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Indoor positioning systems have received increasing attention for supporting location-based ser-
vices in indoor environments. Wi-Fi based indoor localisation has become attractive due to its
extensive distribution and low cost properties. IEEE 802.11-2016 now includes a Wi-Fi Fine
Time Measurement (FTM) protocol which can be used for Wi-Fi ranging between intelligent
terminal and Wi-Fi access point. This paper introduces a framework of Wi-Fi FTM data acqui-
sition and processing that can be used for indoor localisation. We analyse the main factors that
affect the accuracy of Wi-Fi ranging and propose a calibration, filtering and modelling algorithm
that can effectively reduce the ranging error caused by clock deviation, non-line-of-sight (NLOS)
and multipath propagation. Experimental results show that the proposed calibration and filtering
method is able to achieve metre-level ranging accuracy in case of line-of-sight by using large
bandwidth. Estimation results also show that the proposed Wi-Fi ranging model provides an
accurate ranging performance in NLOS and multipath contained indoor environment; the final
positioning error is less than 2-2 m with a stable output frequency of 3 Hz.
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1. INTRODUCTION. GNSS is widely used for positioning outdoors where it can
provide metre-level localisation accuracy, while Wi-Fi signals are currently used for
positioning indoors (Paziewski and Wielgosz, 2014). Improving the precision of indoor
localisation with Wi-Fi signals and to support high accuracy indoor navigation has been a
severe challenge, however, due to the complex and changeable indoor environment.
Multiple characteristics extracted from a Wi-Fi signal can be used for indoor localisa-
tion, such as received signal strength indication (RSSI) (Chintalapudi et al., 2010), channel
impulse response (Zhang et al., 2012), time of arrival (TOA) (Xiong et al., 2015), angle
of arrival (AOA) (Chuang et al., 2015) and channel state information (CSI) (Wu et al.,
2013). Other techniques such as multi-source fusion (Zhuang et al., 2015) and fingerprint
(He et al., 2017) can also be used in complex indoor scenarios. In 2016 IEEE 802.11
standardised the Fine Time Measurement (FTM) protocol which can provide metre-level
localisation accuracy according to the Wi-Fi alliance (IEEE Std 802.11, 2016). Recently,
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several Wi-Fi chipsets have provided hardware-level support for FTM and the smart phone
Android P from Google has provided the platform-level support (Wi-Fi Certified Location,
2017). Besides the documentation for the IEEE802.11 standard, there are few details about
implementation techniques and performance of round-trip time ranging systems or how to
use the specified Wi-Fi chipsets (Banin et al., 2016).

Traditional Wi-Fi based indoor localisation methods usually use RSSI to calculate the
distance between an intelligent terminal and Wi-Fi AP, or they use the fingerprint method
(He et al., 2017). Compared with RSSI, Wi-Fi FTM, which measures the round-trip time
(RTT) of the Wi-Fi signal between initiator and responder/AP promises the following
advantages. First, Wi-Fi RTT can be more stable compared with RSSI and is less affected
by multipath propagation in the line-of-sight (LOS) condition (Zhang et al., 2013). Second,
it is easier to establish a relationship model between measured time and the ground truth
distance after data processing (Sharp and Yu, 2014). Third, Wi-Fi FTM-based localisation
does not require the preliminary efforts for obtaining environmental information compared
with the fingerprint based methods (Bisio et al., 2014).

In a complex indoor environment, where the direct path between the transceiver is
blocked and only non-line-of-sight (NLOS) transmission exists, the distance errors mea-
sured by Wi-Fi FTM cannot be easily eliminated due to its ranging mechanism (IEEE
Std 802.11, 2016). To make matters worse, the measurement errors are in different statis-
tics in different indoor scenarios, such as office, corridor or underground carpark (Chan
et al., 2006). The accuracy of Wi-Fi FTM is also affected by bandwidth of the Wi-Fi sig-
nals. For instance, the ranging results are much more accurate using 80 MHz bandwidth
than with 40 MHz bandwidth. With larger bandwidth, the ranging errors can be reduced
by improving the resolution of the multipath detection (Al-Jazzar et al., 2007). Another
important factor is the clock deviation error caused by initial deviation and random errors
which are inconsistent with different initiators and responders and should be estimated and
eliminated.

In order to solve the challenges mentioned above, a calibration and filtering algorithm
is presented to eliminate the ranging error caused by clock deviation and a real-time Wi-Fi
ranging model is proposed to decrease the effects of NLOS and multipath propagation.
To this end, we collected data from multiple APs using different sampling rates to test
the relationship between sampling rate and stability of the data. Finally, we estimated the
ranging accuracy in a typical indoor environment using multiple APs and then evaluated
the overall positioning performance of the proposed algorithm.

The rest of this paper is organised as follows: Section 2 will introduce some related
work. Section 3 will give a theoretical framework about the principle of Wi-Fi FTM
and propose a calibration, filtering and modelling algorithm. Section 4 presents a series
of experiments to evaluate the accuracy and stability of the proposed algorithm. We will
conclude this paper and point out our future work in Section 5.

2. RELATED WORK.

2.1.  Estimation of NLOS and multipath propagation. Saito et al. (2016) evaluated
the multipath effect in the line-of-site (LOS) condition, distinguishing the directional
and polarisation characteristics estimated by the RiMax algorithm proposed in Hanssens
et al. (2018). Mrstik et al. (2007) quantitatively analysed the effect of angle of inclination
between the Wi-Fi station and Wi-Fi AP in tracking using RADAR. Another line of work
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(Chen et al., 2016) collected the channel frequency responses to achieve centimetre-level
accuracy in the NLOS constrained indoor environment. ToneTrack (McCrady et al., 2000)
implements a frequency combining algorithm to increase the bandwidth on the WARP
hardware radio platform to track Wi-Fi based devices indoors. In this system, McCrady
et al. proposed a triangular inequality and clustering-based outlier detection to filter the
NLOS APs.

2.2. Evaluation of time measurement based ranging systems. Wi-Fi FTM protocol
is based on the TOA and TOD methods (He et al., 2013; Rea et al., 2017) which can
also be used to measure the time of flight (TOF). Banin et al. (2013) introduced how the
TOF works in detail and designed a series of experiments for localisation estimation in
a typical indoor environment. In order to reduce the negative impacts on unsynchronised
time signal and multipath, they used EKF fusing TOF measurements with IMU to enhance
the performance of the TOF system (Schatzberg et al., 2014). Dvorecki et al. (2019) pro-
posed a ‘Siamese’ artificial neural network based on the machine learning approach, which
gives an effective solution to the influence of low bandwidth and improves the ranging
precision of Wi-Fi FTM. Niesen et al. (2017) proposed an improved dedicated short-range
communication method by Wi-Fi FTM to perform outdoor inter-vehicle ranging. They dis-
cussed a timestamp compression method that discarded the most significant bits of each
FTM frame.

3. THEORETICAL FRAMEWORK. IEEE 802.11 (2016) now includes a Wi-Fi FTM
protocol which allows an initiator to determine its distance from a local responder/AP.
In order for an initiator to obtain its location, the initiator may perform this procedure
with multiple surrounding responders whose locations are known. However, this procedure
may be affected by several key factors such as clock deviation error, NLOS and multi-
path propagation. This section will illustrate the principle of Wi-Fi FTM and go on to give
our solutions to eliminate the ranging errors caused by clock deviation, NLOS and mul-
tipath propagation. The framework of the proposed Wi-Fi FTM base data acquisition and
processing algorithm is illustrated in Figure 1.

3.1. Principle of Wi-Fi FTM. Wi-Fi FTM protocol enables distance measurement
between initiators and responders such as mobile phones and APs. The whole procedure
is described as follows. First, the initiator sends a FTM request to the responder. The
responder receives the request and returns an ACK signal to the initiator which indicates
that the responder has received the FTM request. After that several FTM signals are sent
from responder to the initiator to calculate the mean RTT. This process can be performed
between several initiators and responders at the same time. Figure 2 shows the whole proto-
col. In this procedure, the parameter named ‘FTMs per burst’ can be changed to improve the
FTM accuracy by multiple measurements. A single RTT in one FTM period is calculated
by Equation (1):

RTT = (14 — t1,) — (50 — 2.) (1)

where n indicates one FTM structure exchange during the whole FTM procedure, #;_,, is the
timestamp when the FTM structure is first sent by the responder, #, , is the timestamp when
the FTM structure is received by the initiator, #;_, is the timestamp when the initiator returns
the FTM structure to the responder and # , is the timestamp when the FTM structure is
finally received by the responder. Generally, the protocol excludes the processing time on
the initiator by subtracting it (#3 , — f,_,) from the total RTT (#_, — #;_,), which represents
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Figure 1. Framework of the proposed algorithm.

the time from the instant when the FTM structure is sent (¢, ,) by the responder to the
instant when the FTM structure is finally received by the responder (4,). This calculation
is repeated for each FTM structure exchange and the final RTT is the average over the
number of FTMs per burst. In this study, the parameter of FTMs per burst was set at 30 to
minimise the measurement noise so as to keep high accuracy (Ibrahim et al., 2018).

The distance between initiator and responder can be calculated by Equation (2):

distance = C - [(t4_n — 11_n) — (530 — t2.0)] /2 (2)

where C indicates the speed of the radio wave.

3.2. Analysing and processing of clock deviation error. The clock deviation that
affects the accuracy of Wi-Fi FTM generally always contains initial clock deviation and
random clock error. The initial clock deviation exists before the FTM procedure and is
decided by both initiator and responder, similar to TOA and DOA technology (Navarro and
Najar, 2011; Shen et al., 2012). The random clock error exists during each FTM exchange
and can be seen as the measurement noise. Both errors should be eliminated in order to
improve the accuracy and stability of the Wi-Fi FTM.

3.2.1. Calibration method for the initial clock deviation. It can be observed from
Figure 2 that in the first burst duration of Wi-Fi FTM, the first time the responder sends
FTM information to the initiator, message FTM_1(0,0) is sent because #; ¢ and #4 ( are
unknown (IEEE Std 802.11, 2016). At the beginning of the following burst duration of
FTM, message FTM_1(#; %4 ,) is sent by the responder. However, these timestamps are
not the true time instant when the signals arrive or leave the responder and initiator due to
the signal processing and hardware delay. The true RTT between initiator and responder
has been added with an initial time difference Atg.,, before the FTM procedure. Aty in
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RTTtrue = (((t4_n - t4_delay) - (tl_n + tl_delay) - ((tS_n + t3_delay) - (tZ_n - t2_delay)))

= RTTmeasurement - (t4_de1ay +1 1_delay) - (t3_delay + t2_delay)

= RTTmeasurement - Al‘delay

)

In Equation (3), RTTj.. is the true ranging result after moving Afgcl.y from real-time
measurement ranging result RT Tyeasurements and # indicates one FTM structure exchange
during the whole FTM procedure. In order to obtain RTT,,., calibration is needed. Since
Atgelay 1s not directly related to the ranging distance, but depends on the different hardware
structure and processing methods of the signal (IEEE Std 802.11, 2016), it can be calibrated
by measuring the ranging difference between measured distance and ground truth distance,
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as described in Equation (4):

1 M
Atgeay = 1= D (dn(i) = di(i), M = R/Ad “)
i=1

where M is the number of sampling groups, R is the effective measurement range of the
responder,Ad indicates the sampling interval of distance, d,,(7) is the average measure dis-
tance of each sampling group, d,(7) is the ground truth distance of each sampling, and C is
the speed of radio wave. Atgcloy can be estimated and calibrated after large amount of data
collection.

3.2.2. Filtering of clock random error. Random clock error exists during each FTM
procedure, which causes signal fluctuation within the specific range. In general, Atndom
can be assumed as Gaussian-distributed variables with zero mean and variances o2 after
calibration, which is described in Equation (5):

| 2
Atpandom( ) = N (—#) (5)

The filtering method contains two application situations. The first one is static state, which
can be applied to the field of the internet of things and smart furniture. In such static sit-
uations, a Kalman filter (KF) can be applied to smooth and estimate the true value from
raw data. Suppose that the measurement distance is constant, system state equation can be
defined as:

X (k)= AX (k — 1)+ W(k) (6)

where A is the state transition matrix, and W(k) is a driving noise with i dimension which
contains random clock deviation.
The observation equation is defined as:

Z(k) = HX (k) + V(k) (7)

where Z(k) is an observation of RTT ranging result, H is i dimensional diagonal
observation matrix, and V(k) is observation noise. Each matrix can be defined as:

D, 1 0O ... 0 E,
zw= |20 m=| "t D =
D; 0 0 1 E;

where i is the number of APs, and D; is the calibrated RTT ranging results from different
APs. In the LOS condition, D; = Deasurement — Aldelay - C/2, and in the NLOS condition,
D; indicates the distance which is processed by both the calibration method and the Wi-Fi
ranging model. E; = C - Afyangom indicates the random ranging error.

Under these conditions, the KF is summarised as follows:

Predict : X, (k) = AX ,(k — 1) 8)
Update : X (k) = X, (k) + K (k) - (Z(k) — HX ,(k)) )
MSE : p,(k) = Ap (k — DA’ + Q (10)
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P.(k) = Py (k) — K(k)P, (k) (amn
Kalman Gain : K(k) = P,(k)H'/(HP,(k)H' + R) (12)

where P, (k) is the prediction mean square error of the estimate when the current obser-
vation is not considered, X, (k) is the estimate of the RTT ranging results, P.(k) is the
covariance matrix and K (k) indicates the Kalman gain.

In a dynamic situation, a moving average filter is applied in the case when the initiator
is moving, defined as follows:

N—1

1
YRy =+ Y dnlk—i) (13)
i=1

where d,, is the real-time FTM measurement result, N is the length of the filtering window
and the output y (k) is the average of the measurement in the filtering window.

With the understanding of initial clock deviation and random clock error, RTT in one
period can be described as follows:

RTTtotal = (t4_n - tl_n) - (t3_n - ZL2_n) + Atdf:lay + AZLrandom (14)

where RT Ty is the final measured RTT data, and Atgelay exists before ranging, which
cannot be easily detected directly by hardware. Hence before we use the ranging system,
some calibration measurements have to be taken to eliminate the initial clock deviation.
Atrandom €Xists during the ranging process which is filtered by the KF and moving average
filter proposed above.

3.3. Model of NLOS and multipath propagation. In a complex indoor environment,
the Wi-Fi ranging results may contain NLOS distance which may not be easily estimated.
The existence of NLOS errors will significantly degrade the localisation performance,
hence mitigation of NLOS errors becomes an urgent task (Zhang et al., 2013; Wang et al.,
2014; Xiong et al., 2015).

Wi-Fi FTM can also be affected by multipath propagation because of the low band-
width. When the TOA-based methods are used, signal detection speed depends on the
bandwidth of the Wi-Fi signal which can help to distinguish first arrival and multipath
arrival (He et al., 2013a). Missing one detecting period could result in an error of several
metres or more. In standard ranging systems, the proposed filtering method can help to filter
out hardware/software noise, but it cannot eliminate the multipath effect that leads to esti-
mated deviation. Especially in dynamic and complex indoor environments, moving objects
could temporarily block the direct path of the transmitted signals or add more reflectors,
resulting in the NLOS condition.

The output value of the single FTM responder is not sufficient to distinguish multipath
propagation and NLOS errors in the procedure of real-time indoor positioning. In this paper,
we consider an indoor environment with several available APs that support the Wi-Fi FTM.
When a mobile phone is moving, part of the APs may be blocked in a short time, causing
NLOS and multipath propagation which may not be detected because of the low bandwidth.
In order to solve the problem, a Wi-Fi ranging model that contains the effects of NLOS and
multipath propagation is proposed. We denote the locations of responders/APs by P; and
the location of the initiators by P, take the effect of NLOS and multipath into consideration
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and obtain the following model:
Li=Lo+ ||[P — P;|| + n; + drandom (15)

where L is the extra ranging result caused by multipath, #; is the extra ranging distance
caused by NLOS, drandom 18 the random error of measurement, calculated by Atngom in
Equation (5) which confront to a zero-mean Gaussian distribution with variance 0. We
assume that n;is much bigger than dy,ngom, With a boundary of b;. Moving »; to the left side,

then squaringboth sides and ignoring the d ;.

(Li — my* = (Lo + |IP = Pil|)* + 2dsandom(Lo + 1P — Pil)) (16)
The d;andom can then be obtained as:

 (Li=nm)* = Lo+ |P = Pi|))

drandom ~ (17
Lo+ 1P =Pl )
Then we define a function on #;:
I(Li — ni)* — (Lo + IP — Py||)?|
n;) = (18
A Lo+ ||P — Pl )
Least square (Gao et al., 2017) can be used to solve the above problem:
N N
. [y [max,, f (n,)]?
DD i) D "
with the condition 0< n; < b;, max,, f (n;) can be divided into two cases:
e Firstcase: L; <= b;, then max,, f (n;) = max{f (0),/ (L), f (bi)};
e Second case: L; > b;, then max,, f (n;) = max{f (0),f (b;)}.
Equation (19) can then be translated as:
N
min i
P.Lo.{n:} ; 7
12(0) SA(L) RG]
1= =<, <, <ni(Lli < b; 20
402 ~ 402 T 42 i ) (20)

Introducing variables y = ||P||?, r=L(2), ki =2Ly||P — P;||, the following equation is
obtained:

N
PLoy i) ; i
@y = r 2P - P~ Ky
vEr—2PTP+ P2+ K

(K2 —2Lik; + L2 —y — r+2PTP — || Pi||> — k;)?
y+r—2PIP+| P2+ K

=< 402}713

< 402771‘,

https://doi.org/10.1017/50373463320000193 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463320000193

1114 YUE YU AND OTHERS VOL. 73
QP[P — |Pil* —ki—y — 1 _
y+r=2PP+|PiP+k

y =P r= L5, k= 2Lo|IP — PlI(L; < b;) (21)

402771‘;

Based on the assumption that n; >> |diangom|, We can transform Equation (21) into a
tighter problem:

A[PT,y, Lo, )" <f (22)
in which
—2PT 1 2L, -1 L2 — ||Py|?
A= |, r=

2P 1 2Ly -1 L% — |Py|?

Equation (22) is non-convex. With the constraints y = || P||?, 7 = L, we can apply the com-
monly used standard second-order cone relaxation technique to relax them as ||P]|> <y
and L(z) < r. For the constraint k; = 2Ly ||P — P;||(L; < b;), it is different to transform it as a
convex one, so we just can get the following equation:

0 <k =2Ly|P — Pj|| <r+y —2PTP+|P;|*
(23)
k2 =4L2|P — P;|* < 4r(y — 2PTP + ||P;||?)

Utilising the relaxations for constraints y = ||P||?,r = Lé and the approximations in
Equation (23), we can obtain a convex second-order cone program:

N
min E n;
P.Lo.y.r{niki} pa

(L} —y —r+2PTP — ||P;||* — k;)?
y+r=2PP+|P;|?+k
(kf —2Liki + L} —y —r+ 2P[P — |Pil> — k* _ e
- < 4o,
y+r—2P; P+ |P:||% + k;

2PIP — | P> —ki—y —r)?
QPIP - |P/| Y= o

y+r—=2P[P+|P|]* +k
IPI* <y, L§ < r,(23),(24)

s.t. <4o?p;,

The optimal estimated values of ||[P — P;|| and Ly can be calculated from the above
formulas and constraints.

4. EXPERIMENTS. In this section, a real-time Wi-Fi FTM system was built up to
evaluate the proposed calibration, filtering and modelling algorithm in different test
scenarios. The real-time performance and accuracy of Wi-Fi FTM-based ranging and
indoor localisation were then estimated to complete the evaluation of the overall algorithm
framework.
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Figure 3. Wi-Fi RTT ranging system.

4.1. Construction of Wi-Fi FTM system. In order to analyse the performance of Wi-Fi
FTM, a Wi-Fi ranging system including hardware and software support was built up, which
could realise real-time data acquisition with a specified frequency. The whole ranging
system is composed as follows:

4.1.1. FTM responder/AP. Implementation of RTT data acquisition requires hardware
and software support. We chose the Intel Dual Band Wireless-AC 8260 card as the first type
of AP/responder and used the Ubuntu 16.04 LTS system and Linux kernel version 4.4.0-
21 as the software platform. The original driver pack does not contain the FTM response
function so we needed to modify the driver and add the FTM response function. By down-
loading the hostapd-2.3 and opening the Wi-Fi hotspot, one RTT responder can be made.
Then we chose the mobile phone VIVO NEX and VIVO X21, based on Android 8.1, which
support the IEEE.802.11 FTM as the second and third type of AP. Just by opening the
hotspot mode of the phone, RTT information can be obtained by the initiator.

4.1.2. FTM initiator. We used the same hardware and software platform as the first
kind of AP responder to make a RTT initiator. By modifying the RTT ranging command
and adding the FTM function into the driver, RTT information can be obtained from mul-
tiple APs by sending the ranging requests from the initiator containing MAC address,
bandwidth and frequency. Only APs that support FTM can return the RTT information.
Knowing the position of three or more APs and RTT information between the initiator and
APs, the real-time position of the mobile initiator can be obtained. In addition, Android P
provides a platform and API that can be used for RTT ranging, so we also used the Google
Pixel 1 mobile phone, which has the latest Android P system installed, as another initiator.
The RTT ranging system is shown in Figure 3.

In this system, several initiators are supported to use at the same time and acquire
RTT data from multiple APs. Different sampling rates of RTT can be set by modifying
the parameters of the ranging function.

4.2. Calibration and filtering of clock deviation. ~ As discussed in Section 3, the initial
clock deviation exists before the FTM procedure which causes the initial ranging error.
In order to analyse the relationship between initial clock deviation and types of responders
and initiators, we chose a corridor 50 m in length as the experimental scene. The responder
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Analysis of RTT ranging ( Ground true distance: 1-50m Sampling rate: 2 HZ)
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Figure 4. One initiator with three different APs.

and initiator were placed on brackets at the same height (0-8 m). The ground truth distance
was marked in advance and then 2 m was set as the measuring interval when the distance
is shorter than 10 m, and 5 m as the measuring interval when distance is longer than 10 m.
The sampling rate was set at 2 Hz, measured for 10 min at each estimation point. RTT data
was collected from three different AP responders (Intel 8260, VIVO X21, VIVO NEX)
with the same initiator (Intel 8260). The average result at each estimation point is shown in
Figure 4. Two different kinds of initiators (Intel 8260 and Pixel 1) were then used to collect
RTT data from the same AP (Intel 8260), and the average result at each estimation point is
shown in Figure 5.

It can be found by comparing Figures 4 and 5 that the initial clock deviation is influ-
enced by both initiator and responder, thus calibration is needed before ranging. In order
to calibrate the initial clock deviation, a playground was chosen as the calibration scene,
as shown in Figure 6, where the multipath effect was minimised. The length of 50 m was
set as the effective measurement range, different calibration intervals were set as mentioned
above, with sampling rate at 2 Hz. RTT data was collected from an AP responder with
2-4 GHz frequency and 20 MHz bandwidth. Each group of data was collected for 10 min.
The ranging bias of each group can be calculated by subtracting the true distance from the
average ranging distance. After removing the maximum and minimum deviation of bias,
we chose the average bias of the remaining data as the initial clock deviation of RTT. take
into the raw data of ranging bias, the results are shown in Figure 7.

It can be seen in Figure 7 that the initial clock deviation has been effectively corrected
after calibration. It can also be observed that, with longer ranging distance, the accuracy
of the RTT signal does not decline in the LOS condition due to its measuring mechanics.
However, several factors such as bandwidth, frequency and hardware condition can affect
the initial clock deviation of Wi-Fi FTM. Therefore, when changing parameters of the AP
responder or initiator, the same calibration procedure should be followed. We compared
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Analysis of RTT ranging( Ground true distance: 1-50m Sampling rate: 2 HZ)
so|| —©— Intel 8260 )
—6— Pixel 1 3

Ranging distance/m

_1 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Ground truth distance/m

Figure 5. One AP with two different initiators.

Figure 6. Calibration field.

several APs with different chipsets, bandwidths and frequencies, as shown in Table 1. We
then evaluated the accuracy and stability of the calibrated data collected from Wi-Fi card
A and Wi-Fi card B, and another Wi-Fi card A was used as the initiator. We used the same
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Analysis of initial clock deviation( True distance: 1-50m Sampling rate: 2 HZ,
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Figure 7. Comparison of errors before and after calibration.
Table 1. Influence of different factors on initial clock deviation.
AP category 20 MHz(2-4 G) 40 MHz(2-4 G) 40 MHz(5 G) 80 MHz(5 G)
Wi-Fi card A —6-2lm —4.56m Not supported Not supported
Wi-Fi card B Not supported Not supported —1-74m —1-07m
Mobile phone 1 —1-86m Not supported Not supported Not supported
Mobile phone 2 —1:35m Not supported Not supported Not supported

calibration interval as in Figure 7 and obtained the calibrated ranging results shown in
Figure 8. It can be seen in Figure § that the results of Wi-Fi FTM show greater accuracy and
stability when using frequency of 5 GHz and bandwidth of 80 MHz. Metre-level ranging
accuracy can be achieved with these settings.

We then designed experiments for the elimination of random error in two situations. The
first is stationary state, where we set 2 m as the ground truth distance, using KF defined in
Section 3. The results are shown in Figure 9. We then processed the dynamic RTT data by
using the moving average filter in Equation (13), with a window size of 10. A corridor 50 m
in length was chosen as the experimental scene. We used the Google Pixel 1 phone as the
initiator and an Intel 8260 wireless card as AP. After calibrating the initial clock deviation,
going back and forth along the corridor, and keeping the phone at the same height as the
AP, the RTT ranging result is shown in Figure 10.

It can be observed in Figures 9 and 10 that random clock error can be effectively reduced
using KF and moving average filter in different conditions.
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Figure 8. Comparison of ranging errors.
Static RTT signal processing using Kalman filter
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Figure 9. The performance of KF in static condition.

4.3.  Evaluation of multipath and NLOS models.

4.3.1. Effect of multipath in case of LOS. We choose four typical indoor scenarios:
meeting room, corridor, underground carpark and mall hall (see Figure 11), to estimate the
relationship between ranging accuracy and multipath in the LOS condition, with the same
AP and Google Pixel 1 as the initiator. The evaluation distance was set at 20 m, and the
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Dynamic RTT signal processing using kalman filter
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Figure 10. Dynamic RTT signal processing using moving average filter.

sampling intervals as 1 m, 3m, 5m, 7m, 10 m, 12m, 14m, 16 m, 18 m and 20 m, as shown
in Figure 12. Data was collected with a sampling rate of 5 Hz for 2 min for each group. After
filtering out the extreme values and calculating the average error of each group, the results
were as shown in Figure 12. It can be observed in Figure 12 that, under the condition of
LOS, ranging error was generally similar among different indoor scenarios and was further
reduced by the proposed Wi-Fi ranging model.

4.3.2. Analysis of NLOS error. NLOS is usually regarded as one kind of multipath
effect, and these kinds of multiple reception cannot be eliminated easily just by the moving
average filter in Equation (13). In dynamic indoor environments, moving objects could
temporarily block the direct path of transmitted signals or add reflected signal which can
result in extra ranging errors.

We choose three situations to test the accuracy and stability of RTT data under the NLOS
condition. The test environment was an outdoor carpark. The obstacle in the first situation
was two of the researchers standing together, to simulate positioning in a shopping mall. In
the second situation, the obstacle was a sheet of glass or non-metallic material to simulate
positioning in an office. In the third a metallic sheet was used to simulate positioning in an
underground carpark. The three situations are shown in Figure 13. Over a distance of 10 m,
the test intervals between initiator and obstruction were set at I m, 2m, 3m, 5m, 7m and
9 m. The results are shown in Figure 14.

It can be observed in Figure 14 that obstacles blocking the direct propagation path of
the signal can cause additional ranging error compared with the LOS condition. Metallic
obstacles can affect the ranging accuracy whether they are near the AP or initiator, while
the ranging error caused by human bodies (pedestrians) and non-metallic obstacles was
much smaller.

4.4. Evaluation of Wi-Fi FTM-based indoor localisation. In this section, we evaluate
the real-time performance and stability of RTT signal from tests conducted in a typical
indoor environment, and then proceed to realise the Wi-Fi FTM-based indoor localisation
framework proposed in this paper. The experiment was conducted in a rectangular office,
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Figure 11. Four typical indoor scenarios.

in which we fixed four APs in different locations, ensuring that the RTT data could be
acquired anywhere in the office (15 m * 15 m). The relative location of each AP is shown
in Figure 15.

4.4.1. Analysis of real-time performance. We used a Google Pixel 1 phone operating
on the newest Android P system as the initiator, then collected RTT data from the four
APs in the office using the Wi-Fi ranging API. All the APs had fixed the initial clock
deviation and modified the initial clock deviation defined in Equation (5) by subtracting
the corresponding initial clock deviation parameters from each AP. We then estimated the
maximum real-time sampling rate of RTT data from multiple APs which can truly get in
case of 2-4 GHz, 20 MHz, and estimated the stability of the data under different sampling
rates. We began with a sampling rate of 0-5 Hz, then improved the sampling rate to 10 Hz,
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Test results in different multipath scenarios
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Figure 12. Comparison of ranging error.

Figure 13. NLOS situations.

choosing reference point 7 (see 4.4.2 below) as the data collection point, calculated the
maximal sampling rate actually achieved after removing the abnormal measured values.
The results are shown in Figure 16.

It can be observed in Figure 16 that improving the speed of sending the FTM ranging
request does not positively correlate with the actual sampling rate. The success rate of
sampling significantly declined when the sampling rate was improved to higher than 5 Hz
and the average ranging error also increased when the sampling rate was higher than 3 Hz.

After comprehensively considering the real-time performance and stability of the mea-
sured data, we chose 3 Hz as the sampling rate used. We also found a few extreme values
such as ‘distance = 2 % 10° m’ or zero value, which can be eliminated by the threshold set
in advance.
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Analysis of NLOS Effect
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Figure 14. Ranging error caused by NLOS.
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Figure 15. Locations of APs and reference points.

4.4.2. Estimation of FTM-based indoor localisation. We evaluated the accuracy of
indoor localisation after estimating the real-time ranging performance and chose the Wi-Fi
FTM sampling rate as 3 Hz. The location of the mobile phone can be calculated using
real-time RTT information and the locations of the fixed APs deployed in the office. We
began the experiment in a typical indoor environment (15 m = 15m) as the test scenario
with typical causes of NLOS and multipath propagation, such as glass, partitions, and two
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Figure 16. Analysis of continuity and stability of RTT data: (a) data collected from AP1, (b) data collected
from AP2, (c) data collected from AP3, (d) data collected from AP4.

wall columns. We fixed four APs in the office and ensured that the Wi-Fi signal covered
the whole area. The position of each AP is show in Figure 15.

The calibrated RTT data acquired from the deployed APs could still be affected by
NLOS and multipath propagation without the ranging model. We choose 10 reference
points to evaluate the accuracy of the proposed Wi-Fi ranging model. The location of each
reference point is shown in Figure 15. AP3 was sometimes obscured by the pillar, causing
NLOS error. The Google Pixel 1 phone was set on a 1-5m high stand. With a sampling
rate of 3 Hz, we collected data for 5 min at each reference point and calculated the average
results. The raw data and processed data, which have subtracted the ground truth distance,
are compared in Table 2.

It can be observed in Table 2 that the obscured AP3 caused extra ranging error at refer-
ence points 3, 8, 9 and 10 because of NLOS, while the proposed Wi-Fi ranging model can
effectively improve the ranging accuracy of Wi-Fi FTM when direct transmission path is
lacking. The KF can further reduce the Gaussian noise under static condition.

We then used the classical least squares trilateration algorithm (Liu et al., 2007) to cal-
culate the real-time 2D position by Google Pixel 1 under dynamic conditions after data
calibration and modelling. We set the position coordinate output frequency to 3 Hz and
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Table 2. Comparison of ranging error before and after using ranging model.

AP1_Before AP1_After AP2 Before AP2_After AP3_Before AP3_After AP4_Before AP4_ After

1 0-81 0-76 0-63 0-65 0-96 0-87 1-13 1.02
2 0-58 0-62 0-72 0-75 0-83 0-71 1.28 0-96
3 2-68 121 2-19 1-58 0-75 0-72 0-97 0-88
4 112 1-09 0-74 0-71 0-82 0-69 1.07 1-11
5 0-68 0-72 0-96 0-87 1.25 1-11 0-84 0-67
6 0-88 0-76 1-18 1.03 1-85 1.24 0-81 0-77
7 1-14 0-96 0-71 0-75 1.07 0-86 0-62 0-54
8 0-86 0-72 0-91 0-92 2-68 139 1.31 1-02
9 0-98 0-94 1-15 0-88 2-88 1.54 0-75 0-81
10 0-76 0-68 1-09 0-96 1.93 1.07 0-61 0-63
3 T T T T T T T T

—©— Without Ranging model
2.8} —©&— With Ranging Model H

Localization error at each reference point/m

1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Reference point/n

Figure 17. Localisation accuracy at each reference point.

obtained the mean positioning error result by choosing the above 10 reference points which
have known 2D position, as shown in Figure 15. The tester began with the location of AP1,
and passed in turn through reference points 10, 9, 3, 2, 1, 5, 4, 8, 7, 6 and then returned
to the location of AP1; the reference route is shown in Figure 15. The real-time calculated
localisation result was recorded when passing each reference point and the test route was
repeated 10 times by different people. The average positioning error at each reference point
is shown in Figure 17.

It can be observed in Figure 17 that the proposed Wi-Fi ranging model effectively
improved the accuracy and stability of Wi-Fi based indoor localisation especially in case
of NLOS; the average positioning error is lower than 2-2 m.
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5. CONCLUSION. The IEEE802.11 Wi-Fi FTM protocol introduced a new research
direction for Wi-Fi based indoor positioning. This paper proposes a framework of Wi-Fi
RTT data acquisition and processing that can be used for accurate indoor localisation. First,
the Wi-Fi RTT ranging system containing responders and initiators that support the Wi-Fi
FTM protocol was built up. Then the initial and random clock deviation of the RTT signal
were calibrated and eliminated after data measurement and pre-processing. A real-time
Wi-Fi ranging model was proposed to estimate the error caused by NLOS and multipath
propagation. After that, a rectangular working office wasselected as indoor evaluation site
and four APs were deployed at different locations in the office. Real-time RTT data from
these APs was acquired by an Android P-based Google Pixel 1 phone and the least squares
trilateration algorithm was used to obtain the real-time 2D position.

The whole framework and experiment presented in this paper shows that metre-level
RTT ranging results can be obtained in the LOS condition using large bandwidth, and
accurate localisation results can be achieved within 2-2 m. With the expansion of hardware
functions, more and more Wi-Fi chipsets in mobile devices are expected to support large
bandwidth — some can reach 160 MHz or more —, which brings an increasing accuracy of
Wi-Fi ranging and Wi-Fi FTM-based indoor localisation. Subsequent to the work presented
in this paper, the authors will continue with research on minimising the effect of multipath
and NLOS through hardware and algorithms. The aim is to realise a universal localisation
algorithm that can adapt to different indoor environments by merging multiple sources
of information, such as RSSI, AOA and CSI, and achieve metre-level indoor localisation
accuracy.
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