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MD SURVEY

NONLINEAR DYNAMICS AND
CHAOS PART I: A GEOMETRICAL
APPROACH

ALFREDO MEDIO
University “Ca’ Foscari” of Venice

This paper is the first part of a two-part survey reviewing some basic concepts and
methods of the modern theory of dynamical systems. The survey is introduced by a
preliminary discussion of the relevance of nonlinear dynamics and chaos for economics.
We then discuss the dynamic behavior of nonlinear systems of difference and differential
equations such as those commonly employed in the analysis of economically motivated
models. Part I of the survey focuses on the geometrical properties of orbits. In particular,
we discuss the notion of attractor and the different types of attractors generated by
discrete- and continuous-time dynamical systems, such as fixed and periodic points,
limit cycles, quasiperiodic and chaotic attractors. The notions of (noninteger) fractal
dimension and Lyapunov characteristic exponent also are explained, as well as the main
routes to chaos.

Keywords: Nonlinear Dynamics, Attractor, Cycles, Chaos, Fractal Dimension, Lyapunov
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1. INTRODUCTION

According to an unsophisticated, yet rather common, view, the output of determin-
istic dynamical systems, in principle, can be predicted exactly and, assuming that
the model representing the real system is correct, errors in prediction will be of
the same order as errors in observation and measurement of the variables. On the
contrary, so the argument runs, random processes describe systems of irreducible
complexity owing to the presence of an indefinitely large number of degrees of
freedom, whose behavior can be predicted only in probabilistic terms.

This simplifying view was completely upset by the discovery of chaos, i.e.,
deterministic systems with stochastic behavior. It is now well known that per-
fectly deterministic systems (i.e., systems with no random components) of low
dimensions (i.e., with a small number of state variables) and with simple nonlin-
earities ( e.g., a single quadratic function) can have stochastic behavior. This means
that, for chaotic systems, if the measurements that determine their states are only
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finitely precise—and this must be the case for any concrete, physically meaningful
system—the observed outcome may be as random as that of the spinning wheel
of a roulette and essentially unpredictable. The discovery that such systems exist
and are indeed ubiquitous brought about a profound reconsideration of the issue of
determinism and randomness; the analytical and numerical investigation of their
dynamics led to the production of a vast literature and to a deeper understanding
of difficult conceptual problems in a number of different scientific disciplines.

Because many important topics in economics typically are formalized by means
of dynamical systems (mostly ordinary differential or difference equations), these
findings alone should be sufficient to motivate economists’ broad interests in chaos
theory. But there exists a question, or rather a group of questions in economics,
usually labeled “business cycles,” for which the field of mathematical research
under discussion is eminently important. The literature on the subject is enormous
and the number of different theories equally vast. However, if we restrict ourselves
to themathematicalinvestigation of economic fluctuations, we observe that few
basic, mutually competing approaches have dominated this area of research in
modern times.

The first approach, which we label “exogenous cycle theory” (EXCT), essen-
tially explains fluctuations as the result of random perturbations. Historically, its
origin may be traced back to the seminal works of Slutzky (1927), Yule (1927),
and Frisch (1993) and was developed later, and given the status of orthodoxy,
by the works of the Cowles Commission in the 1940’s and 1950’s. The funda-
mental idea of this approach is the distinction between impulse and propagation
mechanisms. In its typical version, serially uncorrelated shocks affect the relevant
variables through distributed lags (the propagation mechanism), leading to seri-
ally correlated fluctuations in the variables themselves.1 As Slutzky showed, even
simple linear nonoscillatory propagation mechanisms, when excited by random,
structureless shocks, can produce output sequences that are qualitatively similar
to certain observed macroeconomic cycles.

The ability of the EXCT approach to provide an explanation of business cycles
was called into question largely on the grounds that explaining fluctuations by
means of random shocks amounts to a confession of ignorance. An alternative ap-
proach, which we label “endogenous disequilibrium cycle theory” (ENDCT), then
was developed by a school of economists that, somewhat misleadingly, was asso-
ciated to the name of Keynes. The basic idea of these authors was that instability
and fluctuations are essentially due to market failures and consequently they must
be explained primarily by deterministic models, i.e., by models in which random
variables play no essential role. Classical examples of such models can be found in
the works of Kaldor (1940), Hicks (1950), and Goodwin (1951). Mathematically,
these models were characterized by the presence of nonlinearity of certain basic
functional relationships of the system and lags in its reaction mechanisms. The
typical result was that, under certain configurations of the parameters, the equilib-
rium of the system can lose its stability, giving rise to a stable periodic solution
(a limit cycle), which was taken as an idealized description of self-sustained real
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fluctuations, with each boom containing the seeds of the following slump and vice
versa. The ENDCT approach to the analysis of business cycles was very popular in
the forties and fifties, but its appeal to economists seems to have declined rapidly
thereafter and a recent, not hostile textbook of macroeconomics [Blanchard and
Fischer 1989, p. 277)] declares that it has “largely disappeared.”

The reasons for the crisis of the Keynesian style of theorizing and the associated
ENDCT theories of the cycle are manifold, not all of them perhaps pertaining to
scientific reasoning, and a full investigation of this interesting issue is out of the
question here. However, there exists a fundamental criticism, raised against the
ENDCT approach mainly by supporters of the rational expectations hypothesis
[see Muth (1961)], which are relevant to our discussion and can be summarized
briefly as follows. In the ENDCT models, agents’ expectations, either explicitly
modeled, or implicitly derived from the overall structure of the model, are, under
most circumstances, incompatible with agents’ rational behavior. In particular, in
those models, agents do not make an efficient use of their information, including
the knowledge of the models themselves. Consequently, they make systematic
errors and/or do not exploit fully the outstanding profit opportunities.

A third line of inquiry, which could be labeled “equilibrium cycle theory,”
belongs to the tradition of general competitive equilibrium (GCE) that domi-
nated contemporary economic theory. In its Walrasian formulation, GCE was con-
ceived to explain the interdependence of economic variables at a given moment,
rather than their evolution through time. However, its more elegant and sophis-
ticated modern versions, originating in the works of Arrow and Debreu, have
a built-in dynamic characterization, as intertemporal equilibrium defines certain
time paths of the relevant variables, which can be called “equilibrium dynam-
ics.” Given the constraints imposed on equilibrium dynamics by the assumptions
usually adopted by the prevailing theory (concavity of utility and production func-
tions, constant returns to scale, intertemporally independent tastes and technol-
ogy, agents’ perfect foresight in the absence of exogenous perturbations, etc.),
equilibrium dynamics may not be the most promising breeding ground for in-
stability and dynamic complexity. However, in the past 15 or 20 years, a grow-
ing amount of research has been focused on characterizations of “disequilibrium
dynamics”—mainly in the form of optimal-growth or overlapping-generations
models—capable of generating oscillatory or more complex behavior of economic
variables.2 There is now a general consensus that irregular dynamics is by no
means incompatible with perfect-foresight competitive intertemporal equilibrium,
although there is still disagreement on whether that type of behavior is likely in real
economies.

Having thus briefly recalled some of the main themes of economists’ long-
lasting debate on business-cycle theory, we may now wonder what the impact on
that debate of recent advances in dynamical system theory has been so far.

Some of the effects of the theoretical developments that concern us here are of
a general nature and consist of a deeper and more sophisticated understanding of
nonlinear dynamics. This, we believe, will have a positive and lasting influence on
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economic dynamics in general and the analysis of economic fluctuations in partic-
ular, quite independently of the specific views and tenets of the various schools of
thought. Apart from these broad considerations, however, a specific result, i.e., the
discovery (or, more accurately, the rediscovery) of stochastic behavior of purely
deterministic systems, may have a more direct and nonneutral effect on the cur-
rent disputes among proponents of different theories of economic fluctuations, and
reopen issues that were thought to have been resolved definitively.

On the one hand, the perfect-foresight hypothesis of standard equilibrium the-
ory clashes with the results showing that the outcome of the dynamics may well
be chaotic, and therefore essentially unpredictable in the sense that was sketched
before and is discussed more rigorously later. In the presence of chaos, the assump-
tions of costless information and infinitely powerful monitoring and calculating
ability of economic agents, implicit in the perfect-foresight hypothesis, are very
hard to swallow.

On the other hand, and for exactly the same reason, the criticism of “irrationality”
leveled against disequilibrium dynamical models such as those suggested by the
ENDCT needs to be reconsidered. The criticism is perfectly valid if the outcomes
of the dynamical system under consideration can be predicted accurately once the
true model is known, e.g., if the outcome is periodic. However, if the theory implies
chaotic (i.e., unpredictable) dynamics of the system, the perfect-foresight hypoth-
esis must be dropped and replaced by more convincing expectation-generating
mechanisms. In this context, adaptive mechanisms of the kind assumed by the
ENDCT models, or other nonoptimizing rules of behavior, might turn out to be
the most rational strategy available.

Chaos theory has not only affected the theoretical, deductive aspects of the
investigation of business cycles, but it also has suggested new avenues for the
empirically oriented, inductive side of that investigation. It is now well understood
that purely deterministic dynamical systems can generate output mimicking true
stochastic processes as accurately as we may wish. Although this is by no means
a conclusive argument that business fluctuations are actually the output of chaotic
deterministic systems, the result in question strongly suggests that, to describe
complex dynamics mathematically, one does not necessarily have to make recourse
to exogenous, unexplained shocks. The alternative option—the deterministic, or
partially deterministic3 description of irregular fluctuations—provides economists
with new research opportunities undoubtedly worth exploiting.

Most questions raised among economists by the development of the modern
theory of nonlinear dynamical systems are still open and actively debated in the
literature. However, those questions are far from trivial mathematically and they
cannot be discussed effectively in a nontechnical fashion, lest the meaning and the
novelty of the results be lost. To maximize their fruitfulness for economics, the new
concepts and methods of nonlinear dynamics should become part of the standard
toolbox of economic theorists. This will permit economists to pursue a greater
degree of independence from mathematicians and physical scientists, creatively
adapting mathematical tools to their models rather than vice versa. Moreover,
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only a first-hand study of those methods and a sustained effort in applying them
with originality to concrete economic problems will allow us to distinguish be-
tween what is of purely mathematical significance and what is also physically, i.e.,
economically, relevant. This process of assimilation of ideas and techniques oc-
curred in the past with remarkable success for other areas of mathematics, such as
calculus or matrix algebra, and, hopefully, it will take place for nonlinear dynamics
as well.

We would like to contribute to this endeavor by reviewing some basic topics
of the modern theory of dynamical systems. Because the subject matter is vast
and complicated and the literature enormous, we have to be very selective. The
discussion focuses on the concept of attractor and the properties of the different
types of attractors occurring in economically motivated models. The presentation
is divided into two parts, which are labeled “geometrical” and “ergodic” to reflect
two fundamental theoretical approaches to the study of dynamical systems.

2. CONTINUOUS- AND DISCRETE-TIME SYSTEMS: FLOWS AND MAPS

In applied disciplines including economics, dynamical problems often are for-
mulated as systems of differential or difference equations and, even though there
exist other mathematical formulations of dynamics that are interesting and eco-
nomically relevant, in this paper we concentrate on the former. The geometrical
(or topological) approach to dynamics, which can be identified largely with the
qualitative theory of differential/difference equations, studies the properties of
the orbits of a dynamical system, looked at as geometrical structures in the state
space.

Typically, a system of ordinary differential equations (ODE’s) is written as4

ẋ = f (x), x ∈ Rn, (1)

where f : U→Rn with U an open subset ofRn and ẋ ≡ dx/dt. The vector
x denotes the physical (economic) variables to be studied, or some appropriate
transformations of them;t ∈ R indicates time. The spaceRn, or an appropriate
subspace of dependent variables is referred to asstate spaceor phase space,
whereasRn × R is called thespace of motions.

Equation (1) also is calledvector field, because its solution is a curve in the state
space, whose velocity vector at each pointx is given by f (x). A solution of (1) is
often written as a functionx(t), wherex : I → Rn and I is an interval inR. In
economic applications, where one wants to study the behavior of variables from
here to eternity, typicallyI = [0,+∞).

We can also think of solutions of ODE’s in a slightly different manner, which
is becoming prevalent in dynamical system theory and will be very helpful for
understanding some of the concepts discussed in the following sections. If we
denote byφ(t, x) ≡ φt (x) the state inRn reached by the system at timet starting
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from x at t0, then the totality of solutions of (1) can be represented by a map5

φ : R×U → Rn or, equivalently,φt : U → Rn, that satisfies (1) in the sense that

∂

∂t
φ(t, x) = f [φ(t, x)]

for all t and x for which the solution exists. The mapφt is called theflow (or
the flow map) generated byf . The term flow often is used broadly to refer to
continuous-time dynamical systems, as distinguished from discrete-time maps. A
sufficient condition for a solutionφ(t, x) through a pointx ∈ U to exist is thatf
be continuous. For such a solution to be unique, it is sufficient thatf be continuous
and differentiable inU .

The set of points{φ(t, x) | t ∈ I } defines anorbit of φ. It is a solution curve in
the state space, parameterized by time. In this case, time typically appears in the
form of arrows indicating the time direction of motion. The set{(t, φ(t)) | t ∈ I }
defines atrajectoryof φ and it is contained in the space of motions. However, in
applications, the terms orbit and trajectory often are used as synonyms.

Remark 1. Notice the following properties of flows: (i)φ(0, x) = x; (ii) time-
translated solutions remain solutions; i.e., ift, s ∈ R are two different instants in
time, we haveφ(t + s, x) = φ(s, φ(t, x)) = φ(t, φ(s, x)) = φ(s+ t, x).

If time t is allowed to take only uniformly distributed, discrete values, separated
by a fixed intervalτ , from a (continuous-time) flowφt (x), we can derive a (discrete-
time) map

xn+1 = G(xn), (2)

whereG=φτ . Certain properties of continuous-time dynamical systems are pre-
served by this transformation and can be studied by considering the discrete-time
systems derived from them. As we shall see later, for example, the Lyapunov char-
acteristic exponents of a system like (1) are known to be the same as those of the
associated discrete-time system defined by the so-called time-one-mapG=φ1.

Remark 2. There exists another way of deriving a discrete-time map from a
continuous-time dynamical system, called a Poincar´e map, which describes the
sequence of positions of a system generated by the intersections of an orbit in
continuous time and a given space with a lower dimension, called surface of
section. Clearly, in this case the time intervals between different pairs of states of the
systems need not be equal. Poincar´e maps are a powerful method of investigation
of dynamical systems but they are seldom used in economics. [An exception is
provided by Medio (1992, pp. 210–213).]

Remark 3. Whereas orbits of ODE’s are continuous curves, orbits of maps are
discrete sets of points. This has a number of important consequences, the most
important of which can be appreciated intuitively. If the solution of a system of
ODE’s is unique, two solution curves cannot intersect one another in the state
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space. It follows that, for continuous-time dynamical systems of dimension one
and two, the orbit structure must be constrained drastically. In the former, simpler
case, we can only have fixed points and orbits leading to (or away from) them; in
the two-dimensional case, nothing more complex than periodic orbits can occur.
The restriction does not apply to maps, however, where orbits, so to speak, can
“jump around.” Consequently, even simple, one-dimensional nonlinear maps can
generate very complicated orbits.

Of course, whenever the problem at hand allows it, discrete dynamical systems
may be studied in their own right. More generally, we often wish to study problems
resulting in types of maps that cannot be generated by systems of ODE’s, in partic-
ularnoninvertible maps.6 Among other things, lack of invertibility in discrete-time
systems raises a question of interpretation that is absent in continuous-time formu-
lations. To see this, let us again consider system (2) and, for simplicity’s sake, let
|τ | = 1. The fact thatG is a function implies that, starting from any given point in
space, there exists only one sequenceS= {x0, x1, x2, . . .} generated by applying
G repeatedly to an initial pointx0. WhetherS is interpreted as an orbit going
forward or backward in time entirely depends on the time parametert : The former
alternative holds if we putτ =+1, and thereforet ∈ Z+ (the set of nonnegative
integers), the latter ifτ =−1 and therefore−t ∈ Z+. In the backward-moving
case, (2) will be conveniently rewritten as

xt−1 = G(xt ) (3)

or, equivalently, as

xt = G(xt+1). (4)

If G is invertible, its well-defined inverseG−1 also will generate a unique sequence
emanating from the same initial point and going in the time direction opposite to
that ofS. In this case therefore, system (2) unambiguously identifies forward and
backward dynamics. However, if the mapG is noninvertible (i.e., it ismany-to-
one) andt ∈ Z+, there will be a unique forward-moving orbit, but infinitely many
backward-moving ones. Vice versa, if−t ∈ Z+, there will be a unique backward-
moving orbit, but infinitely many forward-moving ones.

Interestingly, there exist economically motivated dynamical systems, in particu-
lar, some of those belonging to the vast family of overlapping-generations models,
which result in backward-moving maps like (4). Mathematically, the situation
is clear enough but, when applied to economic problems, it gives rise to delicate
questions of interpretation. Real time flows only forward and real economic agents
worry about the future not the past. The relevant question here is: Given a dynami-
cal equation like (4) generating backward-moving orbits, what can we learn about
the forward dynamics implicit in the economic specifications of the model? Some
of the answers to this question can be found by applying a rather subtle math-
ematical technique known as natural extension, which relates the dynamics of a
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variablex in the original space to appropriately defined dynamics in a larger space
whose elements are infinite sequences ofx generated byG. We cannot discuss
the question in any detail here but refer the interested reader to the specialized
literature.7

For a system of ODE’s like (1), a general solutionφ(t, x) seldom can be written
in a closed form, i.e., as a combination of known functions (powers, exponentials,
logarithms, sines, cosines, etc.) or in the form of converging power series. Unfor-
tunately, closed-form solutions are available only for special cases: linear systems
with constant coefficients; one-dimensional ODE’s (i.e., those for whichn = 1); a
small number ofvery specialnonlinear differential equations of order greater than
one. The generality of nonlinear systems that are studied in applications therefore
escapes full analytical investigation; that is, an exact mathematical description
of solution orbits cannot be found. Analogous difficulties arise when dynamical
systems are represented by means of nonlinear maps. In this case, too, explicit solu-
tions are generally available only for linear systems. In fact, even one-dimensional
nonlinear maps usually cannot be given an explicit solution, although, for certain
classes of such maps we can obtain a fairly complete qualitative analysis of their
dynamics by means of a geometrical argument.

This is a very unsatisfactory situation since one-dimensional systems of ODE’s,
as well as linear systems of any dimensions in both continuous and discrete
time, are not very interesting because their behavior is morphologically rather
limited and they cannot be used effectively to represent cyclical or complex
dynamics.8

Therefore, if we want to study interesting dynamical problems described by
nonlinear differential or difference equations, we must change our orientation and
adapt our goals to the available means. The short-run dynamics of individual or-
bits usually can be described with sufficient accuracy by means of straightforward
numerical integration of the differential equations, or iteration of the maps. In ap-
plications, however, and specifically in economic ones, we often are concerned not
with short-term properties of individual solutions, but with the global qualitative
properties of bundles of solutions that start from certain practically relevant subsets
of initial conditions. Those properties can be investigated effectively by studying
the asymptotic behavior of orbits and concentrating the analysis on regions of the
state space that arepersistentin the weak sense that trajectories never leave them,
or in the stronger sense that trajectories are attracted to them. In what follows,
we try to make these broad considerations more precise, providing criteria for a
classification of basic types of dynamic behavior.

3. INVARIANT SETS, ATTRACTING SETS, AND ATTRACTORS

To discuss the persistence properties of orbits of a dynamical system, we shall
start from the notion of invariant set. Formally, for the dynamical system (1)
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(respectively, (2)], we say that the setS⊆ U is invariant under the action of the
flow φt or the mapG, if we have

φt (S) ⊆ S ∀t ∈ R

[respectively,Gn(S) ⊆ S ∀n ∈ Z].

If the abovementioned property holds for∀t ≥ 0 (respectively,∀n ≥ 0), S is
called forward invariant. Notice that, ifG is not invertible,Gn is defined only for
n ∈ Z+. When constructing a mathematical model of the time evolution of certain
physical, or economic, variables, we often wish to impose constraints on the ac-
ceptable values of those variables. For example, quantities such as capital stock,
consumption, or relative prices should remain positive, or at least nonnegative for
all times; quantities such as the saving ratio or the ratio between factor remuner-
ations and total income should be between zero and one at all times, etc. Clearly,
the invariance of the setA of the acceptable values is a necessary (although not
sufficient) condition for the validity of a dynamical model.

Investigation of invariant sets is an indispensable first step in the study of the
dynamics of a system. Anybody who has performed numerical simulations of
dynamical systems knows how important it is to locate regions of the state space
such that the variables never escape from them. Invariant sets together with the
orbits leading to or away from them play an essential role in the organization of the
state space. The sets of points approaching an invariant set ast →±∞ sometimes
are calledstable and unstable manifolds, respectively. For nonhyperbolic sets,
there also exist associated invariant sets calledcenter manifolds, in which orbits
may be converging or diverging. Center manifolds play an important role in the
analysis of bifurcations [see e.g., Palis and Takens (1993)].

Remark 4. The notion ofhyperbolicityis complex and cannot be discussed here
in detail. Broadly speaking, for a dynamical system defined by a diffeomorphism
G : X → X, we say that a fixed pointp ∈ X of G is hyperbolic if the Jacobian
matrix evaluated atp has no eigenvalue of modulus one. Hyperbolic fixed points
have the property that small perturbations of the controlling map do not change the
local dynamics qualitatively. The notion of hyperbolicity and many related results
can be generalized so as to define hyperbolic structures for invariant sets different
from fixed points [see Palis and Takens (1993, pp. 154–168)].

In most cases of practical interest, finding invariant sets is not enough. We also
wish to locate the regions of the state space that ultimately attract all of the orbits
originating in a certain (not too small) domain. The notion of attractiveness is
intimately related to that of stability of orbits. Given the vastness of the subject (a
few dozen different definitions of stability can be found in the literature), we deal
with it only to the extent required by our main theme and suggest the following
definition, based on Milnor (1985, p. 183) with minor adjustments.
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DEFINITION 1. A closed subset A of the state space X, invariant under a map
G, is said to be Lyapunov stable if it has arbitrarily small neighborhoods V with
G(V) ⊂ V . Moreover, A is asymptotically stable if it is Lyapunov stable and it
has an open basin of attraction B(A). B(A) is the set of all points x∈ X such
that Gn(x) → A for n→ ∞. In this case, if we choose V such that its closure
cl(V) ⊂ B(A) then A= ∩n>0Gn(V).

This definition can be adapted easily to a flowφt . An asymptotically stable set
also is called anattracting set. Notice that the location of the basin of attraction of
a set seldom can be defined exactly and the structure of the basin of attraction (b
of a) of complex (chaotic) sets also can have an extremely complicated structure.

The fact that a set is attracting does not mean that all of its parts are at-
tracting too. Therefore, to describe the asymptotic regime of a system, we need
the stronger concept ofattractor. Besides being attractive, it also would be de-
sirable for an attractor to beindecomposableor irreducible, in the sense that
the asymptotic properties of different orbits originating in its basin of attrac-
tion B(A) are qualitatively the same, independently of the initial conditions.
Topologically, we say that an invariant setA is indecomposable if it is not the
union of invariant subsets. In Part II, we discuss a deeper, probabilistic notion of
indecomposability.

Strangely enough, there is no straightforward and universally adopted definition
of attractor and, although the properties of the simpler cases can be dealt with easily,
more complicated situations present difficult conceptual problems. For example,
there exist well-known cases of dynamical systems that do not possess any set
that can be defined as “an indecomposable attracting set,” even though their orbits
asymptotically converge toward a unique compact set [see Milnor (1985, p. 178)].
For the time being, we retain the operational, nonrigorous notion of an attractor asa
set on which experimental points generated by a flow or a map accumulate for large
t. The question of attractiveness is revisited in Part II from a measure–theoretic
point of view.

Figure 1 shows a (chaotic) attractor with its basin of attraction.
The simplest type of attractor is astable fixed point, or, using a terminology

more common in economics, a stableequilibrium.

Remark 5. Economists often use a notion of equilibrium rather different from
that of mathematicians and physicists, sometimes labeled dynamic or sequence
equilibrium. Broadly speaking, the latter implies that certain conditions hold (in
a nutshell, all markets clear) at all times, while the system evolves in time. This
representation implies the presence of two dynamic mechanisms: (i) short-run, fast
dynamics generating a temporary equilibrium (market clearance), and (ii) long-
run, slow dynamics describing the evolution of equilibria in time, not necessarily
converging to a stationary state (fixed point). Thus, economic models of dynamic
equilibrium implicitly postulate the hardly innocuous assumptions that the short-
run dynamics are stable and the short-run adjustments do not interfere with the
long-run evolution of the system.
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FIGURE 1. Chaotic attractor with its basin of attraction.

Mathematically, to prove the existence of a fixed/equilibrium point, we must
solve a system of algebraic equations. In the continuous-time case (1),

ẋ = f (x),

the set of equilibria is defined byE = {x̄ | f (x̄) = 0}, i.e., the set of values
of x such that its rate of change in time is nil. Analogously, in the discrete-time
case,xn+1 = G(xn), we haveE = {x̄ | x̄ − G(x̄) = 0}, i.e., the values ofx
that are mapped to themselves byG. Because the functionsf andG generally
are nonlinear, there are no ready-made methods to find the equilibrium solutions
exactly, although geometrical and numerical techniques often give us all the qual-
itative information we need. Notice that linear systems typically have either one
or no solution, whereas nonlinear systems typically have either no solutions, or
a finite number of them. It follows that only nonlinear systems may generate the
economically interesting phenomenon of (finite) multiple equilibria. In both the

https://doi.org/10.1017/S1365100598009079 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100598009079


                

516 ALFREDO MEDIO

continuous- and the discrete-time cases, local stability of fixed points can be as-
certained by well-known linearization techniques, whereas global stability some-
times can be established by the equally well-known second, or direct, method of
Lyapunov.

Next in the scale of complexity of attractors, we considerstable periodic solu-
tions, or limit cycles.

For a system of ODE’s, we say that its solution is periodic if, for some positive
τ , φτ (x) = x. The periodic orbit then is defined as the set0 = {φt (x) | t ∈ [0, τ )}.
The orbit0 is stable if there exists a neighborhoodU of it such thatφt (x) → 0

ast →∞. Thesmallestpossibleτ >0 for which this property holds is called the
periodof the orbit and

ω/2π = 1/τ

is its frequency, measured as number of cycles per unit of time. (Naturally,ω is
the frequency measured in radians per unit of time.)

For maps, ann-periodic pointx̄ is a value ofx such thatGn(x̄) = x̄. The orbit in
this case is a sequence ofn distinct points{x̄,G(x̄), . . . ,Gn−1(x̄)} which, under
the iterated action ofG, are visited repeatedly by the system, always in the same
order. Notice the following interesting facts:

1. Periodic solutions only exist for systems of ODE’s of dimension≥2. Linear systems
of ODE’s (of dimension≥2) only have periodic solutions for very special parameter
configurations. One-dimensional, discrete-time systems defined by a mapG cannot
have periodic solutions ifG is a monotonically increasing function.

2. For a discrete-time dynamical system described by a mapG, a periodic solution of
periodn corresponds ton fixed points of the mapGn. Thus, in principle, such periodic
solutions always can be studied as fixed points. Needless to say, the greater the period
n, the more complicated the calculations to find the corresponding fixed points.

To ascertain stability of limit cycles is not an easy matter except in the simpler
cases. Earlier contributions to the nonlinear theory of business cycles typically
described the economy by means of two-dimensional systems of ODE’s. In this
simple case, the existence of one or more limit cycles can be established by means
of the Poincar´e–Bendixson (PB) theorem.9 There also exist analytical methods to
establish existence and stability of cycles generated through a Hopf bifurcation
(defined below). Because this paper is only marginally concerned with cycles as
such, we do not expand this matter any further.

For reasons already discussed above, the stability of periodic orbits in discrete-
time systems can,in principle, be analyzed by the same methods applied to fixed
points. We are saying “in principle” because, for high-order periodic points, the
necessary calculations may be very complicated.

The third basic type of attractor is calledquasiperiodic. If we consider the mo-
tion of a dynamical system after all transients have died out, the simplest way of
looking at a quasiperiodic attractor is to describe its dynamics as a mechanism
consisting of two or more oscillators (i.e., subsystems whose dynamics are peri-
odic) with frequenciesω1, . . . , ωn, such that two or more of then frequencies are
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incommensurable (i.e., their ratios are irrational numbers). Clearly, in this case no
real numberτ can be found such that the system returns exactly to the same point
from which it started. More precisely, we have the following:

DEFINITION 2. A function h: R→Rn is called quasiperiodic if it can be writ-
ten in the form h(t) = H(ω1t, . . . , ωnt), where H is periodic of period2π in each
of its arguments, and two or more of the n positive numbersωi (the frequencies)
are incommensurable.

In continuous time, the simplest case of quasiperiodic dynamics is given by a
couple of oscillators, described by the linear system of ODE’s, with state
spaceR4 {

ẋ1 = −ω1x2

ẋ2 = ω1x1

{
ẏ1 = −ω2y2

ẏ2 = ω2y1.
(5)

In terms of polar coordinates, the dynamics of (5) can be described by the simpler
system {

θ̇1 = ω1,

θ̇2 = ω2,
(6)

whereθ̇ i indicates the angular velocity and the state space is nowT2 = S1 × S1,
whereS1 denotes a circle (the spaceTn is called ann-dimensional torus). There
are two possibilities: (1)ω1/ω2 is a rational number; i.e., it can be expressed as a
ratio of two integersp/q. In this case, there is a continuum of periodic orbits of
periodq. (2)ω1/ω2 is an irrational number. In this case, starting from any initial
point in T2, the orbit wanders on the torus, getting arbitrarily near any other point
in it without ever returning to exactly the initial position.

Analogously, in discrete time, the simplest quasiperiodic map—the fixed rota-
tion of the circle—can be written as

zn+1 = czn, (7)

wherez ∈ S1 is a point on the unit circle,c = ei 2πα, wherei = √−1 andα is
irrational.

Quasiperiodic orbits can look quite complicated, especially if there exist many
incommensurable frequencies. As we see later, it was even conjectured (wrongly)
that quasiperiodicity is the typical route to chaos.

Quasiperiodic dynamics have been found to occur in economically motivated
dynamical models [see, e.g., Reichlin (1986); Woodford (1986); Medio (1992,
Ch. 12), Venditti (1996)], and we have more to say about them later.

Attractors with an orbit structure more complicated than that of periodic or
quasiperiodic systems are calledchaoticor strangeattractors. Although terminol-
ogy is not yet uniform, the term chaotic often is referred to a dynamic property,
i.e., the sensitive dependence on initial conditions (SDIC) or, equivalently, the
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divergence of nearby orbits, whereas the strangeness of an attractor mostly refers
to its geometric characteristic of being a fractal set.

Remark 6. Notice that chaoticity, as defined by sensitive dependence on initial
conditions, and strangeness, as defined by a fractal dimension (more precisely, by
a noninteger FD), are independent properties. Thus, we have chaotic attractors that
are not fractal and strange (fractal) attractors that are not chaotic. A well-known
example of the second case is the so-called Feigenbaum attractor; an equally well-
known example of the first case is the attractor generated by the so-called tent
map (with slope= 2). For continuous-time dynamical systems, however, it is
conjectured that, in general, strange attractors are also chaotic.

Chaotic dynamics typically occur when the overall contraction of volumes,
which characterizes dissipative dynamical systems, takes place by shrinking in
some directions, accompanied by less rapid stretching in the others. (However, as
we see later, we can have one-dimensional, discrete-time maps for which there is
no shrinking at all, even though, because of nonlinearity, the orbits of the system are
confined to a bounded region of the space.) This fact has profound consequences
because it implies that there may be an unstable motionwithin the attractor.
An important consequence of this instability is that pairs of orbits that originate

FIGURE 2. Different types of attractors in discrete time.
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from points arbitrarily near one another on the attractor become (exponentially)
separated as time goes by. Thus, arbitrarily small errors in the measurement of
initial conditions are magnified by the action of the flow or the map. As we show
in Part II, amplification of errors is the basic mechanism that makes accurate
prediction of the future course of chaotic orbits impossible, except in the short run.
On the other hand, because chaotic attractors are bounded objects, the expansion
that characterize their orbits must be accompanied by a folding action that prevents
them from escaping to infinity. The combination of stretching and folding of orbits
is a distinguishing feature of chaos and it is at the root of both the complexity of
its dynamics and the strangeness of its geometry.

We discuss the fractal property of chaotic attractors briefly in the following
section, whereas SDIC is given greater attention both here and in the ergodic part
of the paper, because this property of chaos is, in our opinion, the most relevant to
economics.

Figures 2 and 3 show the main different types of attractors, in discrete and
continuous time, respectively.

FIGURE 3. Different types of attractors in continuous time.
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4. FRACTAL DIMENSION

The term fractal was coined by Benoit Mandelbrot and it refers to geometrical
objects characterized by self-similarity, i.e., objects having the same structure on
all scales. Each part of a fractal object thus can be viewed as a reduced scale of the
whole. Intuitively, a snowflake can be taken as a natural fractal. When applied to
geometrical analysis of dynamical systems, the concept of FD can be conceived
of as a measure of the way in which orbits fill the state space under the action of
a flow or a map.

A simple, but precise, mathematical example can be given as follows: Consider
a segment of unit length; divide it into three equal subsegments and remove the
intermediate one. You will be left with two segments of length one-third. Divide
each of them into three segments of length one-ninth and remove the (two) inter-
mediate ones. If this procedure is iteratedn times and we letn go to infinity, we
obtain a setScalled a Cantor set after the famous mathematician. Let us then pose
the following question: What is the dimension ofS? Weren finite, S would be
a collection of segments and its Euclidean dimension would clearly be one. On
the other hand, wereS a finite collection of points, its dimension would be zero,
but in the limit forn→∞, S is an infinite collection of points and therefore the
answer is not obvious. To deal with this problem, the traditional Euclidean notion
of dimension is insufficient and we need the more sophisticated criterion of FD.
There exist a rather large family of such dimensions, but we limit ourselves here
to the simplest example.

Let Sbe a set of points in a space of Euclidean dimensionp. (Think, for example,
of the points on the real line generated in the construction of the Cantor set or,
more generally, by the iterations of a one-dimensional map.) We now consider
certain boxes of sideε (or, equivalently, certain spheres of radiusε), and calculate
the minimum number of such cells,N(ε), necessary to coverS.

Then, the FDD of the setS will be given by the following limit (assuming it
exists):

D ≡ lim
ε→0

log[N(ε)]

log(1/ε)
. (8)

The quantity defined in (8) is called the (Kolmogorov)capacity dimension. It
is easily seen that, for the most familiar geometrical objects, it provides perfectly
intuitive results. For example, ifSconsists of just one point,N(ε)= 1, andD= 0;
if it is a segment of unit length,N(ε)= 1/ε, and D= 1; finally, if S is a plane
of unit area,N(ε), = 1/ε2 andD= 2, etc. That is to say, for regular geometrical
objects, the dimensionD does not differ from the usual Euclidean dimension and,
in particular,D is an integer. By making use of the notion of capacity dimension,
we can determine the dimension of the Cantor set constructed above. To do this,
let us try to evaluate the limit (8), proceeding step by step. Consider first a (one-
dimensional) box of sideε. Clearly, we haveN(ε)= 1 for ε= 1, N(ε)= 2 for
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ε= 1/3, and, generalizing,N(ε)= 2n for ε= (1/3)n. Taking the limit forn→∞
(or, equivalently, taking the limit forε → 0), we can write

D = lim
n→∞
(ε→0)

log 2n

log 3n
≈ 0.63. (9)

We thus have provided a quantitative characterization of a geometric set that is
more complex than the usual Euclidean objects. Indeed, we have just found that
the dimension ofS is a noninteger. We might say thatS is an object dimensionally
greater than a point but smaller than a segment. It also can be verified that the set
S is characterized by self-similarity.

The concept and measurement of FD are not only necessary to understand the
finer geometrical nature of strange attractors, but they are also very useful tools for
providing quantitative analyses of such attractors, both in theoretical and applied
investigations of dynamical systems. A well-known example of an application of
the notion of FD to the analysis of time series is the so-called Brock-Dechert-
Scheinkmann (BDS) test [see Brock et al. (1987)].

5. LYAPUNOV CHARACTERISTIC EXPONENTS

To provide a rigorous characterization, as well as a way of measuring SDIC, we
discuss a powerful conceptual tool known as Lyapunov characteristic exponents
(LCE’s). LCE’s are discussed here only in relation to maps because, as we men-
tioned before, for the present purpose the analysis of continuous-time systems
can be reduced to the discrete-time case. We start with a simple, one-dimensional
setting and then generalize it. Consider the map

xn+1 = T(xn) (10)

with T : U→R,U being an open subset ofR. We now want to describe the
evolution in time of two orbits originating from two nearby pointsx0 and x̂0. At
thenth iteration, we have

x̂n − xn = Tn(x̂0)− Tn(x0) = G(x̂0, x0). (11)

If we now takex0 as a constant, expandG in a Taylor series around̂x0 = x0,
and retain only the first-order term, we have

x̂n − xn ' dTn

dx

∣∣∣∣
x̂0=x0

(x̂0− x0) = [T ′(x0)T
′(x1) · · · T ′(xn−1)](x̂0− x0), (12)

where, provided that the derivative is different from zero, the approximation can
be made arbitrarily accurate by taking (x̂0−x0) sufficiently small. Asymptotically,

https://doi.org/10.1017/S1365100598009079 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100598009079


               

522 ALFREDO MEDIO

we then have

lim
n→∞ |x̂n − xn| ' enλ(x0)|x̂0− x0|. (13)

The quantity

λ(x0) = lim
n→∞

1

n
log|T ′(x0)T

′(x1) · · · T ′(xn−1)| = lim
n→∞

1

n

n−1∑
j=0

log|T ′(xj )| (14)

is called the LCE. From (13), the interpretation ofλ(x0) is straightforward: It is
the (local) asymptotic exponential rate of divergence of nearby orbits.10

In the multidimensional case, the calculation of LCE’s can be done in a similar,
albeit more complex, manner. Generally, we have

xn+1 = T(xn),

wherexn = (x1
n, . . . , x

m
n ) ∈ Rm andT is a vector of functionsTi : Rm→ R (i =

1, . . . ,m). Consider now a pointx0 in the state space and a nearby pointx̂0. The
rate of change of their distance, as measured, for example, by the Euclidean norm
‖·‖, will evolve under the action of the mapT according to the ratio

‖Tn(x̂0)− Tn(x0)‖/‖x̂0− x0‖. (15)

Because we want to study the time evolution of nearby orbits, in the limit as
x̂0→ x0, (15) can be expressed as

∥∥∏n−1
i=0 DT(xi )w

∥∥
‖w‖ = ‖DTn(x0)w‖

‖w‖ , (16)

whereDT(x) is (m×m)matrix with typical element [∂Ti /∂xj ] andw is a vector
in the tangent spaceat x0. We now can define the LCE’s of the vectorw (which
generally depend onx0) as follows:

λ(x0, w) = lim
n→∞

1

n
log
‖DTn(x0)w‖
‖w‖ (17)

There generally will bem such exponents, some of which may coincide. From
the formula (17), we notice that, in general, LCE’s depend not only onw but also
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on x0. In Part II, we see under what conditions LCE’s may become independent
of initial conditions. A thorough discussion of the analytical and computational
problems related to LCE’s is provided by Benettin et al. (1980).

LCE’s provide an extremely useful tool for characterizing the behavior of non-
linear dynamical systems. Because they are invariant with respect to smooth, in-
vertible changes of coordinates, it is sometimes possible to evaluate the LCE’s of
a map by calculating those of a different and simpler one. The signs of LCE’s are
especially important to classify different types of dynamical behavior. The typical
situations can be summarized thusly:

1. Asymptotically stable, fixed points of anm-dimensional system, both in discrete and
continuous time, are associated withm negative LCE’s.

2. The m-dimensional continuous-time systems with nonchaotic attractors different
from fixed points havem− n negative LCE’s (n<m), andn zero LCE’s withn= 1
for a limit cycle orn= k for quasiperiodic dynamics on aTk torus.

3. Chaotic attractors, both in discrete and continuous time, are associated with the pres-
ence of at least a positive LCE, which signals that nearby orbits diverge exponentially
in the corresponding direction. In its turn, this indicates that observation errors will be
amplified by the action of the map. As we see in Part II, the presence of one or more
positive LCE is intimately related to the lack of predictability of dynamical systems,
which is an essential feature of chaotic behavior.

6. TRANSITION TO CHAOS

In the preceding sections, we provide a classification of attractors and discuss some
distinctive properties of chaotic attractors. The relevance of these findings would
be greatly enhanced if, in addition, we could describe thequalitative changes in
the orbit structureof the system that take place when certain control parameters
are varied. In this way, we would obtain not only a snapshot of chaotic dynamics,
but also, so to speak, a stroboscopic description of its emergence. Moreover, if
we could provide a rigorous and exhaustive classification of the ways in which
complex behavior may appear, transition to chaos could be predicted theoretically,
and potentially turbulent mechanisms could be detected in practical applications—
and their undesirable effects could be avoided by acting on the relevant parameters.

Unfortunately, the present state of the art does not permit us to define the prereq-
uisites of chaotic behavior with sufficient precision and generality. To forecast the
appearance of chaos in a dynamical system, we are, for the time being, left with
a limited number of theoretical predictive criteria and a list of certain typical (but
by no means exclusive) routes to chaos. Typically, transition to chaos takes place
throughbifurcations. A bifurcation is an essentially nonlinear phenomenon and
describes a qualitative change in the orbit structure of a discrete- or continuous-
time dynamical system—such as the appearance or disappearance of a fixed point
or of another invariant set—when one or more parameter is changed. Bifurcation
theory is a vast and complex area of investigation and we consider it here only
concisely.
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There exist three canonical types of routes to chaos generated by so-called
codimension-one bifurcations, i.e., bifurcations depending on a single parameter
and we briefly deal with them in turn.

6.1. Period Doubling

This is probably the best known route to chaos, at least in economic literature. It
takes place in both discrete- and continuous-time systems and can be described
most simply by considering its occurrence in the celebrated logistic map

xt+1 = f (xt ) = r xt (1− xt ) x ∈ [0, 1], r ∈ (1, 4]. (18)

For values ofr slightly greater than 1, map (18) has two nonnegative equilibria,
x̄1= 0 andx̄2= 1− 1/r . The former is unstable and the latter is stable. Asr goes
throughr1= 3, a bifurcation called a flip occurs and the situation changes:x̄2

becomes unstable as well and a stable two-cycle is born. It is easy to verify that the
two points of the cycle of the mapf are also stable equilibria of the mapG(x)≡ f 2,
i.e., the second iterate off . As we further increaser , the initially stable two-cycle
loses stability atr2= 1+√6 when a second flip bifurcation occurs and a stable
four-cycle is created. This scenario is repeated over and over again and leads to an
infinite sequence of flip bifurcations andperiod doublings. The sequence{rk} of
values ofr at whichk-cycles occur has a finite accumulation pointr∞ ≈ 3.569446,
involving an infinity of periodic orbits, all unstable. The limit set corresponding to
r∞ is known as the Feigenbaum attractor. It is a geometric object with a noninteger
FD≈ 0.538 and anLCE equal to zeroand, consequently, the motion on it is not
chaotic in the sense defined above.

Remark 7. Notice that the Feigenbaum attractor, although Lyapunov stable, is
not asymptotically stable and therefore is not an attracting set as defined above [cf.
Milnor (1985, pp. 182–183)].

Pastr∞, we enter what usually is called the chaotic zone (CZ). This phrase
means that, inC Z, there exist (infinitely many) values ofr for which orbits are
nonperiodic but not chaotic (i.e., the LCEλ = 0) or even chaotic (i.e.,λ>0 and
orbits therefore are characterized by sensitive dependence on initial conditions).
This does not mean, however, that only aperiodic or chaotic orbits exist inC Z.
Although the chaotic set{r | λ>0} is infinite and it is believed to have positive
Lebesgue measure (i.e., choosingr at random, we have a nonzero chance of getting
a chaotic value), it nowhere forms an interval. Thus, starting from a chaotic value
of r , ever so slight changes in this parameter may destroy the chaotic dynamics
and bring about a periodic solution withλ<0. On the contrary, in theC Z there
exist infinitely many periodic windows, i.e., intervals of values ofr to which
there correspond stable periodic orbits. Some of these windows—for example the
period-3 window—are particularly evident and can be located easily by simple
inspection of a bifurcation diagram (see Figure 4). As we see later while revisiting
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FIGURE 4. Period-doubling route to chaos.

the question of LCE’s, the caser = 4 is special because, for that value, we can
determine the unique LCE exactly and thereby establish the chaotic nature of orbits
with certainty.

The period-doubling process is ubiquitous and can be found in a discrete-time
map of any dimensions as well as in continuous-time systems of differential equa-
tions of dimension equal to or greater than 3. In continuous time, the opening step of
a period-doubling sequence takes place typically through a Hopf bifurcation.11 No-
tice that the sequence is not always complete, i.e., it need not lead to a chaotic zone.
That is, for certain maps when we increase the controlling parameter monotoni-
cally, we may have the curious phenomenon of a partial period doubling followed
by a period halving that eventually leads back to a stable fixed point.

6.2. Intermittency and Crisis

Broadly speaking,intermittencyis a phenomenon characterized by alternation of
simple, quiet dynamics and bursts of wild oscillations. There is strong experimental
evidence of intermittency in physical sciences and it is also present in the output
generated by economically motivated dynamical models. In true experiments as
well as in numerical simulations, intermittency is a sign of impending chaos. There
exist different types of intermittency, but here we only mention the simplest one,
which can be discussed by means of the familiar logistic map (18). Consider the
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situation for values of the parameterr in the vicinity ofrc= 1+ 2
√

2≈ 3.828427,
i.e., near the left boundary of the period-3 window. Forr < rc, the mapf has two
unstable fixed points, namely 0 and 1− 1/r . As r increasesthrough the critical
valuerc, the map f acquires a stable and an unstable period-3 cycle. The three
points of each cycle are stable (respectively, unstable) fixed points of the map
G(x)≡ f 3(x). If we reverse the procedure anddecrease r, atr = rc three pairs of
(stable and unstable) fixed points ofG will coalesce and disappear. The bifurcation
occurring atrc is known assaddle node, or tangent bifurcation, and is associated
with the sudden, catastrophic disappearance, or appearance, of equilibria.

Forr > rc, the asymptotic dynamics generated byf are a period-3 orbit, whereas,
for values ofr slightly smaller thanrc, we have a regular, almost periodic, motion,
which is interrupted from time to time by bursts of apparently chaotic behavior.
Although the overall motion is aperiodic, most iterates of the map are concentrated
in the neighborhoods of the three points of the (disappeared) period-3 orbit, and
the average duration of regular dynamics is a continuous (inverse) function of the
distance|r − rc|.

This rather curious behavior can be better understood by inspecting Figure 5.

FIGURE 5. Intermittency.

https://doi.org/10.1017/S1365100598009079 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100598009079


           

NONLINEAR DYNAMICS AND CHAOS, I 527

Forr slightly smaller thanrc, the motion of the system slows down in the vicinity
of the locus where a stable fixed point was, as if it were still looking for it. After a
certain number of apparently regular iterations (the greater the number the nearer
r is to rc), the system leaves the neighborhood and wanders away in an irregular
fashion until it is reinjected in the channel between the curve of the map and the
bisector, and so on and so forth.

Inspection of Figures 4 and 5a also reveals another interesting case of qualitative
change in the orbit structure. If we continue to increase the parameterr pastrc, we
have a series of period-doubling bifurcations leading to orbits of period 3· 2i (i =
2, 3, . . .), and eventually to the so-called periodic chaos (or noisy periodicity), i.e.,
chaotic behavior restricted to three narrow bands, each of them visited periodically.
Past a certain critical value ofr , the situation changes again discontinuously and
the three bands suddenly merge and broaden to form a single chaotic region. This
phenomenon is sometimes called (interior)crisis.

6.3. Quasiperiodic Route to Chaos

The idea that quasiperiodicity is the fundamental intermediate step in the route to
chaos, is a long-standing one. Over 50 years ago, the Russian physicist Landau
suggested that turbulence in time,12 or chaos, is a regime approached by a dy-
namical system through an infinite sequence of Hopf bifurcations that takes place
when a certain parameter is changed. Thus, the dynamics of the system would be
periodic after the first bifurcation, and quasiperiodic after successive bifurcations,
with an ever-increasing degree of quasiperiodicity, leading in the limit to turbulent,
chaotic behavior.

The conjecture that Landau’s scenario is the only, or even the most likely, route
to chaos was rejected on the basis of two basic results, namely:

• From a theoretical point of view, Ruelle and Takens (1971) and Newhouse
et al. (1978) proved that systems with four-torus (or even three-torus) at-
tractors are unlikely to be observed, because they are easily perturbed to
chaos.
• Lorenz’s (1963) work on turbulence showed that complexity (in the sense of

a large dimension of the system) is not a necessary condition for chaos to
occur, and that low-dimensional systems are perfectly capable of producing
a chaotic output.

Thus, although experimental results seem to suggest the possibility of a di-
rect transition from quasiperiodicity to chaos, mathematically this is still an open
question. Some of the analytical aspects of this problem have been investigated
by studying the circle map, which, in turn, is related to the so-called Neimark
(or Neimark-Saker) bifurcation of discrete-time dynamical systems. This bifur-
cation and the ensuing periodic/quasiperiodic/chaotic scenario is interesting to
economists because it has been shown to occur in economically motivated models,
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such as the celebrated overlapping-generations model. We deal with this issue in
greater detail in Part II.

6.4. Homoclinic Bifurcations

All the bifurcations we have considered so far are “local” in the sense that their
occurrence can be ascertained by investigating changes taking place around a
certain fixed point (or a cycle). In particular, those bifurcations can be related to the
fact that certain eigenvalues go through zero (continuous time) or through unity in
modulus (discrete time). There also exist, however, bifurcations that are “global”
in the sense that they are generated by changes in the structure of the system
occurring far from a fixed point (or a cycle) and leave the local orbit structure
unchanged. These bifurcations are much more difficult to ascertain analytically
and we shall discuss them here only very briefly.

In certain cases, global bifurcations may open a route to chaos. A well-known ex-
ample is the so-calledhomoclinic bifurcationthat occurs when, changing a certain
controlling parameter, the stable and unstable manifolds of a saddle point intersect.
(An analogous event is theheteroclinic bifurcation, which is related to intersec-
tions of stable and unstable manifolds of two different saddle points.) Homoclinic
bifurcations may lead to the creation (or annihilation) of chaotic attractors. An
interesting phenomenon related to homoclinic bifurcations is the so-calledhomo-
clinic tangencywhich, as the name suggests, takes place when stable and unstable
manifolds become tangent. This phenomenon was shown to be generic for a broad
class of dynamical systems and may give rise to chaotic attractors or to the coexis-
tence of infinitely many periodic attractors. In the latter case, strictly speaking, one
could not define the dynamics as chaotic. However, because the basin of attraction
of each periodic attractor must be very small, in the presence of perturbations such
as those introduced by numerical simulations, the orbits of a system exhibiting ho-
moclinic tangency may be practically indistinguishable from those of truly chaotic
systems.13 Homoclinic bifurcations as defined before belong to a broad class of
global bifurcations including various types of saddle collisions, occurring when
the stable or the unstable manifold of an invariant set of a saddle type collides
with another invariant set such as a limit cycle. An interesting example of saddle
collision, nicknamed “blue sky catastrophe,” is depicted by Abraham and Shaw
[(1988, p. 143); cf. also Medio (1992, pp. 169–173)]. Global bifurcations of the
saddle collision type and, in particular, homoclinic and heteroclinic tangencies,
have been found in economically motivated models [see, e.g., Brock and Hommes
(1997, pp. 1059–1095)].

6.5. Hysteresis

An interesting nonlinear phenomenon related to (local or global) bifurcations lead-
ing to catastrophic appearance or disappearance of invariant sets such as fixed
points, periodic orbits, or chaotic attractors is the so-calledhysteresis. Broadly
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FIGURE 6. Hysteresis.

speaking, we say that hysteresis occurs when the effects on the dynamics of a sys-
tem of changes of a parameter in one direction are not reversed when the parameter
is changed back to the original value. A simple example is illustrated by Figure 6.

On the ordinate of Figure 6, we measurethe equilibrium valuesof the state
variable,x, whereas on the abscissa we measure the controlling parameterr . We
assume that, for all positive initial conditions, the following properties hold: (i)
for 0< r < r1, the system is characterized by a unique, stable equilibriumx̄0= 0;
and (ii) for r > r1, there are three equilibriāx0= 0 which is still stable,̄x1 which
is stable, and̄x2 which is unstable; (iii) atr = r1, the two nontrivial equilibria
coalesce and a saddle-node bifurcation occurs. Suppose now that we fixr > r1.
For initial conditions inside or above the parabolic curve of equilibria, the system
will converge toward the equilibrium̄x1. Suppose now we fix the parameterr at
progressively lower values. Clearly, forr < r1, the system, starting from the same
initial conditions as before, will converge to zero. If we now revert the procedure
and increaser pastr1, keeping the initial conditions near zero, the system will
continue to converge to the trivial equilibrium. If we wish to move back tox̄1,
increasing the parameter is not enough, we need to give the system a push and
move it again inside the parabola.

The phenomenon of hysteresis is well known in economic literature and it
suggests interesting considerations of economic policy [for a recent application to
a problem of labor economics, see Brunello and Medio (1996)].

7. TOPOLOGICAL EQUIVALENCE

When confronted with a problemP1 too hard to solve, we sometimes can overcome
the difficulty by defining another, easier problemP2, solving it and then establish-
ing some equivalence relation betweenP1 and P2 so that the results established
for the latter can be extended to the former. This strategy is applied to the study
of dynamical systems by means of the concept of topological equivalence, which
can be defined as follows:
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DEFINITION 3. Two maps G1 : X→ X and G2 : Y→Y are topological equiv-
alent if there exists a homeomorphism h: X→Y such that the following diagram
commutes

X
G1−→

h

Y
G2

−→

−→

X

h;
Y

−→

i.e., we have h◦G1 = G2 ◦ h.

Under topological equivalence,h maps orbits generated byG1 to orbits gener-
ated byG2, preserving the order of points as well as most basic properties of the
dynamics although some details may be lost.14 An analogous definition is available
for continuous-time dynamical systems with similar implications. A celebrated and
widely exploited case of topological equivalence—first studied by Ulam and von
Neumann in 1947—relates the logistic map with the parameterr equal to 4, and the
so-called tent map which, being semilinear, is much easier to analyze. We make use
of this result (and some additional equivalence properties of those maps) in Part II.

NOTES

1. For completeness’s sake, among the impulse-propagation models of the cycle, one should dis-
tinguish between those in which random external events affect economic fundamentals (essentially,
tastes and technology), and those in which those events directly change only agents’ expectations. In
recent years, the latter case has been studied extensively in the economic literature under the label
“sunspots.”

2. This is no place for a comprehensive survey of the literature on these and similar variations of
the basic equilibrium dynamics model, but we quote some of the most significant contributions: on the
role of impatience, see Benhabib and Nishimura (1979), Deneckere and Pelikan (1986), and Boldrin
and Montrucchio (1986); on overlapping-generations models, Benhabib and Day (1982), Grandmont
(1985), and Reichlin (1986); on imperfectly competitive markets, Woodford (1986); on intertemporally
dependent utility, Ryder and Heal (1973).

3. The phrase “partially deterministic” denotes here a dynamical system with an identifiable deter-
minist core plus a stochastic perturbation.

4. Systems described by equation (1), in whichf does not depend directly ont , are calledau-
tonomous. If f does depend ont directly, we can write

ẋ = f (x, t), (x, t) ∈ Rn × R (1′)

and f : U → Rn with U an open subset ofRn ×R. Equations of type (1′) are callednonautonomous.
In economics they are used, for example, to investigate technical progress.

5. Broadly speaking, amap is a functionwhose iterates are used to describe the dynamics of a
system in a certain space. The termmappingalso is used.

6. For a map to be conceived as aflow map, it must beorientation-preserving. For a mapφt (x) :
U → Rn defined above, the latter property holds if and only if

det[Dxφt (x)] > 0, ∀x ∈ U,

whereDxφt = [∂φ j
t /∂xi ] (i, j = 1, . . . ,n) denotes the matrix of partial derivatives.
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7. See, for example, Cornfeld et al. (1994). For a recent application to OLG models, see Medio
(1998).

8. However, linear theory is important in the analysis of nonlinear systems because it can be
employed to investigate qualitatively theirlocal behavior, e.g., their behavior in an arbitrarily small
neighborhood of a single point or of a periodic orbit. This is particularly important in stability analysis
and in the study of (local) bifurcations.

9. The PB theorem states that if the orbit of a continuous-time, two-dimensional dynamical system
enters and never leaves a closed and bounded regionC, and there are no fixed points inC, then there
exists at least one periodic orbit (alimit cycle) in C. In general, if only one such orbit exists, it is
asymptotically stable. [Cf. Glendinning (1994, pp. 132–137).]

10. It is local because we evaluate the rate of separation in the limit forx̂0→ x0. It is asymptotic
because we evaluate it in the limit of indefinitely large number of iterations—assuming that the limit
exists.

11. The Hopf bifurcation takes place when a stable fixed point of a continuous-time dynamical
system loses its stability as the real part of a pair of complex conjugate eigenvalues of the Jacobian
matrix evaluated at the fixed point, goes through zero with nonzero velocity, and becomes positive. That
leads to the creation of a (stable or unstable) limit cycle. For a more thorough discussion of the Hopf
bifurcation, see, for example, Glendinning (1994, pp. 224–244); for an application to an economically
motivated model, see Invernizzi and Medio (1991). An example of a period-doubling route to chaos
starting from a Hopf bifurcation can be found in Medio (1991; 1992, Ch. 13).

12. We specify “turbulence in time,” to distinguish it from “full turbulence” that takes place in both
time and space, which we do not discuss in the present survey.

13. For a rigorous, detailed discussion of homoclinic tangency and related phenomena, see Palis
and Takens (1983).

14. For example, topological equivalence does not distinguish between nodes and foci. Equivalence
is stricter whenh is aCk diffeomorphism withk > 0. In this case, the termCk conjugacy is used.
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