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What is the final size of turbulent mixing zones
driven by the Faraday instability?
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Miscible fluids of different densities subjected to strong time-periodic accelerations
normal to their interface can mix due to Faraday instability effects. Turbulent
fluctuations generated by this mechanism lead to the emergence and the growth of a
mixing layer. Its enlargement is gradually slowed down as the resonance conditions
driving the instability cease to be fulfilled. The final state corresponds to a saturated
mixing zone in which the turbulence intensity progressively decays. A new formalism
based on second-order correlation spectra for the turbulent quantities is introduced
for this problem. This method allows for the prediction of the final mixing zone
size and extends results from classical stability analysis limited to weakly nonlinear
regimes. We perform at various forcing frequencies and amplitudes a large set of
homogeneous and inhomogeneous numerical simulations, extensively exploring the
influence of initial conditions. The mixing zone widths, measured at the end of the
simulations, are satisfactorily compared to the predictions, and bring a strong support
to the proposed theory. The flow dynamics is also studied and reveals the presence
of sub-harmonic as well as harmonic modes depending on the initial parameters in
the Mathieu phase diagram. Important changes in the flow anisotropy, corresponding
to the large scale structures of turbulence, occur. This phenomenon appears directly
related to the orientation of the most amplified gravity waves excited in the system,
evolving due to the enlargement of the mixing zone.

Key words: buoyancy-driven instability, stratified turbulence, turbulent mixing

1. Introduction
The interface between two fluids of densities ρ1 > ρ2 may destabilize due to the

Faraday instability (Faraday 1831; Miles & Henderson 1990) when a time-periodic
acceleration is applied perpendicular to it. In the simplest case of a single-frequency
acceleration,

G(t)=G0(1+ F cosωt), (1.1)

the system is excited by different harmonic or sub-harmonic resonances determined
by the mean acceleration G0, the frequency ω and the amplitude F of oscillations.
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Due to its importance, the literature on the Faraday problem is vast and diversified.
Many studies focus on the instability onset and try to understand pattern formation.
The system is indeed well known for producing fascinating structures observed in
many experiments (Simonelli & Gollub 1989; Edwards & Fauve 1994; Kudrolli &
Gollub 1996; Binks & van de Water 1997; Arbell & Fineberg 2002). In the latter,
multiple-frequency forcing is often considered, enhancing the richness of the solutions.

The linear theory of the Faraday instability relies on Floquet analysis and provides
the growth rate of interface defaults and dominant wavenumbers. Its inviscid and
viscid formulation can be found in Benjamin & Ursell (1954) and Kumar &
Tuckerman (1994) respectively. Weakly nonlinear theories such as in Müller (1994),
Zhang & Viñals (1997), Chen & Viñals (1999), Skeldon & Guidoboni (2007) derive
the amplitude equations for interface waves. These results successfully explain pattern
formation in many Faraday experiments, particularly in large containers with moderate
viscosity (Skeldon & Rucklidge 2015).

Other regimes deserve to be studied in the Faraday problem. When the fluids are
miscible (see Zoueshtiagh, Amiroudine & Narayanan 2009, Diwakar et al. 2015),
when the forcing amplitude is strong enough (Gollub & Ramshankar 1991; Bosch &
van de Water 1993) or for sufficiently disordered initial conditions, standing waves
progressively disorganize and interact with each other. Their energy begins to be
distributed among a continuous spectrum. The flow becomes turbulent and sees the
emergence of a mixing zone. In this case, a deterministic approach is difficult to use
but one can turn to averaging methods (see Gaponenko et al. (2015) in a similar
context) as in classical turbulence theory. However, the problem of the Faraday
instability in the turbulent regime has never been addressed from a theoretical point
of view.

In order to shed light on the dynamics of the mixing layer driven by the Faraday
instability, a possible strategy consists first in analysing how the mean density
gradient interacts with turbulence. This approach, initiated by Hunt & Carruthers
(1990), Hanazaki & Hunt (1996), Nazarenko, Kevlahan & Dubrulle (1999), takes
exactly into account the buoyancy production of kinetic energy and rapid pressure
effects which have a central role in the problem. However, it neglects the dissipation
and the energy transfers accounting for the interaction between turbulence with itself.
Despite this limitation, this procedure has proved useful for instance to predict the
growth rates of turbulent mixing zone driven by the Rayleigh–Taylor instability when
considering the nonlinear coupling between turbulence and the mean density gradient
(Gréa 2013). Can this methodology also be relevant for turbulent mixing zones driven
by Faraday instabilities?

Accordingly, it is important to identify the parameters controlling the turbulence
production. In stratified media, the energy transferred to flow fluctuations is carried by
gravity internal waves characterized by the buoyancy (or Brunt–Väisälä) frequency:

N =
(

2AG0

L

)1/2

. (1.2)

Here, A = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number expressing the contrast of
density between the two fluids and L(t) the mixing zone width. In the small Atwood
number limit, 2A/L gives the renormalized mean density gradient. Although often
introduced in the homogeneous context, this definition of N also corresponds to the
maximum frequency in the dispersion relationship for an inhomogeneous mixing zone
(see Batchelor & Nitsche 1991, Soulard, Griffond & Gréa 2015) when viscosity and
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diffusion are negligible. The parametric instability in a frozen stratification, or constant
N has been well evidenced by Benielli & Sommeria (1998) for instance. However, in
cases where the mixing zone is allowed to evolve freely, the problem is complicated
as the instability implies a growth of L and a diminution of the buoyancy frequency
N. For a single-frequency forcing, no resonance conditions are possible if N � ω.
Therefore, the instability is expected to vanish after some time, causing a saturation
of the mixing zone accompanied by a decay of the turbulence intensity. This scenario
has been confirmed experimentally and numerically in Zoueshtiagh et al. (2009) and
Amiroudine, Zoueshtiagh & Narayanan (2012). The growth rates and characteristic
length scales corresponding to the instability onset have been thoroughly analysed in
these studies. We would like to pursue this analysis by determining the final size Lsat
of mixing zones driven by the Faraday instability.

Determining Lsat, although interesting from a theoretical point of view, is also of
practical importance as it opens a path to a possible control of mixing zone sizes. For
instance, the Faraday instability is already used to generate small perturbations at the
interface between fluids for initial conditions in shock tube experiments as in Jacobs
et al. (2013). One can imagine generating different initial conditions by creating
saturated mixing zones before making them interact with a shock wave. Therefore,
while most studies on Faraday waves focus on the initial stage, we propose to
investigate its termination after reaching a turbulent state.

As always, dimensional analysis is the first step to study a problem in fluid
mechanics. Assuming that the saturated mixing zone size does not depend at leading
order on the initial conditions and the dissipative processes induced by viscosity or
molecular diffusion, then we should have

Lsat =
2AG0

ω2
G(F), (1.3)

with G an unknown function of the amplitude F of the imposed oscillations. The main
objective of this work is therefore to check the validity of (1.3) and to propose an
expression for the function G from various stability and turbulence theory arguments.

This paper is organized as follows. In § 2 we detail the basic equations and the
theoretical framework of the study. In § 3 we analyse a nonlinear model which
reproduces the inner mechanism of the instability and derive a saturation criterion. In
§ 4 we present the numerical simulations and discuss the results.

2. Basic equations
We propose different frameworks to study turbulent mixing zones driven by

time-varying accelerations. Among other properties, turbulent mixing zones are highly
nonlinear, inhomogeneous, anisotropic and dissipative systems. It is worthwhile to
perform some simplifications to extract important physical ingredients. First, we recall
the complete set of equations expressing the dynamics of mixing zones in the limit
of small Atwood numbers. Then, a homogeneous system for turbulent fluctuations is
considered by assuming an uniform density gradient. Finally, we introduce a model
for second-order correlations which retain the nonlinear coupling between the mean
density gradient and turbulent quantities.

2.1. Equations for the mixing zone (MZ)
We consider an incompressible mixing layer between two miscible fluids. We assume
the density of the mixture depends linearly on the mass concentration of heavy fluid
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C(x, t) ∈ [0 1] with x the position and t the time. This system is governed by the
classical Boussinesq/Navier–Stokes equations for C(x, t) and the velocity U(x, t):

∂tC+ (U · ∇)C=D1C, (2.1a)
∂tU+ (U · ∇)U=−∇P+ 2ACG(t)n3 +µ1U, (2.1b)

∇ ·U= 0, (2.1c)

where in (2.1a,b), P(x, t) is the reduced pressure, µ the viscosity, n3 the normalized
vertical vector and D the diffusion coefficient.

The position x is expressed in the usual Cartesian frame with the vertical direction
corresponding to the acceleration vector identified by the suffix 3. In this problem,
quantities are assumed statistically invariant in the horizontal plane (homogeneity)
as we do not consider boundary conditions. A quantity, say for example Q(x, t), is
averaged along the horizontal as follows:

〈Q〉H(x3, t)= lim
`→+∞

1
`2

∫
+`/2

−`/2

∫
+`/2

−`/2
Q(x, t) dx1 dx2. (2.2)

We introduce the Reynolds decomposition separating the quantity Q between the mean
〈Q〉H and its fluctuating part q as

Q= 〈Q〉H + q, (2.3)

with 〈q〉H = 0.
In this context, the equations for the fluctuating velocity u(x, t) and concentration

c(x, t) deduced from (2.1a–c) are

∂tc+ (u · ∇)c=−∂3〈C〉Hu3 +D1c, (2.4a)
∂tu+ (u · ∇)u=−∇p+ 2AcG(t)n3 +µ1u, (2.4b)

∇ · u= 0, (2.4c)

with p(x, t) the fluctuating reduced pressure. Note that the mean velocity is zero
〈U〉H = 0 and as also by definition fluctuating quantities 〈u〉H = 〈c〉H = 〈p〉H = 0. In
addition, the dynamical equation for the mean concentration profile 〈C〉H , neglecting
molecular diffusion, is provided by

∂t〈C〉H =−∂3〈u3c〉H. (2.4d)

The closed system of equations (2.4a–d) determines the dynamics of a mixing zone
driven by an acceleration. Note that for constant positive acceleration G0 > 0, the
stratification is stable if ∂3〈C〉H > 0 and unstable for ∂3〈C〉H < 0.

We define the mixing zone width classically from the mean concentration profile as
in Andrews & Spalding (1990):

L= 6
∫
+∞

−∞

〈C〉H(1− 〈C〉H) dx3. (2.5)

The pre-factor in (2.5) is chosen such that it gives the exactly the width for a linear
density (concentration) profile inside the mixing zone.

If we assume that the mean concentration remains linear inside the mixing zone
and uniform equal to 0 or 1 outside, an equation for the mixing zone width can be
derived from (2.4d), (2.5) (see also Gréa 2013) leading to

L̇=
12
L

∫
+∞

−∞

〈u3c〉H dx3. (2.6)
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2.2. The stratified homogeneous turbulence (SHT) model
In order to analyse the mechanisms controlling buoyancy-driven turbulence, we
consider a simplified problem in place of system equations (2.4a–d). To this purpose,
varied idealized models have been previously introduced relying on homogeneity
assumptions for the turbulent quantities (see for instance Batchelor, Canuto & Chasnov
(1992), Livescu & Ristorcelli (2007), Chung & Pullin (2010) or Burlot et al. (2015)).

The latter one, addressed to stratified homogeneous turbulence (SHT) model,
considers a uniform mean concentration gradient (∂3〈C〉H =−1/L) leading to

∂tc+ (u · ∇)c=
1
L

u3 +D1c, (2.7a)

∂tu+ (u · ∇)u=−∇p+ 2AcG(t)n3 +µ1u, (2.7b)
∇ · u= 0, (2.7c)

where the ensemble averages satisfy 〈u〉= 〈c〉= 0. In this flow, averaged quantities do
not depend on the position vector x due to homogeneity.

In order to complete the system and to mimic the evolution of the mean density
gradient, an equation for the mixing zone width must be added. A possible choice,
directly inspired by (2.6), is

L̇=
12
L
`0〈u3c〉, (2.7d)

where `0 is an arbitrary characteristic length introduced for dimensional purposes such
that `0〈u3c〉 represents the concentration flux integrated along the mixing zone. Other
choices are possible, such as for instance `0 ∼ L (Griffond, Gréa & Soulard 2014).
The difference between the two versions relies in the interpretation of results with
respect to the inhomogeneous problem. For instance, the choice in this work is `0= 1
in (2.7d), so that the second-order correlations scale as integrated quantities along the
mixing zone while with `0∼ L they scale as turbulent quantities in the middle of the
mixing zone.

It should be stated clearly that the SHT model, although sharing many properties
with the complete inhomogeneous problem, cannot be viewed as an approximation of
it. Note that the decoupling between turbulent quantities and the mixing width in SHT
is advantageous for simulations as will be seen in § 4.1.

2.3. The rapid acceleration (RA) model
In the context of the SHT framework, we can define the various turbulent spectra as
Fourier transforms of two-point correlations: see for instance Burlot et al. (2015). Due
to axisymmetry, these spectra depend only on the wave modulus k and the angle θ
between the vertical n3 and the wave vector k. We can further introduce k-integrated
spectra for the vertical velocity Eu3u3 , the concentration Ecc and the concentration flux
Eu3c which depend on θ only and are related to one-point correlations as follows:

〈u3u3〉 =

∫ π

0
Eu3u3 sin(θ) dθ, 〈cc〉 =

∫ π

0
Ecc sin(θ) dθ, 〈u3c〉 =

∫ π

0
Eu3c sin(θ) dθ.

(2.8a−c)

From (2.7a–c) and following the same procedure as in Gréa (2013), it is possible
to express simply the dynamics of integrated spectra by neglecting nonlinear and
viscous/diffusive terms, retaining only the effects of buoyancy and pressure:
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∂tEu3c =
1
L
Eu3u3 − 2AG(t) sin2(θ)Ecc, (2.9a)

∂tEu3u3 =−4AG(t) sin2(θ)Eu3c, (2.9b)

∂tEcc =
2
L
Eu3c, (2.9c)

L̇=
12
L

∫ π

0
Eu3c sin(θ) dθ. (2.9d)

The nonlinearity remaining in the system of equations (2.9a–d) is due to the
evolution of the mixing zone width L. Otherwise the system describes classically
the dynamics of gravity waves. In practice, this approach is valid only when the
acceleration is strong compared to the inertia of turbulent structures and lasts only
for a short period of time before nonlinear terms coupling the turbulent fluctuation
modes recover their intensity. This statistical approach for integrated spectra described
by (2.9a–d) can be referred to as the rapid acceleration (RA) model. It has also been
introduced in the context of inhomogeneous mixing zones for Rayleigh–Taylor
instability in Gréa (2013).

At this stage, we make an assumption in order to reduce the RA model for
the evolving mixing zone into a single differential equation. If the fluctuating
concentration c and vertical velocity u3 are initially correlated, implying E2

u3c=Eu3u3Ecc,
it can be easily shown from the RA equations that it remains correlated for all t. In
this case, it is possible to simplify the system by introducing U(t, θ)= E1/2

u3u3
(t, θ) and

B(t, θ)= E1/2
cc (t, θ), leading to

∂tU =−2AG(t) sin2(θ)B, (2.10a)

∂tB=
1
L
U , (2.10b)

L̇=
12
L

∫ π

0
UB sin(θ) dθ. (2.10c)

Alternatively, it may be noted that the system can be expressed in the form of a
nonlinear second-order equation for B, as the equation for L can be integrated:

∂ttB(t, θ)+
L̇(t)
L(t)

∂tB(t, θ)+
2AG(t) sin2(θ)

L(t)
B(t, θ)= 0, (2.11a)

L(t)= 6
∫ π

0
B2(t, θ) sin(θ) dθ + L0, (2.11b)

where L0 in (2.10c) is the integration constant depending on initial conditions. Without
loss of generality, the system can be written in a non-dimensional form using the
new variables B(t′, θ) = B(t, θ)/(6L0)

1/2 and t′ = N0t with N0 = (2AG0/L0)
1/2 and

considering the time-periodic acceleration equation (1.1). For simplicity, we take t for
the non-dimensional time in place of t′. This gives the system of equations

∂ttB(t, θ)− 2
Ω̇(t)
Ω(t)

∂tB(t, θ)+ sin2(θ)Ω2(t)(1+ F cos(ω/N0t))B(t, θ)= 0, (2.12a)

Ω2(t)=
1

1+
∫ π

0
B2(t, θ) sin(θ) dθ

. (2.12b)

We shall now use this reduced system of equations (2.12a,b) in order to find the final
states of the mixing zone driven by the Faraday instability.
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F

FIGURE 1. (Colour online) Stability diagram of the Mathieu equation as a function
of ratio of frequency N2/ω2 and amplitude of forcing F. Harmonic and sub-harmonic
unstable regions are shown. Green solid line: frequencies excited in the RA model
corresponding to the different orientation angles θ of gravity waves. The two graphs show
the situation (a) at an initial time and (b) at a later time after the growth and saturation
of L due to the parametric instability. Green star: modes corresponding to the maximum
growth rate of the instability. Red dashed line: neutral curve corresponding to the expected
saturation width of the mixing zone.

3. Dynamics of mixing zones under parametric forcing
We present in this section the principal arguments leading to the prediction of

the mixing zone saturation width. To this end, we perform a linear stability analysis
and propose a multiple time scale expansion of the RA model. The results are then
assessed by numerical integration of the RA equations.

3.1. Linear analysis
For a specified initial mixing zone width L0, or equivalently an initial frequency N0,
the RA model has a trivial solution corresponding to B(t, θ)= ∂tB(t, θ)= 0. The linear
equation for the fluctuations around this state can be simply obtained by replacing
Ω=1 and Ω̇=0 in (2.12a). This gives an infinite set of decoupled Mathieu oscillators
parametrized by the orientation angle θ ∈ [0 π/2], which are further characterized by
the continuous frequency sin(θ).

The instability zones for each oscillators are associated with the classical resonance
conditions nω/2 = N0 sin θ (∀n integer). For instance, a sub-harmonic instability is
triggered for n = 1 while n = 2 corresponds to the harmonic case. The instability
regions in the ((N0/ω)

2, F)-plane, the Mathieu stability diagram, are the well-known
instability tongues and their boundaries the transition curves as shown in figure 1. In
practice, the instability zones are obtained numerically following the method described
in Kumar & Tuckerman (1994). The linear problem is always stable if the entire
segment [0, (N0/ω)

2
] lies inside the stable region. Otherwise, if at least one angle

θ or (N0 sin θ/ω2)2 lies inside the unstable region, then linear analysis shows there
would be a growth of B and hence the mixing zone.

From this, one can easily deduce the following sufficient condition for instability:(
ω

N0

)2

< G(F), (3.1)
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where G indicates the first resonance boundary region triggering parametric growth of
B. This suggests the following scenario: as long as there is instability for some angles
θ , the mixing zone will enlarge, reducing the buoyancy frequency N(t). We can expect
saturation when condition (3.1) is no longer fulfilled, i.e.(

ω

Nsat

)2

= G(F) or Lsat =
2AG0

ω2
G(F). (3.2a,b)

The dynamics of the instability is also governed by angles corresponding to
maximum growth rates, not necessarily θ = π/2 as indicated in figure 1. It
is interesting to note that if (N/ω)2 is large enough, then both harmonic and
sub-harmonic instabilities can be triggered at the same time but for different angles
(see § 4.2). If initially (ω/N0)

2 > G(F), the instability is not triggered.
Let us call (3.2) the saturation criterion, and the main objective of this work is to

verify its validity. Indeed nonlinear effects corresponding to the evolution of L need
also to be considered in the analysis.

3.2. Perturbation analysis
The aim of this section is to confirm the validity of the saturation criterion (3.2) even
by taking into account weakly nonlinear effects. We use a classical multiple time
scale analysis (see Bender & Orszag 1978, Godrèche & Manneville 2005) to find a
perturbation expansion of the RA model solutions. These techniques are also used to
find transition curves of the Mathieu equation under small forcing or to study weakly
nonlinear oscillators.

In order to solve (2.12a,b), we propose the following expansion for B:

B(t, θ)= ε(B(0)(t, τ , θ)+ εB(1)(t, τ , θ)+ ε2B(2)(t, τ , θ)+ ε3B(3)(t, τ , θ)+ · · ·). (3.3)

Here, ε expresses the fact that the perturbation B is small so we can perform a weakly
nonlinear analysis. We introduce the slow time variable τ = ε2t. This choice differs
from multiple scale analysis of the Mathieu equation and comes from the fact that
we approximate the integral over θ in (2.12b) by a stationary phase expansion.

The multiple scale expansion of (2.12a,b) without parametric forcing (F= 0) is not
detailed here but given in appendix A to lighten this section. Let us give a short
summary of the principal results of this analysis. At leading order, the nonlinear terms
introduce a phase shift but do not modify the oscillation amplitude. At next order,
the amplitudes for B are modified, giving finite amplitude oscillations for L. However,
we shall see below that the leading order is sufficient to take into account parametric
effects.

For the parametric forcing analysis, we assume further that the natural frequency of
the system corresponding to θ =π/2 is close to the first resonance condition and that
the forcing amplitude is small. This can be written as

N2
0/ω

2
− 1/4= ε2∆ and F= ε2f (3.4a,b)

introducing ∆ and f as the detuning and the forcing amplitude parameter, respectively.
In appendix A, it is shown that the nonlinear effects appear at order ε3 for the natural
frequency Ω2(t) and at order ε4 for the damping term −2Ω̇(t)/Ω(t) (see (A 1),
(A 7)).
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Reintroducing the different expansions in (2.12a) gives the homogeneous equations
for the first two leading orders,

∂ttB(0)(t, τ , θ)+ sin2(θ)B(0)(t, τ , θ)= 0 at order ε, (3.5a)
∂ttB(1)(t, τ , θ)+ sin2(θ)B(1)(t, τ , θ)= 0 at order ε2, (3.5b)

with their solutions given by

B(0)(t, τ , θ)= a(τ , θ)ei sin(θ)t
+ a∗(τ , θ)e−i sin(θ)t, (3.6a)

B(1)(t, τ , θ)= b(τ , θ)ei sin(θ)t
+ b∗(τ , θ)e−i sin(θ)t. (3.6b)

The leading-order solution B(0)(t, τ , θ) allows us to determine the mixing zone width
evolution at order ε2:

L(t)
L0
=

1
Ω2(t)

= 1+ 2ε2Λ(τ)+O(ε3), (3.7)

with Λ(τ)=
∫
+π

0 |a(τ , θ)|
2 sin θ dθ . In (3.7), the integral over θ of the oscillating terms

a2(τ , θ)e2i sin(θ)t and a∗2(τ , θ)e−2i sin(θ)t does not contribute to the leading order of the
expansion due to the stationary phase approximation and are postponed to order ε3.

At order ε3 in (2.12a), we have

∂ttB(2) + sin2(θ)B(2) =−2∂tτB(0) + 2 sin2 θB(0)Λ(τ)− f sin2 θB(0) sin(ω/N0t). (3.8)

Classically, the equation for the amplitudes a(τ , θ) in multiple scale analysis are
obtained by cancelling secular terms in (3.8). Let us focus on the angle θ =π/2 for
the leading-order equation (3.6a):

−2i∂τa(τ )+ 2a(τ )Λ(τ)− 1
2 fa∗(τ )e−4i1τ

= 0, (3.9)

where the damping still does not appear.
We pose a(τ )= g(τ )e−2i1τ to render the system autonomous which leads to

∂τg(τ )= i(2∆−Λ(τ))g(τ )− i
f
4

g∗(τ ). (3.10)

Separating modulus and phase of g= R(τ )eiα(τ) leads to

∂τR(τ )=−
f
4

R sin(2α), (3.11a)

∂τα(τ)= 2∆−Λ+
f
4

cos(2α). (3.11b)

Stationary solutions are R = 0 or 2∆ − Λ ± f /4 = 0 with cos(2α) = 1; this is very
similar to the classical bifurcation diagram of a nonlinear parametric oscillator. The
branch R= 0 is unstable if the amplitude is large enough, i.e. f /4> 2|∆|. In this case
the parametric instability is triggered and will saturate at one branch of the solution
corresponding to

Λ= 2∆+
f
4
. (3.12)

Equation (3.12) is what we seek. Using that L/L0= 1+ 2ε2Λ and (N2
0/ω

2)− (1/4)=
ε2∆, we obtain easily at leading order:

Lsat

L0
=

N2
0

ω2
(2F+ 4). (3.13)
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The relation equation (3.13) is equivalent to the criterion of equation (3.2); in the limit
of small forcing the first transition curve corresponds in this case to G(F)= 2F+ 4.

In conclusion for this part, we have proved by perturbation analysis the validity of
the saturation criterion equation (3.2) under the conditions of small forcing and initial
perturbation and if the natural frequency satisfies the first sub-harmonic resonance
condition.

3.2.1. Numerical solutions of the RA model
In order to explore more broadly the behaviour of the RA model and to assess the

validity of the saturation criterion equation (3.2), even with strong nonlinear effects,
we compute the solutions of (2.12a,b) for different ω/N0 ratios and forcing amplitudes
F. We choose at t = 0 the values, B(0, θ) = 0.05 and ∂tB(0, θ) = 0. In figure 2, we
plot the initial conditions and saturation values in the Mathieu phase diagram. The
time evolution of L for a representative case with F = 1.7 and N2

0/ω
2
= 3/4 is also

presented.
The parametric instability in the RA model is accompanied by strong oscillations

on L and a growth of its mean value. The instability is sub-harmonic as indeed the
initial conditions are in the neighbourhood of the first instability tongue. Accordingly,
the frequency of oscillation for L(t) with the non-dimensional time is close to ω/N0
during the growth, corresponding to an oscillation period of ω/N0/2 for B (not shown).
This recovers the classical Faraday phenomenology.

Before discussing the validity of the saturation criterion, equation (3.2), we need
to clarify how Lsat is evaluated in our simulations. The RA model has no dissipation
mechanisms and the final states of L are strongly oscillating. These oscillations are not
damped by the phase mixing between the solutions corresponding to different angles
θ . They remain at late time even if L/L0 > N2

0/ω
2G(F), i.e. the resonance conditions

driving the parametric instability are no longer valid. This interesting effect is the
imprint of nonlinearities and is observed also when F = 0. Using the multiple scale
analysis proposed in § A.2, we can explain this phenomenon as the self-excitation of
θ = π/2 modes induced by the variations of L. In practice, we simply evaluate Lsat
by averaging L on the interval ωt/N0 ∈ [150 200] on which the simulations seem to
have reached a steady oscillating state.

In figure 2, we see that the final states Lsat as obtained by the previous procedure
are close to the saturation criterion expressed by (3.2) even if the forcing amplitude
F is large. All the final states are located in the stable zone of the Mathieu equation.
The prediction works better with initial conditions close to the weakly nonlinear
analysis case, i.e. in the neighbourhood of the first resonance condition and for small
F. Globally, these results bring strong support to the saturation criterion. The next
step of our analysis consists then in checking its validity beyond the RA model.

4. Simulations of turbulent mixing driven by parametric forcing
The SHT and MZ equations as introduced in § 2 contain the buoyancy production

mechanisms described by the RA model but also dissipation and nonlinear interactions.
The question is whether the saturation criterion derived from the simplified RA
model can apply to more realistic frameworks. Accordingly, we present in this
section different numerical simulations of the SHT and MZ equations with parametric
forcing. First, we detail the different simulation set-up. Then we analyse the results.

4.1. Simulation description
We provide the different characteristics of SHT and mixing layer simulations dedicated
to Faraday instability in the first and the second part of this section respectively.
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FIGURE 2. (Colour online) (a) Representation of the numerical solutions of the RA model
in the Mathieu stability diagram. Small symbols: initial conditions. Large symbols: final
conditions. Black line: neutral curves of the Mathieu stability diagram. (b) Time evolution
of the mixing zone width L in the RA model corresponding to F= 1.7 and N2

0/ω
2
= 3/4

(large circle in the Mathieu stability diagram). Dashed line: expected saturation width.

4.1.1. SHT simulations
We use for SHT simulations a massively parallel direct numerical simulation (DNS)

code based on classical numerical pseudo-spectral methods detailed in Griffond et al.
(2014). The simulation domain for the turbulent velocity and concentration field is
a triply periodic box of size 2π. For convenience, we work with non-dimensional
wavenumbers; in particular, kmin = 1 corresponds to the box size.

Three levels of resolution – small (S) medium (M) and large (L) – with 2563,
5123, 10243 grid points are performed. The characteristics of the different runs at the
initial time are detailed in table 1. The viscosity and diffusion coefficients are taken
equal (Schmidt number = 1) with values µ = D = 5 × 10−3, 2 × 10−3 and 8 × 10−4
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Run Resolution
2AG0

Lω2
F FrI kpeak ns

S 2563
[0.25 1.25] [0.1 20] [0.49 1.1] 9 180

M 5123 1.25 [0.2 10] 0.82 15 8
A M 5123

[0.062 1.25] 0 [0.82 3.67] 15 7
L 10243 0.25 1. 0.49 4 1
L 10243 0.25 0.3 3.67 30 1

S 2563 1.25 1 [0.0548 14.1] 10 9
B M 5123 1.25 1 [0.01 1414] 20 13

C L 10243 1.25 1 2.19 40 1

TABLE 1. Non-dimensional parameters at t= 0 and number ns of SHT simulations for
the different cases.

respectively for the S, M and L cases. These values ensure that the different scales
of the flow are well resolved even during the instability phase (DNS).

The small and medium simulations (S and M) are principally dedicated to the
parametric study, in particular to test the initial positions in the Mathieu diagram
(Run A) and the influence of initial perturbation intensity (Run B). There is also a
special set of M simulations with F= 0 (Run A) to ensure that the instability is not
triggered when the forcing is switched off. The purpose of large simulations is to
investigate turbulent quantities (in particular spectra) during the Faraday instability
(Run C) and also to confirm the convergence of results obtained by smaller ones (S
and M). Note that large simulations are quite computationally intensive (consuming
typically >5× 105 CPU hours spread over 1024 cores) in order to properly capture
the instability development (around 20 acceleration periods).

In all our SHT simulations, the mean reduced accelerations and frequencies are
fixed respectively at 2AG0= 1 and ω= 2. The initial mixing width L(t= 0), amplitude
F and turbulent quantities may vary in order to explore the phase space. In total, 220
SHT simulations are presented in this work.

The random initial conditions for the concentration c and velocity ui are isotropic.
As a consequence we have 〈uic〉 = 0. A narrow wavenumber band centred around
kpeak is initially excited in Fourier space (peaked spectra) and we specify further the
variances 〈cc〉 and 〈uiui〉. The choice for kpeak is a compromise between the good
resolution of the simulations at small scales and keeping a margin for the integral
scale to develop freely during the simulations due to nonlinearities. At the end of the
simulations, the integral scales usually approach the box size. This effect is difficult to
avoid because the Faraday instability needs time to evolve. In Run C, we have tried to
reduce these confinement effects by increasing kpeak and the resolution. No significant
differences concerning the dynamics have been observed compared to less resolved
simulations. This is also consistent with results of Thornber (2016) in the different
context of decaying turbulence showing that the effects coming from the integral scale
confinement appear very lately in spectral simulations.

The flow corresponding to our initial condition with peaked spectra is not turbulent.
However, the spectra broaden quite fast due to nonlinear interactions. In addition,
the energy brought to the fluctuations by the instability renders it turbulent at later
time. Indeed, the turbulent Reynolds number based on kinetic energy, dissipation and
viscosity grows due to the instability and reaches values up to ∼2000 in L simulations
and up to ∼500 in S simulations.
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Run Resolution
2AG0

Lω2
F FrI L/Lbox ns

D S 2563
[0.05 0.33] [0.5 5] [0.05 2] × 10−2

[0.18 0.24] 15
M 5123

[0.13 0.96] [0.4 8.9] [0.93 6] × 10−2
[0.032 0.1265] 14

TABLE 2. Non-dimensional parameters at t= 0 and number ns of mixing zone simulations.

An important parameter which describes our simulations is the initial Froude
number, defined as FrI = (1/2〈uiui〉)

1/2kpeak/N0, giving the ratio between the
perturbation and the stratification frequency (see table 1). Here we use a perturbation
frequency instead of the classical turbulent one defined from kinetic energy and
dissipation since our initial condition is not turbulent. The Froude number expresses
whether the simulations are initially buoyancy-driven or ruled by nonlinear effects.
This initial Froude number can be easily tuned in our SHT simulations and we show
a parametric study of its influence in Run B (discussion postponed to § 4.2).

4.1.2. MZ simulations
The mixing zone simulations (MZ) are performed with the finite difference parallel

code, TURBMIX3D, presented in Poujade & Peybernes (2010), Watteaux (2011). This
code solves the Navier–Stokes equations for a binary mixture of two incompressible
fluids corresponding in the limit of small Atwood number to (2.1a–c). Here, the
Atwood number is chosen as A = 10−3. The computational domain is a cubic box
of normalized size Lbox = 1 with periodicity imposed only in the horizontal direction.
The mixing zone width L is classically evaluated from the volume fraction profile
defined in (2.5).

Simulations with small (S) 2563 and medium (M) 5123 resolutions are presented.
The viscosity and the diffusivity coefficients are equal (Schmidt number = 1) and kept
constant but the viscous/diffusive scales are not fully resolved. For this reason, our
simulations cannot claim to be DNS but are in the category of implicit large eddy
simulations. We motivate this choice to reduce viscous or diffusive effects at large
scales which may influence the dynamics of large turbulent structures and the mean
density gradient. In particular, we try to have a simulation time tsim� L2

sat/ν to avoid
diffusively evolving mixing layers after the Faraday phase. Note that SHT simulations
are not limited by this condition.

Another constraint in MZ simulations which is not present in the SHT framework is
that the mixing layer must be smaller than the size of the domain L6Lbox. In practice
we try to obtain Lsat ∼ 0.5–0.6 × Lbox, which seems sufficient to avoid confinement
effects as shown by Morgan et al. (2017) in the context of Rayleigh–Taylor mixing
zones. Also, the use of different resolutions leading to same results guarantees that
confinement effects seem very limited in the simulations presented. This leads to the
parameters given in table 2 for the 29 MZ simulations.

The initial conditions for our MZ simulations correspond to a developed mixing
zone generated by a Rayleigh–Taylor (RT) instability with constant acceleration GRT .
The RT mixing phase is initialized using a multi-mode perturbation of the interface.
The spectrum for the perturbation height is annular as in Dimonte et al. (2004) with
wavenumbers k∈ [32 64] for S simulations, and k∈ [64 128] for M simulations. Once
mixing has been created, the RT phase is halted relatively fast by around the time
τ = (Lbox/AGRT)

1/2 corresponding to the nonlinear mixing transition. At this time,
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nonlinear coupling and merging processes do not produce fully turbulent mixing (Cook
& Dimotakis 2001), but this choice appears as a compromise because of limitations in
the final width of Lsat due to the top/bottom boundaries of the box. Also due to this
constraint, the Froude number FrI defined with the integral scale and kinetic energy
at the centre of the mixing layer are initially very small.

In summary, we principally dedicate MZ simulations to challenging the validity of
the saturation criterion in realistic configurations accounting for inhomogeneous effects
neglected by the theory. In complement, the more tractable SHT simulations allow a
parametric study of the influence of initial conditions and to investigate the scales of
turbulence in more detail.

4.2. Discussion
We discuss the results of SHT and MZ simulations together as they exhibit similar
phenomena. We first observe the dynamics of both systems during the instability
phase before verifying the validity of the saturation criterion equation (3.2). Then we
carefully investigate the turbulence characteristics appearing in the systems.

4.2.1. Time evolution of mixing zone during the instability phase
To give an overview of the simulation results, we present in figures 3 and 4 the

time evolution of L and visualizations of the concentration field at different instants
in representative SHT and MZ cases (F= 1 and F= 0.6 respectively). The evolution
of the mixing zone width in both configurations corresponds to the expected scenario,
i.e. growth accompanied by oscillations due to the parametric instability followed by
a saturation. The oscillations are efficiently damped by dissipative effects when the
resonance conditions are no longer fulfilled. This is a striking difference to the RA
model.

In both SHT and MZ simulations, the main instability phase is sub-harmonic.
The oscillation frequency for L is then ω, and ω/2 for the turbulent quantities. The
concentration images at ωt = 102–108 of figure 4 on two successive maxima of
L give a good illustration of the phenomenology. This is clearly confirmed by the
temporal Fourier transform of L̇ provided by figures 3 and 4.

In the SHT case presented in figure 3, the instability begins with a small harmonic
phase, as the mixing zone oscillates with a 2ω frequency. The initial parameters for
this simulation correspond to the harmonic unstable tongue of the Mathieu diagram.
As L grows, the mixing experiences a harmonic/sub-harmonic transition which has
important effects on the turbulent structures (this will be discussed in the next section).
However, we fail to observe such transitions in our MZ simulations although the
phenomenon should be present. It should be stressed that the choice of parameters for
MZ simulations is greatly constrained by the size of the computational box contrary
to SHT simulations. For instance, if we expect in an MZ simulation a final saturation
at Lsat/Lbox = 0.5, then the harmonic phase would appear around L/Lbox = 0.05–0.1
for F = 1 from the Mathieu phase diagram. The corresponding integral scales `I are
roughly `I/Lbox = 0.005–0.01, and very likely greatly influenced by the numerics and
dissipation with our 2563 or 5123 resolutions. This might explain why we could not
capture the harmonic phase in MZ simulations.

When looking at the time evolution for L in figures 3 and 4, we can observe
that the instability does not start initially. This is due to the competition between
the dissipation and the turbulent production induced by the parametric forcing. At
ωt= 0 the viscous/diffusive dissipation dominates partly because the fluctuation scales
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FIGURE 3. (Colour online) Dynamics of Faraday instability for a selected 5123 SHT
simulation with F = 1. (b) Time evolution of the mixing zone width L(t). Dashed line:
predicted saturation. Inset: renormalized time Fourier transform of L̇, as a function of
the frequency f renormalized by the forcing ω/(2π). Visualization of iso-contours of
concentration at different times corresponding to local maxima (a) and local minima (c).
The iso-contour values are c ∈ {−0.2; −0.1; 0.1; 0.2}.

are small. At later times, the energy peak is progressively shifted to larger scales
where the damping is smaller, leaving the upper hand to the production by parametric
forcing. As the energy is gained in the system, the transition to turbulence occurs. It
is expected that the viscous/diffusive damping is then replaced by an eddy viscosity
term expressing transfer of energy to smaller scales by turbulence. In agreement with
these explanations, the mixing width in simulations with high F values increases
faster, probably because a higher growth rate of the parametric instability. In contrast,
for small values of F the mixing zone slowly evolves without reaching saturation.

4.2.2. The saturation criterion
In this section, we specifically discuss the validity of the saturation criterion

equation (3.2) in the SHT and MZ simulations. The results are represented in figure 5
on the Mathieu stability diagram containing the initial and final mixing widths for
the different simulations.

The initial conditions for the SHT and MZ simulations cover a large domain in the
stability diagram with F∈ [0 20] and 2AG0/Lω2

∈ [0.062 1.25]. In the vast majority of
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FIGURE 4. (Colour online) Dynamics of Faraday instability for a 5123 mixing zone
simulation with F = 0.6. (b) Time evolution of the mixing zone width L(t). Dashed line:
predicted saturation. Inset: renormalized time Fourier transform of L̇, as a function of
the frequency f renormalized by the forcing ω/(2π). Visualization of the concentration
at different times corresponding to local maxima (a) and local minima (c). The colour
bar varies from C= 0.99 (red) to C= 0.01 (blue).

the simulations presented, the values of Lsat obtained are very close to that predicted
by the saturation criterion. This is clear support for the theory developed from the RA
model and the main result of this work. In particular, the theory seems valid even in
the MZ simulations accounting for the inhomogeneous effects. We also stress that the
saturation criterion remains relevant even for large forcing F > 1 where the mixing
zone experiences periodically unstable Rayleigh–Taylor phases. As for the RA model,
the different final states do not collapse exactly to the transition curve. More precisely,
the saturation criterion slightly underestimates Lsat, with an error of up to 10 %–20 %.

Some of the data are far from the predicted values and we try to elucidate this point.
For the SHT cases with F= 0, the initial and final positions remain nearly the same
in the Mathieu stability diagram, confirming if necessary that the simulations with
F 6= 0 are driven by the parametric instability. However, many SHT simulations with
F 6 0.4 do not saturate and have a very low growth rate. The neutral stability curve
of the RA model in the Mathieu diagram neglects the dissipative mechanisms which
level up the instability threshold. The threshold is difficult to determine as it varies
with the initial conditions of turbulence. It depends on the viscosity and diffusion
coefficient but also on the eddy viscosity expressed by the turbulent kinetic energy
and energetic scales of the flow. This explanation supports the Faraday experimental
results of Falcón & Fauve (2009), in which a vortex perturbation in the flow increases
the instability threshold.

We study in more detail the data corresponding to Run B with F= 1 (see table 1)
which also differ substantially from the saturation criterion as shown in figure 5.
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FIGURE 5. (Colour online) Representation of present SHT (circle) and MZ (diamond)
simulations in the Mathieu stability diagram. Small symbols: initial conditions. Large
symbols: final conditions. Yellow, 2563; green, 5123; red, 10243. Black line: neutral curves
of the Mathieu stability diagram. (b) The same as (a) but zoomed close to F= 0. Initial
and final conditions corresponding to Runs B and C are indicated by a rectangle.

Run B simulations have the same initial positions in the Mathieu stability diagram
but differ from the initial perturbation intensity expressed by the Froude number FrI .
In figure 6, we represent the time evolution of L for Run B SHT simulations together
with the values Lsat as a function of the Froude number. The saturation width Lsat
is not sensitive to initial conditions as long as the Froude number remains smaller
than a limiting value, here around ∼100. In cases with very large FrI , the initial
kinetic and potential energies are converted into a large vertical buoyancy flux which
enlarges the mixing zone beyond the saturation limit. We try to quantify this more
precisely. The gain of potential energy due to the enlargement of a mixing zone with
a linear density profile between the initial and saturated final state is

1P =
∫
+∞

−∞

ρsat − ρinit

ρ0
G0x3 dx3 =

1
12

AG0(L2
sat − L2

init), (4.1)
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FIGURE 6. (Colour online) Effects of turbulence initial conditions on the saturation width
in SHT simulations. Cases correspond to Run B (M) in table 1 and have F= 1. (a) Time
evolution of the mixing zone width. (b) Values of the mixing zone saturation width Lsat
as a function of the initial Froude number defined as FrI = (1/2〈uiui〉)

1/2kpeak/N0. Dashed
line: value of the predicted saturation width.

with ρ0 = (ρ1 + ρ2)/2. We find that at FrI = 100, the available initial kinetic energy
well exceeds the energy necessary to achieve irreversible mixing corresponding to final
state Lsat as K/1P ∼ 100. As a consequence, a large amount of energy is dissipated
into heat at large initial Froude number. This occurs principally at the beginning of the
simulations as the initial perturbation is located at small scales in order to allow the
growth of the integral scale during the process. Note that similarly to the RA model
we can achieve final states well beyond the saturation criterion by imposing a strong
initial ∂tB.

To conclude this section, we find that the saturation criterion seems to predict the
final states of the mixing zone reasonably well as long as the forcing amplitude is
not too small and the perturbation frequency not too big compared to that of the
stratification one.

4.2.3. Turbulence characteristics
After the overview of SHT and MZ simulations and the discussion concerning the

saturation criterion, we now examine the turbulent quantities during the instability
phase. The objective is to assess whether the turbulent properties of the mixing
are consistent with the theory leading to the saturation criterion. To this end, we
present results from the well-resolved SHT simulation Run C (see table 1). The
time evolution for L along with the various two-point correlation spectra at different
instants are shown in figure 7. We also provide one-point quantities, the Reynolds
stress tensor anisotropy, the buoyancy production and dissipation of turbulent kinetic
energy in figure 8.

The evolution of the mixing zone width in Run C is quite representative of our
simulations, and the saturation obtained is close to the value predicted by criterion
equation (3.2). The growth of L and of turbulent quantities such as the kinetic
energy K = 〈uiui〉/2, the variance of concentration 〈cc〉 and the vertical flux 〈u3c〉
correspond to a sub-harmonic phase. There are also small harmonic modes present at
the beginning of the simulations as attested by the temporal spectrum of L̇ shown in
the inset of figure 7. The oscillations are typical of gravity waves with K and 〈cc〉
in phase opposition. This point reveals the strong imprint of buoyancy production of
kinetic energy defined as ΠB = 2AG(t)〈u3c〉 and shown in figure 8 which amplitude
well exceeds the dissipation ε. This is further confirmed by the small values of the
turbulent Froude number defined as Fr = ε/NK ∼ 0.3 at the instability apex, here
approximately ωt= 100.
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FIGURE 7. (Colour online) (a–c) Spectra of kinetic energy EK(k, t), of scalar Ecc(k, t),
and of vertical flux |Eu3c|(k, t) at different times. The case corresponds to SHT simulation
Run C (L) in table 1. (d) Time evolution of the mixing zone width. Blue circles: times
corresponding to the different spectra. Dashed line: value of the predicted saturation
width. Inset: renormalized time Fourier transform of L̇ as a function of the frequency f
renormalized by the forcing ω/(2π).

The spectra shown at different times in figure 7 bring more information about the
scale-by-scale distribution of energy. The initial peaked spectra rapidly broaden due
to nonlinear effects as the instability starts and the wavenumbers corresponding to
energetic scales are shifted to the left. This transient phase is accompanied by a strong
dissipation as seen in figure 8 for times ωt 6 5. The variation of energy over one
oscillation period corresponding to gravity waves phenomena is essentially related to
the dynamics of the large scales of turbulence. This supports the analysis provided
by the RA model. A change of sign of the concentration flux spectrum is expected
during an oscillation period. However, it is interesting to note that at the end of the
instability phase, the sign of the concentration flux is not the same for all the scales
of the flow. This decorrelation can be simply explained by a different characteristic
time between the energy transfer and the parametric forcing. The shift in oscillations
between buoyancy production ΠB and dissipation ε in figure 8 can also be attributed
to this effect.

At the instability apex corresponding to the last spectra represented, a small inertial
zone seems to emerge with a slope close to the classical Kolmogorov scaling law
k−5/3. It should be stressed, however, that the turbulent Reynolds number remains very
modest as already mentioned (Re = K2/εν ∼ 2000). Therefore, the question whether
the wave turbulence phenomenology influences the energy transfer in our case remains
difficult to analyse due to the low value of the Reynolds number.

In order to pursue this discussion, we study how the structures of turbulence are
connected to the flow dynamics. A convenient way to analyse the shapes of turbulent
structures, complementary to the visualizations of the concentration field provided by
figures 3 and 4 (for the case corresponding to the 10233 simulation of figures 7 and 8,
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FIGURE 8. (Colour online) (a) Time evolution of kinetic energy K (solid line), scalar
variance 〈cc〉 (dashed line) and vertical buoyancy flux 〈u3c〉 (dot-dashed line). (b) Time
evolution of the vertical component of the deviatoric tensor b33 = 〈u3u3〉/〈uiui〉 − 1/3.
(c) Buoyancy production ΠB (solid line) and dissipation ε (dashed line) of the turbulent
kinetic energy. The case corresponds to SHT simulation Run C (L) in table 1. The specific
times corresponding to figure 7 are also indicated.

see also the supplementary movies available at https://doi.org/10.1017/jfm.2017.837),
is to measure the anisotropy of the axisymmetric Reynolds stress tensor, represented
by its vertical deviatoric component b33 = 〈u3u3〉/〈uiui〉 − 1/3 shown in figure 8. Its
time evolution reveals strong oscillations between nearly isotropic states with b33' 0,
to very anisotropic ones with b33' 0.2, 0.4, showing that the kinetic energy is mainly
contained in the vertical component. This is clearly the imprint of gravity waves
present at large scales and observed in spectra. Accordingly, when the energy is
transferred to potential energy, the Reynolds stress tensor returns to isotropy and the
velocity field is dominated by the small scales. On the contrary, when the energy is
contained in the kinetic energy, the scales and the vertical components of the velocity
field grow. As importantly, the harmonic/sub-harmonic then sub-harmonic oscillations
of b33 follow the evolution of L(t) in the Mathieu phase diagram. Initially, the most
amplified gravity waves are harmonic with an orientation along θ = π/2 while a
narrow band of sub-harmonic modes with small θ is also amplified for ωt ∈ [0 40].
Then, the harmonic modes stabilize, giving the upper hand to the sub-harmonic regime.
This transition at ωt ∈ [40 50] in the simulation corresponds to a sudden decrease
of anisotropy as expressed by the b33 maxima. The maxima gradually increase for
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ωt ∈ [50 100], which can be explained by the realignment of the most amplified
sub-harmonic gravity waves with the vertical direction as L grows. For ωt > 100
the saturation occurs and we see the return to isotropy of the flow. This scenario
can also be observed on the shape of turbulent concentration structures in figure 3.
The concentration structures are vertically elongated during the harmonic phase, then
suddenly tilted in the harmonic/sub-harmonic transition before straightening up during
the final sub-harmonic phase (see also the supplementary movie). Therefore, these
observations showing the importance of the nonlinear interaction between gravity
waves and the mean density profile support the scenario provided by the RA model.

5. Summary
In this work, we study turbulent mixing zones driven by the Faraday instability

which appears at interfaces of miscible fluids, for strong forcing parameter and/or
for sufficiently random initial conditions. It is shown that the turbulent mixing
zone widths saturate to values predicted from the reduced mean acceleration 2AG0,
the oscillation frequency ω and the forcing amplitude F. This saturation criterion,
equation (3.2), is simply deduced from the linear stability of each differently oriented
gravity waves, parametrically excited by the periodic acceleration inside the mixing
zone. We establish the relevance of this approach in the nonlinear regime by
introducing the RA model which couples the mixing zone width to the different
gravity waves. A multiple scale perturbation analysis close to the first sub-harmonic
resonance and the numerical solutions of the RA model attest that the mixing
zone width evolves to the first transition curve in the Mathieu stability diagram. The
validity of the saturation criterion is further extended by 249 SHT and MZ simulation
results, exploring the effects of different parametric forcing and of initial turbulence
conditions. As long as the instability is triggered and for not too large initial Froude
number, the mixing zone final sizes are predicted by the saturation criterion with a
slight underestimation of 0 %–20 %.

The theory proposed also explains interesting features in the flow. Depending
on the initial conditions represented in the Mathieu phase diagram, the instability
may be driven by sub-harmonic modes or by a combination of sub-harmonic
and harmonic ones. The sub-harmonic regime always prevails at the end of the
process as the mixing zone enlarges and saturates. The structure of turbulence is
strongly connected to the different phases of the instability. We observe on spectra
extracted from the simulations that the large scales are essentially composed of
gravity waves. The rapid exchange between kinetic and potential energy explicates
the oscillations between nearly isotropic to very anisotropic states populated by large
scale structures. Their orientations are thus determined by the most amplified gravity
waves, progressively aligning with the vertical direction due to the decrease of the
mixing zone natural frequency. In cases where harmonic modes are initially excited,
the transition to a purely sub-harmonic regime is accompanied by impressive changes
in the turbulence, exhibiting first vertically aligned structures, bending suddenly as the
harmonic instability ceases, then progressively realigning with the vertical direction.

These findings can be readily confirmed by experimental studies. They open new
possibilities to predict and control the dynamics of turbulent mixing zones.

Acknowledgements
We thank Dr J. Griffond for his support concerning the spectral code. Also, we

kindly acknowledge Dr O. Soulard and Professor L. Tuckerman for stimulating

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

83
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.837


314 B.-J. Gréa and A. Ebo Adou

discussions and remarks concerning the manuscript. The simulations were performed
at TGCC, the French computing facility, and the mixing zone images were obtained
with the VAPOR visualization software.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2017.837.

Appendix A. Multiple scale analysis of RA model for F= 0

We propose here a perturbation analysis of the RA model, equations (2.12a,b),
without parametric forcing (F = 0). The first part is dedicated to the technical
developments leading to the asymptotic expressions for B and L. The method used,
while somewhat tedious, presents no difficulties. The second part compares the
multiple scale solutions obtained to the numerical solutions of the RA model. We
also discuss the effects of nonlinearities in the model.

A.1. Multiple scale solutions
The expansion for B follows (3.3) and introducing it in (2.12b) gives

Ω(t)= 1+ ε2Ω (0)(t, τ )+ · · · . (A 1)

The functions Ω (0) can be expressed by the different terms in the expansion of B but
we do not need to express it for the moment. This shows that the nonlinear effects
appear at order ε2 for Ω .

Reintroducing the various expansions in (2.12a), we obtain at leading order in ε
and ε2:

∂ttB(0)(t, τ , θ)+ sin2(θ)B(0)(t, τ , θ)= 0, at order ε, (A 2a)
∂ttB(1)(t, τ , θ)+ sin2(θ)B(1)(t, τ , θ)= 0, at order ε2. (A 2b)

The solutions can be easily found in the form

B(0)(t, τ , θ)= a(τ , θ)ei sin(θ)t
+ a∗(τ , θ)e−i sin(θ)t, (A 3a)

B(1)(t, τ , θ)= b(τ , θ)ei sin(θ)t
+ b∗(τ , θ)e−i sin(θ)t, (A 3b)

introducing the slow amplitudes a(τ , θ) and b(τ , θ). Classically in multiple scale
analysis, the equations for the amplitudes are obtained by cancelling the secular terms
at higher orders.

Before that, we re-inject the solutions for B(0) and B(1) to find a better expression
for the frequency Ω . First we have

B2(t, θ)= ε2(|a|2(τ , θ)+ a2(τ , θ)e2i sin(θ)t)+ ε3(2ab∗(τ , θ)+ 2ab(τ , θ)e2i sin(θ)t)+ c.c.,
(A 4)

with c.c. indicating the complex conjugate of the expression. We now integrate over θ
and use a stationary phase approximation to evaluate the integrals of oscillating terms:∫ π/2

0
B2(t, θ) sin(θ) dθ = 2ε2Λ(τ)+ · · ·

ε3

(
2
∫ π

0
ab∗(τ , θ) sin(θ) dθ + a2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

)
, (A 5)
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with Λ(τ) =
∫ π

0 |a|
2(τ , θ) sin(θ) dθ . The oscillating terms in (A 4) are put to next

order as we use the stationary phase approximation to evaluate integrals over θ . This
justifies our choice of τ = ε2t. If we pursue the development, we have the following
expression for Ω:

Ω2(t)= 1− 2ε2Λ(τ)+ · · ·

−ε3

(
2
∫ π

0
ab∗(τ , θ) sin(θ) dθ + a2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

)
+ · · · . (A 6)

By taking the time derivative of (A 6), we obtain that the damping coefficient
in (2.12a) is O(ε3):

2
Ω̇(t)
Ω(t)

=−ε3

[
2ia2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

]
+ · · · . (A 7)

At next order ε3, the equation becomes

∂ttB(2)(t, τ , θ)+ sin2(θ)B(2)(t, τ , θ)=−2∂tτB(0)(t, τ , θ)+ 2 sin2(θ)Λ(τ)B(0)(t, τ , θ).
(A 8)

The equation for the amplitude a is obtained by cancelling secular terms in ei sin(θ)t in
the right-hand side of (A 8):

∂τa(τ , θ)=−i sin(θ)Λ(τ)a(τ , θ). (A 9)

Seeking a solution of the form a(τ , θ) = r(τ , θ)eiα(τ ,θ), we obtain the following
system:

∂τ r(τ , θ)= 0, (A 10a)

∂τα(τ , θ)=− sin(θ)
∫
+π

0
r2

0(τ , θ) sin θ dθ. (A 10b)

Then Λ does not depend on τ , leading to the solution

a(τ , θ)= a0(θ)e−i sin(θ)Λτ , (A 11)

such that the complete solution for B(0) is

B(0)(t, τ , θ)= a0(θ)ei sin(θ)(t−Λτ)
+ a∗0(θ)e

−i sin(θ)(t−Λτ). (A 12)

The next order ε4 is

∂ttB(3)(t, τ , θ)+ sin2(θ)B(3)(t, τ , θ)=−2∂tτB(1)(t, τ , θ)+ 2 sin2(θ)ΛB(1)(t, τ , θ)+ · · ·

sin2(θ)

(
2
∫ π

0

[
ab∗(τ , θ)+ c.c.

]
sin(θ) dθ +

[
a2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

])
×B(0)(t, τ , θ)−

[
2ia2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

]
∂tB(0)(t, τ , θ). (A 13)

We write the equation for b by cancelling secular terms in (A 13). For θ 6=π/2:

2 sin2(θ)Λb(τ , θ)− 2i sin(θ)∂τb(τ , θ)

+ 2 sin2(θ)

∫ π

0
[ab∗(τ , θ)+ c.c.] sin(θ) dθa(τ , θ)= 0. (A 14)
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In order to solve this equation, we set b(τ , θ)= a(τ , θ)s(τ , θ) leading to

−2i sin(θ)∂τ s(τ , θ)+ 2 sin2(θ)

∫ π

0
|a0|

2
[s(τ , θ)+ c.c.] sin(θ) dθ = 0. (A 15)

Separating the real and imaginary part of s(τ , θ),

∂τ sr(τ , θ)= 0, (A 16a)

∂τ si(τ , θ)+ 2 sin(θ)
∫ π

0
|a0|

2sr(τ , θ) sin(θ) dθ = 0. (A 16b)

Initially, b= 0 and so is s. Therefore this shows that for θ 6=π/2, b(τ , θ)= 0. Then,
we turn our attention to the equation for θ =π/2:

2Λb(τ ,π/2)− 2i∂τb(τ ,π/2)+ 2
∫ π

0
[ab∗(τ , θ)+ c.c.] sin(θ) dθa(τ ,π/2)+ · · ·

− a(τ ,π/2)|a|2(τ ,π/2)e−iπ/4
(π

τ

)1/2
= 0. (A 17)

Using b(τ , θ 6=π/2)= 0, we can simplify this expression as

2Λb(τ ,π/2)− 2i∂τb(τ ,π/2)− a(τ ,π/2)|a|2(τ ,π/2)e−iπ/4
(π

τ

)1/2
= 0, (A 18)

leading to

−2i∂τ s(τ ,π/2)− |a0|
2(π/2)e−iπ/4

(π

τ

)1/2
= 0, (A 19)

and

s(τ ,π/2)= |a0|
2(π/2)eiπ/4(πτ)1/2. (A 20)

Therefore we obtain

B(t, θ)= ε[a(τ , θ)(1+ εs(τ , θ))ei sin(θ)t
+ c.c.]. (A 21)

We get the expansion for the mixing zone width as

L(t)
L0
= 1+ 2ε2Λ+ · · ·

ε3

(
2
∫ π

0
[ab∗(τ , θ)+ c.c.] sin(θ) dθ +

[
a2(τ ,π/2)e−iπ/4

(π

τ

)1/2
e2it
+ c.c.

])
+ · · ·

ε4

(
2
[

a2s(τ ,π/2)e−iπ/4
(π

τ

)1/2
e2it
+ c.c.

])
. (A 22)

Using the expressions for a(τ ) and s(τ ,π/2), we obtain a solution for L as a function
of the initial conditions:

L(t)
L0
= 1+ ε2

(
2Λ+ ε

[
a2

0

(π

τ

)1/2
e2it−2iΛτ−iπ/4

+ c.c.
]
+ 2ε2

[a2
0|a0|

2πe2it−2iΛτ
+ c.c.]

)
.

(A 23)
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FIGURE 9. (Colour online) Time evolution of the mixing zone width L (a–c), and of
B(t,π/2) (d–f ) in the RA model with different initial conditions. (a,d) B(0, θ)= 0.1. (b,e)
B(0, θ) = 0.2. (e,f ) B(0, θ) = 0.4. Black solid line: numerical solution. Red dashed line:
multiple scale analytical solution at order ε3. Orange solid line: multiple scale analytical
solution at order ε4.

A.2. Comparison of multiple scale solutions to numerical solutions
In figure 9, we compare the multiple scale solutions for L(t) and B(t,π/2) expressed
by (A 23), (A 21) to the numerical solutions of the RA model (2.12a,b) with F = 0.
The multiple scale approximation reproduces well the numerical solutions in the limit
of small ε (equivalent to small initial B), and also when the initial perturbation is not
so small, as often occurs in perturbation analysis. One can note a small discrepancy
in L appearing at short time which comes from the initially divergent stationary phase
approximation.

We can now briefly discuss the nonlinear effects in the RA model as revealed by
the perturbation analysis. At leading order, the nonlinear term in (2.12b) introduces
a phase shift but does not modify the oscillation amplitudes. This property is also
shared by Duffing oscillators (Bender & Orszag (1978) for instance). The dynamics
of L, which depends only on the amplitude of B, is therefore not influenced by
this property. However, as shown by figure 9, the mixing zone width L reaches a
final state at late time characterized by a finite oscillation amplitude. This is also
a nonlinear effect. Indeed in the linear case, the amplitudes for B remain constant
and the oscillations for L decrease as t−1/2 due to the phase scrambling expressed
by the stationary phase approximation. Taking into account nonlinear effects at
second order in the multiple scale analysis, the amplitude for B(t, π/2) increases as
t1/2 and compensates for the phase mixing leading to finite amplitudes for L. The
sustained oscillations of L can be viewed as a self-excitation of the system with some
resemblance to a parametric instability (the growth is algebraic, not exponential). We
remark that this effect accompanied by the growth of B(t, π/2) favours gravity
waves with angles θ = π/2 corresponding to elongated structures along the vertical
direction.
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