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neocortical circuits should probably be understood in terms of
their function in the fully developed organism.

As the target article points out, the new isocortical network
evolves between the olfactory cortex, which remains paleocortical
in mammals, and the medial cortex, which evolves into the mam-
malian hippocampus, but without acquiring isocortical layers. The
isocortical network promotes the expansion of the three main
topographic sensory systems, visual, auditory, and somatosensory,
into forebrain territory that had earlier been dominated by the
nontopographic olfactory system. This suggests that the evolu-
tionary advantage afforded by isocortical layers should be com-
mon to sensory processing that is topographic in nature (i.e., im-
plemented through cortical maps isomorphic to the array of
sensory receptors) and it should not pertain to nontopographic
processing. Accounts that rely exclusively on an analysis of visual
processing, on the other hand, may offer helpful indications about
the role of individual layers (see Grossberg 1999; Kayser & Miller
2002), but are unlikely to offer a satisfactory explanation until they
are generalized to other sensory modalities.

An evolutionary advantage that is common to vision, audition,
and somatic sensation is also likely to be quantitative rather than
qualitative in nature. It seems improbable that at the abstract and
rarefied level at which the three modalities may be described
within a common conceptual network, it would be possible to
identify a qualitatively new function that the isocortex can carry
out but the paleocortex cannot. It seems more reasonable to think
of a quantitative improvement in carrying out functions that re-
main qualitatively the same.

In recent years I have explored the hypothesis that there are two
key functions to consider, both of which can be expressed mathe-
matically using a suitably defined formal model (Treves 2003).
One is the cortical relay of positional information about a stimu-
lus — that is, the transmission (with minimal information loss) of
where a stimulus activates the array of sensory receptors. The sec-
ond is the memory-based retrieval of identity information — the
cortical analysis of all the perceptual aspects of a stimulus (some
of which may be occluded or missing, and have to be recon-
structed from memory) that are not mapped explicitly in terms of
position on the array of receptors. Topographic maps in fact imply
a generic distinction between “where” information, explicitly
mapped on the cortical sheet, and “what” information, repre-
sented in a distributed fashion as a distinct firing pattern across
neurons. These patterns can be stored on recurrent collaterals in
the cortex, and such memory can help substantially in the analy-
sis of current sensory input.

In analyzing how a neural network can carry out these two func-
tions, quantitatively, it is important to control for the trivial effect
of an increase in the number of network components, which is ex-
pected to be beneficial in itself. I have therefore simulated two
simplified network models with the same number of components,
one of which corresponds to an undifferentiated “paleocortical”
patch of cortex, and the second to an “isocortical” patch, in which
the main layers are differentiated. A quantitative, information the-
oretical analysis of these simulations demonstrates that a nonlam-
inated patch of cortex must compromise between transmitting
“where” information and retrieving “what” information. Parame-
ters can be chosen to optimize one or the other function, but not
both at the same time. The differentiation of a granular layer af-
fords a quantitative advantage, that is a (limited) improvement in
the joint transmission of both information types, over the non-
granular model. The further connectivity differentiation between
infragranular and supragranular pyramidal layers is shown to
match the mix of “what” and “where” information optimal for their
respective target structures. The computational analysis therefore
indicates that the isocortical patch may serve as an optimized com-
ponent for combined topographic and memory-based information
processing. One computational issue to address next is why it was
so useful to use more of such components in the evolutionary
process of multiplication of distinct cortical maps, known as are-
alization (Montagnini & Treves 2003).
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Abstract: A dorsalization mechanism is a good candidate for the
evolutionary origin of the isocortex, producing a radial and tan-
gential expansion of the dorsal pallium (and perhaps other struc-
tures that acquired a cortical phenotype). Evidence suggests that
a large part of the dorsal ventricular ridge (DVR) of reptiles and
birds derives from the embryonic ventral pallium, whereas the iso-
cortex possibly derives mostly from the dorsal pallium. In early
mammals, the development of olfactory-hippocampal associative
networks may have been pivotal in facilitating the selection of a
larger and more complex dorsal pallium which received both col-
lothalamic and lemnothalamic sensory information. Finally, al-
though it is not clear exactly when mammalian brain expansion
began, fossil evidence indicates that this was a late event in mam-
maliaform evolution.

After all the process of open peer commentary, we feel
quite satisfied with the heated — but in our view, healthy —
debate our target article provoked. Overall, we consider
that the main points raised in the target article remain valid.
There are, however, many interesting suggestions made by
the commentators that can be significant additions to our
theory. We will divide our response into different sections
relating to the different topics addressed by the commen-
tators. As in the target article, we would like to emphasize
that each section of this discussion should be considered
largely separate from the others, because alternatives in
each section may be compatible with more than one alter-
native in other sections. We have dedicated more space to
those points that in our view required clarification. There-
fore, if some commentators appear to receive less attention
than others, it is basically because we agree with their points
of view rather than because we have neglected them.

R1. Homology issues and the dorsalization
process

Perhaps the most basic conceptual issues were addressed
by Northcutt, who questioned the concept of similarity as
the sole criterion for homology, and underlined the concept
of phylogenetic continuity. At the end of the target article
(sect. 8) we mentioned that the DVR and the isocortex
likely had separate evolutionary origins, and that embryonic
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homology does not imply adult homology (see also Aboitiz
1988; 1995). In agreement with Northcutt, we would now
like to emphasize these issues more.

Northcutt argues that the most important point regard-
ing homology between DVR and the lateral isocortex
(LICx) is not so much whether or not they have a common
embryological origin, but whether or not in evolution they
were separately acquired via independent developmental
transformations. Thus, a common embryonic origin of the
DVR and the LICx could be consistent with the outgroup
hypothesis (OGH), if the two structures differentiated in-
dependently after the point of phylogenetic divergence,
and with the recapitulation hypothesis (RECH), if a differ-
entiated DVR was present in a common ancestor. Con-
versely, a situation of different embryonic origins of DVR
and LICx fits the OGH well, but some exponents of the
RECH might consider that this could be explained by a
change of embryonic identity of an originally common an-
lage (see Butler and Reiner, however, this alternative may
be very difficult to prove). As Northcutt says, perhaps what
matters most to the latter researchers is not the historical
process of divergence between mammals and sauropsids,
but whether the isocortex has a single evolutionary origin
(the dorsal pallium) or a dual origin (the dorsal and the ven-
tral pallium). In our view this is a valid question. Even if
there may not be adult homology, it should be determined
whether or not there is embryonic homology between the
precursors of the DVR and the LICx. If so, there would be
phyletic continuity of the embryonic primordia of the two
structures, although each has followed a separate develop-
mental course.

Northcutt is also right in that a fine-grained cladistic de-
velopmental analysis of telencephalic development is re-
quired to shed light on the origins of these structures. Un-
fortunately, we feel that at this time there are not enough
data to perform such a study. In the target article, we placed
emphasis on embryological aspects mainly because at this
point they may provide the best criterion to reconstruct the
phylogenetic history. In this case, development seems to be
more reliable than connectional similarity in reconstructing
the historical process (see Aboitiz 1995; target article), and
at this point suggests different developmental histories for
the DVR and the LICx.

According to the comments received, we may distinguish
two versions of the RECH. One is the original version, as
proposed by Karten (1968; 1969) and restated here by
Salas, Broglio, & Rodriguez (Salas et al.), which implies
equivalency of sensory circuits between mammals and
birds, and hence, an adult ancestral circuit whose gross
morphology evolved in two different directions. This ver-
sion is based mostly on similarity in connectivity patterns
(see Northcutt). The original RECH faces some problems
(some of these outlined by Butler, Reiner, and in the tar-
get article), not the least of which is that it is difficult to
imagine a mechanism transforming the different compo-
nents of the sauropsidian DVR into specific laminae in the
isocortex. Furthermore, a likely possibility at this point is
that the DVR and the LICx derive from different pallial
sectors. If this were so, a massive tangential migration of ex-
citatory elements from the ventral pallium to the dorsal pal-
lium would be required for these circuits to be considered
homologues. As discussed in the T.A., there is good evi-
dence for tangential, ventro-dorsal migration of inhibitory
cells from the subpallial ganglionic eminences, but not yet
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from the ventral pallium. Nevertheless, to be fair, perhaps
not all the tangentially migrating cells in the telencephalon
are GABAergic (Bellion et al. 2003; Polleux et al. 2002),
leaving open the possibility of a contribution of ventral pal-
lial excitatory cells to the LICx. In this context, the origin of
the excitatory spiny granule cells of layer IV should be ad-
dressed in future studies. Cell tracing experiments are ur-
gently needed to determine if, and to what extent, the LICx
derives from the ventral pallium, or if part of the DVR de-
rives from the dorsal pallium. As discussed in the target ar-
ticle such a tangential migration, if it exists, might be a con-
sequence of a dorsalizing influence over the ventral pallium.

Considering this evidence, a new version of the RECH
(Butler, Furtado, Reiner, and Shimizu) states that there
is a common region that may have been independently
transformed into the reptilian DVR and into the mam-
malian LICx. This version does not imply phyletic continu-
ity between LICx and the DVR and therefore there may be
no homology in Northcutts terms. Proponents of the new
RECH may agree with a situation of separate embryonic
origins: a ventricular zone originally destined to the ventral
pallium might have been transformed into a cortical ven-
tricular zone during mammalian evolution. The dorsaliza-
tion process that we propose could provide the embryo-
logical mechanism required for this transformation. For
example, a scenario of de-repression of Pax-6 expression as
proposed by Furtado (among other changes) would be
quite consistent with our proposal (see Stenman et al.
2003). As we mentioned in the target article, one difficulty
with the new version of the RECH is the different topo-
graphic position of the DVR and the LICx with respect to
the lateral cortex (see also Northcutt), which would imply a
rearrangement of topographic boundaries in the adult. In
addition, if separate embryonic origins were demonstrated
for the DVR and the LICx in all reptiles and mammals, it
would be practically impossible to prove that, phylogeneti-
cally, the LICx originally arose from an ancestral ventral
pallial region.

Another point raised by Butler and Reiner is that the
intermediate territory does express some Emx-1 in mam-
mals, which is not fundamental for our proposal (in fact, this
finding was made by defendants of the OGH; Gorski et al.
2002). The main point, for us, is that much of the DVR
probably derives from a ventral pallial sector and that there
is yet no evidence that the LICx derives from that sector.
Reiner concludes that since “only the ventralmost part of
the ventral claustrum is entirely Emx-1 negative,” this ren-
ders “problematic the claims of homology for ventral DVR
of birds and specific claustro-amygdaloid nuclei in mam-
mals,” which is exactly what we argued in the target article:
we discussed the possibility that there may not be specific
mammalian counterparts of the ADVR (see sect. 4.3). The
fact that there may not be a structure homologous to the
DVR in the ventral pallium does not imply that it should be
sought in the dorsal pallium. Reiner also raises the issue
that monotremes seem to lack a claustrum, which in our
view is not indicative of any alternative of homology for
DVR, even less for the RECH. Monotremes may have sec-
ondarily lost a claustrum; or if the claustrum is a late acqui-
sition of mammals, there may be other structures, or sim-
ply no structures that correspond to the DVR.

Shimizu makes some interesting points in relation to the
expansion of the dorsal pallium in birds, and a possible par-
allelism between mammals and birds in the development of
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hippocampal-dorsal pallial networks. He also points out that
the ADVR of birds is a highly complex structure and only a
few components have been sufficiently studied. We com-
pletely agree on this, but the claims for homology between
ADVR and LICx have been based on these few, well-studied
regions. In this context, there are two intriguing components
in the reptilian/avian DVR: (1) the hyperstriatum ventrale of
birds (Emx-1 positive), which has been proposed to corre-
spond to the reptilian dorsolateral ADVR and to the mam-
malian dorsolateral claustrum, dorsal endopiriform nucleus,
and the basomedial amygdala, all Emx-1 positive (Guirado et
al. 2000; Puelles et al. 2000); and (2) the avian archistriatum
or posterior DVR of reptiles, whose homologies have been
proposed to be many mammalian structures, including the
(pallial) laterobasal amygdala (Lanuza et al. 1999), the (sub-
pallial) centromedial amygdala (Smith-Fernandez et al.
1998), and others (see Aboitiz et al. 2002). Certainly, further
studies are needed to correctly determine the possible mam-
malian homologies to these structures, if they exist.

The OGH implies that there has been a re-routing of
thalamic axons from the ventral pallium to the dorsal pal-
lium (see target article, sects. 6.3, 6.4, and 8). Butler con-
tends that the invasion of new territory by axons may be a
too complex phenomenon, but in mammalian brain evolu-
tion this has occurred more than once (e.g., interhemi-
spheric fibers and the corticospinal tract). In this context,
transient embryonic structures like the subplate or cells
in the pallial-subpallial or the telencephalic-diencephalic
boundaries (Molndr et al. 2003) may have played key roles
attracting both lemnothalamic and collothalamic axons into
the developing cortical plate. Favoring the OGH, Medina
and Guirado propose an enlargement of the dorsal pallium
concomitant with expansion of the dorsal thalamus, which
could be consistent with our dorsalization hypothesis. How-
ever, we are not sure yet whether this was an automatic con-
sequence of increased thalamic axon growth. In mammals,
thalamic expansion has been much more limited than cor-
tical expansion, suggesting that thalamic influence may not
account for all cortical growth. Furthermore, the concept
of an expansion of dorsal tier thalamic nuclei as proposed
by these authors largely relies on the presumed absence of
homology between the mammalian pulvinar nucleus and
the avian nucleus rotundus: the pulvinar would be a new
nucleus which expanded greatly in the dorsal tier of the
mammalian dorsal thalamus. On the other hand, Giintiir-
kiin, Reiner, and Salas et al. make an argument for ho-
mology between the rotundus and the pulvinar, and Giin-
tiirkiin and Reiner, especially, strongly criticize the proposal
of homology between the rotundus and the mammalian in-
tralaminar nuclei. Although in a previous article (Aboitiz et
al. 2002) we somehow favored the intralaminar-rotundus
homology interpretation, at this point our intention was
mainly to expose the two different viewpoints. We admit
that this issue is not settled yet and further evidence may be
needed to accept the intralaminar/rotundus homology hy-
pothesis. As we stated in the target article, this issue is not
germane to the OGH/RECH debate. In fact, the OGH ap-
peared long before the pulvinar/rotundus homology was
under question.

In addition, Guirado seems not to be convinced of adap-
tive explanations for macroevolutionary phenomena. Briefly,
we consider that if an adaptive explanation is sound and
consistent with the evidence, it should be taken as seriously
as any other scientific proposal, and not be a priori rejected
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(Aboitiz 1990). Of course it is the entire postnatal structure
that is presented to nature, but development makes up this
structure, and changes in function imply structural changes
mediated by development. Furthermore, purely develop-
mental explanations are usually not sufficient to explain the
origin of a structure: an obvious requisite for any evolu-
tionary novelty is to work well (consider the evolution of the
eye; see also comment by Treves). Guirado also thinks we
are trying to compare the isocortex with all of the reptilian
cortex, and that we claim that every component of the
mammalian pallium must have a homologue in reptiles,
which is not exactly what we argued in the target article.
Medina proposes several candidate genes for the dor-
salization process, which need to be evaluated by future
studies. In this context, it will be interesting to investigate
the possible participation of the sonic hedgehog/Gli signal-
ing pathway, which may promote cortical expansion (Ruiz i
Atalba et al. 2002). We are not so sure that a single or a few
mutations may have produced a fully working mammalian
brain. It is perhaps more likely that changes in gene ex-
pression patterns involved several genes and occurred grad-
ually, rather than all of a sudden. For example, there may
be many genes that cooperate in the establishment of the
pallial-subpallial boundary and in regulating cortical ex-
pansion (Bishop et al. 2003; Stenman et al. 2003). Probably
many or all of these genes were involved in the origin of the
isocortex. In this context, Miu & Olteanu propose a re-
search program in which the costs and benefits of distinct
developmental transformations should be weighed to eval-
uate the different alternatives. This could be a promising
endeavor that may lead future research.
Martinez-Garcia and Guirado claim that the argu-
ment for homology between the reptilian dorsal cortex and
mammalian somatosensory and primary visual cortices is
not correct; a cladistic analysis implies that the stem am-
niote had a multimodal pallium that underwent indepen-
dent parcellation in the sauropsidian and in the synapsid
lineages. Powers makes a similar argument when compar-
ing the reptilian dorsal cortex with the mammalian en-
torhinal/subicular cortices. We believe that this is a very in-
teresting possibility that deserves further study. In a way,
this can be conceived of as a more radical form of the OGH
that in our view would be consistent with the main hy-
potheses presented in the target article, especially with the
claim that the mammalian and reptilian brains diverged
very early in evolution. Powers’s suggestion for the role of
dorsalization in the expansion of the dorsal cortex is also
welcome. In this way, the dorsal pallium would have ac-
commodated the lemnothalamic and collothalamic sensory
input that began participating in associative networks.

R2. Evolution of cortical lamination

We would like to acknowledge Marin-Padilla’s earlier the-
ory of a dual origin of cortical laminae, with an ancestral,
early-produced component and a phylogenetically new,
late-produced component. We think our hypothesis of cor-
tical lamination (which is also partly based on Reiner 1993)
has several points in common with Marin-Padilla’s original
proposals, especially the concept that the developmental
sequence in this case seems to correspond with the phylo-
genetic sequence. The evidence that mutations in the gene
Tbr-1 cause specific defects in the early cortical compo-
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nents, and that mutations in other genes like Pax-6 cause
deficits in late-produced components, supports this view.
The early cortical components (especially cells in the sub-
plate and layer VI) are reminiscent of an ancestral struc-
ture, which in mammals differentiated into a subplate and
infragranular cortical layers. Note that in mammals, the
ability to migrate past layers of preexisting cells developed
among these early components. As said, cells in layer V may
represent an intermediate stage in which cells acquired the
migrating properties of the phylogenetically newer cortical
neurons (cdk5/p35 dependant, glial-guided locomotion),
but retain some phenotypic characteristics of ancestral cells
(Aboitiz 1999a; Aboitiz et al. 2001b). As we mention in the
target article, one point that deserves further study is to
which extent the mammalian subplate can be considered
comparable to early produced cells in the developing rep-
tilian cortex or to cells in the adult reptilian cortex (Bernier
et al. 1999; Cordery & Molnar 1999; Goffinet et al. 1999;
Nacher et al. 1996; Supér et al. 1998b; Tissir et al. 2003).
Another point that should be borne in mind is that the pre-
plate has continued evolving in mammals by virtue of its
role in cortical plate development. In addition, Marin-
Padilla’s suggestion about using the term “neocortex” rather
than “isocortex,” considering that it contains so many new
elements, is reasonable to us. Our initial intention when us-
ing the term isocortex was to avoid implying a progression-
ist view of evolution, but if it were understood that this is
not what is meant, we would see no problem in using the
term neocortex.

Supeér contends that we do not explain “why” the dorsal
cortex expands in mammals in conditions under which
other structures like the hippocampus do not change their
organization. He considers that the main cause for cortical
expansion may have been the re-routing of thalamic axons
from the superficial marginal zone to the deep subplate. As
mentioned by other commentators (Colombo, Martinez-
Garcia, Powers, Salas et al.), hippocampal function and
processing strategy may be somewhat more conservative
than that of the isocortex, and its tangential organization is
perhaps well suited for its functions (Treves). In addition,
Super does not explain “why” axons were re-routed in the
first place. We agree with Supér in that the re-routing of
corticothalamic axons may have released an important con-
straint on cortical expansion, but we are not so sure that this
was the cause for all the rearrangements that occurred in
isocortical origins. Rather, we prefer to think of this process
as a gradual, reciprocal situation, in which small cortical ex-
pansions facilitated re-routing of some axons, which may
have permitted some further expansion, then more re-rout-
ing, and so on. Still another possibility is that the true ho-
molog of the reptilian cortex is the subplate (see comment
by Marin-Padilla). If this was so, axonal rerouting might
not have had to be so dramatic, since the cortical plate could
have developed partly over the axons synapsing in the sub-
plate/reptilian cortex (this would also be consistent with the
notion of the inverted neurogenetic gradient as a strategy
to maximize synaptic contacts with superficial afferents).
An argument for a reciprocal relation may also be made
about Guirado’s concern that cortical expansion drove the
development of associative networks and not vice versa.
These processes may have developed hand-in-hand, in-
stead of occurring first one and then the other. Finally,
Super argues that changes in cell number are not sufficient
to increase cortical size, and gives as an example the visual
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cortex with a cell density double that of other cortical areas.
Across species, there is a good correlation between neu-
ronal number and cortical size (see, e.g., Haug 1987; Jeri-
son 1973). In addition, the cortical cell numbers in mam-
mals are probably orders of magnitude higher than in
reptiles, not just double.

We welcome Treves’s analysis of processing capabilities
of the isocortex; his “why” questions are more related to
functional considerations that are interesting to investigate
further. However, we think that the isocortical design may
not be the only one that works; birds seem to do quite well
with a different, non-laminated design (see Shimizu). In
our view, isocortical architecture evolved as a consequence
of a mixture of functional and developmental factors re-
sulting in a design that worked well under specific circum-
stances — the world of early mammals. Subsequently, this
design proved successful in colonizing other behavioral and
ecological niches. The point we are trying to make is that
some evolutionary innovations may originate as adaptive/
developmental transformations that take place under very
specific circumstances, and then turn out to be successful
in a variety of conditions. This does not mean that this de-
sign is necessarily the optimal one that could be conceived
for every situation.

R3. The “olfactory-hippocampal” hypothesis

We apologize for not having referred adequately to Butler’s
early “olfactory-hippocampal” proposal and her considera-
tions regarding the confluence of the lemnothalamic and
collothalamic pathways in mammals. Our proposal also has
a long date (cf. Aboitiz 1992). Guirado seems to disagree
with the concept of confluence of collo- and lemnothalamic
pathways in mammals as an evolutionary novelty. We claim
that such a degree of confluence as is observed in mammals
is not observed in reptiles. The fact remains that in saurop-
sids the bulk of the collothalamic input (which goes to the
DVR) is largely independent from the lemnothalamic input
(see also comments by Butler and Shimizu). In mammals,
the pulvinar receives quite an important part of the visual
collicular projection and sends a massive projection to the
extrastriate cortex, in which both processing streams con-
verge.

Bota and Hermer-Vasquez & Hermer-Vasquez pro-
pose to expand the olfactory-hippocampal axis to the or-
bitofrontal and the motor cortices, respectively. Hermer-
Visquez & Hermer-Visquez also suggest a role for
synchronized oscillatory activity as a linking mechanism in
these networks. We are certainly in agreement with these
proposals, especially considering that these associative net-
works may have been widespread in the early mammalian
dorsal pallium. The point is to define an evolutionary start-
ing point for these networks, which we believe may have
been the hippocampal-olfactory axis. The proposals by
Martinez-Garcia, Guirado, and Powers about an ances-
tral multimodal dorsal pallium, perhaps comparable to the
entorhinal/subicular cortex are especially relevant in this
context.

Colombo and Salas et al. mention good evidence for
conservatism of hippocampal involvement in spatial learn-
ing across vertebrates, which, as claimed by Colombo,
raises the question of how function was maintained despite
the important changes in overall connectivity in the differ-
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ent lineages. Anatomical evidence suggests that there are
more heavy sensory (collothalamic) inputs to the hippo-
campus of mammals than to that of reptiles (see comments
by Butler, Shimizu, Supér, and Butler 1994a; 1994b). In
the target article, we mention that this is an intriguing ques-
tion and is clearly matter for future comparative research.
For example, an interesting lesion experiment would be to
evaluate the role of collothalamic and lemnothalamic pro-
jections in spatial memory in mammals and reptiles. In ad-
dition, perhaps more subtle analyses will unveil processing
differences in the hippocampi of mammals and reptiles,
and many of the differences may be quantitative rather than
qualitative. As we argue in the target article, a more detailed
sensory input might not be necessary for the elaboration of
crude maps of space but rather for complex forms of
episodic memory and other memory functions (Eichen-
baum 2000b).

Just to clarify issues, our main claim is that olfactory-
hippocampal-dorsal cortex networks, present in ancestral
reptiles and involved in spatial learning, were especially im-
portant in early mammals. The development of visual-
olfactory associative networks involving the hippocampus
may have a favored selection of an expanded dorsal pallium.
In this way, despite an overall conservatism in function, per-
haps more subtle forms of spatial or episodic memory and
other functions may have developed in the hippocampus of
the early mammalian brain.

R4. Fossil brains

Gilissen & Smith make an important contribution to our
work by describing the multiple trends in brain expansion
in early mammals, and the lack of detachment of ear ossi-
cles in Morganucodon, implying that non-mechanical fac-
tors may have been important in early mammalian brain
growth. In the target article, we admit that the interpreta-
tion of posterior brain expansion in Morganucodon may be
questionable. Nevertheless, Gilissen & Smith point out that
Therioherpeton (a Cynodont, see Figure 7 in the target ar-
ticle) might show signs of dorsal cortex expansion even
earlier than Morganucodon, which would put the begin-
ning of cortical expansion before what we originally pro-
posed. However, the alternative that true brain expansion
began much later, with the eumesencephalic type of brain
(such as the eutherian Barunlestes; see Figure in Gilissen
& Smith), is also possible. O’Shea proposes that there must
have been interplay between patterns of braincase ossifica-
tion, controlled by inhibitory signals from the dura mater,
and evolutionary brain expansion in mammals. We believe
that it could not be otherwise. Skull volume puts an obvi-
ous limit to brain expansion, and there must have been a co-
ordinated evolution between these two parameters. This is
avery interesting area for further research. Finally, we com-
mend Furtado for his proposal of a scenario for early tetra-
pod evolution.

R5. Final comments

In the end, we feel that our main hypotheses are still in good
standing after the commentary process. This has demon-
strated that our proposal is a good basis for interdisciplinary
research and discussion on the embryologic and evolution-
ary aspects of isocortical origins. Our intention at this point
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has been basically to outline a developmental and adaptive
evolutionary scenario for isocortical origins, which needs to
be evaluated by future research. The main idea is that a dor-
salizing influence in telencephalic development triggered
the origin of the isocortex, expanding the dorsal pallium
both tangentially and radially. Generally speaking, a dorsal-
ization process based on increased activity of dorsal-induc-
ing factors may not help discriminate between the different
hypotheses of homology of the isocortex. However, differ-
ent homology hypotheses may imply specific mechanisms
of dorsalization (tangential migration, change of identity of
ventral pallial cells, or expansion of the dorsal pallium). We
prefer the interpretation that the isocortex evolved its own
circuitry and therefore its sensory circuits may not be ho-
mologous to those in the DVR of reptiles and birds. Fur-
thermore, current developmental evidence suggests that
the isocortex originated mostly from an ancestral dorsal pal-
lium. Whether, in addition, some components of the ven-
tral pallium became transformed into cortical phenotypes
remains to be investigated, but, as stated, they would not be
inconsistent with a dorsalization process. In this context,
the controversy between the concepts of field homology
and embryonic homology will probably remain for some
time (Butler & Saidel 2000; Northcutt 1999; Puelles 2001b;
Puelles & Medina 2002).

Except for some details, our views on the evolution of
cortical lamination do not strictly contradict those of
Marin-Padilla and Super, and we believe that they have
both contributed importantly to this issue. Functional com-
parative studies may also be quite helpful in understanding
the early evolution of cortical processing.

As an adaptive complement to this developmental
process, we have proposed the “olfactory-hippocampal” hy-
pothesis, which, even if it is not strictly new (Jerison 1973;
Lynch 1986; Sagan 1977; see also commentary by Butler),
contains new elements like the collothalamic/lemnothala-
mic confluence and the role of the olfactory-hippocampal
axis in episodic memory (Eichenbaum 2000b). There is
strong evidence of a conserved role of the hippocampus in
spatial memory, but in mammalian evolution it may have in-
corporated additional or more complex forms of memory,
partly because of the increased confluence of sensory in-
puts to this structure. In addition, we agree that in mam-
mals these hippocampal-olfactory networks may corre-
spond to widespread ensembles of activity in the lateral,
dorsal, and ventral pallium, including elements like the or-
bitofrontal and motor cortices. The point is whether one
can speak of an orbitofrontal and a motor cortex in the early
evolution of the isocortex.

Finally, it has become clear that endocast information
and the study of cranial anatomy may provide important
clues to the origin of the mammalian brain. Open questions
like when brain expansion began, and whether it was in
Cynodonts or in crown mammals, will probably need to
wait for further evidence.

We want to acknowledge all the reviewers and commen-
tators for taking their time to participate in this exciting pro-
ject. We feel that an open, interdisciplinary debate of this
topic was long due, and expect that from this discussion new
experiments will be made, oriented to address many of the
questions that were raised.
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