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COMPUTABILITY OF POLISH SPACES UP TO HOMEOMORPHISM

MATTHEW HARRISON-TRAINOR, ALEXANDER MELNIKOV, AND KENG MENG NG

Abstract. We study computable Polish spaces and Polish groups up to homeomorphism. We prove a

natural effective analogy of Stone duality, and we also develop an effective definability technique which

works up to homeomorphism. As an application, we show that there is a ∆02 Polish space not homeomorphic

to a computable one. We apply our techniques to build, for any computable ordinal α, an effectively closed

set not homeomorphic to any 0(α)-computable Polish space; this answers a question of Nies. We also prove

analogous results for compact Polish groups and locally path-connected spaces.

§1. Introduction. In this article we focus on the following general problem
fundamental to computable mathematics:

Describe computably presentable mathematical structures.

Of course, to formally clarify the problem we need to restrict it to some natural
class of mathematical structures and agree on what we mean by a computable
presentation for such structures. For instance, Turing [44, 45] suggested the following
formal definition of a computable real: A real r is computable if there is an effective
procedure (Turing machine) which, on input s, outputs a rational q such that |q –
r| < 2–s . Turing’s definition has a natural generalisation to functions. Similarly, we
say that a function f : [0,1]→ R is computable if there is an effective procedure
which, on input s, outputs a tuple of rationals 〈q0, ...,qn〉 such that supx∈[0,1]{|f –∑n
i=0 qix

i |} < 2–s . Using the formal notion of computability for functions, we can
use tools of computability theory to attack the general problem of computable
presentability informally stated above. For instance, Myhill [35] showed that there
exists a computable function which is continuously differentiable, but its derivative
is not computable. In contrast, Pour-El and Richards [37] showed that if the second
derivative of a computable function f exists (but is not necessarily computable),
then the derivative of f has a computable presentation. Results of this kind belong
to a field of mathematics called computable analysis; see books [4, 38].
The ideas of Turing can be naturally extended beyond the space of reals to define

the classical notion of a computable Polish space [46]. Recall that a metrized Polish
space (M,d ) has a computable Polish presentation if there exists a countable metric
space ((xi)i∈ù,d̃ ) whose completion is isometrically isomorphic to (M,d ) and, given
i,j and n, we can compute d̃ (xi,xj) with precision 2

–n. In the case of a separable
Banach space we also assume that the standard Banach space operations are
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computable; we omit the definition (see [38]). The study of computable presentations
of metrized separable spaces has been central to computable analysis for decades.
See books [38, 46], a tutorial survey [4], and also, e.g., [3, 7, 19, 21, 36] for recent
results on computable Polish and Banach spaces.
As was first noted in [28], the study of separable spaces up to isometric

isomorphism can be viewed as a generalisation of (discrete) computable algebra
[2, 11]. With some effort, the techniques and ideas from computable algebra
can be adjusted to separable spaces. Beginning with [28] there have been several
successful applications of effective algebraic techniques to separable spaces; see
[7, 16, 17, 27, 33, 32, 34, 36], a PhD thesis [5], and a recent survey [9].
In the case of Polish groups the situation becomes more complex. We of course

require the standard group operations to be computable with respect to the
computable dense set (to be clarified), but this is not what makes the case of Polish
groups different from Banach spaces. Since topological groups are typically studied
up to topological isomorphism, we require that the completion of the computable
presentation of G is merely algebraically homeomorphic to G. The relaxation of
isometry to homeomorphism makes it essentially impossible to apply methods
developed for Banach spaces and metric spaces up to isometry to Polish groups.
There were however some notable exceptions. For instance, working under the

supervision of Nerode, La Roche [26] proved that the correspondence between
computable algebraic number field extensions and profinite groups is uniformly
effective. In particular, computable presentability of a profinite group is completely
reduced to the similar problem for the corresponding field extension. Quite
interestingly, the algorithmic techniques developed in [26] allowed La Roche to
prove a theorem on free profinite groups that was new even in the purely algebraic
(noncomputable) setting, see [22] for the earlier (andweaker) purely algebraic result.
Based on the work of La Roche, Smith [42, 43] studied “recursive presentations” of
profinite groups; these are computable linear inverse systems of finite groups. These
results and notions are of course naturally limited to the class of profinite groups,
and there had been very little progress in computable topological groups theory for
several decades (but see [13]).
Beginning with [31], there have been a few successful applications of effective

algebraic techniques to topological group theory beyond profinite groups. If a group
is not profinite then we follow [31] and define its computable presentation to be a
computable Polish presentation of the underlying space which makes the group
operations · and –1 computable; see Definition 2.3 for formal details1. The main
difficulty in such investigations is that there is still no general machinery, so every
result seems to require a new method. For example, Melnikov [30] used Pontryagin
duality, computable pregeometries, and a result of Dobrica [10] to partially reduce
the study of computable compact topological abelian groups to the theory of
computable discrete abelian groups (see surveys [24, 29]). Greenberg, Melnikov,
Nies and Turetsky [17] used ideas from descriptive set theory, the above-mentioned
result of La Roche [26], methods of higher recursion theory [40], and the jump

1We note here that every “recursive” profinite group (in the sense of computable inverse limits)
can naturally be viewed as a computably metrized Polish one, and passing from a computable Polish
presentation to a “recursive” one requires 0′, and this is sharp [30].
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1666 MATTHEWHARRISON-TRAINOR ET AL.

inversion technique from effective algebra to study computable totally disconnected
groups.
One of the key obstacles here is that essentially nothing is known about

computable presentability of Polish spaces up to homeomorphism. The little that
was known before the publication of this paper can be found in the very recent
short survey [41]. For instance, Selivanov [41] introduced the notion of the degree
spectrum of a Polish space up to homeomorphism; however, Selivanov’s results for
algebraic domains does not have implications for Polish spaces since the notion
of computability there is rather different. There are of course some results in the
literature on computable topological spaces (e.g., [47]) which naturally hold up
to homeomorphism, such as the effective metrization theorem [19], but until very
recently computable presentability of metrized Polish spaces up to homeomorphism
remained completely unexplored.
The main purpose of this paper is to establish the foundations of this new subject.

Working simultaneously and independently, Kihara et al. [20] have recently proven
a number of important and fundamental results on degree spectra of Polish spaces
up to homeomorphism. We will indicate the connections between our results and
[20] below.
We will prove several general results and will develop elements of definability

which work up to homeomorphism. Although these are only the first steps, our new
techniques will allow us to answer several fundamental questions, including:

(1) Is there a ∆02-presented Polish space not homeomorphic to a computable one?
(2) Is every effectively closed set homeomorphic to a computable Polish space?2

We will then apply our techniques to answer similar questions for Polish groups.
Using different methods, Kihara et al. [20] have suggested an independent solution
to the first question for Polish spaces.
As we mentioned above, very little is known about computable presentability

up to homeomorphism. Nonetheless, the reader will perhaps be surprised that the
two main questions above were open since they are so fundamental and basic. Of
course, the analogy of the first question up to isometry is trivial: Just take two points
at distance a real number α coding the halting set. But the question is no longer
straightforward up to homeomorphism. For instance, Greenberg and Montalbán
[18] showed that every hyperarithmetical compact countable Polish space has a
computable copy. The proof relies on the computability-theoretic analysis of the
Cantor–Bendixson process due to Friedman (unpublished notes); in particular, for
a countable space the Cantor–Bendixson rank must be hyperarithmetical, and since
a countable compact space is homeomorphic to an ordinal the result of Greenberg
and Montalbán follows from the similar classical result for ordinals (see, e.g., [2]).
(We note that [20] contains a detailed proof of this fact.) Thus, if we want to get
an example of a ∆02 Polish space not homeomorphic to a computable one, the space
must contain a nontrivial perfect kernel. Regarding the second question, we will see
that computable presentability of an effectively closed set is related with the ability
to decide whether a given open set intersects it.

2Thanks to Andre Nies for asking this question. We also thank Alex Galicki for several discussions
related to this topic. Alex is involved in a related project which is still in progress.
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Now to the results.
Stone spaces. Recall that compact and totally disconnected Polish spaces are

also called profinite spaces or Stone spaces. The well-known Stone duality states
that a countable discrete Boolean algebra B is dual to the profinite space B̂ of its
ultrafilters, in the sense that B ∼=iso C iff B̂ ∼=hom Ĉ . Greenberg and Montalbán
[18] (essentially) observed that Stone duality holds arithmetically. Passing from a
computably metrized Stone space to the respective Boolean algebra is of course the
harder direction, and it seems to require at least one Turing jump. Interestingly, we
discovered that the duality holds computably:

Theorem 1.1. Let B be a (countable, discrete) Boolean algebra. Then the following
are equivalent:

(1) B has a computable copy;
(2) the Stone space B̂ of B has a computable Polish presentation.

The proof of the theorem is not difficult but is subtle, and it makes an essential
use of the well-known result of Downey and Jockusch [8]. The proof of Theorem
1.1 implies that every computable Stone space has a computable effectively compact
presentation; recall that a space is effectively compact if for every iwe can computably
cover the space with balls having radii ≤ 2–i . This is because every computable
Boolean algebra has a computable presentation with a tree-basis represented as
a computable binary subtree of 2<ù (folklore); see Subsection 4.1 for more about
spanning trees. It follows that Theorem 1.1 still holds if in (2) we additionally require
the space to be effectively compact; see [20] for an independent proof of this fact
that does not use Downey and Jockusch [8].
Combine Theorem 1.1 with the classical theorem of Feiner [12] to obtain:

Corollary 1.2. There exists a ∆02-presented profinite Polish space not homeomor-
phic to any computable Polish space.

This answers the first main question. Theorem 1.1 essentially completely reduces
the theory of computable Stone spaces to computable Boolean algebras; see book
[14] for an excellent but somewhat dated exposition of the latter. We state only one
of the many corollaries: Every low4 profinite Polish space is homeomorphic to a
computable one (follows from [25]).
Effectively closed subspaces. Recall that a closed subspace of a computable Polish

space is Π01 or effectively closed if its complement is computably enumerable; i.e.,
there is a computably enumerable set of open balls which makes up the complement.
Effectively closed subspaces of 2ù are called Π01-classes and have been studied
extensively. However, not much is known about effectively closed spaces of arbitrary
spaces; see, e.g., [6, 48] for a few results. Note that an effectively closed space does
not have to contain a dense set computable in the ambient space. If an effectively
closed C does contain a dense uniformly computable sequence then C is called
effectively overt. Equivalently, a closed set is effectively overt if the set of basic open
balls intersecting the set is computably enumerable (folklore; see, e.g., [21, 30] for
details). If a set is effectively overt then of course it has a computable presentation
under the inducedmetric. It turns out that effective overtness is essential in producing
a computable presentation of a Π01 closed set.

https://doi.org/10.1017/jsl.2020.67 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.67


1668 MATTHEWHARRISON-TRAINOR ET AL.

Theorem 1.3. For each computable ordinal α, there is a computable Polish space
M and aΠ01 subspace C ofM such that C is not homeomorphic to any 0

(α)-computable
metric space.

This answers the secondmain question raised above in a strongway. It also follows
from Theorem 1.3 that there exists a Π01 subspaceC which is not 0

(α)-overt. We leave
open:

Question 1. Is there an effectively closed X not homeomorphic to any hyperarith-
metically represented space?

Locally connected spaces. Although we settled both main questions in general,
we would like to test these ideas on spaces from other natural classes. After all,
Stone spaces are very specific topological spaces, they are just representations of the
well-studied class of countable Boolean algebras. One would naturally expect that
techniques required to build examples of Stone spaces will likely be too specific to
be of any use outside of this narrow class of spaces.
In particular, the classes of connected and locally connected spaces seem to be on

the other end of the technical “spectrum.” Recall that there is no logical implication
between connectedness and local connectedness. We focus on the locally connected
case. As we mentioned above, methods developed in the proof of Theorem 1.1 seem
to be of little help. However, the definability techniques developed in the proof of
Theorem 1.3 for Π01 sets are more versatile and will allow us to prove:

Theorem 1.4. There is a∆02 locally compact and locally path-connected space which
is not homeomorphic to any computable Polish space.

In contrastwithCorollary 1.2, the proof of the theoremabove ismuchmore direct,
in the sense that shows how to build such spaces “by hand” without outsourcing to
effective algebraic techniques. Its proof is a priority construction combined with
definability, and the complexity of guessing in the proof is at the level of Π03.
We conjecture that any construction of a locally connected space witnessing the
theorem above must involve a difficult guessing. This is because definability up to
homeomorphism in such spaces seems to require at least three quantifiers. The proof
of the theorem above is the first example of a 0′′′ argument in computable analysis
that we are aware of, but the good news is that there will not be much injury and
therefore no special training in 0′′′ arguments is necessary to understand the proof.
We also strongly conjecture that one can modify the proof of Theorem 1.4 to get
a locally compact locally path-connected subspace of R2 witnessing the theorem;
see Remark 4.10. In fact, the space can be realised as an effectively closed ∆02-overt
subset of R2 thus also witnessing Theorem 1.3 for α = 0. We leave open:

Question 2. Is there a ∆02 connected Polish space not homeomorphic to a
computable one? What about compact connected spaces?

Topological groups.We test our methods on the class of Polish groups. We apply
techniques similar to those used in Theorem 1.1 for Stone spaces to prove:

Theorem 1.5. There exists a ∆02 compact Polish abelian group not topologically
isomorphic to any computable Polish group.
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The group witnessing the theorem is not profinite but all the information is coded
into the profinite factor. In particular, the group is not connected. We strongly
suspect that with some extra work one can design a profinite group witnessing the
theorem above, but we leave it for future work. The connected case seems more
challenging.

Question 3. Is there a ∆02 connected Polish group not topologically isomorphic to
any computable Polish group?

Finally, we finish the introduction with the theorem which is a version of the
second main result Theorem 1.3 for Polish groups.

Theorem 1.6. For every computable α there exists an effectively closed compact
(thus, profinite) subgroup of S∞ not homeomorphic to a ∆

0
α Polish group.

The proof of this theorem extends an argument from [17] and should not be
hard to understand to anyone familiar with the standard techniques of computable
structure theory [2].

§2. Formal definitions. Recall that a real α is computable (Turing [44, 45]) if there
exists a Turing machine that, given n ∈ N, outputs a rational r within 2–n of α. A
Polish space (M,d ) is computable if there exists a sequence (αi)i∈N of M-points
which is dense in M and such that, for every i,j ∈ N, the distance d (αi,αj) is a
computable real, uniformly in i and j [46]. Given a computable presentation of a
Polish space, we call the points (αi)i∈N special points.

Definition 2.1. Let f be a continuous function between Polish metric spacesM
and N. A name of f is any collection of pairs of basic open balls (B,C ) such that
f(B) ⊆ C , and for every x ∈M and every å > 0 there exists (B,C ) ∈Ψ such that
B ∋ x and r(C )< å.

Definition 2.2. A function f :M → N between computably presented Polish
spacesM,N is computable if it possesses a c.e. name.

A function is continuous iff it has an X -c.e. name for some oracle X.
In a metric space, we say that a Cauchy sequence (xi) is fast if d (xi,xi+1)< 2

–i–1.
The above definition of a computablemap is equivalent to saying that f is represented
by a Turing functional that maps fast Cauchy sequences to fast Cauchy sequences
(folklore). The definition below was first suggested in [31].

Definition 2.3. A computable Polish group is a triple (G,Φ,Ψ), where G is a
computable Polish presentation of the underlying metric space and Φ and Ψ are
(indices for) c.e. names of group-operations · and –1 upon G.

§3. Effectively closed subspaces.

Theorem 3.1. For each computable ordinal α, there is a computable Polish space
M and aΠ01 subspace C ofM such that C is not homeomorphic to any 0

(α)-computable
Polish space.

Proof. The proof relies on a definability technique. To develop the technique
we first need to prove several lemmas. Some of these lemmas (such as the lemma
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below) are really folklore, but for completeness sake we include their proofs. The
problem with dealing with a computable presentation of a Polish space is that we
only really have access to a dense subset of special points, so we cannot for example
talk about a path from one point to another. We can however approximate such a
path by taking a discrete series of short steps.

Definition 3.2. Let (M,d ) be a Polish space. Given special points x,y, an
å-path from x to y is a sequence of special points x = u0,u1, ...,un = y such that
d (ui,ui+1)< å.

The existence of a path yields the existence of an å-path for every å > 0.

Lemma 3.3. Let (M,d ) be a Polish space with special points 〈qi〉i∈ù . Suppose that
there is a path between special points r and s. Then for every å > 0, there is an å-path
from r to s.

Proof. Let [0,1] be the unit line, let f : [0,1]→M be a continuous path from r
to s. Then f is uniformly continuous. So for a sufficiently large rational q, we have
that for each i,

d

(
f

(
i

q

)
,f

(
i+1

q

))
<
å

4
.

Then choose x0 = r, xq = s , and for each i = 1, ...,q – 1, choose a special point xi
with d (xi,f(i/q))< å/4. Then r = x0, ...,xq = s is an å-path from r to s. ⊣

The converse is not true in general. For example there might be two points r
and s at distance 1 from each other, such that for each n ∈ N there is a discrete set
of n points at distance 1/n from each other forming an 1/n-path from r to s; but
no continuous path from r to s. However, this is only possible due to a failure of
compactness for the path-components of r and s.

Lemma 3.4. Let (M,d ) be a Polish space with special points 〈qi〉i∈ù . Suppose that
each path-component of M is compact and open. If special points r,s are not in the
same path-component, then there is an å such that there is no å-path between r and s.

Proof. Let C be the path-component of r. Since C is open, its compliment is
closed, and since C is compact there is a distance å between C and C c . Then there
is no å/2-path from r to s, as given any path r = u0,u1, ...,un = s there must be a first
i such that ui ∈ C and ui /∈ C , and so d (ui,ui+1)≥ å. ⊣

It is important that the path-components be open. If they were just compact,
then for sufficiently small å one could not make an å-path that went directly from
the path-component of r to the path-component of s, but one might be able to
find an å-path that travels via some third path-component, with a different third
path-component for each value of å. The main coding components in our proof will
be designed using k-stars which are defined below.

Definition 3.5. A k-star is a topological space homeomorphic to k copies of
the interval [0,1] all joined at one end in a single point. Note that a k-star is not
homeomorphic to a k′-star for k 6= k′.
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We say that a component is a star if it is a k-star for some k. The value of k will
always be finite, so that every star is compact. Stars with infinite branching would
not allow us to use Lemma 3.4.
We are ready to state and prove the main definability lemma.

Lemma 3.6. Let (M,d ) be a Polish space with special points 〈qi〉i∈ù . Suppose that
M is homeomorphic to the disjoint union of stars, each of which is compact and open.
A special point r is contained within an n-star with n ≥ ℓ if and only if

(*) there are distinct pointsp1,p2, ...,pℓ in the same path-component as r and a ä> 0
such that for each i,j,k and for every å < ä there is an å-path pi = u0,u1, ...,un =
pj from pi to pj such that u0, ...,un /∈ B̄ä(pk) = {x ∈M : d (x,pk)≤ ä}.

Moreover, the witnesses p1, ...,pℓ are all on different arms of the star.

Proof. First we show that this is true of an n-star, n ≥ ℓ. Let p1, ...,pℓ be points
on different arms of the stars. Given pi , pj , and pk , let ä be sufficiently small that
B̄ä(pk) does not intersect the arms containing pi and pj , and also does not intersect
the complement of the star. Then there is a path between pi and pj inM – B̄ä(pk), so
by Lemma 3.3, for every å < ä there is an å-path from pi to pj which avoids B̄ä(xk).
Let S be an n-star inM. If n < ℓ, then given any distinct special points p1, ...,pℓ ,

two of them are on the same arm of the star (or one of these points is the center
of the star). So we can choose pi,pj,pk such that by removing pk , the star divides
into two connected components, one containing pi , and the other containing
pj . We must show that for every ä, there is an å < ä such that for every å-path
pi = u0,u1, ...,un = pj from pi to pj , there is some ui ∈ B̄ä(pk). We may assume that
ä is sufficiently small that pi,pj /∈ B̄ä(pk) (otherwise it is trivial).
Now we can write S as a disjoint union Ci ∪Cj ∪Bä(pk) where Ci and Cj are

closed sets containingpi andpj respectively. ThenCi andCj are compact, and sowe
can choose å smaller than the distance betweenCi andCj , and also smaller than the
distance between S and the compliment of S. Then any å-path pi = u0, ...,un = pj
inM must have u0, ...,un ∈ S (since the distance between S and the compliment of
S is greater than å). Also, since u0 ∈ Ci , un ∈ Cj , and the distance between Ci and
Cj is greater than å, for some s, us ∈ Bä(pk ) ⊆ B̄ä(pk). So there is no å-path from pi
to pj avoiding B̄ä(pk). ⊣

For the computability-theoretic part of our proof we rely on the following simple
lemma.

Lemma 3.7. Let R be a hyperarithmetic relation. Then there is a computable
sequence of trees Tn ⊆ ù

<ù such that if n /∈ R, then Tn has a single path, and if
n ∈R, then Tn has no path.

Proof. Let α be such that R is 0(α)-computable. It is well-known that for each
computable ordinal α, there is a computable tree T with a single path f ≡T 0

(α).
(By Proposition II.4.1 of [40], 0(α) is a Π02 singleton, and following Theorem 3.1 of

[23] we can replace 0(α) by a lexicographically least Skolem function f ≡T 0
(α) such

that f is a Π01 singleton.) Let Φ be a Turing functional such that R =Φ
f . Then for

each n, let Tn be a computable tree with g ∈ [Tn] if and only if g ∈ [T ] and either
Φg(n) ↑ or Φg(n) = 0. Then Tn has at most one path since T has at most one path,
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and if Tn has a path, that path is f. If n /∈R, then f is still a path of Tn; and if n ∈R,
then Φf(n) = 1, and so f /∈ [Tn]. ⊣

We return to the proof of the theorem. We will buildM as a computable Polish
space with special points (qi)i∈ù and metric d. The Π

0
1 subspace C ofM will be the

disjoint union of stars, each of which is compact and open.
Given a presentation (X,d,(ri)i∈ù) of a Polish space which is a disjoint union of

compact open stars, we claim that the set S(X ) = {n : X has an n+3-star} of sizes
of stars in X is Σ04 relative to this presentation of X. Indeed, n ∈ S(X ) if and only
if X contains a special point r satisfying (∗) of Lemma 3.6 for ℓ = n+3, but not
satisfying (∗) of Lemma 3.6 for ℓ = n+4. (In (∗), we ask that p1, ...,pℓ are in the
same path component as r; we express this by saying that for each i and for every å
there is an å-path from r to pi , as in Lemma 3.4.)
Let R be a relation which is not ∅(α+4)-computable. Using Lemma 3.7, let Tn ⊆

ù<ù be a computable sequence of trees such that if n ∈R then Tn has no path, but if
n /∈R then Tn has a unique path. LetM be the disjoint union, over n ∈ ù, of ù

ù×
Sn+3 where Sn+3 is a particular chosen computable presentation of an n+3-star. Set
each componentùù×Sn+3 to be at distance 1 from each other such component. As a
metric space, we use the summetric on each componentùù×Sn+3, i.e., if (f,x) and
(g,y) are in the same component, we set d ((f,x),(g,y)) = dùù (f,g)+dSn+3(x,y).

Now we will define the Π01 set C. Whenever we see ó /∈ Tn, put [ó]×Sn+3 /∈C . To
see that we can do this effectively, we must note that we can write [ó]×Sn+3 as an
effective union of basic open balls

⋃

n∈ù

⋃

p∈Sn+3

B2–|ó|(ón,p)

where p ranges over special points in the chosen computable presentation of Sn+3.
If n ∈R, then C is disjoint from ùù×Sn+3, and so does not have an n+3-star; and
if n /∈R, then C ∩ùù×Sn+3 = {f}×Sn+3 where f is the path through Tn, and so C
has an n+3-star. ThusC is homeomorphic to the the disjoint union of an n+3-star
for n /∈R, and each of these stars is compact and open. We have S(C ) =R.
We claim that C is not homeomorphic to any 0(α)-computable metric X. Indeed,

suppose to the contrary that X was homeomorphic to C. Then R = S(C ) = S(X )
which is Σ04 relative to 0

(α), contradicting the choice of R. ⊣

§4. ∆0
2
Polish spaces with no computable homeomorphic copies.

4.1. Totally disconnected spaces. Recall that a Polish space is profinite if it
is compact and totally disconnected. The well-known Stone duality states that
a countable discrete Boolean algebra B is dual to the profinite space B̂ of its
ultrafilters, in the sense thatB ∼=iso C iff B̂ ∼=hom Ĉ ; that is, the isomorphism type of a
countable discrete Boolean algebra is uniquely determined by the homeomorphism
type of its dual profinite space.

Theorem 4.1. Let B be a (countable, discrete) Boolean algebra. Then the following
are equivalent:
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(1) B has a computable copy;
(2) the Stone space B̂ of B has a computable Polish presentation.

Proof. Given a computable Boolean algebra B, produce a computable tree-basis
of B [14]. Recall that a tree basis is the set of generators of B which form a tree
under the standard ≤ with root 1, such that every generator y in the tree has either
no children (and then it is an atom) or exactly two children whose disjoint union is
equal to y. Interpret the tree basis as a dense subset of closed subspace of 2ù under
the usual ultrametric. This gives a computable Polish presentation of B̂ .
Now suppose the Stone space B̂ of B has a computable Polish presentation. We

effectivize the standard proof of Stone duality. The key lemma is:

Lemma 4.2. Suppose M is a computable compact Polish metric space. If M is not
connected then 0′ can produce a splitting of M into two disjoint clopen components.
Furthermore, 0′ can compute two representations for each of the two components: one
via a finite union of basic open balls, and the other via a finite union of basic closed
balls. Moreover, if x and y are special points in distinct connected components of M,
we can find a splitting with x in one component and y on the other.

Proof. Suppose M0 and M1 are two nonintersecting clopen components of M
such thatM0∪M1 =M . SinceM is compact and eachMi is closed,Mi is compact.
SinceMi is open and compact it is equal to a finite union of open balls, sayM0 =⋃
i=1,...,kBi andM1 =

⋃
j=1,...,nDi , where Bi,Dj are basic open balls. Write B̄i and

D̄i for the corresponding closed balls, which are contained in but may not be equal
to the closures of the open balls. ThenM0 = cl(M0) =

⋃
i=1,...,k B̄i , and similarly for

M1. IdentifyMi with the respective finite cover by closed balls.
Nowwewill show that 0′ can search forM1 andM2, as represented above. Suppose

we have two subsetsM1 andM2 ofM, represented by finite unions of balls Bi and
Dj respectively, but we do not know ifM1 andM2 are disjoint and we do not know
whether they coverM.
We first claim that the propertyM0∪M1 =M becomes Π

0
1. Indeed, to see ifM0∪

M1 =M it is sufficient to search for a special point in the open setM \ (M0∪M1),
i.e., outside of all the finitely many closed balls. This is a Σ01 process which is of
course uniform in the finite tuple describing the balls Bi and Dj .
To guarantee thatM0 andM1 are also disjoint we must check whether

⋃

i=1,...,k

B̄i ∩
⋃

j=1,...,n

D̄j = ∅

which is reduced to verifying finitely many statements of the form B̄i ∩ D̄j = ∅. We
suppress i and j. Let B å be the basic open ball with the same centre as B but having
radius r(B)+ å, where å is a positive rational number. DefineDå similarly. We claim
that B̄ ∩ D̄ 6= ∅ is equivalent to

(∀å > 0)B å ∩Då 6= ∅.

One implication is trivial. For the other implication, assume xå is a point witnessing
nonemptiness for å. By compactness, (x2–m )m∈N has a converging subsequence. The
limit of this sequence will be a point witnessing B̄ ∩ D̄ 6= ∅. We have just shown that
B̄ ∩ D̄ 6= ∅ is a Π02-property, which makesM0∩M1 = ∅ a Σ02-property.
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It follows that 0′ can search for finitely many basic open Bi and Dj as
above. If some decomposition of M exists then we will eventually find (perhaps,
some other) decomposition of M. (For the moreover clause, we search for a
decomposition containing x on one side and y on the other.) Furthermore, for
this fixed decomposition 0′ will be able to see the first found å for which the property
(∀å > 0)B å ∩Då 6= ∅ fails. Then the clopen components can be represented as unions
of B åi and D

å
j rather than Bi and Dj . ⊣

We now return to the proof of the theorem. The idea is to iterate the lemma above
to get a 0′-computable presentation of B with a 0′-computable set of atoms. This is
done as follows. Given a computable Polish presentation of B̂ and using 0′, initiate
the procedure of splitting B̂ into clopen disjoint subsets. At every stage we will have
a finite collection of clopen subsets of B̂ , and each of these sets will be represented
as a union of finitely many open balls as well as a finite union of closed balls. In
particular, although the procedure of splitting the space is merely 0′-computable,
at every stage each of the components will naturally be a computable Polish space.
To see why, list all special points of the ambient space which belong to the finitely
many open balls describing the space. Since the space is also closed, the completion
of this set of points will be equal to the whole component. Therefore, we can apply
the lemma again to each of the components. At the ith stage of iterating this process,
we must make sure that we separate the ith pair of special points of B̂ into separate
components, if they have not been already.
The iterated procedure ensures that the set-theoretic inclusion between the

produced clopen components is decidable relative to 0′. Since the space B is totally
disconnected, each pair of points must belong to disjoint clopen sets. In particular,
whenever we are given a clopen subspace X represented as a finite union of basic
balls, X is an isolated point iff it contains exactly one special point. This property
can be decided using 0′.
It follows that we can produce a ∆02 copy of the Boolean algebra of the clopen

subsets of B̂ , which furthermore has the atom relation of complexity ∆02. It remains
to apply the well-known theorem of Downey and Jockusch [8] who showed that
every ∆02 Boolean algebra with ∆

0
2 atom relation is isomorphic to a computable one.

Thus we obtain:

Corollary 4.3. There exists a ∆02-presented profinite Polish space not homeomor-
phic to any computable Polish space.

Proof. By Feiner [12], there is a ∆02 Boolean algebra B with no computable copy.

By the previous theorem, the Stone space B̂ of B is a ∆02-presented Polish space not
homeomorphic to any computable Polish space. ⊣

4.2. The locally path-connected case. We say that a Polish space is an LCPC
space if it is both locally compact and locally path-connected. Such spaces are
more reflective of physical geometry and are in some sense the opposite of totally
disconnected spaces. We prove:

Theorem 4.4. There is a ∆02 LCPC space which is not homeomorphic to any
computable Polish space.
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We begin by proving a computational lemma about building computable spaces
depending on the answer to a Π03 question.

Lemma 4.5. Let R and S beΠ03 sets and (kn)n∈ù a computable sequence of natural
numbers ≥ 3. Then there is, uniformly in n, a ∆02 separable metric space (Mn,dn) such
that:

• if n /∈ R, then (Mn,dn) is the disjoint union of a point and kn +1 closed line
segments;

• if n ∈ R and n /∈ S, then (Mn,dn) is the disjoint union of a kn-star and a closed
line segment;

• if n ∈R and n ∈ S, then (Mn,dn) is a (kn+1)-star.

Proof. Let

n ∈R⇐⇒∀x∃y∀zR∗(x,y,z,n).

Wemay assume that for each x, there is at most one y with ∀zR∗(x,y,z,n), and that
if x′ < x, and there is no witness y for x′, then there is no witness y for x (folklore).
Similarly, let

n ∈R∩S⇐⇒∀x∃y∀zS∗(x,y,z,n).

Fix n and let k = kn. We will define M =Mn as a subspace of a (k+1)-star. Let
the (k+1)-star have a center point c and arcs A1, ...,Ak+1 with Ai = fi [0,1] and
fi(0) = c. Then we let

M = {c}∪
⋃

{fi [1/x,1] : 1≤ i ≤ k,x ∈ N, and ∃y∀zR∗(x,y,z,n)}

∪
⋃

{fk+1[1/x,1] : x ∈ N and ∃y∀zS∗(x,y,z,n)} .

More formally, this description ofM gives a Σ02 way of deciding which special points
of the (k+1)-star to include inM; then asM is ∆02, we can build a computable copy
of this subspace of (k+1)-star. ⊣

Now we prove the theorem.

Proof of Theorem 4.4. Let (Mn,dn)n≥1 be a list of all the (possible partial)
computable Polish spaces. We will construct a ∆02 Polish space (M

∗,d∗) while
diagonalizing against each (Mn,dn)n∈ù . The space (M

∗,d∗) will be the disjoint
union of infinitely many stars, points, and line segments, each separated from the
others by open sets. (For example, for any star, there will be an open set containing
it and nothing else.) We will make sure that (M ∗,d∗) is not isomorphic to (Mn,dn)
by either having, for some k, a k-star in (M ∗,d∗) when there is no k-star in (Mn,dn),
or vice versa.
The space (M ∗,d∗) will be built entirely by constructing Π03 sets R and S, and

a computable sequence kn, and then letting (M
∗,d∗) be the disjoint union of the

sequence obtained by Lemma 4.5, with each space in the union set at distance one
from the others. The resulting space will be LCPC since each component is.
Recall from Lemma 3.6 that, in a space homeomorphic to a disjoint union of

stars, points, and line segments, each of which is compact and open, a special point
r is contained within an n-star with n ≥ ℓ if and only if:
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(*) there are distinct points p1,p2, ...,pℓ in the same path-component as r and
a ä > 0 such that for each i,j,k and for every å < ä there is an å-path pi =
u0,u1, ...,un = pj from pi to pj such that u0, ...,un /∈ Bä(pk).

We call such a space nice.
Saying that p1, ...,pℓ are in the same path-component as r is Π2, as we must say

that for every å there is an å-path from r to these points. Thus for a fixed ℓ, asking
whether a point r is contained within an n-star with n ≥ ℓ is Σ03.
We write Θ≥ℓ(p1, ...,pk) for the relation which holds if there are distinct points

pk+1, ...,pℓ , also distinct from p1, ...,pk , and a ä > 0 such that for each i,j,k and
for every å < ä there is an å-path pi = u0,u1, ...,un = pj from pi to pj such that
u0, ...,un /∈ Bä(pk). This relation is Σ

0
3. It expresses (in nice spaces) that p1, ...,pk

are distinct arms of a (≥ ℓ)-star. With no parameters, e.g., Θ≥ℓ(–), it expresses that
there is a (≥ ℓ)-star.
We also write Γ≥ℓ(p1, ...,pℓ,ä) for the relation which holds if for each i,j,k and

for every å < ä there is an å-path pi = u0,u1, ...,un = pj from pi to pj such that
u0, ...,un /∈Bä(pk). This relation is Π

0
2. It expresses (in nice spaces) that p1, ...,pℓ are

distinct arms of a (≥ ℓ)-star, with parameter ä. We have that p1, ...,pℓ are distinct
arms of a (≥ ℓ)-star if and only if there is ä such that Γ≥ℓ(p1, ...,pℓ,ä).
To begin, we will describe how to make (M ∗,d∗) nonhomeomorphic to a single

computable metric space (M,d ). It will be easiest to think about (M,d ) being a nice
space; if it is not nice then it cannot be homeomorphicto the nice space (M ∗,d∗).
If (M,d ) is not nice, then we follow the same procedure interpreting the predicates
Γ and Θ literally even though they perhaps do not have their intended meaning in
(M,d ). For instance, we say “(M,d ) has a (≥ 3)-star” but we really mean that the
respective predicate holds in (M,d ).
First, ask whether (M,d ) has a (≥ 3)-star at all, i.e., whether Θ≥ℓ(–) holds in

(M,d ). In the Π03 case where Θ≥ℓ(–) does not hold, using Lemma 4.5 we can build a
3-star in (M ∗,d∗), and so (M ∗,d∗) is not homeomorphic to (M,d ); if Θ≥ℓ(–) does
hold and (M,d ) does have such a star, then Lemma 4.5 builds a point and three line
segments. This is enough to make (M ∗,d∗) nonhomeomorphic to (M,d ), but we
want our diagonalization to be more robust; for, if (M,d ) has a (≥ 3)-star, it would
be very limiting to say that we can never build any star in (M ∗,d∗).
So we need to do some additional work in the case where (M,d ) has a (≥ 3) star.

The idea is to guess at where the (≥ 3)-star is, and then diagonalize against it. List
the tuples (x1i ,x

2
i ,x
3
i ,äi)i∈ù of three points from (M,d ) and a rational äi > 0; these

are guesses at (≥ 3)-stars.
For i = 0, using Lemma 4.5, build:

• a 3-star (and a line segment) if Γ≥3(x
1
0,x
2
0,x
3
0,ä0) and Θ≥4(x

1
0,x
2
0,x
3
0);

• a 4-star if Γ≥3(x
1
0,x
2
0,x
3
0,ä0) but not Θ≥4(x

1
0,x
2
0,x
3
0); and

• a point and 4 line segments if Γ≥3(x
1
0,x
2
0,x
3
0,ä0) does not hold.

(Note that we can do this because Θ≥4, which is the negation of S from Lemma
4.5, is Σ03 and Γ≥3, which is R, is Π

0
2.) So if x

1
0,x
2
0,x
3
0 are arms of a (≥ 3)-star as

witnessed by ä0 in (M,d ), then: if they are part of a 3-star then (M
∗,d∗) has a 4-star

but no 3-star; and if they are part of a (≥ 4)-star then (M ∗,d∗) has a 3-star but no
(≥ 4)-star.
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If we were in one of the first two cases for x10,x
2
0,x
3
0,ä0, then we do not want to

build stars for any other x1i ,x
2
i ,x
3
i ,äi ; so if Γ≥3(x

1
0,x
2
0,x
3
0,ä0) holds, then when acting

for the sake of x11,x
2
1,x
3
1,ä1 we build a point and 4 line segments. Otherwise, we want

to do the same thing for x11,x
2
1,x
3
1,ä1 that we did for x

1
0,x
2
0,x
3
0,ä0. So we build, using

Lemma 4.5:

• if Γ≥3(x
1
0,x
2
0,x
3
0,ä0) holds:

– a point and 4 line segments
• if Γ≥3(x

1
0,x
2
0,x
3
0,ä0) does not hold:

– a 3-star (and a line segment) if Γ≥3(x
1
1,x
2
1,x
3
1,ä1) and Θ≥4(x

1
1,x
2
1,x
3
1);

– a 4-star if Γ≥3(x
1
1,x
2
1,x
3
1,ä1) but not Θ≥4(x

1
1,x
2
1,x
3
1); and

– a point and 4 line segments if Γ≥3(x
1
1,x
2
1,x
3
1,ä1) does not hold.

(Here, the S of Lemma 4.5 is¬Θ≥4(x
1
1,x
2
1,x
3
1) and theR is the conjunction of Σ

0
2 and

Π02 predicates Γ≥3(x
1
0,x
2
0,x
3
0,ä0)∧¬Γ≥3(x

1
1,x
2
1,x
3
1,ä1).) Then we want to do the same

thing for x12,x
2
2,x
3
2,ä2, and so on, with each x

1
i ,x
2
i ,x
3
i ,äi only having the potential

to build a star if the previous ones did not. So, for example, for x12,x
2
2,x
3
2,ä2, if

either Γ≥3(x
1
0,x
2
0,x
3
0,ä0) or Γ≥3(x

1
1,x
2
1,x
3
1,ä1) holds, we will build a point and 4 line

segments; otherwise we may build a star. There will be some least i, if any exist, with
Γ≥3(x

1
1,x
2
1,x
3
1,ä1)—the least witness to the existence of a (≥ 3)-star—and for this i

we will build a star in (M ∗,d∗).
If (M,d ) is a nice space, then either:

• it has no (≥ 3)-star, in which case the very first action we took built a 3-star in
(M∗,d∗); or

• for some least i, x1i ,x
2
i ,x
3
i ,äi is part of a 3-star in (M,d ) as witnessed by äi , and

then we built no 3-star in (M∗,d∗); or
• x1i ,x

2
i ,x
3
i is part of a (≥ 4)-star in (M,d ), say a k-star, and we built only a

3-star in (M∗,d∗) and no k-star.

So (M ∗,d∗) is not homeomorphic to (M,d ).
In the first two cases above, there is not much additional complication in

diagonalizing against more computable metric spaces, as long as we work with
e.g., 5-stars and (≥ 6)-stars for the next computable metric space. The third case
will require a little more work, because the diagonalization was due to not building
a k-star in (M ∗,d∗), but we do not actually know what the value of k is. We must
make sure to never add a k-star to (M ∗,d∗) by having other diagonalizationmodules
guess at the value of k and avoid adding k-stars.
Now we are ready to describe the entire construction. To organize the Π03 sets

we feed into Lemma 4.5, we will build a tree. The nth level of the tree will contain
attempts to diagonalize against (Mn,dn). At the nth level of the tree, a node ó with
predecessors ó1, ...,ón–1, consists of the following:

(1) a label which is either∞ or f (for finite);
(2) for each i < n with ói labeled f, a value kó [i ] which is either the symbol “≥ 4n”
or a natural number 3≤ kó [i ]< 4n;

• if kó [i ] is “≥ 4n” then there are also elements y
1
ó [i ], ...,y

4n
ó [i ] ∈Mi and

äó [i ] ∈Q, and

• if kó [i ]≤ 4n then there are elements y1ó [i ], ...,y
kó [i ]
ó [i ] ∈Mi and äó [i ] ∈Q;
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(3) a number ℓó which is the least odd number< 4n such that {ℓ,ℓ+1} is disjoint
from

{ℓô,ℓô+1 : ô is a predecessor of ó}∪{kó [i ] : i < n};

(4) if the label is f, elements x1ó, ...,x
ℓó
ó ∈Mn and ñó ∈Q.

We suppress ó in ℓó and kó [i ]. The number ℓ is the size of star that ó will be
building; ó will try to build either an ℓ-star or an (ℓ+1)-star, just as in the procedure
for a single diagonalization described previously we built either a 3-star or a 4-star.
The values k[i ] are the guesses at the sizes of the stars used to diagonalize against
(Mi,di); and we must choose ℓ so that building an ℓ-star or an (ℓ +1)-star for ó
would not interfere with the diagonalization against (Mi,di). The label is a guess at
whether (Mn,dn) will have a star of size ≥ ℓ; the label∞ corresponds to having no
such star, and the label f corresponds to having such a star. The value< 4n is simply
chosen so that there will be some odd ℓ with ℓ < 4n such that {ℓ,ℓ+1} is disjoint
from

{ℓô,ℓô+1 : ô is a predecessor of ó}∪{kó [i ] : i < n}.

For each node ó of the tree at level n, and each possible choice of these parameters
at level n+1, there is a single child ô of ó at level n+1 with those parameters. At
each level, order the children of each node from left to right, with order type ù (so
that each node has finitely many other nodes to its left).
To each node ó∗ which is a child of ó, we associate Π03 predicates Ró∗ and Só∗ ;

the definitions of these will depend on the label, from {∞,f}, of ó∗. If ó∗ has label
∞, then Ró∗ will be of the form Ró ∧Pó∗ ∧Tó∗ where Pó∗ and Tó∗ are Π

0
3 and Ró

is the predicate associated to the parent ó of ó∗. If ó∗ has label f, then Ró∗ will be
of the form

Ró ∧Pó∗ ∧ (¬Qô∗1 )∧···∧ (¬Qô∗t )∧Qó∗

where Pó∗ is Π
0
3, Qó∗ is Π

0
2, and Qô∗1 , ...,Qô

∗
t
are the Π02 predicates associated to the

other children ô∗1 , ...,ô
∗
t of ó which are to the left of ó

∗ and which have the same
parameters, except that they might have different values of x1, ...,xℓ,ñℓ , as ó∗. The
predicate Pó∗ is defined in the same way for nodes labeled ∞ and f, and does not

depend on the values of x1ó∗, ...,x
ℓó∗
ó∗ ,ñó∗ .

We must define these predicates inductively, defining the predicates associated to
a parent before its children, and to nodes at a single level from left to right. We will
also write down the interpretations of these predicates in nice spaces. Let ó∗ be a
node at level n+1, with predecessors ó1,ó2, ...,ón at levels 1, ...,n. We define, if ó

∗

has label∞:

• Pó∗ is the Π
0
3 predicate that says:

(1) for i ≤ n with ói labeled f, if kó [i ] is “≥ 4n” then:

– in Mi , for every å < ä, and each j,j
′ there is an å-path from xjói to

y
j′

ó∗ [i ]: these are all in the same connected component;

– Γ≥4n(y
1
ó∗ [i ], ...,y

4n
ó∗ [i ],äó∗ [i ]) holds in Mi : y

1
ó∗ [i ], ...,y

4n
ó∗ [i ] are arms

of a (≥ 4n)-star;
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(2) for i ≤ n with ói labeled f, if kó [i ]< 4n then:

– in Mi , for every å < ä, and each j,j
′ there is an å-path from xjói to

y
j′

ó∗ [i ]: these are all in the same connected component;

– Γ≥kó [i ](y
1
ó∗ [i ], ...,y

kó∗ [i ]
ó∗ [i ],äó∗ [i ]) holds inMi : y

1
ó∗ [i ], ...,y

kó∗ [i ]
ó∗ [i ] are

arms of a (≥ kó [i ])-star;

– ¬Θ≥kó [i ]+1(y
1
ó∗ [i ], ...,y

kó∗ [i ]
ó∗ [i ]) holds in Mi : y

1
ó∗ [i ], ...,y

kó∗ [i ]
ó∗ [i ] are

not arms of a (> kó [i ])-star.
• Tó∗ is the Π

0
3 predicate that says that ¬Θ≥ℓó∗ (–) holds in Mn+1: there is no

(≥ ℓó∗)-star.
• Só∗ is ⊥, i.e., always false.

If ó∗ has label f, we define:

• Pó∗ is defined in the same way as above.

• Qó∗ is the Π
0
2 predicate that says that Γ≥ℓó∗ (x

1
ó∗, ...,x

ℓó∗
ó∗ ,ñó∗) holds inMn+1:

x1ó∗, ...,x
ℓó∗
ó∗ are arms of a (≥ ℓó∗)-star.

• Só∗ is the Π
0
3 predicate that says that ¬Θ≥ℓó∗+1(x

1
ó∗, ...,x

ℓó∗
ó∗ ) holds inMn+1:

x1ó∗, ...,x
ℓó∗
ó∗ are not arms of a (> ℓó∗)-star.

Note that Pó∗ does not depend on the values of x
1
ó∗, ...,x

ℓó∗
ó∗ ,ñó∗ . The predicates are

all expressed using the formulas Θ and Γ and have their intended meaning in nice
spaces.
Now let (M ∗,d∗) be obtained from Lemma 4.5 using the Π03 predicates Ró and

Só , and the sequence (ℓó). WriteM
∗
ó for the component built for ó, so that:

• if Ró is false, thenM
∗
ó is the disjoint union of a point and ℓó line segments;

• if Ró is true and Só is false, thenM
∗
ó is the disjoint union of an ℓó -star and a

line segment;
• if Ró and Só are both true, thenM

∗
ó is an (ℓó +1)-star.

We prove thatM ∗ is not homeomorphic to anyMn through the following sequence
of claims.

Claim 4.6. For each ó with Ró true, Ró∗ is true for exactly one child ó
∗ of ó.

Proof. Let n be the height of ó, and ó1, ...,ón–1 the predecessors of ó = ón.
First we argue that Ró∗ cannot be true for two different children ó

∗ of ó. First,
if two children ó∗ and ó∗∗ disagree about the value of kói [i ] for some ói labeled f,
then it cannot be that R is true for both of them; indeed, (1) of P is incompatible
with (2) of P, and (2) cannot be true for two different values of k. So if R is true for
both ó∗ and ó∗∗, then they agree on the values of kói [i ] and hence also on ℓ. If both
ó∗ and ó∗∗ are labeled f, thenR can be true of only the one which is to the left. They
cannot both be labeled∞, as then they would have the same parameters, and there
is only one child of ó with each set of parameters. Finally, if ó∗ is labeled f and ó∗∗

is labeled∞, then Qó∗ being true is incompatible with Tó∗∗ .
Now we will show thatRó∗ is true for at least one child ó

∗ of ó. For each i with ói
labeled f, since Rói is true, Γ≥ℓói (x

1
ói
, ...,x

ℓói
ói ,ñói ) holds. Let k[i ] be “≥ 4n” if there

are y1[i ], ...,yk[i ][i ],ä[i ] such that:

• inMi , for every å < ä, and each j,j
′ there is an å-path from xjói to y

j′ [i ];
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• Γ≥4n(y
1[i ], ...,y4n[i ],ä[i ]) holds inMi .

Otherwise, letk[i ]< 4nbegreatestsuchthattherearey1[i ], ...,yk[i ][i ],ä[i ] suchthat:

• inMi , for every å < ä, and each j,j
′ there is an å-path from xjói to y

j′ [i ];

• Γ≥kó [i ](y
1[i ], ...,yk[i ][i ],ä[i ]) holds inMi ;

In the second case, by choice of k[i ], we also have

• ¬Θ≥kó [i ]+1(y
1[i ], ...,yk[i ][i ]) holds inMi .

These are just the conditions from (1) and (2) of Pó∗ , so (1) and (2) of Pó∗ are true
of any ó∗ with these parameters.
Let ℓ be the least odd number ≤ 4n such that {ℓ,ℓ+1} is disjoint from

{ℓô,ℓô+1 : ô is a predecessor of ó
∗}∪{k[i ] : i < n}.

If Θ≥ℓ(–) does not hold inMn+1 (there is no (≥ ℓ)-star), then the node ó
∗ with the

parameters described above and labeled∞ has Ró∗ true. Otherwise, Θ≥ℓ(–) holds
inMn+1; let x

1, ...,xℓ,ñ be a witness to this such that the corresponding child ó∗ of
ó is the leftmost such child. Then Qó∗ is true, but Q is not true of any child to the
left of ó∗. ⊣

Let ó1,ó2,ó3, ... be the sequence of nodes at levels 1, 2, and so on for which R
holds. We call ó the true path.

Claim 4.7. Fix n < m. Suppose thatMn is homeomorphic to the disjoint union of
stars, points, and line segments, each of which is compact and open. Suppose that ón is

labeled f, and m> n. Then if kóm [n] is “≥ 4m” if and only if x
1
ón, ...,x

ℓón
ón is part of a

(≥ 4m)-star, and otherwise x1ón, ...,x
ℓón
ón is part of a kóm [n]-star.

Proof. This is immediate from the definitions of the predicate P. ⊣

Claim 4.8. Fix n. Suppose thatMn is homeomorphic to the disjoint union of stars,
points, and line segments, each of which is compact and open. Then:

• if ón has label∞, thenMn has no ≥ ℓ-star butM
∗ has an ℓ-star.

• if ón has label f, then:
– if x1, ...,xk are arms of an ℓ-star, thenM

∗ has no ℓ-star;
– if x1, ...,xk are arms of a (> ℓ)-star, thenM

∗ has no star of the same size.

Proof. First suppose that ón has label ∞. Then from Tón we see that Mn does
not have an r-star, r ≥ ℓón . ButM

∗
ón is an (ℓón +1)-star.

Now suppose that ón has label f. The stars present inM
∗ are as follows, and no

more: for each m, either an ℓóm -star or an (ℓóm +1)-star, where ℓóm is the least odd
number < 4m such that {ℓóm,ℓóm +1} is disjoint from

{ℓói ,ℓói +1 : i < m}∪{kóm [i ] : i < m}.

Since Qón is true, x
1
ón, ...,x

ℓón
ón are arms of a (≥ ℓón )-star inMn.

If they are arms of an ℓón -star, then Són is true, andM
∗
ón is an ℓón +1-star; for any

i,j, {ℓói ,ℓói +1} and {ℓój ,ℓój +1} are disjoint, and soM
∗ does not have an ℓón -star.

If x1ón, ...,x
ℓón
ón are arms of a t-star for some t > ℓón , then Són is false, andM

∗
ón is

an ℓón -star. We claim that t /∈ {ℓói ,ℓói +1} for any i 6= n, so thatM
∗ does not have a
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t-star. For i < n, ℓói +1< ℓón < t. For i > n, ℓói < 4i is chosen so that if kóm [i ]< 4i ,
then kóm [i ] /∈ {ℓói ,ℓói +1}. ⊣

It follows from this claim thatM ∗ is not homeomorphic toMn for any n; indeed,
if M ∗ was homeomorphic to Mn, then Mn would be the disjoint union of stars,
points, and line segments, each of which is compact and open. Then eitherMn has
no (≥ ℓ)-star butM ∗ does, orMn has an ℓ-star butM

∗ does not, orMn has a t-star
for some t > ℓ butM ∗ does not have a t-star. ⊣

Remark 4.9. The reader perhaps suspects that we could simplify the proof if
we used “infinite stars”. Indeed, we can make “infinite stars” compact by making
the nth branch twice shorter than the (n+1)th branch and then putting them
together carefully into a star-like object (we omit details). If we could use infinite
stars then we would not have to worry about correcting errors too much; we could
introduce an infinitary outcome under which an infinite star would be produced.
This would significantly simplify the recursion-theoretic combinatorics of the proof
by absorbing or completely eliminating some of the complex outcomes we use in
our proof. It seems that the resulting space will no longer be path-connected, but
perhaps this construction (if it worked) would have some independent value.
Unfortunately, there is a fundamental technical issue with this idea which is

actually quite subtle. More specifically, if we allow infinite stars then the analogy of
Lemma 4.5 can potentially produce a finite star which is not open in the ambient
space. (This will alsomake the space not locally path-connected.) This is because the
“junk” left over from unsuccessful approximations to the infinitely many potential
branches will be left arbitrarily close to the resulting finite star. The proof of themain
definability Lemma 3.6 relies on Lemma 3.4 which requires each finite star to be
also open. Informally, we could have the undesired situation when an å-path jumps
off a star to one of the junk elements and then returns back to some other star or
to some other part of the same star; for a smaller å0 some other å0-path would jump
off to a different piece of junk, etc. This completely breaks down both the intuition
and the mathematical arguments used to justify the å-paths technique. Even though
the definability techniques developed in this paper can perhaps be adjusted to cover
spaces with infinite stars which are not open, at the moment it is not clear.

Remark4.10. With a bit of extra care, the space constructed in the theoremabove
can be realised as an effectively closed ∆02-overt subset of R

2 thus also witnessing
Theorem 1.3 for α = 0. (Recall that the space witnessing α = 0 of Theorem 1.3 was
not even ∆04-overt.) For that, work inside R

2 and use a careful ∆02-approximation
of the space. Make sure that every part of a component which is ever erased stays
out of the space; if we ever have to reintroduce points to the space, we can use a
new version of this erased part instead of reintroducing the old version which was
erased. We leave the precise details to the reader.
Furthermore, by taking Alexandroff one-point extension of the space, we can

produce a compact space witnessing the theorem. It will not be locally path-
connected around the extra point adjoined in the process of compactification, but in
contrast with Remark 4.9 the definability technique will still work.More specifically,
we can arrange the construction so that all components are located inside the unit
disc in R2. The components introduced later in the construction will be located
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closer to the centre of the disc. Of course, when we take the completion it will
also force the centre of the disc to be in the space; the centre is the “one point” in
the above-mentioned one-point compactification. It is not difficult to see that every
point of the space, with the exception of the center, belongs to a clopen star, while the
connected component of the centre is a singleton which is not open. Although the
resulting space is not nice according to the terminology introduced in the proof, we
strongly conjecture that the definability technique that we developed is still sufficient
to diagonalize against all computable spaces. This is because, e.g., in Θ≥ℓ(p1, ...,pk)
points p1, ...,pk cannot all lie in the singleton connected component of the centre-
point; we can of course assume k > 1. Then at least one point pi must belong to a
clopen compact star C, and if some other pj happens to be the centre-point then,
for å smaller than the distance between C and M ∗ \C , there cannot be an å-path
between pi and pj . We leave the exact details to the reader.

§5. Groups.

Theorem 5.1. There exists a 0′-computable compact Polish group not topologically
isomorphic to any computable Polish group.

Proof. The following lemma is a consequence of Lemma 4.2 in a compact group.

Lemma 5.2. There exists a uniformly 0′-computable procedure which, on input a
computable compact Polish group G enumerates (the Cayley/multiplication table of)
all finite groups K of the form G/N , where N ranges over (clopen) normal subgroups
of A.

Proof. The proof is similar to the proof of Cor. 4.8 from [30]. We give details.
By Lemma 4.2, with the help of 0′ we can enumerate all clopen subsets of G.

Furthermore, these clopen subsets will be represented as finite unions of basic
open balls. It also follows from the proof of Lemma 4.2 that the same clopen
set N will also be described by a finite union of slightly smaller closed basic
balls, and 0′ can uniformly produce both the closed and the open description
of N.
Since both operations · and –1 are computable in G and N has two descriptions,

checking whether N forms a normal subgroup requires merely 0′. For example,
(∃x)(x ∈N &x–1 /∈N ) is a Σ01-property because we can use the open description of
N to check x ∈ N and the closed description to verify x–1 /∈ N . Note that we can
restrict the quantifier to special points because x ∈N &x–1 /∈N describes an open
set. Using a similar trick we can see that normality, emptiness, and that N is closed
under × are also 0′-decidable properties.
Since G is compact, for a fixed clopen N the quotient group G/N is finite. Note

that every coset of the form x̃N is open and thus contains a special point x, thus is of
the form xN for some special x. We claim that, given such an N, 0′ can find finitely
many special points x0 = e,x1, ...,xn such that {xiN} is a disjoint cover of G. To see
why, note that xiN ∩xjN 6= ∅ iff for some special y, yx–1i ∈N and yx–1j ∈N , both
events are c.e. because N has a finite open description. Also, since left-translation is
a self-homeomorphism of G onto itself and N is clopen, each xiN is clopen as well.
Thus, {xiN} is a closed cover iff for every special y there is an i such that yx–1i ∈N ;
if we view the latter as a finite union of closed balls then the statement becomes Π01
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and thus can be decided using 0′. Similarly, the group structure upon {xi} mod N
can be reconstructed effectively and uniformly, in N. Simply search for an xk such
that xixjx

–1
k ∈N (this is an effective search in the open name ofN) and then declare

xixj =N xk in G/N . Note that the procedure above is uniform in the description
of N. ⊣

Consider the discrete countable group GS =
⊕
p∈S Zp ⊕

⊕
i∈ùZ, where S is a

set of primes (which is not necessarily the set of all primes). We use Zp for the
cyclic group of order p. The Pontryagin dual of GS is the compact Polish group
AS =

∏
p∈S Zp×

∏
i∈ùT, where T is the unit circle group. For this proof we only

need one fact from Pontryagin duality: the finite quotients of AS by its clopen
subgroups are isomorphic to finite subgroups of GS . This property can be seen
directly for GS and AS , and therefore we will not give further details; see book [39]
for Pontryagin duality theory.
If we can list all finite factors of AS , then we can also enumerate the set S. Using

Lemma 5.2 above, to prove the theorem is sufficient to produce a 0′-computable
Polish presentation of AS for a Π

0
2-complete set of primes S; then if AS had a

computable presentation, byLemma5.2 and the fact stated about Pontryagin duality
we would be able to use 0′ to enumerate the set S; but since S is not Σ02, there is no
enumeration of S relative to 0′, and so AS has no computable presentation.
Let (pi)i∈ù be the natural enumeration of all primes. Fix such a Π

0
2-complete set

S and a computable predicate R such that pi ∈ S ⇐⇒ ∃∞yR(i,y).
The 0′-presentation of AS will be a closed subgroup of the natural computable

Polish presentation of
∏
i∈ùT. In this presentation, the special points are ù-tuples

of rational numbers having finite support (i.e., zero almost everywhere).
For the ith prime pi , we reserve the ith unit circle in

∏
i∈ùT. We intend to make

the point 1/pi in this circle isolated iff there are infinitely many y with R(i,y). To
do this, start with the set of fractions {1/pj : j ≥ i}. We will keep 1/pi in the set
regardless of the outcome. We will however extract 1/pi+1, ...,1/pi+t from the set
whenwe find that there are at least t numbers ywithR(i,y). If for i there are infinitely
many such y, and thus pi ∈ S, we will end up with {1/pi}. Otherwise we will be left
with {1/pi}∪{1/pj : j ≥ t} for some t. Note that in the latter case the completion
of the subgroup of T generated by the set is equal to the whole circle. In the former
case the set generates a subgroup of T isomorphic to Zpi .
For each fixed j, 0′ can uniformly decide whether 1/pj will be permanently kept in

the set. Therefore, 0′ can enumerate a dense subset of T whose completion is equal
to T iff pi /∈ S, and furthermore the completion is isomorphic to Zpi iff pi ∈ S. Since
S is Π02-complete it must be coinfinite, and therefore the product of the resulting
uniformly 0′-computable closed subgroups (sitting within their respective copies
of the unit circle) will be isomorphic to AS =

∏
p∈S Zp×

∏
i∈ùT, as desired. This

subgroup has a 0′-computable Polish presentation which is naturally given by the
0′-enumerable set ofù-tuples of special points with finite support, and with nonzero
components corresponding to those fractions which have already been 0′-effectively
listed in the respective circle. ⊣

Theorem 5.3. For every computable α there exists an effectively closed compact
(thus, profinite) subgroup of S∞ not homeomorphic to any ∆

0
α Polish group.
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Proof. As in the previous theorem, a ∆0α-computable Polish presentation of the
group AS =

∏
p∈S Zp gives rise to a ∆

0
α+1-enumeration of S. The theorem would

follow if for each computable successor ordinal â we could produce an effectively
closed subgroup of S∞ isomorphic to AS , where S is Σ

0
â -complete. (To witness the

theorem for α take â > α+1.)
To do that, we will construct a computable structure M with domain ù and

automorphism group Aut(M) ∼= AS . Since the automorphism groups of such
computable algebraic structures are effectively closed subgroups of S∞ (see [17]),
the theorem will follow.
The structureMwill consist of infinitely many disjoint gadget-substructuresMi ,

each working with the respective prime pi . The automorphism group of M will
naturally be the Cartesian product of the automorphism groups of all theseMi .
It remains to produce a uniformly effective sequence of computable structures

(Mi)i∈ù with the property:

Aut(Mi)∼= Zpi ⇐⇒ i ∈ S,

where S is the Σ0â -complete set we fixed above, andMi is rigid if i /∈ S.

Using the standard technique due to Ash (see [1] and, for the specific result,
see [15]) on input i we can uniformly produce a computable ordinal ãi such that
ãi ∼= ä if i ∈ S and ãi ∼= ä

′ if i /∈ S, where ä 6∼= ä′ are computable ordinals which
depend on â . The structureMi consists of a loop of size pi realised using a unary
function u:

u(xi,j) = xi,j+1mod pi .

InMi , each point xi,j will be computably associated with a “box”; more formally,
using another unary function swe isolate the setYi,j = {y : s(y)= xi,j}whichwill be
disjoint fromYi′,j′ whenever j 6= j

′. On each such setYi,0, using the aforementioned
result of Ash and a special binary relational symbol, we will uniformly construct a
computable well-ordering which will be isomorphic to ä if i ∈ S, and ä′ if i /∈ S. On
each other set Yi,j , j 6= 0, we construct a computable copy of ä.
For each fixed i, we will end upwith all xi,j being automorphic to each other if and

only if i ∈ S; if i ∈ S, then they each have a copy of ä in their associated “box”, and
if i /∈ S, then xi,0 has a copy of ä

′ while each other xi,j has a copy of ä. Furthermore,
since ordinals are rigid, Aut(Mi) ∼= Zpi if i ∈ S, and Mi is rigid otherwise, as
desired. ⊣
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