −C1I)E
(1)
N,:F− IN,:F+ α1I

(C1 −C10)E
(1)
1,:F− I1,:F+ α10

 , (2.54)
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where R is the residual vector, F is the solution vector for the dependent variable F1,
I is an identity matrix, C is the vector containing the corresponding values of C1 and
N denotes the number of Chebyshev nodes to be solved for. The two last rows on the
right-hand side of (2.54) impose the Robin boundary conditions. Also note that E (n)

can be obtained from En.
The solution vector, F, can be obtained by Newton iteration, whereby new iterations,

F(i+1), are obtained from

F(i+1) =F(i) − (∂R/∂F(i))
−1R(F(i)), (2.55)

where ∂R/∂F is the Jacobian matrix defined as

∂R
∂F
=


E (2)

2:N−1,: + I2:N−1,:diag
[

β1

F1 − α1

]
E (1)
− I2:N−1,:diag

[
diag

[
β1

(F1 − α1)2

]
E (1)F

]
(CN −C1I)E

(1)
N,: − IN,:

(C1 −C10)E
(1)
1,: − I1,:

.
(2.56)

Note that F1 is bounded by α1 and α10. Therefore, a good initial guess is to set
F1 = α10. Following Bjornara & Mathias (2013), an additional correction step should
be applied in the Newton iteration to force the solution, F1, to be less than α1. The
Newton iteration loop is assumed to have converged when the mean absolute value of
R6 10−9. With 100 Chebyshev nodes (i.e. N= 100), convergence is typically achieved
with less than 200 iterations.

2.6. Dealing with salt precipitation in the dry-out zone
Now consider the case where pure CO2 is injected into a porous medium (i.e. α10= 1)
initially fully saturated with brine (i.e. α1I=0). Let σ32 be the volume fraction of NaCl
in phase 2 throughout the system. In this way, the volume fraction of H2O in phase 2
prior to CO2 injection is (1− σ32).

Let r0 [L] and rI [L] be the radial extents of the dry-out zone and injected CO2
plume respectively. At any given time, the volume of H2O evaporated by the CO2, Ve
[L3], can be found from

Ve = 2πφH(1− c11)

∫ rI

r0

rS1 dr. (2.57)

The volume of salt precipitated in the dry-out zone, Vs [L3], is found from

Vs =
σ32Ve

1− σ32
. (2.58)

The volume of the dry-out zone where the salt is precipitated, Vd [L3], is found from

Vd =πφHr2
0. (2.59)

Another quantity of interest is the volume of CO2 dissolved in the brine, Vc [L3],
which can be found from

Vc = 2πφHc12

∫ rI

r0

r(1− S1) dr. (2.60)
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Considering the definition of λ in (2.40) in conjunction with (2.15) and (2.16)

r2
0 =

Q0tλ0

πφH
and r2

I =
Q0tλI

πφH
, (2.61)

where, recall (2.41) and (2.48), λ0 and λI can be found from

λ0 =
dF1

dC1

∣∣∣∣
C1=c11

and λI =
dF1

dC1

∣∣∣∣
C1=c12

. (2.62)

In this way it can be understood that:

Ve = (1− c11)Q0t
∫ λI

λ0

S1 dλ, (2.63)

Vd =Q0tλ0, (2.64)

Vc = c12Q0t
∫ λI

λ0

(1− S1) dλ. (2.65)

Noting that the rates at which Vs and Vd grow with time are constant it can also
be understood that the volume fraction of precipitated salt, C3, will be both uniform
within the dry-out zone and constant with time. The value of C3 within the dry-out
zone, hereafter denoted as C30, can be found from

C30 =
(1− c11)σ32

(1− σ32)λ0

∫ λI

λ0

S1 dλ. (2.66)

Given that C10 = 1− C30, C1I = 0, α10 = 1 and α1I = 0, the boundary conditions in
(2.48) reduce to

dF1

dC1
=

1− F1

1−C30 − c11
, C1 = c11,

dF1

dC1
=

F1

c12
, C1 = c12.

 (2.67)

Values of C30 can be obtained iteratively by repeating the procedures outlined
in § 2.5 with successive estimates of C30 obtained from (2.66). Using an initial guess
of C30 = 0, this process is found to typically converge after less than 60 iterations.
The integrals in (2.65) and (2.63) can be found by trapezoidal integration.

3. Sensitivity analysis
3.1. Gas displacing oil

As a first example, the gas-displacing-oil scenario previously presented in figures 4.13
and 4.15 of Orr (2007) is adopted. The parameters describing the scenario include
c11 = 0.95, c12 = 0.20, σ32 = 0, µ2/µ1 = 2, S1c = 0.05, S2c = 0.1, kr10 = kr20 = 1 and
n1 = n2 = 2. For the pseudospectral solution, a value for the van Genuchten (1980)
parameter, m, is set to 0.5.

Plots of C1 against dF1/dC1 (which, recall, is equal to ξ/τ ) for this scenario are
shown in figure 2. The different subplots show the effect of varying the boundary
volume fraction, C10, and the initial volume fraction, C1I . The different colours relate
to different assumed values of Ca. Increasing Ca can be thought of as analogous
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1 2

C10 = 0.975 and C1I = 0

C10 = 0.77 and C1I = 0

C10 = 0.56 and C1I = 0 C10 = 1 and C1I = 0.8

C10 = 1 and C1I = 0.62

C10 = 1 and C1I = 0.18

30
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FIGURE 2. (Colour online) Sensitivity analysis based on gas-displacing-oil examples.
The infinite Ca value curves were obtained from the method of characteristics solutions
presented in figures 4.13 and 4.15 of Orr (2007). The finite Ca value curves were obtained
using the pseudospectral solution documented in the current article.

to an increased injection rate. The Ca→∞ curves were obtained from the MOC
solutions previously presented in figures 4.13 and 4.15 of Orr (2007). The finite Ca
value solutions were obtained using the pseudospectral solution described above, with
100 Chebyshev nodes.
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CO2 injection rate, 15 kg s−1

Porosity, φ 0.2
Initial pressure 10 MPa
Temperature 40 ◦C
Mass fraction of salt in brine, X32 0.15
Critical gas saturation, S1c 0.0
Residual water saturation, S2c 0.5
Endpoint relative permeability for CO2, kr10 0.3
Endpoint relative permeability for brine, kr20 1.0
Relative permeability exponents, n1, n2 3
Formation thickness, H 30 m
Permeability, k 10−13 m2

TABLE 2. Relevant model parameters used for the CO2 injection in saline formation
scenario, previously presented by Mathias et al. (2013).

When Ca = 100, the pseudospectral solution is virtually identical to the infinite-
Ca-MOC solutions. As Ca is decreased, the solution becomes more diffused. In
figure 2(a,b,d and f ), the infinity Ca results exhibit a trailing shock, which represents
a dry-out zone where all the liquid oil has been evaporated by the gas. Of particular
interest is that decreasing Ca leads to a reduction in the thickness of the dry-out
zone, ultimately leading to its complete elimination.

3.2. CO2 injection in a saline formation

Here the CO2-injection-in-a-saline-formation scenario, previously presented by Mathias
et al. (2013), is revisited. The example involves injecting pure CO2 at a constant rate
via a fully penetrating injection well at the centre of a cylindrical, homogenous
and confined saline formation, initially fully saturated with brine. Relevant model
parameters are presented in table 2. In this case, components 1, 2 and 3 are CO2,
H2O and NaCl, respectively, and phases 1, 2 and 3 represent a CO2-rich phase, an
H2O rich phase and precipitated salt, respectively.

The relevant fluid properties are obtained using equations of state (EOS) and
empirical equations provided by Batzle & Wang (1992), Fenghour, Wakeham &
Vesovic (1998), Spycher et al. (2003) and Spycher & Pruess (2005). Mathias et al.
(2011a) found that when using analytical solutions in this context, to account for the
relatively high compressibility of CO2, it is important to use an estimate of the final
pressure rather than the initial pressure for calculating the fluid properties relating
to CO2. Mathias et al. (2013) found that, for the scenario described in table 2, the
well pressure increased by just over 5 MPa after 10 years. Therefore, for the current
study, fluid properties are calculated using 15 MPa as opposed to 10 MPa.

The EOS of Spycher et al. (2003) and Spycher & Pruess (2005) provide equilibrium
mole fractions as opposed to volume fractions. Pruess & Spycher (2007) show how
mole fractions can be converted to mass fractions, xij [−], which can be converted to
volume fractions, σij [−], using (similar to Orr 2007, p. 19)

σij =
ρjxij

ρij
, (3.1)
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Depth (m) 1000 1500 2000

Pressure (MPa) 15 20 25
Temperature (◦C) 40 60 80
Density of CO2, ρ11 (kg m−3) 754 704 673
Density of H2O, ρ22 (kg m−3) 998 992 984
Density of NaCl, ρ33 (kg m−3) 2160 2160 2160
Volume fraction of CO2 in phase 1, c11 (−) 0.999 0.998 0.996
Volume fraction of CO2 in phase 2, c12 (−) 0.041 0.043 0.045
Volume fraction of NaCl in phase 2, σ32 (−) 0.075 0.074 0.073
Dynamic viscosity of CO2, µ1 (cP) 0.064 0.057 0.054
Dynamic viscosity of brine, µ2 (cP) 0.963 0.730 0.573

TABLE 3. Relevant model parameters used for the CO2 injection in a saline formation
scenario with a brine salinity of 150 ppt.

where ρij [ML−3] is the density of component i in phase j and ρj [ML−3] is the
composite phase density, which can be found from

ρj =

(
Nc∑
i=1

xij

ρij

)−1

, (3.2)

where Nc [−] is the number of components present. Because the pseudospectral
solution above assumes component densities remain constant throughout, a decision
is made that ρ12 = ρ11, ρ21 = ρ22 and ρ32 = ρ33.

Table 3 shows how the various fluid properties vary with depth below sea level in
this context. Depth is related to pressure by assuming hydrostatic conditions and then
adding 5 MPa to allow for pressure induced by CO2 injection. Depth is related to
temperature by assuming a geothermal gradient of 40 ◦C km−1. It can be seen that
the volume fractions are largely unaffected by depth. However, the variation in brine
viscosity and CO2 density are more noticeable.

A comparison of results from the pseudospectral solution with those from the
TOUGH2 simulation reported by Mathias et al. (2013) is shown in figure 3, alongside
results for when Ca→∞, obtained using a MOC solution similar to that previously
presented by Zeidouni et al. (2009) and Mathias et al. (2011b). Mathias et al. (2013)
assumed Pc0 = 19.6 kPa. Considering the other parameters in tables 2 and 3, this
leads to a Ca value of 1.7. There is excellent correspondence between the MOC
solution, the TOUGH2 results and the pseudospectral solution when Ca= 1.7.

A value of Pc0 = 19.6 kPa is often used to describe saline formations in a CO2
storage context (Rutqvist et al. 2007; Zhou et al. 2008; Mathias et al. 2013; Zhu
et al. 2015, e.g.). Experimental analysis looking at four different sandstone reservoirs
revealed a range of Pc0 values from 1.3–7.1 kPa (Oostrom et al. 2016). Smaller values
of Pc0 imply larger pore diameters.

A hallmark of hyperbolic theory is that the problem can be reduced to a
fundamental wave structure which constitutes the solution. In figure 3, it can be
seen that such a wave structure is largely preserved, despite the inclusion of capillary
diffusion. Furthermore, the wave velocity of the leading shock is virtually independent
of Ca for the range of Ca values studied. However, decreasing Ca leads to a more
diffused spreading wave caused by the increase in capillary diffusion, which in turn
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FIGURE 3. (Colour online) Plots of CO2 saturation against radial distance after injecting
4.73 Mt of CO2 whilst assuming a range of different capillary numbers, Ca. The TOUGH2
results are from the simulations previously presented by Mathias et al. (2013). Other
associated model parameters are presented in table 2. The results for Ca → ∞ were
obtained using a method of characteristics solution, also presented by Mathias et al.
(2013). The results for finite Ca values were obtained using the pseudospectral solution.

leads to a reduction in the wave velocity of the trailing shock, as also seen in
figure 2(a). The decrease in steady-state CO2 saturation in the dry-out zone is caused
by an increase in the volume fraction of precipitated salt (recall that C10 = 1−C30).

For the scenarios depicted in figure 3, C30 is found to be insensitive to Ca for Ca
values greater than or equal to 1.7. However for Ca values less than 1.7, the volume
of the dry-out zone is significantly reduced and the volume fraction of precipitated salt
is significantly increased. The value of C30 for Ca= 0.2 is almost double the value for
Ca= 1.7. The value of C30 for Ca= 0.1 is around 10 times that of when Ca= 1.7.
The Ca = 1.7 scenario described in table 2 assumes an injection rate of 15 kg s−1.
The results shown in figure 3 therefore suggest that reducing the injection rate down to
1.8 kg s−1 would lead to a doubling of the volume fraction of precipitated salt around
the injection well. Furthermore, reducing the injection rate from 15 kg s−1 down to
0.9 kg s−1 would lead to an almost 10 times larger volume fraction of precipitated
salt around the injection well.

For the hyperbolic case when Ca→∞, it is common to study plots of F1 and C1

(Orr 2007). Figure 4(a) shows plots of F1 against C1 for all the values of Ca presented
in figure 3 along with a plot of α1. The MOC solution (i.e. with Ca→∞), which sits
almost exactly underneath the Ca=1.7 line, intersects the α1 line at tangents, which is
symptomatic of satisfying the shock waves satisfying the Rankine–Hugoniot condition.
To better visualize the results for finite Ca values, (1−F1) is shown on a log scale in
figure 4(b). Here it can be seen that the models approach a value of F1=1 at different
C1 values depending on the volume fraction of precipitated salt. The volume fraction
of precipitated salt increases with decreasing Ca. Figure 4(c) shows a close-up view
of the trailing shocks on linear axes for further reference. For finite Ca values, the F1
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FIGURE 4. (Colour online) Plots of F1, α1 and β1 against C1 for the simulation results
presented in figure 3.

lines never actually intersect the α1 line except at where C1= 0. The reason for this is
due to β1, which is plotted in figure 4(d). The highest values of β1 are at the centre
of the two-phase region, C1 ∈ (c12, c11). β1 smoothly grades down to zero as it reaches
the single-phase regions, C1 /∈ (c12, c11).

A further sensitivity analysis is presented in figure 5. The three depth scenarios
presented in table 3 are applied with three different brine salinities. Figure 5(a) shows
how the volume of the dry-out zone decreases with decreasing Ca. The size of the
dry-out zone increases with increasing depth. In contrast, brine salinity has very little
impact on dry-out zone volume.

Figure 5(b) shows the volume of the evaporated water also reduces with decreasing
Ca. At first this seems surprising given that capillary pressure effects should bring
more water into the dry-out zone. However, the effect of the capillary pressure is
also to spread the CO2 out further (see leading edge of CO2 plumes in figure 3).
As a consequence, more CO2 is dissolved (see figure 5c). Consequently, less of the
CO2-rich phase is available for water from the brine to evaporate into. The volume
of evaporated water increases with depth because the equilibrium volume fraction
of water in the CO2-rich phase increases with depth (see table 3). The volume of
dissolved CO2 is insensitive to depth but decreases with increasing brine salinity.
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FIGURE 5. (Colour online) Sensitivity analysis based around the scenario presented in
figure 3. The different colours relate to different brine salinities, as indicated in the legend.
The solid lines, dashed lines and dash-dotted lines represent results obtained using fluid
properties calculated assuming the saline formation exists at a depth of 1000 m, 1500 m
and 2000 m, respectively (based on hydrostatic pressure conditions and a geothermal
gradient of 40 ◦C km−1 as in table 3). (a) Shows plots of the ratio of dry-out zone volume
(Vd) to injected CO2 volume (Q0t) against capillary number (Ca). (b) Shows plots of the
ratio of volume of evaporated water (Ve) to Q0t against Ca. (c) Shows plots of the ratio
of volume of dissolved CO2 (Vc) to Q0t against Ca. (d) Shows plots of precipitated salt
volume fraction in the dry-out zone (C30) against Ca.

The latter is because the solubility limit of CO2 in brine decreases substantially with
increasing salinity (Spycher & Pruess 2005).

Figure 5(d) shows how volume fraction of precipitated salt in the dry-out zone, C30,
superlinearly increases with decreasing Ca. For Ca> 0.25, the quantity of precipitated
salt is mostly controlled by brine salinity. However, for Ca < 0.25, depth plays an
increasingly important role, with higher levels of salt precipitation in shallower
formations. This is because the dry-out zone increases with depth, despite increasing
water evaporation with depth. Figure 6 shows the same results as figure 5(d) but with
C30 normalized by dividing by the salinity of the brine, X32. Here it can be seen that
C30 almost linearly scales with X32.
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FIGURE 6. (Colour online) The same as figure 5(d) except that salt volume fraction, C30,
is divided by the salinity of the brine, X32.

The volume fraction of precipitated salt is also strongly controlled by the relative
permeability parameters, krj0, Sjc and nj (Zhang et al. 2016). The analysis performed
to provide figure 6 was repeated for the 1000 m depth scenario for each of the six
groups of relative permeability parameters presented in table 4. These six parameter
sets were selected from a database of 25 core experiments previously compiled by
Mathias et al. (2013). The six cores were selected to provide a representative range
of possible outcomes, given the wide variability generally observed in such data sets.

From figure 7 it can be seen that the high Ca values of C30 range from 0.019
to 0.044. Furthermore, the critical Ca value below which C30 superlinearly increases
ranges from 0.025 to 10. Comparing these results with the parameter sets in table 4 it
can be seen that when the relative permeability for brine is more linear, the value of
C30 at high values of Ca tends to be lower. However, this linearity also leads to the
superlinearly increasing of C30 with decreasing Ca to occur at a relatively low value
of C30 (see for example Cardium no. 1 and Basal Cambrian). Exactly the opposite
happens when the relative permeability for brine is highly nonlinear (see for example
Paaratte and Tuscaloosa). This is probably due to counter-current flow of water being
less efficient when relative permeability is highly nonlinear.

4. Discussion of key modelling assumptions
4.1. Incompressible fluids

Fluid densities are assumed to be independent of pressure. The compressibilities of
H2O and NaCl are commonly ignored. For pressures and temperatures associated with
depleted gas reservoirs, the compressibility of CO2 is very high and has a significant
impact on fluid movement (Mathias et al. 2014). However, for CO2 injection in
saline formations, fluid pressures are expected to be hydrostatic or above. Under
these conditions, providing a sensible reference pressure is used to determine the
fluid properties of CO2 (i.e. an estimate of pressure towards the end of the injection
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FIGURE 7. (Colour online) Plot of normalized precipitated salt volume fraction, C30,
against capillary number, Ca, using the 1000 m depth model scenario described in tables 2
and 3 in conjunction with the different relative permeability parameters given in table 4.

Unit kr10 S2c n1 n2

Cardium no. 1 0.526 0.197 1.7 1.3
Basal Cambrian 0.545 0.294 5.0 1.8
Otway 0.332 0.558 3.2 2.9
Viking no. 1 0.659 0.437 6.5 2.5
Paaratte 0.328 0.389 3.0 4.6
Tuscaloosa 0.077 0.703 3.2 4.7

TABLE 4. Relative permeability parameters for six different sandstone cores (after Mathias
et al. 2013). Note that for each core kr20 = 1 and S1c = 0. Data for Cardium no. 1, Basal
Cambrian and Viking no. 1 were originally obtained by Bennion & Bachu (2008). Data
for Otway were originally obtained by Perrin & Benson (2010). Data for Paaratte and
Tuscaloosa were originally obtained by Krevor et al. (2012).

cycle), the compressibility of CO2 has been found to have a negligible effect in this
context (Mathias et al. 2011a,b).

4.2. No volume change on mixing
Component densities are assumed to be uniform across phases. In fact, the densities
of CO2 and H2O are both higher in the aqueous phase as compared to in the CO2-rich
phase. For a wide range of different CO2 injection scenarios, this volume change on
mixing is found to lead to an increase in volumetric flow rate of around 0.05 % in
Zone 2 and a decrease in volumetric flow rate of around 5 % in Zone 3 (see table 2
of Mathias et al. 2011b). See § 2.1 above for an explanation of the zone numbers.

With regards to NaCl, the density of precipitated NaCl, ρ33, is 2160 kg m−3. Using
(3.2) in conjunction with the EOS for brine given by Batzle & Wang (1992), it can
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be shown that the density of NaCl dissolved in brine, ρ32, is around 2800 kg m−3. In
the above analysis we have set ρ32 = ρ33 such that the model precipitates the correct
volume of salt in the dry-out zone. The consequence is that the volume fractions of
water and CO2 in the brine are underestimated by around 2 %.

Figure 3 compares model results from TOUGH2 with those from the similarity
solution. TOUGH2 properly incorporates fluid compressibility and volume change on
mixing and there is negligible difference between the two models.

4.3. Ignoring gravity effects
As stated earlier, another important assumption is that the vertical permeability of
the formation is sufficiently low that gravity effects can be ignored. Extreme changes
in density and/or viscosity can lead to instabilities and fingering phenomena, which
cannot be represented using one-dimensional models. Indeed, Kim et al. (2012) found
that buoyancy driven flow, associated with the different densities of brine and CO2,
played an important part in controlling the spatial distribution of precipitated salt
around an injection well. However, this was mostly after the cessation of injection.
During the injection phase, gravity segregation within the dry-out zone was much
less significant and no viscous fingering was observed.

Mathias et al. (2011b) presented a comparison of simulation results where gravity
was accounted for and ignored using TOUGH2 and the MOC solution of Zeidouni
et al. (2009), respectively. For a 100 m thick isotropic saline formation, gravity was
found to have a strong effect on the leading edge of the CO2 plume. However,
gravity effects were found to be negligible on the dry-out zone development and the
associated volume fraction of the precipitated salt. For a 50 m thick isotropic saline
formation, gravity effects were found to be negligible throughout.

The dry-out zone is generally unaffected by gravity segregation due to the larger
velocities situated close around the injection well, which are mostly horizontal due to
the horizontal driving force provided by the injection well boundary (Mathias et al.
2011b). From the discussion above it is expected that gravity effects are unlikely to
significantly affect the dry-out zone in the 30 m thick saline formations studied in
this current article, at least for the lower capillary numbers studied. However, as the
capillary numbers are increased, the horizontal injection velocities will become less
significant and gravity will play a more important role. However, our analysis has
shown that excessive salt precipitation can also develop in the absence of gravity
effects due to the counter-current imbibition associated with capillary pressure.

5. Summary and conclusions
A new similarity solution has been presented to study the role of capillary

pressure on salt precipitation during CO2 injection in a saline formation. Dimensional
analysis has revealed that the problem is largely controlled by a capillary number,
Ca=Q0µ1/(4πHkPc0), where H [L] is the formation thickness, k [L2] is permeability,
Pc0 [ML−1T−2] is an air-entry pressure associated with the porous medium, Q0
[L3T−1] is the injection rate and µ1 [ML−1T−1] is the dynamic viscosity of CO2.
The volume fraction of precipitated salt around the injection well, C30 [−], is found
to superlinearly increase with decreasing Ca. Subsequent sensitivity analysis also
reveals that C30 linearly scales with the salinity of brine. C30 is found to reduce
with increasing storage depth. This latter point is largely attributed to the equilibrium
volume fraction of water in the CO2-rich phase increasing with depth. Relative
permeability parameters are found to have a significant effect on the value of Ca
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below which C30 superlinearly increases. For highly nonlinear relative permeabilities,
C30 remains stable for much lower capillary numbers.

The new similarity solution represents a significant extension of the work of
Zeidouni et al. (2009) by accounting for capillary pressure and an extension of the
work of Bjornara & Mathias (2013) by accounting for radially symmetric flow, partial
miscibility and salt precipitation.

In one scenario studied, reducing the CO2 injection rate from 15 kg s−1 to
0.9 kg s−1 led to almost a 10 times larger volume fraction of precipitated salt.
In the past, pressure buildup in injection wells has been widely perceived to increase
monotonically with CO2 injection rate. However, these results clearly demonstrate
that as injection rate is decreased the volume fraction of precipitated salt around
the injection well will significantly increase leading to potentially significant loss of
injectivity. It follows that below a critical threshold, pressure buildup can be expected
to increase with reducing injection rates as well. The similarity solution presented in
this article can serve as a useful tool to determine the critical capillary number at
which these effects are likely to take place.
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