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SUMMARY
The force analysis of parallel manipulators is one of the
important issues for mechanical design and control, but it
is quite difficult often because of the excessive unknowns.
A new approach using screw theory for a 3-RPS parallel
mechanism is proposed in this paper. It is able to markedly
reduce the number of unknowns and even make the number of
simultaneous equations to solve not more than six each time,
which may be called force decoupling. With this method,
first the main-pair reactions need to be solved for, and
then, the active forces and constraint reactions of all other
kinematic pairs can be simultaneously obtained by analyzing
the equilibrium of each body one by one. Finally, a numerical
example and a discussion are given.

KEYWORDS: Parallel mechanism; Screw theory; Force
analysis; Active force; Constraint reaction.

1. Introduction
Force analysis of parallel manipulators (PMs) is one of
the important issues for design, simulation, and control of
manipulators. Generally, it is necessary to solve for the
active forces and constraint reactions of all pairs. Force
analysis contains statics and dynamics analyses. Only a
statics analysis is needed when the device moves at low
speed. However, a dynamics analysis is needed when it
moves at high speed, since the inertia force on each link
cannot be neglected. The study has been traditionally carried
out through different methods, for example, d’Alembert’s
principle, the principle of virtual work, the Newton–Euler
method, and the Lagrange formulation. Kumar and Waldron1

used the Moore–Penrose pseudoinverse method to analyze
the force distribution in closed kinematic chains. Nahon and
Angeles2,3 used Quadratic Programming with constraints to
solve torques and the optimization of dynamic forces in
mechanical hands. Buttolo and Hannaford4 set up linear
programming to solve torques of a redundantly actuated
PM. Dasgupta and Mruthyunjaya5,6 discussed the force
redundancy of PMs and the inverse dynamics of the
Stewart platform. Merlet7 presented the efficient estimation
of external articular forces. Kim and Choi8 analyzed the
forward/inverse kinetostatic capabilities of manipulators in
terms of an eigenvalue. Merlet9 discussed the dynamics
of PMs. Zhang and Gosselin10,11 discussed a general
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kinetostatic model of PMs. Gallardo, Rico, and Frisoli12

analyzed the dynamics of PMs by screw theory. Firmani
and Podhorodeski13 presented force-unconstrained poses for
a redundantly actuated planar PM. Nokleby et al.14 analyzed
PM kinematics using screw algebra. Li et al.15 presented
the inverse dynamic formulation of a 3-degree-of-freedom
(DOF) Tricept robot. Russo et al.16 discussed the static
balancing of a parallel robot. Lu, Shi, and Hu17 and Lu18

analyzed active forces and several passive forces of some
PMs. Ceccarelli19 also discussed the static force of serial and
parallel robots.

The force analysis of PMs generally requires finding the
inertia forces, active forces, and constraint reactions of the
whole mechanism. The analysis of the constraint reactions
of kinematic pairs is terribly complicated. Firstly, since
the number of links and kinematic pairs of PMs is quite
excessive, higher order matrices have to be processed. For
example, a simple 3-RPS mechanism has 42 unknowns. For
a 5-DOF 5-5R PM, the number of unknowns is even up
to 130, so 130 equations need to be built for the problem.
Secondly, the lower mobility PMs can be divided into
two types: mechanisms without overconstraints and ones
with overconstraints. Dealing with overconstraints is also
a new problem. Thirdly, a statically indeterminate problem
often arises for the lower mobility PMs. For instance, the
previously mentioned 5-DOF 5-5R PM has 21 links, and
only 126 equilibrium equations can be built. The number is
less than its 130 unknowns. Especially, for the simple 3-DOF
3-RRR spherical PM, its order of static indeterminacy is up
to six.

This paper proposes an effective approach by using
screw theory20,21 to solve for all the constraint reactions
as well as the active forces. The main advantage of the
method is that it can significantly reduce the number of
unknown constraint reactions and even keep the number of
simultaneous equilibrium equations to not more than six each
time. That is, it can transform the higher order matrix into a
sixth order or less. All of the constraint reactions and active
forces can easily be simultaneously obtained independently
by analyzing the equilibrium of each body one by one.
Compared with the traditional method with higher order
matrices, we define this case as force decoupling (see Section
3). Another merit of this method is the actual axes acted about
by reaction forces and moments can be clearly determined
from screw theory before the numerical calculation, and
it is useful for mechanism analysis and design including
singularity research.
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(a) The 3-RPS mechanism         (b) A limb 

Fig. 1. The 3-RPS mechanism and a limb. (a) The 3-RPS
mechanism; (b) a limb.

Here, we only discuss a 3-RPS parallel mechanism
without overconstraint to introduce the approach for
constraint analysis. At the end of this paper, a numerical
example analysis is given. This method is suitable for
many similar mechanisms without overconstraint, such as
3T0R mechanisms (symbol 3T0R denotes the mechanisms
with three translational mobility and without rotation
mobility): 3-5R,22 3-RRUR,23 3-UPU,24 3-RPUR;25 3R: 3-
UPU,26 3-RPR(RR),27 3-RRS,28 3-RR(RRR), 3-RRR(RR);29

2R1T: 3-RRR(RR),29 3-RPR(RR);27 1T2R: 3-RRR(RR),
3-RR(RRR),29 etc. These mechanisms are all statically
determinate ones.

2. Structure Description

2.1. 3-RPS parallel mechanism
In the 3-RPS mechanism shown in Fig. 1(a), the moving
platform and the fixed platform are both equilateral triangles.
The axis of the R pair is parallel to the corresponding side
of the fixed platform. Link s and link t are connected by the
prismatic pair P, which is the active pair. The fixed coordinate
systemO − XYZ, moving coordinate system c − xyz, and
limb coordinate system Ai − xiyizi are also shown in Fig. 1.

2.2. Mobility analysis
It is necessary to analyze the mobility for this method, and the
Modified Grübler–Kutzbach (G–K) Criterion30–32 is used. In
this mobility analysis, how to deal with overconstraints is a
key issue. The method divides overconstraints into two parts:
one is the common-constraint factor d and the other is the
parallel-constraint factor ν. The Modified G–K Criterion is
given as follow:

M = d(n − g − 1) +
g∑

i=1

fi + ν, (1)

where M denotes the mobility of a mechanism; n is the
number of links including the frame; g is the number of
kinematic joints; fi is the number of DOF of the ith joint;
v, named ν-factor, is equal to the number of redundant

constraints minus the number of common constraints that
have been accounted for. The common-constraint factor d is
given by

d = 6 − λ, (2)

where λ is the number of common constraints of the
mechanism. The common constraint is defined as a screw
reciprocal to all the kinematic screws in a mechanism.

In order to analyze the mobility, one of its limbs i is taken
out, as shown in Fig. 1(b). Its five single-DOF pairs are
expressed in screw Plücker coordinates in system Ai-xiyizi

as follows:20,21

/Si1 = (1 0 0; 0 0 0),

/Si2 = (0 0 0; 0 a b),

/Si3 = (0 a b; 0 0 0), (3)

/Si4 = (1 0 0; 0 b −a),

/Si5 = (0 1 0; −b 0 0),

where the subscripts in /Sij indicate the screw of j kinematic
pair in limb i. Components a and b can be arbitrary and
inessential variants. Equation (3) has one reciprocal screw

/Sr
i1 = ( 1 0 0; 0 b −a ), (4)

where /Sr
i1 is a constraint force acting on the platform by limb

i, parallel to the axis of the revolute pair, and passing through
the center of the spherical pair of limb i.

Similarly, the other two limbs also exert two constraints
on the moving platform. The three constraint forces are all
parallel to the axes of corresponding revolute pairs and also
pass through the spherical pair centers. In this case, both the
common-constraint and parallel-constraint factors are zero
and the mechanism is without overconstraints. Then

M = 6(8 − 9 − 1) + 15 + 0 = 3. (5)

The platform is equivalently acted upon by a constraint
couple and two constraint forces, and the mechanism is able
to translate along Z-axis and rotate about the X- and Y-axes.

3. Active Forces1 and Constraint Reactions
The position, velocity, acceleration, and inertia
force/moment of the mechanism should be determined before
the force analysis. For the analysis process, refer to ref. 30
and many other references.

The kinematic pairs connecting the platform and the limbs
are named as the main kinematic pairs or main pairs and the
reaction in the main pair is named as the main-pair reaction
or main reaction. For a force analysis, the first and key step
is to solve for the reactions of the main pairs. Our method is
based on the principle of d’Alembert and the flowchart below
shows the steps:

1 If it is unnecessary to calculate the constraint reactions of pairs,
the active forces can be directly obtained by the principle of virtual
work.
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Solve for the active forces and constraint reactions of all other kinematic pairs by analyzing the 
equilibrium of each link from the top to the bottom of the limb one by one. 

(a) Solve for those that are produced by the forces exerted 
only on the moving platform 
(b) Solve for those that are produced by the forces exerted 
only on each link of a limb one by one  
(c) Summate (a) and (b) by the superposition principle to get 
the final main-pair reactions 

Solve for the constraint 
reactions in the main 
pairs  

Solve for the inertia force on each body and then summate the inertia force, gravity and other 
external forces on each body to get the resultant external force on that body 

Generally, the number of unknown constraint reactions of a
kinematic pair is completely determined by the pair itself. For
example, the revolute pair has five unknowns including three
constraint forces and two couples perpendicular to the axis of
the pair. The translational pair also has five unknowns, three
couples, and two forces normal to the axis of the pair. The
spherical pair has three constraint forces. The Hooke pair has
four reactions including three forces and a couple. Based on
the analysis, if the number of the unknowns of the mechanism
is more than the number of equilibrium equations, the force
analysis would be unsolvable. Since the 3-RPS has eight
bodies, three R pairs, three P pairs, three S pairs, and three
unknown inputs, the number of equilibrium equations is (8 −
1) × 6 = 42 and the number of unknowns is 3 × 5 + 3 × 5 +
3 × 3 + 3 = 42. Then it is solvable.

3.1. Reactions of main pairs
In order to simplify the introduction to the method, we first
consider only the external force screws Fh/S

F
h and F 1

t /SF
1t ,

which express the six-dimensional force vectors including
the inertia force/moment, gravity, and other external forces,
and act on platform h and link t of limb 1, respectively.

3.1.1. Main reaction produced by platform forces. One of the
main reactions, /Sr

i1, acting on the main pair at ai , has already
been obtained from Eq. (4). Considering the action of the
input force on the limb, there is another reaction force acting
on the platform. Its occurrence is equivalent to locking the
corresponding prismatic pair. Then there are only four screws
in the limb screw system.

/Si1 = (1 0 0; 0 0 0),
/Si3 = (0 −a b; 0 0 0),
/Si4 = (1 0 0; 0 b a),
/Si5 = (0 1 0; −b 0 0).

(6)

Two reciprocal screws of those are

/Sr
i1 = (1 0 0; 0 b a),

/Sr
i2 = (0 −a b; 0 0 0), (7)

where /Sr
i2 is also a constraint force and along the axis of

the P pair. Let /Si
1 and /Si

2 in c − xyz denote /Sr
i1 and /Sr

i2,
respectively. f i

1 and f i
2 (i = 1 ∼ 3) are the magnitudes of
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Fig. 2. Free-body diagram of the platform.

the reactions of the S pairs exerted on the platform at ai by
three different limbs and only caused by the applied force
Fh/S

F
h .

From this point of view, each node of the platform has
two unknown forces whose directions are known but their
magnitudes are unknown. Then the platform is subjected to
six unknown reactions. The free-body diagram of the moving
platform is shown in Fig. 2.

Since there are six unknowns in six equilibrium equations
for the moving platform, the issue is solvable. However,
with the traditional approach, each spherical pair has three
unknowns and the platform equilibrium with nine unknowns
is insolvable. Clearly, the present method reduces the number
of unknowns. The six unknowns can be obtained from the
following screw equation:

3∑

i=1

2∑

j=1

f i
j /Si

j + Fh/S
F
h = 0. (8)

3.1.2. Main reaction produced by limb forces.

Main-pair reaction at a1. In order to analyze the main
reactions at a1 caused by F 1

t /SF
1t , we may analyze the

equilibrium of link t of limb 1. Then we should analyze
the reactions of the S pair at a1 and the P pair. The free-body
diagram of the two-pair link t is shown in Fig. 3(a).

(1) Considering the spherical pair S. The spherical pair at
a1 connects link t and a submechanism, i.e., an RPSSPR
mechanism, as shown in Fig. 3(b). In order to determine
the reactions of the spherical pair, the mobility of the
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Fig. 3. Force analysis. (a) Link t in limb 1; (b) submechanism.

submechanism needs to be determined first. The RPSSPR
mechanism can be considered as a generalized pair, and
from the Modified G–K Criterion, Eq. (1), its mobility
is

M = 6(6 − 6 − 1) + 10 + 0 = 4. (9)

When its two input pairs are locked, its mobility becomes
two. And similarly, there are four constraint forces,
f i

3/Si
3 and f i

4/Si
4 (i = 2, 3), in total acting on the locked

submechanism, as shown in Fig. 3(b). The analysis is
similar to that in Section 3.1.1.
Establish the system E − xEyEzE shown in Fig. 3(b),
where E is the intersection point of f 2

3 /S2
3 and f 3

3 /S3
3;

the xE-axis passes through points a1 and E; the yE-axis
is parallel to side a2a3. Two reciprocal screws of the
four screws in E − xEyEzE , equivalent to the constraint
forces, are

/Sm
1 = (0 1 0; 0 0 d),

/Sm
2 = (f 0 g; 0 0 0), (10)

where /Sm
1 and /Sm

2 denote two twists of the subchain. /Sm
1

passes the center points of the other two spherical pairs,
and /Sm

2 passes through both point E and the intersecting
point of f 2

4 /S2
4 and f 3

4 /S3
4.

In addition, the spherical pair at a1 has another 3 DOF,
which can be written in E − xEyEzE as

/SS
3 = (1 0 0; 0 0 0),

/SS
4 = (0 1 0; 0 0 h),

/SS
5 = (0 0 1; 0 j 0).

(11)

The five-system screws in Eqs. (10) and (11) form an
equivalent serial kinematic chain connecting the link t of
limb 1 and the base at a1. And its reciprocal screw, i.e., a
constraint, is

/Sr = (1 0 0; 0 0 0), (12)

where /Sr simultaneously intersects five twists, /Sm
1 , /Sm

2 ,
/SS

3 , /SS
4 , and /SS

5 ; and it is also a constraint force along the
xE-axis of the E − xEyEzE system.

Let /S1
3 in c − xyz denote /Sr , and f 1

3 denote its magnitude.
Therefore, the spherical pair has only one constraint,
f 1

3 /S1
3, in this case.

(2) Considering the prismatic pair P. In order to analyze the
reactions of the prismatic pair, it is necessary to consider
the kinematic chain consisting of the R pair and the P
pair, i.e., the 2-DOF RP chain in limb 1. The kinematic
screws of the RP chain are just the first two screws in Eq.
(3), and there are four reciprocal screws constraining the
link t

/Sr
13 = (0 0 0; 0 0 1),

/Sr
14 = (0 0 0; 0 1 0),

/Sr
15 = (1 0 0; 0 0 0),

/Sr
16 = (0 b −a; 0 0 0).

(13)

In c − xyz, let /S1
4 ∼ /S1

7 denote /Sr
13 ∼ /Sr

16 of Eq. (13), and
m1

4, m1
5, f 1

6 , and f 1
7 denote their magnitudes, respectively.

Therefore, the P pair of limb 1 has four and not five
unknown reactions, m1

4/S
1
4, m1

5/S
1
5, f 1

6 /S1
6, and f 1

7 /S1
7.

(3) The equilibrium of link t. Let f A
i2/SA

i2 denote the active
force on limb i produced only by forces acting on link t
of limb 1(F 1

t /SF
1t ). There are six unknowns including the

active force f A
12/S

A
12 in the six equilibrium equations of

link t. So it is solvable. The screw equation is

∑

j=3,6,7

f 1
j /S1

j +
5∑

j=4

m1
j/S

1
j + F 1

t /SF
1t + f A

12/S
A
12. (14)

Main-pair reaction at ai(i = 2, 3). Now f 1
3 /S1

3 has already
been known from Eq. (14). In order to solve for the other four
main reactions, f i

j /Si
j (i = 2, 3, j = 3, 4), the equilibrium of

the platform shown in Fig. 3b should be considered once
again. The screw equation is

3∑

i=2

4∑

j=3

f i
j /Si

j + f 1
3 /S1

3 = 0. (15)

3.1.3. Resultant main-pair reaction. Finally, the total
reactions of main pairs caused by the applied forces Fh/S

F
h and

F 1
t /SF

1t can be obtained by the principle of superposition of
forces, and they all pass through the corresponding spherical
pair centers. From Eqs. (8) and (14) the reaction of the main
pair at a1 is

3∑

j=1

f 1
j /S1

j . (16)

From Eqs. (8) and(15) the reaction of the main pair at
ai(i = 2, 3) is

4∑

j=1

f i
j /Si

j , i = 2, 3. (17)

If other links of the limbs are subject to a known six-
dimensional external force, the analysis is similar. And then,
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summate them in turn to get the final main-pair reaction on
limb i, which is expressed by f S

i /SS
i in Eq. (18).

f S
i $S

i = f S
i1$S

i1 + f S
i2$S

i2 + · · · , i = 1 ∼ 3, (18)

where f S
ij $S

ij (i = 1 ∼ 3, j = 1, 2 · · ·) is the component of

f S
i /SS

i .

3.2. Active forces and other reactions
Once the main-pair reactions are obtained, the active forces
and constraint reactions of all other kinematic pairs are easily
found by solving the equilibrium of each link from the top to
the bottom of the limb one by one.

When analyzing link t of limb i, the total main-pair reaction
is considered as one of its six-dimensional known external
forces. From screw theory, we know that the number of
unknown constraint reactions of the prismatic pair may be
less than 5 (see Section 5). Then we let

f P
i /SP

i = f P
i1/S

P
i1 + f P

i2/S
P
i2 + · · · + f P

ij/S
P
ij ,

i = 1 ∼ 3, j ≤ 5, (19)

where f P
i /SP

i (i = 1 ∼ 3) is the total constraint reaction of the
P pair of limb i. f P

ij $P
ij (i = 1 ∼ 3, j ≤ 5) is the component

of f P
i $P

i .
Let f A

i /SA
i denote the total active force on the limb i

produced by all the external forces, and F i
t /S

F
it denote a known

external force acting on link t of limb i. The active forces and
constraint reactions of the prismatic pair can be obtained
from the screw Eq. (20).

f S
i /SS

i + f A
i /SA

i + f P
i /SP

i + F i
t /S

F
it = 0, i = 1 ∼ 3. (20)

The R pair at Ai has generally five constraint reactions,and
we let them be mR

i1/S
R
i1, mR

i2/S
R
i2, f R

i3/S
R
i3, f R

i4/S
R
i4, and

f R
i5/S

R
i5.When analyzing link s of limb i, the total constraint

reactions of the P pair are considered as its known external
forces and constraint reactions of the R pair at Ai can be
obtained from Eq. (21) below

−f A
i /SA

i − f P
i /SP

i +
2∑

j=1

mR
ij/S

R
ij +

5∑

j=3

f R
ij /SR

ij + F i
s /S

F
is = 0,

i = 1 ∼ 3, (21)

where F i
s $F

is(i = 1 ∼ 3) is a known external force acting on
link s of limb i.

4. Numerical Example
The numerical results of the 3-RPS mechanism can be easily
calculated with our method. Assume that there are the known
forces including the inertia force/moment, gravity, and other
external forces acting only on platform h and link t of limb
1, and they are expressed as Fh/S

F
h = (10 5 −78.2; 3 4 2),

F 1
t /SF

1t = (5 5 6; 2 3 2) (N · m and N); the circumradii of
the platform and the base are r = 0.3 m and R = 0.4 m,
respectively; the initial distance from the platform to the
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Fig. 4. Link s of limb i. (a) Reactions of prismatic pair; (b) reactions
of revolute pair.

Table I. The results of the active forces and constraint reactions of
3-RPS manipulator.

fu fv fw mu mv mw

A1 – – 28.52 – – –
S1 −7.46 −12.04 −32.92 – – –
P1 12.46 5.58 – 0 1.31 −1.37
R1 12.46 5.58 28.52 – 1.31 −1.37
A2 – – 28.49 – – –
S2 −10.41 0 −28.49 – – –
P2 10.41 0 – 0 3.79 0
R2 10.41 0 28.49 – 3.79 0
A3 – – 16.48 – – –
S3 11.20 0 −16.48 – – –
P3 −11.20 0 – 0 −4.08 0
R3 −11.20 0 16.48 – −4.08 0

base is z0 = 0.35 m; the length of the link t, lt , is 0.3 m.
And it is necessary to solve for the active forces and the
constraint reactions of kinematic pairs that are broken into
their components along three coordinate axes, ui , wi , vi , i.e.,
the axis of the revolute pair, the axis of the prismatic pair, and
the axis perpendicular to the above two axes in every limb.

The process for solving for the main-pair reactions can be
found in Section 3.1.

In order to solve for the constraint reactions in the P pair,
link s of limb i is taken out as a free-body member to analyze.
Fig. 4(a) shows four constraint reactions of the prismatic pair,
mP

i1/S
P
i1, mP

i2/S
P
i2, f P

i3/S
P
i3, f P

i4/S
P
i4 and an external force,f C

i /SC
i ,

exerted by the actuator. Fig. 4(b) shows five constraints of
the R pair mR

i1/S
R
i1, mR

i2/S
R
i2, f R

i3/S
R
i3, f R

i4/S
R
i4, and f R

i5/S
R
i5.

The resulting active forces and constraint reactions are
listed in Table I, where Ai , Si , Pi , Ri(i = 1, 2, 3) denote
the actuator, spherical pair, prismatic pair, and revolute
pair in limb i, respectively. (fu,fv,fw) and (mu,mv,mw)
are three components of forces along and moments about
three corresponding axes.

5. Conclusion
The paper has presented a new approach by using screw
theory for force analysis of statically determinate parallel
mechanisms. It is necessary to analyze the main-pair
reactions at first, the main-pair reactions can be obtained
through solvable equilibrium equations of the platform and
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links independently. Once the main reactions are solved, the
constraint reactions of other pairs are easily obtained.

An important advantage of the method is that it can
markedly reduce the number of unknown reactions, and even
keep the number of simultaneous equilibrium equations to
not more than six each time. Then all of unknowns can easily
be simultaneously obtained independently by analyzing the
equilibrium of each body one by one. That is, it can transform
the higher order matrix into a sixth order or less, and it can
be named as a force-decoupling approach. Another merit
of this method is the actual axes acted about by reaction
forces and moments can be clearly determined before the
numerical calculation, and it is useful for mechanism analysis
and design including singularity research.

The approach not only applies to many parallel
mechanisms similar to 3-RPS manipulator, but also applies to
the parallel mechanisms with special static indeterminacy.33

However, for the parallel mechanisms with special static
indeterminacy, some additional complementary equations
are needed.
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and M. M. Stanišič, eds.) (Kluwer Academic Publishers, 2000)
pp. 433–440.

24. Z. Huang and Q. C. Li, “Construction and kinematic
properties of 3-UPU parallel mechanisms,” Proceedings of
the Design Engineering Technical Conferences (DETC2002),
ASME Paper MECH-34321, Montreal, Canada (2002)
pp. 1027–1033.

25. D. X. Zeng and Z. Huang, “Mobility and Position Analysis
of a Novel 3-DOF Translational Parallel Mechanism,”
Proceedings of the International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference, ASME Paper No. DETC2006–99031,
Philadelphia, PA, USA (2006) pp. 957–963.

26. Z. Huang and Q. C. Li, “On the Type Synthesis of Lower-
Mobility Parallel Manipulators,” 2002 ASME Conference
Workshop, Quebic (2002).

27. Z. Huang and Q. C. Li, “Type synthesis of symmetrical
lower-mobility parallel mechanisms using constraint-synthesis
method,” Int. J. Robot. Res. 22(1), 59–79 (2003).

28. R. Di Gregorio, “The 3-RRS wrist: A new, very simple and not
overconstrained spgerical parallel manipulator,” Proceedings
of the 2002 ASME Design Engineering Technical Conferences,
Report No. MECH-34344, Montreal, Canada (2002)
pp. 1193–1199.

29. Q.C. Li and Z. Huang, “A family of symmetrical lower-
mobility parallel mechanisms with spherical and parallel
subchains,” J. Robot. Syst. 20(6), 297–305 (2003).

https://doi.org/10.1017/S0263574711000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000129


A force analysis of a 3-RPS parallel mechanism by using screw theory 965

30. Z. Huang, L. F. Kong and Y. F. Fang, Mechanism Theory of
Parallel Robotic Manipulator and Control (China Mechanical
Press, Beijing, 1997).

31. Z. Huang and Q. C. Li, “General methodology for type
synthesis of lower-mobility symmetrical parallel manipulators
and several novel manipulators,” Int. J. Robot Res. 21(2),
131–145 (2002).

32. Z. Huang, J. F. Liu and Q. C. Li, “Unified methodology for
mobility analysis based on screw theory,” In: Smart Devices
and Machines for Advanced Manufacturing (L. Wang and J.
Xi, eds.) (Springer-Verlag, London, 2008).

33. Z. Huang, Y. Zhao and J. F. Liu, “Kinetostatic analysis
of 4-R(CRR) parallel manipulator with overconstraints via
reciprocal-screw theory,” Adv. Mech. Eng. 2010, 11 pp. (2010).

https://doi.org/10.1017/S0263574711000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000129

