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When the cross-section is reduced, a vortex displays spiralling and elasticity, bursting
when the external velocity drops. How are these properties affected near a free
surface? To answer, a visualization experiment in water is considered where an
oscillating obstruction is pitched orthogonally to a rolling oscillation expending
minimum energy. We show that short aerated vortices in adverse pressure gradient
and shear remain stable during stretching, bursting into bubbles when relaxed
after maximum stretching. A vertical aerated double helix (DH) root vortex of
contra-rotating vortex tubes is produced near a Rossby number of 0.20. The vortex
approaches an inclination of 45◦ to the vertical, where stretching intensifies the
vorticity to the maximum extent. Vortex inclinations up to 45◦ are stable and unstable
thereafter. Vortex bursting commences only when the inclination crosses 45◦ by
the slightest amount. When relaxed, oscillations are produced, breaking the vortex
into arrays of bubbles, sometimes precisely at 45◦ inclination. The bubble diameter,
modelled by equating the effects of the centrifugal force (CF) on the vortex core
pressure, to surface tension scales with the inverse of the square of the rotational
velocity. When a high CF is withdrawn, the bursting DH aerated vortex cone is
crushed due to surface tension. A root vortex and a coiled-up trailing edge vortex
together form a compact Hill’s vortex when the highest CF is relieved, bursting into
bubbles spectacularly scattered in the unstable sector. The DH vortex breakup is the
connection point of vortices in proximity. At high CF, the DH has stacks of Taylor
air tubes at 45◦ to the external flow bursting when relaxed. Kelvin waves abound
when bursting.

Key words: vortex breakdown, capillary waves, elastic waves

1. Introduction
Rotating flows are fundamentally important in fluid mechanics because of their wide

prevalence – from turbomachinery to planetary systems. Commonly, an isolated single
vortex is studied. Compelling spiralling effects emerge when the cross-section of the
vortex narrows. Due to their elasticity, functioning here as a restoring mechanism, a
vortex can sustain waves. When the external velocity falls below a certain level, a
catastrophic increase in the vortex diameter occurs, a phenomenon known as vortex
breakdown or bursting (Batchelor 1967). Given the effect of such bursting on the
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stability of delta-wing aircraft, they have been extensively studied (Werle 1984). The
literature on bursting is extensive and a summary is given in the next subsection.
Instead, we consider a special new case of the bursting of an aerated vortex near
a free surface that exhibits a range of impressive properties not previously reported.
The vortex experiment simulates the air–sea interaction affecting the exchange of
thermal energy.

Considerations of an irrotational line vortex and experience show that in the vortices
shed from the side edges of the delta wings of an aircraft, changes in the structure
may occur when 2Ωa/U1 = 1 if the external field is decelerated. Here, Ω is the
rigid body angular velocity, a is the vortex radius and U1 is the axial velocity of
the vortex (Batchelor 1967, p. 553). The vortex whose bursting is the subject of the
present work is formed at the sharp trailing edge of a foil and the above bursting
criterion may apply.

By using a nearly self-regulating periodic foil obstruction near a free surface, a
short-length vortex is produced in a water tank. The vortex bursts in every cycle when
the obstruction is relieved. To clarify, the root vortex formed does not rotate freely.
The capillary-scale aerated tubes formed out of the free surface waves curving into
the funnel while also drawing in air, and the double helix (DH) contra-rotating vortex
tubes formed at the trailing edge root, are all twisted together like a torsional spring
over a duration of 1/4th the time period of oscillation at both 1 Hz and 1.25 Hz, into
what we have called the root vortex. All aerated tubes are stretched during this time.
After that, the input pitch torque is withdrawn, relaxing the tubes, when the vortex
bursts into bubbles. We examine the conditions of bursting and bubble formation.

To understand the coiling and uncoiling of the aerated root vortex described
above, we draw an analogy between the spatio-temporal vorticity form of the
compressible Navier–Stokes equation and the temporal equation of vibration of a
vertical mechanical system such as a spring, mass and damper system. Consider the
compressible vorticity equation without any external body force written as

∇
2ω− (1/ν)(u · ∇)ω+ (1/ν)(ω · ∇)u=−(1/(νρ2))∇ρ ×∇p+ (1/ν)∂ω/∂t. (1.1)

Here, ω is the vorticity, p is the pressure, ρ is the density and ν is the kinematic
viscosity. The vibration equation is given by

mẍ+Cẋ+ kx=mg+ F(t), (1.2)

where the dots represent the time derivatives, m is the mass, x is the vertical
displacement about a neutral position, C is the damping constant, k is the spring
constant, g is the acceleration due to gravity, t is the time and F(t) is an external
force perturbation to the mass applied in the vertical direction. The vorticity equation
may be directly compared with the vibration equation because the forms are similar.
The negative pressure–density compressibility term on the right-hand side of the
vorticity equation is a buoyancy effect and is similar to the mg term in the vibration
equation. The negative term on the left-hand side is a damping term and the third term
includes the spring constant. The last term is similar to F(t). The vorticity equation
is also a vibration equation and the formation of resonant coiled aerated vortex
structures with spring-like properties should be expected. Supporting the analogy,
the efficient flapping foil force of hovering has five Fourier coefficients (Beal &
Bandyopadhyay 2007) and the damped natural oscillation of an unloaded low-friction
foil in a hemispherical motor apparatus also has five peaks (Bandyopadhyay 2019).
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Suddenly vanishing inertia forces and spatial variations in an aerated vortex after
maximum vorticity stretching give

∂ω/∂t= (1/(ρ2))∇ρ ×∇p, (1.3)

where viscosity ν is absent. The ensuing violent oscillations in ω of the vortex tubes
can cause disintegration into bubbles scattering far and wide when greater elastic
energy represented by the cross-product is compressed in with increasing centrifugal
forces. This hypothesis of vortex bursting mechanism is explored here.

Physically separated from the DH of contra-rotating vortex tubes at the root near
the surface, co-rotating vortex tubes spiral around one other in the rolled up foil-tip
boundary layer in the area deeper below. Both co- and contra-rotating vortex tubes
grow and burst in adverse pressure gradients. Their bursting mechanism is compared
for independent verification.

The wave oscillation frequency of f = 1 Hz, imparted by a single flapping foil
(figure 1), is the lowest frequency when the root vortices first form. Using six of
such flapping foils, we have built underwater platforms with precision manoeuvrability
(Menozzi et al. 2008; Bandyopadhyay 2016). Using six of our foils underwater,
we could lift a bunch of washers (weighing 100 g in air) in steps of 10 cm from
the floor (Bandyopadhyay et al. 2011). What this means is, the six foils could
introduce orthogonal waves in increments of 0.25 N. The development of initial
condition dependence in the lateral direction is restricted in the apparatus reducing
the number of dimensions and improving flow stability. In water, for aerated vortices,
gravity functions as a restoring force. Because the foil pitch bias angle θbias = 0◦
(see equations in § 2.1), the dimension in yaw is zero. Both parametric measurements
and downhill simplex methodology have led to the convergence in the hydrodynamic
efficiency. Measurements have shown that the foil parameters can produce thrust
close to zero in some phase of the oscillation, but do not produce drag at any instant
of time (figure 8 in Bandyopadhyay 2015). The energy consumption is therefore
minimal (Bandyopadhyay, Beal & Menozzi 2008a). Hence, the flow parameters are
limiting in chaos, energy consumption and force production, and yet the transitional
aerated vortices are produced. The apparatus produces an energy-optimized case of
orthogonal wave–wave interaction.

The stability of an aerated vortex near a free surface, when the input torque is
minimal and the stretching is a maximum, is visualized. The aerated vortex lies near
the free surface. It entrains air from the atmosphere. The curved air–water interface of
the core is sharp and acts as a mirror, helping visualization. We explore the successive
stages of bursting in the aerated root vortex, in the air-jacketed foil boundary layer and
in the rolled-up vorticity of the foil-tip flow. The bursting mechanisms are examined
in the context of Saffman’s (1990) modelling of vortex breaking and the cavitation
visualization by Tsoy et al. (2018) of the Kelvin modes in a long slender vortex
tube in a swirling diffuser flow. We examine the relationship of stretching and sudden
relaxation of aerated tubes to bubble formation. The conditions of vortex bursting are
sought. The organized motions are identified. They are also presented in Movies 1
to 4 available at https://doi.org/10.1017/jfm.2019.1075 and listed in table 1.

1.1. Literature
Vortex bursting was discovered by Peckham & Atkinson (1957). The early
understanding of vortex bursting was based on visual observations which lacked
measurements. Analysis had insufficient treatment of the wave properties. In present
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Aerated vortex organization and waves Aerated large root vortex, vortex breaking and jetting

Double helix aerated vortex
vorticity has cancelled
where the double helix

arms of opposite vorticity
cross f = 1 Hz

Double helix root
vortex f = 1 Hz

Double helix root
vortex f = 1 Hz

Double helix root
vortex: cylindrical

and conical
 f = 1.25 Hz

Vortex spiral in foil
tip single Kelvin

wave: m = 1
f = 1.25 Hz

Aerated vortex cone with
horizontal swirling jet at
apex angle shown is 45°

f = 1 Hz

Vortex breaking
f = 1 Hz

Vortex
bubble

Reconnected
vortex f = 1 Hz

Twisting Taylor
air tubes at 45°;

abrupt reductions
in vortex diameter:
Kelvin mode m = 0

 f = 1.25  Hz

45°

Root vortex with
Taylor air tubes

f = 1.25 Hz

Aerated 
vortex cone
Kelvin mode

m = 1
 f = 1 Hz

Aerated vortex
congregation

at breakup
point along

axes of
maximum
stretching

Vortex rod:
Aerated

swirling jet of
uniform
diameter
f = 1 Hz

TABLE 1. Summary of the organized aerated vortex motions of the root vortex and those
at the rolled up foil-tip flow. They represent the uniform and conical vorticity spirals of
pitch f of Kelvin mode m= 1, retarded compared to upstream.
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FIGURE 1. For caption see next page.

days, theories and direct numerical and large eddy simulations provide details of
the instability and the vortex structures. However, in aerated vortex flows, surface
tension, pressure effects and a fine-bubble-scale grid resolution of the air–water
interface are required. These improvements would reveal the mechanisms of how the
maximal stretching of an aerated vortex tube leads to the formation of bubbles when
relieved and produces the acoustic radiation from the vibrating air–water interfaces.
The simulation of the formation of fine bubbles near a solid surface boundary layer
remains the most challenging due to the high order of nonlinear effects which require
an extraordinary numerical accuracy in the calculations of the interacting gradients.
In a significant progress of visualization techniques, Tricoche et al. (2004) have given
a numerical parametric topology tracking method for identifying the streamlines and
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(e)(d)

Radial corrugations
of bow

Air in

1.20 s 1.93 s

FIGURE 1. (cntd). Wave interaction apparatus and surface condition of first oscillation
cycle: definition sketch (a top); time trace of roll angle (φ) and force (Fx) in the forward
direction (a bottom); photograph of foil in water (b) with foil root at water surface level;
image (c) of distinct, autonomous formation of coarse and fine bubbles after vortex has
burst; (d,e) radiating capillary waves (d, inset is enlarged view) growing into standing
waves in the funnel (e) during the first foil oscillation cycle when foil pitching has been
added to rolling. The sketch in (a top) defines the oscillatory roll torque (amplitude
τφo ), sum of oscillating pitch and twist torque amplitudes (τθo), induced flow amplitude
(τφo × τθo), air intake vortex torque amplitude ((cos φo sin θo)(τφo × τθo)), coarse bubbles
where (Fr→ We; Bo; We > 1), foil capillary effects (fine bubbles) where (Ca ∼ 1; Bo),
We� 1; see text for symbols.

iso-surfaces in the interior of the seemingly cluttered region of a burst vortex. This
work brings rigour to the strength of the intuitive context of visualization.

Due to its relevance in finiteness and end effects, it is useful to consider the
behaviour of a vortex in a tornado chamber (Trapp 2000). The free surface in the
present work can be treated like a wall. This is equivalent to the Earth’s surface
in the case of a tornado analogy. The transition of a vortex flow from laminar to
turbulent can be delineated by the swirl ratio S which is the ratio of the azimuthal
(Vθ) to the axial (Va) velocity. Rossby number Ro is defined as Ro=Uext/Vθmax, the
ratio of the external (Uext) to the maximum azimuthal (Vθmax) velocities. For low
values of S, a laminar single celled vortex is formed that has air passing through it.
At moderate values of S, the vortex becomes intense, as well as turbulent and the
air flow becomes a jet originating at the boundary. The jet terminates at a stagnation
point beyond which the vortex suddenly expands. With further increase in S the
vortex breakdown point moves earlier.

Early reviews of the theory of vortex breakdown, primarily in the context of
aerodynamics, appear in Benjamin (1962), Hill (1977), Leibovich (1978, 1984)
and Lugt (1989). They introduced the mechanism of a vortex supporting critical
centrifugal waves. A supercritical condition is reached since the jet velocity can be
>3 times the axial velocity outside the core. As a result, centrifugal waves cannot
travel upstream. After the breakdown, the velocity is subcritical and waves can travel
both up and downstream. For breakdown, the vortex needs to be supercritical and the
swirl ratio S should be moderate to high. The supercritical condition (the formation of
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an axial jet) can be achieved by the boundary layer where due to friction centrifugal
force is reduced, but the force of radial pressure gradient remains the same. The
imbalance causes a strong inflow towards the vortex axis which eventually turns axial
in order to satisfy continuity. Saffman (1990) refined these models later in terms of
vortex breaking. The present work gives evidence of the critical role played by the
vortex breaking. It also shows the presence of Kelvin instabilities filling the time gap
between the vortex breaking and the initiation of the terminal bursting.

In a cyclonic gas–liquid separator that controls the centrifugal forces near the
boundary layers of the end walls, the vortex with the separated gas core has been
found to transition from a straight to a spiralling configuration depending on the
aspect ratio of the cylinder (the ratio of the length to the diameter) and the swirl
velocity (Bandyopadhyay & Gad-El-Hak 1996).

Marine propeller blades are highly skewed to lower the cavitation induced vibration.
However, they also produce tip vortex cavitation which implodes and rebounds causing
two high amplitude high frequency pressure fluctuations and stern vibration. The tip
vortex can burst if the momentum deficit of the blade wake is high enough. The tip
vortex cavitation is found to burst when the time derivative of the vortex strength
exceeds a certain level (Konno et al. 2002).

Recent videography of the underside of plunging breaking waves show how air is
entrained via tornado-like vortical tubes that wrap around the wave (the spanwise tube
of air). High resolution numerical simulation has vividly reproduced these longitudinal
arrays of secondary vortex structures (Lubin & Glockner 2015). Surface tension and
the history effects of previous plunging waves are so far not included. The mouth of
the vortex is open to the surface and the other end is open to the tube. The shear
in the saddle region stretches the aerated vortex structures. The streamwise vortex
structures have an upstream slant of 50◦. This slope is very close to the direction of
principal strain, namely 45◦. These arrays of aerated secondary vortex structures bear
some similarity to the Taylor air tubes of the present work.

Near a free surface, small bubbles bursting produce high-speed liquid jets which
subsequently break up producing droplets (Boulton-Stone & Blake 1993). The bursting
of secondary air tubes in plunging waves has been photographed (Kway, Lo & Chan
1998).

Vortex breakdown has been ascribed to the genesis of tornadoes and waterspouts
near the ground in the mid-section of the funnel near the parent cloud (Lugt 1989).
In a mesocyclone, whether such observations pertain to vortex breakdown has been
debated although a vertical adverse pressure gradient is present and the mesocyclone
vortex is susceptible to instability. Numerically, the phenomenon is attributed to the
formation of a two-celled vortex, but in the absence of a vortex breakdown This
circumstance is due to the boundary layer vorticity tilting effects whereby the low
level vertical vorticity exceeds that at the mid-level. Therefore, the claim of vortex
breakdown in a mesocyclone is not well founded, indicating the need for caution and
further work (Trapp 2000).

Considering the vast gallery of visualizations of spiralling vortex flow bursting in
Sarpkaya (1971), Faler & Leibovich (1977), Phillips (1985), Pauley & Snow (1988),
Khoo et al. (1997), Fiedler (2009), Nolan (2012), Smits & Lim (2012) and Rotunno
(2013), we conclude that the visualization of the winding and unwinding of aerated
double helix vortices, and of their bursting into bubbles, particularly where the two
arms have opposite sense of rotation, has not yet been carried out. The aerated vortex
flows summarized in table 1 do not appear in any of these citations, making them
newly found.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1075


888 A27-8 P. R. Bandyopadhyay

Rotunno (2013) concludes by pointing out that vortex bursting in a chamber and in
a numerical box are sensitive to boundary effects which, however, are of secondary
importance in natural mesocyclones; the effects of a cool air boundary is also ignored.
For these reasons of boundary effects and the presence of multi-phase, it is useful to
separate vortex flows and their bursting in oceanography, delta wing aerodynamics,
natural mesocyclones and those in a pipe or chamber.

Vortex flows in a chamber simulate natural mesoscale cyclones perhaps superficially
(Rotunno 2013), and have sometimes been optimistically called unconfined (Khoo
et al. 1997), and yet both Reynolds number Re (Re = Voro/ν = Γ /(2πν)) and swirl
number S (S = roΓ /Q) have been defined in terms of the chamber radius ro and
Q, the volume flow rate in the chamber; here, Γ is circulation and ν is kinematic
viscosity.

To understand the strong effects of the boundaries in vortex flows, consider these
examples. The aerated double helix in the present work is contra-rotating; and the
conical vortices cone down with depth but in all other examples they flare out
downstream. The aerated contra-rotating double helix in the present work originates
from the realignment of the vorticity of the same horseshoe vortex ahead of the foil
stem – an obstacle – and not due to the instability of the inner circulation as in
‘tornados’ (Nolan 2012). Due to the presence of the free surface, the large effects of
the pressure–density compressibility term in the vorticity equation (1.1) in the present
aerated vortices is the most important difference compared to the non-aerated vortices
reported earlier.

Unlike in most studies on vortex bursting, the present aerated vortices burst and
produce bubbles. When the inertia forces and spatial variations are suddenly brought
to zero in an aerated vortex after maximum stretching at β = 45◦, the left-hand terms
in (1.1) vanish, giving equation (1.3). Viscosity ν is no longer important. If centrifugal
forces increase, the pressure density cross-product will multiply causing greater violent
oscillations of vorticity ω in the vortex tubes. The entire tube would oscillate and
disintegration into spectacular bubble scattering can occur. These expectations are met
in the present work but not in the vortices that are not aerated.

In Nolan (2012), Rotunno (2013) and Fiedler (2009), several co-rotating and
non-aerated vortices first form as disparate satellites, not generated as a double
helix, which then interact to spiral together as double or multi-helix, but they do not
burst. The viscous core can become unstable and generate multiple vortices wrapping
together (Nolan 2012).

Phillips (1985) has reported the visualization of the ‘massive disruption’ of
unaerated single and double helices, whose rotational sense can match or oppose that
of the outer flow. His flow parameters are transitional: Re of <750 and 1.5< S< 3.
His figure 5 shows evidence of the external introduction of vorticity perturbations
from two oppositely located dye ports. We tentatively suggest that, similar to figures 5
and 17 in Rotunno (2013), satellite single vortices from the dye ports are wrapping
around each other about the stagnation point of the burst region; the signs of the
vortices are unknown. The boundary effects in the present work are grossly different
from other studies cited and differences between the aerated versus non-aerated vortex
flows and bursting into bubbles should be expected.

The vortex breakdown literature relevant to combustion of 1955–2000 has been
reviewed with a primary focus on bubble-type breakdown (Luca-Negro & O’Doherty
2001) (not to be confused with air bubbles in water). The measurements and numerical
simulation results which have become available only recently show some degree of
maturity of the subject.
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Direct numerical and large eddy simulations have shown that if a vortex core radius
increases locally, a pressure wave is initiated, which travels along the vortex axis to
the region where the radius is lower. Behind the wave, the axial velocity increases so
that sufficient swirl triggers a helical instability. When such pressure waves intersect,
the structure of the vortex core abruptly changes (Moet et al. 2005). This is known
as vortex bursting. In the present work these results bear relevance to the foil-tip flow.

In order to enhance lift forces, delta wings are used as leading edge extensions
in fighter aircraft. In common Reynolds numbers (Re), bursting of the leading edge
vortex is of the spiralling type and not of the bubble type as in the confines of
pipe flows. Vortex bursting is sometimes treated as a hydraulic jump. The core of
the leading edge vortex acts as a waveguide where the inflow longitudinal waves
can amplify to a critical spiral and burst. A continuously unsteady pitching up or
down delta wing can have significant hysteretic effects on the leading edge suction
lift (meaning more increase or decrease). This effect is due to the delayed or leading
movements of the vortex burst axial location compared to those of the steady levels
in the angle of attack (Heron & Myose 2009).

Axisymmetric vortex bursting has been attributed to the development of a negative
component of azimuthal vorticity due to the stretching and tilting of the axial vorticity
(Brown & Lopez 1990). Visual evidence from the present work will re-examine this
statement more directly by invoking Batchelor’s (1967) vortex analysis in a pressure
gradient.

A vortex with a helical core tumbles, that is, it translates while rotating slowly
(Joukowsky 1912; Fuentes 2018). The velocity field in a helical vortex is composed
of three parts: first, due to the circulation Γ around the vortex; second, due to its
curvature; and third, due to the far off portions of the vortex (Boersma & Wood
1999). The presence of an axial flow turns a rectilinear vortex into a helical vortex
which then brings in the latter two components of self-induction. The last component
is different compared to that of a ring vortex. In a bathtub vortex starting from a
quiescent condition and draining from the bottom of a vessel, the direction of rotation
can become altered by the vorticity of the circumferential component of the bottom-
wall boundary layer (Sibulkin 1962).

The statistical laws of turbulence may be the properties of specific kinds of
elementary coherent vortex structures. The vortices are coherent in the sense that
they maintain a given spatio-temporal phase relationship (Bandyopadhyay & Hellum
2014). While various quantitative criteria of coherence have been explored, including
enstrophy, some kind of threshold setting is invariably involved due to the closure
problem of the Navier–Stokes equations of motion. However, the emphasis should
be on phase and not on the amplitude of any variable. With phase emphasized, we
want the wave–wave interactions to be central to the dynamics of the vortex bursting
which may be a universal process wherever turbulence regeneration is present. In the
boundary layer turbulence control over the skins of sharks and dolphins, an external
perturbation is imparted primarily to reset the spatio-temporal randomness in phase
in the local vorticity environment (Bandyopadhyay & Hellum 2014). In a similarly
corresponding manner, when a hand picks up an object, a group of muscles are
synchronized in phase, but temporally, by sending an impulse from the inferior olive
motion controlling neurons (Kazantsev et al. 2004; Bandyopadhyay et al. 2008b).
The knowledge of the wave properties of helical vortex structures of vortex bursting
may have a very broad implication to turbulence control.

Lundgren’s (1982) modelling shows that Kolmogorov’s k−5/3 turbulence energy
cascading relationship versus wavenumber k is attributable to the spiralling vortex
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structures in an axially straining field. Later, it has been shown experimentally that
vortex bursting displays the k−5/3 energy cascading relationship (Cuypers, Maurel &
Petitjeans 2003). Demonstrating that a unit helical vortex structure is responsible for
the fundamental and limiting statistical relationship of turbulence energy cascading,
the vortex bursting mechanisms of helical vortex structures are clearly brought into
focus.

Ruppert-Felsot, Farge & Petitjeans (2009) have carried out the measurements of the
ratio of coherent to non-coherent enstrophies to show that the variable can delineate
the three stages of vortex bursting, namely, before, during and after.

Bandyopadhyay, Riester & Ash (1992) have built a trailing vortex apparatus with
strong swirl wherein a rotating velocity perturbation, not a mass flow perturbation,
could be introduced. A pair of oppositely pitched wings are attached to a small
diameter flow aligned cylinder to produce the swirl. The harmonic velocity perturbation
device is placed in the boat tail of the cylinder and aft of the wings. The Rossby
number of 0.65 6 Ro 6 0.81, where Ro = (U∞ − Ucl)/Vθmax is the ratio of the
inertia, measured by the maximum velocity defect, to the Coriolis forces, measured
by the maximum azimuthal velocity. Here, U∞ is the free-stream velocity, Ucl is
the centreline velocity and Vθmax is the maximum azimuthal velocity. Coarse grids
ahead of the model produced Ro= 0.80 while fine screens ahead produced Ro= 0.65.
A lower Ro will promote relaminarization because the restoring effects of the Coriolis
force is high when Ro�1.0. Considering this result and that of Hopfinger, Browand &
Gagne (1982), the value of Ro is estimated to be between 0.20 and 0.65 in the present
work, and probably closer to 0.20 since the present flow is critical. The turbulence
is affected by Ro but not by Re. Confirming the waveguide nature of the core, the
perturbations countering the swirl were found to survive long distances but in the
vortex core only where the azimuthal, radial and axial velocity profiles are linear. They
even amplified, albeit in a narrow frequency range (80–100 Hz) of the perturbation.
However, in the co-rotating case, the perturbations attenuated in that frequency range.

An emerging clarity in the research of the last three decades is the discovery of
coherent helical secondary structures in the vortex core and how their interactions
are related to vortex bursting. Bandyopadhyay, Stead & Ash (1991), in the apparatus
described above, have shown that the core of a long trailing vortex has intermittent
patches of turbulent and laminarescent fluids. The shear stress rich core fluid
intermittently ejects radially outwards, indicating that there is self-regulating
turbulence production in the core. This result suggests that the quasi-periodic vortex
bursting in the core is similar to the bursting phenomenon in the wall layers of
turbulent boundary layers (Hama, Long & Hegarty 1957; Kline et al. 1967; Townsend
1976; Adrian & Marusic 2012). From the control point of view, Einstein & Li
(1958) and Bandyopadhyay & Hellum (2014) have modelled this as a self-regulation
process. This perspective puts vortex bursting in the broad framework of turbulence
regeneration in all shear flows, and even with the mechanisms of swimming and
flying in animals (Bandyopadhyay, Leinhos & Hellum 2013; Bandyopadhyay 2015),
and how the motion is controlled by olivo-cerebellar dynamics in animals (Kazantsev
et al. 2004; Bandyopadhyay et al. 2008b).

Misaka et al. (2012) have carried out large eddy simulation of atmospheric aircraft
contrails. In certain conditions of stratification and turbulence, vortex reconnection
is found to generate helical vorticity structures that travel along the cores. These
secondary vortex structures have been found to collide, causing vortex bursting.
These results may have some relevance to the present work.

Independent of the type of vortex bursting, namely the bubble type or the helical
type, both the flow visualization data trends and similarity analysis show that the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1075


Vortex bursting near a free surface 888 A27-11

pipe flow Reynolds number of vortex breakdown at a fixed location in a pipe is
proportional to the circulation number (Ω=Γ /(UD), where Γ is the circulation of the
vortex, U is the average pipe flow velocity and D is the pipe diameter). This number
is inversely proportional to the ratio of the inflow radial as well as the tangential
velocities (Escudier & Zehnder 1982; Benjamin 1962). In a swirling water jet in a
closed chamber without air entrainment and bubble formation, vortex breakdown is
found to have hysteresis, secondary motions and precession of the stagnation point
with respect to the upstream vortex (Billant, Chomaz & Huerre 1998).

Oscillating grids have been used in a large rotating tank flow, the Rossby number
(Ro) being 3 to 33 near the grid. Away from the grid, at a local Ro of 0.2, quite
dramatically, a large number of long and concentrated small diameter vortices are
formed which rotate parallel to the tank flow and whose core vorticity is much higher
than the vorticity of the tank flow. These small vortices sustain travelling helical waves.
The interaction of the waves cause bursting and the formation of small scales. The
broken cores can reconnect, be destroyed or reconnect at a much larger time scale
(Hopfinger et al. 1982).

The mechanisms of vortex breaking (with circulation dropping below 5 %) and
reconnection help us understand how turbulence becomes three-dimensional. Saffman
(1990) has modelled the mechanisms and the time scales of this process. The
hypothesis is that when two vortex filaments of equal and opposite strengths touch,
viscosity will cancel the vorticity. The centrifugal force in the core will then drop
and local pressure will increase. This will create an axial acceleration – a jetting in
the core. In the present work, we seek evidence of this jetting since that is amenable
to bubble visualization. We also seek evidence as to whether vorticity is carried away
from the initial contact point and a reconnection is produced.

Both connection and rejoining times are inversely proportional to circulation (Γ ;
m2 s−1), for constant values of other (geometric) parameters. We expect these times
to drop with f 2, where f is frequency of flapping (lift force L ∝ f 2, and L = ρUΓ ,
where ρ is density and U is velocity). Compared with the measurements of colliding
rings (Schatzl 1987), in agreement, Saffman’s modelled time for connection is 0.7 s.
However, the peak vorticity is not in agreement. The breaking time in the experiments
is 0.2 s, and the modelled rejoining time is 0.4 s. These times will be compared with
those in the present work.

Tsoy et al. (2018) have used cavitation bubbles as vortex markers in a diffuser to
visualize the Kelvin modes formed in a vortex tube after reconnection. Kelvin wave
modes m = 0, 1, 2 were observed to propagate along the axis. The modes observed
will be compared with those in the present work.

The low-frequency helical coherent structures observed in the experiments on
vortex breakdown bubbles have been difficult to reproduce in stability analysis.
The asymptotic stability analysis and direct numerical simulation show that the
low-frequency inflow perturbations penetrate the vortex bubble and are amplified to
produce the coherent structures while the high-frequency perturbations are convected
around the periphery of the bubble (Paterson, Wang & Mao 2018).

The vortex breakdown in a closed cylinder, such as a combustor, produces a
recirculating region. Numerical analysis shows that before bursting, the initially
longitudinal vortex expands radially and produces two stagnation points within which
the recirculation region is produced. The eigensystem of the velocity vector tensor
near the points of stagnation has been investigated (Yamada & Suzuki 2016).

Vortex breakdown takes place in adverse pressure gradients. For this reason, in a
delta wing, the location of the bursting of the leading edge vortex translates axially
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with angle of attack. In pipe flows, the diameter is flared (half-angle of approximately
1.4◦, Sarpkaya 1995) to induce an adverse pressure gradient.

In a vortical flow, the axial pressure gradient across the core rises in proportion to
the swirl (Hall 1972). As a result, the streamlines diverge and vorticity is convected
away from the centreline. Since diffusion is a slow process, the convected vorticity
may exceed the centreline vorticity. A bubble of separated flow is produced which is
known as vortex bursting (Spall & Gatski 1991).

In slightly flared, non-cavitating and swirling pipe flows, Sarpkaya (1995) has
shown that four types of vortex bursting can occur: a double helix type, an
axisymmetric type, a helical type and a conical type. The conical type has been
observed in a high Reynolds number (Re = UD/ν = 225 000, where ν is kinematic
viscosity of water) turbulent pipe flow. The first three types have been simulated
numerically in an unbounded decelerating flow (Spall & Gatski 1991).

Distinct pressure pulse spectra with audible tones, probably related to the swirl, have
been measured in the vicinity of the vortex bursting in single- and two-phase pipe
flows. The liquid phase flow rate was found to dominate the spectral properties of
the vortex breakdown (Hugo & Veer 2003).

In a delta wing, the location of the breakdown of the leading edge vortex can be
moved towards the apex of the wing by as much as one wing chord by positioning
a thin wire near the leading edge. The wire diameter is one per cent of the vortex
core diameter of the pre-breakdown vortex and the wire length equals the distance
to the breakdown location from the apex in the absence of the wire (Akilli, Sahin &
Rockwell 2003).

Consideration of bursting as the response of a blob of vortex to pressure gradient
obscures the building block of the bursting mechanism. Some researchers have
implicated both spiralling vortex tubes and their bursting to the limiting trends of
turbulence spectra (Lundgren 1982; Cuypers et al. 2003). For this reason, the present
work on bursting of DH vortices, where length and time scales vary by a factor of
100, may have a basic relevance to turbulence cascading.

Very few wave equation models (Saffman 1990) have considered bursting as the
interaction of elementary vortex tubes. A direct side-to-side comparison of how contra-
and co-rotating vortex tubes interact, produce waves and burst in pressure gradients
has not been done. This work fulfils this need giving direct visual evidence.

We also consider the elastic effects of aeration of the vortex tubes near a free
surface. The literature regarding the elasticity of aerated vortices has been difficult to
locate. We have an opportunity to visualize the mechanism of how bubbles are formed
due to the instability of vortex tubes and bursting.

Spiralling waves propagate in vortices whose diameter is changing. Stretching
changes vortex diameter. Here, we examine the role of stretching of aerated vortices
in bursting and bubble formation.

1.2. Background of this work
An abrupt change in the structure of the core of the vortex due to helical instability is
a preliminary indication of vortex bursting. The presence of an axial velocity may be
the source of the helical instability. The vortex bursting discovered in the present work
has not been previously studied, given the presence of the free surface, the entrainment
of a core of air during the formation of the vortex, unsteadiness, the finiteness of
the length of the vortex and the self-regulating nature of the imposed wave–wave
interaction.
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Pumps and turbines in hydraulic plants produce steady air intake vortices when
the Froude number Fr > (0.23–0.30). Air-entrained vortices at hydraulic intakes are
generally avoided for reasons of cavitation-induced erosion of blades, unsteadiness and
noise. Circulation Γ and Froude number Fr determine the submergence depth required
to avoid the formation of an intake vortex; the Reynolds number Re and the Weber
number We are of less importance (Odgaard 1986; Hite & Mih 1994). Such intake
vortices are steady and do not burst. In addition, a root vortex is a source of drag in
turbomachinery.

Gordon’s (1970) dimensional analysis indicates the dependence of submergence s
on intake velocity v and intake tube diameter d as per s=Cv

√
d, where the constant

C is 0.3 for a symmetric intake. Limited site measurements indicate that intakes are
the source of a problem in cases where s < 0.3v

√
d. In a non-dimensional form,

(s/d) ∝ (Fr)n, where the Froude number is given by Fr = v/
√

gd and the exponent
n> 1. No intake vortex is formed when Fr < (0.23–0.3) (Humphreys, Sigurdsson &
Owen 1970). Above that range of Fr, a greater submergence depth, given by a power
relationship, is required to avoid the formation of the intake vortex. Otherwise, special
swirl mitigation devices are required. A Rankine vortex model of the intake vortex
suggests that critical submergence depends on not just Fr but also on the circulation
number (Γ /(νd)); Re and We do not have significant effects (Odgaard 1986). The
mechanisms of air entrainment by a vortex at a free surface is not understood beyond
the semi-empirical steady case discussed above.

The subject of air entrainment by a surface vortex is important in air–sea interaction
and weather forecasting. Bubbles near an oceanic free surface have an effect on
thermal flux, optical transmission and biological life while also generating noise.
Although the bubble size distribution is important in these effects, their formation
mechanism is not well understood (Deane & Stokes 2002).

Modelling shows that the tightening of a spiralling vortex produces a cascade of
velocity fluctuations to the smaller scale described by the Kolmogorov k−5/3 energy
relationship (Lundgren 1982). The smaller scale from such a strained vortex is similar
to the small-scale structure of turbulence which is known to be spotty and rod like.
Amplification of vorticity and vorticity gradient takes place which concentrates the
vorticity into thin sheets and tubes (Batchelor & Townsend 1949; Kuo & Corrsin
1971).

At the sea surface, the naturally produced sound from wind driven breaking waves
in the range 200–50 000 Hz comes from the rings of individual resonant bubbles
formed in the splashes (Medwin & Beaky 1989; Medwin et al. 1992; Nystuen
2002). Upon sudden release, the formation of arrays of bubbles of identical size
can be expected when air is entrained by a vortex, and the vortex is strained. The
oscillation frequency ranges in the present work and those in the buoy measurements
are compared later.

Bubbles amplify noise up to 100–200 Hz (Prosperetti 1988). From 200 Hz
to 1 kHz, the collective oscillation of bubbles contributes to noise. Including
compressibility effects, Fuster & Colonius (2011) have modelled the radial surface
oscillations and the propagation of the surrounding pressure waves in bubbles in a
cluster. In the flow here, the presence of the foil wall near the clouds of fine bubbles
and the sudden formation of the identical coarse bubbles in arrays from air tubes
would provide directionality to the radial oscillations of the bubble surface and to the
propagation of the surrounding pressure waves.
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1.3. Problem statement
The questions are: Why does a vortex burst, what is the role of vortex stretching, how
are waves formed and how are the bubbles formed when an aerated vortex bursts?
We ask: What are the zones of instability of an aerated vortex? And, how do they
relate to bubble formation? Theoretical modelling of vortex breakup (Saffman 1990)
and numerical simulations of wave breaking (Lubin & Glockner 2015) and bubble
formation mechanisms (Fuster & Colonius 2011) have improved our understanding
of vortex bursting, aeration and bubble formation near a free surface. Bursting of
aerated vortex tubes involve small scales of time and length. Accurate computations
of oscillating interfaces in wide ranges of parameters may be prohibitive. Hence, a
visualization experiment of the complex flow field may reveal new insights.

The article describes a flapping foil flow apparatus using a minimum amount of
torque input to produce an air-entrained, short transitional vortex causing its bursting
in each cycle. The formation of transient small and standing capillary waves in the
vortex funnel, to the formation of divergent surface waves seen only at very large
scales, are shown in the same laboratory-scale apparatus. The foil pitching produces
a short double helix aerated root vortex of contra-rotating circulations ±Γ near the
free surface. Down below in the foil boundary layer, pairs of co-rotating vortex tubes
of (Γ ,Γ ) circulations spiral around each other and they are visualized by fine bubbles.
Abrupt removal of the pitching obstruction triggers the bursting. The bursting produces
bubbles. Sometimes extremely compact DH vortex, buckled to a toroid like Hill’s
vortex, is formed bursting spectacularly. A nonlinear vortex lift model of the DH for
the condition of maximum stretching is given. A force model of bubble formation
is given. The ringing frequencies of bursting vortex tubes and bubbles are compared
with buoy measurements. The evidence of maximum vortex stretching, breakup, vortex
reconnection, post-breaking formation of vortex jets, regimes of bursting and bubble
formation are given. The results are compared with the vortex breaking model of
Saffman (1990) and the observations of Kelvin waves by Tsoy et al. (2018) among
others. A simplified buckled vortex model is used to estimate the modulus of elasticity
of an aerated vortex.

The following appear in the supplementary information (hereafter cited as SI):
(A) Text, (B) Data, (C) Image and (D) Video. The section ‘(A) Text’ gives the
perspective of the aerated vortex, of the surface wave and bubble results in sections:
A.1 Relationship between the aerated root vortex flow and other vortex dominated
flows; A.2 Surface waves (A.2.1 Transient divergence waves; A.2.2 Capillary waves);
A.3 Estimation of bubble Re, We and Cd due to the two mechanisms of formation; and
A.4 Initial condition dependence: cycle-to-cycle concatenation. Part ‘(B) Data’ gives
the background data of the experiment. Part ‘(C) Image’ gives additional examples
of the vortices. Part ‘(D) Video’ gives the description of the four videos.

2. Experiments
2.1. Background of the flow apparatus: wave–wave interaction

Wave–wave interactions in oceans and olivo-cerebellar control dynamics (Kazantsev
et al. 2004; Bandyopadhyay et al. 2008b) have been extensively studied. They are
beginning to receive attention in modelling and laboratory fluid dynamic research
(Bandyopadhyay et al. 2012; Bandyopadhyay & Hellum 2014; Bandyopadhyay 2019).
Swimming and flying mechanisms of animals show that the propulsive surfaces
undergo orthogonal rolling and pitching oscillations (Bandyopadhyay et al. 2012)
given by

φ(t)= φo sin(2πft), (2.1)
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θroot = θo,root sin(2πft+ψ)+ θbias, (2.2)
θtip(t)= θo,tip sin(2πft+ψ)+ θbias, (2.3)

θt = θtip − θroot, and (2.4)
θto = θo,tip − θo,root, (2.5)

where φo and θo are the amplitudes of the roll and pitch oscillations, respectively; f
is the frequency of flapping; t is the time; |ψ | is the phase difference between roll
and pitch oscillations, usually kept at 90◦ for optimal efficiency; θbias, if used, is the
pitch bias used for yawing in the horizontal plane; and θt is the foil twist angle (figure
SI-DA-1). The subscripts root, tip and o refer to the foil root, foil tip and amplitude
of the oscillation angle, respectively. Here, φ controls the forces produced, θ controls
the blockage and the timing of the vortex formation and bursting and θt reduces the
spanwise variation of the velocity field (Bandyopadhyay et al. 2012). Equations (2.1)–
(2.5) produce the vorticity spirals – uniform and conical – of Kelvin mode m= 1 in
axis t and pitch f shown in table 1; for spatial trajectories of a particle obtained using
these equations, see figure 2(d) in Bandyopadhyay (2019).

The foil velocity is given by Ufoil(t)= φ̇(t)Ravg, where Ravg is the average foil span.
The angle of attack (AOA) is given by α(t)=a tan(Ufoil(t)/U∞)+ θ(t). Here, U∞ is the
foil tow speed or induced flow speed when hovering. The vortices shed downstream
affect the instantaneous upstream streamlines (Bandyopadhyay et al. 2013). The forces
produced and efficiency are affected by pitching via the AOA.

When efficiency is optimized for cruising, the frequency, amplitude and velocity
of the oscillations of the propulsive surface and of the wake match in phase – a
condition called foil-wake ‘lock-in’. Efficiency reaches a maximum if the oscillators
are resonant and the losses of the foil driving mechanism are minimal. Then, the foil
responds to all five dominant harmonics of the wake (Beal & Bandyopadhyay 2007).
Theoretically, olivo-cerebellar ionic control has a similar self-regulation mechanism for
ion-by-ion control of vortex shedding to control the hydrodynamics of swimming and
aerodynamics of flying at all instants of time (Bandyopadhyay 2015, 2016, 2019). If
the device producing the wake/jet has a high quality factor ratio (low friction), the foil
and wake approach lock-in and self-regulation (Bandyopadhyay 2015). Insect wings
approach this condition (Ellington 1999; Bandyopadhyay 2019).

Self-regulation is common to oscillatory natural phenomena. The processes are
quasi-steady, low-dimensional and weakly nonlinear. Their features – perturbation by
orthogonal waves and resonant oscillation at a critical frequency – are used in an
apparatus to examine vortex bursting and bubble formation mechanisms near a free
surface. The two-phase vortex bursting reported is new.

In experiments on optimal cruise swimming, the flapping frequency is kept below
1 Hz when the forces are low (1 N). Since force ∝ f 2, the f should be below 0.5 Hz
at higher loads (10 N). A constant value of the Strouhal number, generally between
0.20 and 0.40 – the ideal target being 0.30 in water (Bandyopadhyay 2019) – and a
fixed value of φo are maintained. The cruising criteria are used, although the wave-
generating foil device is not towed.

That the apparatus uses close to minimum energy to produce the vortex is proven
in a sloshing propulsor where the twisting blades can both roll and pitch (sloshing) in
much the same way as here, or spin as in conventional propulsors (Bandyopadhyay
2016). During sloshing, the temporal history of the Bollard thrust (in the hovering
mode when it is not towed) at f = 0.2 Hz shows that the minimum value is close
to 0 N, but never negative (figure 8, Bandyopadhyay 2015). Although f = 1 Hz in
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the present apparatus when a root vortex is first produced, it is still assumed not to
produce a wake at any time.

To make the energy input exactly minimal, the wave-generating foil and the flow
should be locked in. This is not possible in the foil drive in figure 1, which has gears
causing friction. Our recently developed low-friction hemispherical motor is gear free
but is suitable for small forces only (Bandyopadhyay 2019).

2.2. Flow apparatus
The experiments were performed in the Low Speed Tow Tank at the Naval Undersea
Warfare Center, Newport, Rhode Island. The differences with the apparatus described
in Bandyopadhyay et al. (2012) are that a surface plate is not used, allowing air
entrainment, and the foil root is flush with the free surface. A schematic of the flow
and torque arrangement is shown in figure 1(a) (top), and a photograph of the foil
just submerged in water (the foil root is flush with the free surface) is shown in
figure 1(b). The lower part of figure 1(a) shows the time traces of φ and Fx, the
force in the forward direction. Thrust is produced twice per cycle of foil oscillation.
Torque is at a maximum or minimum at an extreme of the foil excursion, but thrust
is at a maximum or minimum in between. Figure SI-DA-2 shows typical time traces
of φ (deg), the difference between the AOA at the foil root and tip (αroot − αtip)
(deg) (demonstrating uniformity along the span achieved with twist), Fx (N), roll
torque (Nm) and hydrodynamic power Phydrodynamic (W) when a top horizontal surface
plate is installed to prevent air entrainment caused by the formation of surface waves
and a root vortex (Bandyopadhyay et al. 2012). The pitch (including twist) torque
is 10 % of the sum of the roll and pitch torques. The input roll, pitch and twist
torques are assumed to be the same for the foil whether it is exposed to the free
surface or not, because there is no feedback from the flow to the foil. The torque
sensor measurements without any entrainment, when extrapolated to the case with
entrainment, show that 5 % of the total torque is spent to make the surface waves
and root vortex.

Figure 1(c) is an image of the coarse and fine bubbles in the root and foil
regions, respectively. The coarse bubbles are formed away from the foil, and the fine
bubbles are formed on the foil. This demarcation shows that the complex flow is a
jigsaw puzzle of autonomous instabilities. The schematic (figure 1a) shows how the
orthogonal oscillating roll (τφo) and pitch (τθo) torques are configured with respect to
the wavy free surface and how the air intake vortex is situated as a cross-product at
an angle (figure 1b). There are two paths of air entrainment – one via the root vortex
and the other via the foil surface downspan. The foil shows no cavitation erosion or
noise (see figure SI-DA-5). The hovering foil sets up an induced jet flow because the
Strouhal number of flapping is selected appropriately.

The apparatus is described in Bandyopadhyay et al. (2012). The non-dimensional
parameters are Re, Fr, We, Bo, Ca and Γ ; figure 1(a) shows these parameters
as relevant to coarse and fine bubbles. Here, Fr is Froude number, Bo is Bond
number, Ca is capillary number, Re is Reynolds number, We is Weber number and Γ
is circulation. The ratios of the destabilizing inertia (Fi) and stabilizing viscosity
(Fν), gravity (Fg), and surface tension (Fγ ) forces define the ratios as Re = Fi/Fν ,
Fr = Fi/Fg, We = Fi/Fγ , Bo = Fg/Fγ and Ca = Fν/Fγ . Circulation Γ (m2 s−1) is
defined as the product of the velocity (m s−1) and the length (m) scales. Rossby
number (Ro) and swirl ratio (S) are defined to account for the destabilizing inertial
(Fi) to Coriolis (Fc) forces as Ro = Fi/Fc, and S = Fc/Fi; it is more convenient
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to define these ratios in terms of axial and circumferential velocities for inertial
and Coriolis forces, respectively. The ratio Ro is preferred if Fc dominates as for
individual vortices. In the older literature on bursting, S has been used.

2.3. Relationship between the aerated root vortex flow and other vortex dominated
flows

The similarity among oscillatory transitional vortex flows such as the aerated root
vortex, flapping foil propulsion vortex, cylinder self-oscillation induced by wake vortex
flows and the delta wing leading edge vortex is discussed in SI-A.1. An overview
follows. Delta wings have sharp leading edges like the trailing edge of the present
foil. The flapping trailing edge lift mechanism can be compared with the delta-wing
lift mechanism in Polhamus (1966),

CL =CLP +CLV, (2.6)

where CL is total lift coefficient, CLP is the potential flow linear component of
CL and CLV is the nonlinear vortex lift coefficient. A similar breakdown appears
in figure 5(inset 2) from flapping foil propulsion (Bandyopadhyay et al. 2008a).
The inset is similar to the lift figures in Polhamus (1966). In § 3.5, the vortex lift is
modelled using equation (2.6) attributing the entire foil lift to the trailing edge vortex.

The entrainment at a given f and other foil kinematic parameters is

Q=Qroot +Qfoil = constant, (2.7)

where Q is the average of the total entrainment of atmospheric air per cycle of
oscillation. In a cycle, Qroot is the root vortex entrainment at the trailing edge, and
Qfoil is the foil boundary layer leading edge entrainment. Since the input torque is
the same cycle to cycle, Q = const. When f = 0.75 Hz, no root vortex is produced
and Q = 0. Entrainment increases with input torque and Qf=1.25 Hz > Qf=1 Hz. In
figure SI-DA-4, at f = 1 Hz, the root and foil apportioning lies near one end of the
graph. But at f = 1.25 Hz, the cycle to cycle apportioning moves over the entire
range of the graph linked by their history. At f = 1 Hz, Qroot > Qfoil in most cycles.
At f = 1.25 Hz, both Qroot, Qfoil > 0, and can be of similar magnitude due to the
role played by translating small secondary surface vortices affecting the orientation
and size of the main funnel pierced by the foil. Section 3.10 gives the concatenated
apportioning of Q into Qroot and Qfoil since Q= const. The flow has a lower degree
of freedom and is less chaotic at f = 1 Hz.

Vortex bursting is seen only in the aerated root vortex and the delta wing but not
in the leading edge vortex of the flapping foil suggesting influence of Ro over Re in
salient edge vortex. Self-regulation (Khalil 1996; Bandyopadhyay & Leinhos 2013) is
explained in SI-A-1 by comparing linear and nonlinear oscillators. The departure from
self-regulation is a measure of the wasteful friction in an oscillatory flow.

2.4. Flow parameters

The foil forces are proportional to f 2 in the fully submerged case. The slanted root
vortex is not formed at 0.75 Hz; a transitional vortex is formed at 1.0 Hz; and the
vortex is mostly turbulent at 1.25 Hz. With increasing f , the foil needs to be located
at greater submergence in order to avoid an intake vortex.
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Using the helicopter rotor model, estimate the induced velocity as Uind =√
(Fx/(2ρAs)), where Fx is the cycle-averaged force (N) in the forward direction, ρ

is the density (kg m−3), As (= (1/9)π(ro
2
− ri

2)(m2)) is the foil swept area (Wakeling
& Ellington 1997), ro is the outer foil radius and ri is the inner foil radius. Since
Fx ∝ f 2, Uind ∝ f . Because the foil motion creates surface waves, gravity is the
stabilizing force and inertia is the destabilizing force. Therefore, their ratio is given
by the Froude number Fr = Uind

2/gc, where g is acceleration due to gravity, and c
is the chord of the foil (NACA 0012 section, c= 0.1 m, span= 0.30 m), which is a
measure of the maximum blockage (the maximum thickness of the foil and the stem
holding the foil are similar: this dimension gives the minimum blockage). We write
Fr ∝ f 2/(gc) ∝ f 2. Since c = 0.1 m, gc = (1 to 0.12) m2 s−2, for full to minimum
blockage. For f = 0.75 Hz, 1.00 Hz and 1.25 Hz, Fr is in the multiples of 0.5625,
1.0 and 1.5625, respectively. Movie 2 and figure 5 show that f = 1.0 Hz is where the
longest and the thinnest tightly wound ‘disturbed-laminar’ (DL) helical root vortex is
formed from the pristine initial condition (a flat free surface without any pre-existing
turbulence in the wake) and when the blockage is at its maximum, and it unwinds
into a DH when the blockage is reduced to 0.12 of the maximum value of the
blockage. No root vortex is formed at f = 0.75 Hz, and a generally turbulent vortex
is formed at f = 1.25 Hz. The applied inertial and the stabilizing gravity forces are
in best balance when f = 1.0 Hz. The trailing edge rotational velocity and external
foil-induced horizontal velocity give estimates of the non-dimensional force ratios.

In all vortices, vortex slants of 0◦ 6 β 6 45◦ are stable and unstable thereafter, and
bubbles are formed when the vortex is unstable. The DL cases appear in figure 2, and
SI-IA-2 to SI-IA-4, all at f = 1 Hz. The turbulent cases appear in figures 4(c1,d1),
6(a1) and 6(d1,d5), all at f = 1.25 Hz. In tornadoes also, the swirl ratio boundary
between the DL and turbulent cases is not sharp (Trapp 2000).

The DH is clear in the DL case after unwinding and when bursting, but it is
clear in the turbulent case right when it is formed before bursting (unwinding is not
observable). The pitch of the winding is >2c/3 in the DL case, but is <2c/3 in the
turbulent case. The windings of the vortex tubes in the turbulent case has been called
the aerated Taylor tubes, which are not formed in the DL case. The bubbles formed
from the Taylor tubes are smaller, but they are larger in the DL case. The funnel
diameter is 6 the root vortex diameter in the above two classifications. The cases
where the funnel is larger (figure 9n) do not show any DH but they have Taylor
tubes and they have been called turbulent.

The pre-burst turbulent root vortex has these features: the formation of small
diameter arrays, aerated and counter-rotating Taylor cells (figure 9e), a sharp conical
apex (figure 9i), a lower aspect ratio (length/diameter; figure 9a1) than in the DL case
and smaller ‘coarse’ bubbles formed post-bursting (figure 6 versus figure 9a). Only
the root vortex formed in the first cycle at the lowest f of vortex formation, f = 1 Hz
when Ro= 0.20, has been called ‘DL’ (figure 2, and figures SI-IA-2 to SI-IA-4). The
rest fall in the turbulent case. The appearance of the smallest diameter vortices is
the prominent feature of the fully turbulent cases: in the Taylor cells (figure 9e) and
in the turbulent root vortex DH arms (figures 4c1, 4d1) at the origin of formation
(x, y, z= 0). The features of bursting and bubble formation are similar except that the
Kelvin modes are not apparent in the DL case. While input θ̇ torque is a constant
cycle to cycle, the swirl experienced by the flow (Ωy) at the origin (x, y, z= 0) may
be a determinant of the flow variations (figure 3a). See the flow at (x, y, z = 0) in
Movie 3.
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FIGURE 2. Time sequence (1–3) of an example of the elastic behaviour of air-filled,
unsteady, ‘disturbed-laminar’ root vortex. The location of vortex breaking is shown in
panel 2. Panel 3 shows that other vortices congregate at the breakup point. Inset (4) shows
the scales of the double helix in (2), where c is the foil chord length and δ1 is the foil
stem diameter. Thin double helix lines are added in panels (2) and (3) to aid recognition
of the organization of the fine bubbles approaching the breakup point. Pc is compression.
The zig-zag buckling in (1) becomes the hook-shaped second mode of buckling of a
cantilever beam in (2). The torsional spring constant shown in (1) is a boundary condition
resisting the buckling. Relative phase of φ= 0◦ (1), 60◦ (2), 105◦ (3). Foil parameters are
φo = 40◦, θo = 45◦, θto = 75◦, f = 1.0 Hz, ψ = 90◦. Inset in panel 3 shows the mechanism
of bubble formation: see text. Panels 2 and 3: when the vortex unwinds, the free surface
oscillates vertically extending axially over λ, the double helix wavelength.

Generally, the inertial force is the destabilizing force, while the restoring forces
are surface tension, gravity and viscous forces. For the bubbles, the following
non-dimensional numbers can be used to measure the ratio of the destabilizing
and restoring forces because they can vary with depth or bubble size. The ratio
of inertia to surface tension is given by the Weber number We = (ρV2d)/σ , where
ρ is the density of water (kg m−3), V is the velocity (m s−1), d is characteristic
length, namely the diameter of the bubble (m) and σ is surface tension (N m−1)

(γ in (3.2), and T in capillary wave discussion). This variable is also a measure of
the ratio of kinetic energy of impact of formation to the surface energy. The Bond
number Bo measures the ratio of the gravity force to the capillary force. It is given
by Bo= (1ρgd2)/σ , where 1ρ is the density difference of the two phases (kg m−3),
and g is acceleration due to gravity (m s−2). Surface tension dominates for Bo� 1.0,
and gravity dominates for Bo� 1.0, with an intermediate range where both effects are
present. Coarser bubbles have higher Bo. The shape of the bubble is characterized by
the Morton number, simplified for air bubbles whose density is negligible compared
to that of water, as Mo = gµ4/ρσ 3, where µ is the absolute viscosity of water
(Ns m−2). The ratio of the inertial and gravity forces is given by the Froude number
Fr = V2/gd, where d is the diameter of the bubble (m). The volume of an irregular
bubble, or several bubbles attached together but not coalesced, can be converted to
an equivalent spherical bubble. The capillary number Ca, which is the ratio of the
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FIGURE 3. Schematics of vortex elasticity and breakdown. (a) Synthesis of the formation
(winding) of the root vortex; see figure 2(1). (b) Unwinding of the root vortex and location
where the first vortex breaking takes place (see figure 2(2)); direction of bursting (also
see figure SI-IA-4) is shown; foil not shown. In panel (a) inset 1: saddle S2 at vortex
crossing; and inset 2: Ua is stretching velocity, Ui is induced velocity of root vortex, Us
is direct shear velocity resisting Ui, (x, y, z) is coordinate system, Ωy is trailing edge swirl
and regions where β is stable and unstable, where bubbles are not formed and formed
respectively, are shown. The inset in (b) is a representation of the agglomeration of smaller
double helix vortex structures in the relaminarescent region post-bursting; also see the
burst vortex arrowhead in figures 11(2) and 12.

stabilizing forces – viscous forces and surface tension – is considered later in relation
to the formation of fine bubbles over the foil surface where the viscous forces in the
boundary layer and the wettability have strong effects.
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The above non-dimensional numbers are related as Mo = We3/FrRed
4. Here,

Reynolds number Red, the ratio of inertia to viscous forces, is defined as Red =Vd/ν,
where ν is the kinematic viscosity of water (m2 s−1). This relationship can be used
to check the internal consistency of the estimates of bubble diameter d, which is the
common primary variable in all the non-dimensional numbers and is a measure of
surface energy.

The diameter of the bubbles formed away from the foil surface increases as depth
reduces. Arched ellipsoidal bubbles have also been observed. This occurrence signifies
that the bubble drag law changes in the present work (Haberman & Morton 1953).
This indicates variations in the organization of the mechanisms of bubble formation.
The drag of the fine bubbles may be assumed as the same as the drag of equivalent
solid spheres, but that would not be true for coarse bubbles. The internal circulation of
the bubbles may be of significance. The water used was filtered. Therefore, the drag
is expected to be slightly lower than of tap water. The secular Red versus Cd trend, up
to the bottom of the drag bucket, is valid for Red < 250. Since neither the temperature
stratification in the tank (figure SI-DA-3) nor the span of the foil is large, the change
in the density of air can be neglected. The non-dimensional parameters for the two
types of bubbles are estimated in section A.3 in the SI with an overview given in
§ 3.7.

3. Results

The results are presented in the parts: (i) surface waves, divergent and standing
(see section A.2 in the SI for details); (ii) the elastic behaviour of the relaxation
and bursting of stretched ‘DL’ and turbulent root vortices; (iii) a synthesis of the
DL vortex bursting; (iv) the progression of the vortex slant to 45◦ to maximize
stretching, vortex breaking, jetting and the formation of Taylor air tubes similar to
Taylor–Couette roll cells, all just prior to bursting; (v) an estimation of the maximum
nonlinear vortex lift reached prior to bursting; (vi) mechanisms of bubble formation:
(a) in root vortex bursting, and (b) in the bursting of the air jacketed foil boundary
layer on the suction side (see SI-A.3); (vii) the formation of Kelvin spirals in the
foil-tip vortex tubes just prior to bursting; and (viii) initial condition dependence
– concatenation in cycle-to-cycle variation in root and foil entrainment that affects
lock-in (details appear in SI-A.4). (ix) The existence of a preferred connection point
of vortices in proximity is shown. (x) The buckling of an aerated vortex is modelled
to estimate the modulus of elasticity. (xi) A summary of the conditions of bursting is
given. (xii) In a tabular form, the discussion gives an album of the organized vortex
motions and jetting visualized.

3.1. Surface waves

The spiralling surface waves provide the initial condition of the formation and bursting
of the root vortex. The surface waves are organized and start a domino effect of the
fluid dynamics, namely, air entrainment, vortex formation, bursting, bubble formation
in two sizes and the apportioning of entrainment between the vortex core and the
suction side of the foil, which in turn affects the proportions of the coarse and fine
bubbles formed. The detailed results are given in A.2 Surface waves (A.2.1 Transient
divergence waves; A.2.2 Capillary waves) in SI-TA. An overview is given below.
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3.1.1. Transient divergence waves
Figure SI-TA-1 shows an example of Kelvin envelope seen at one instant of time

in the oscillation cycle and only at f = 1.25 Hz. In figures SI-TA-1(a,b), the caustic
lies in one quadrant only and is an arch and not straight, as it would be for a sailboat
cruising straight along a channel. The Kelvin envelope angle of 19.5◦ can be discerned
only as a limiting value at the midline of the flow geometry. The surface waves
are phase-to-phase quasi-steady, and we have found a variation of the Kelvin waves.
This instantaneous example may be compared with the sketch of a photograph (figure
SI-IA-1) of the steady hydropower intake at the mountainous lake at Horspranget,
Sweden, due to Rahm (1953), where the scales are of geophysical proportions. Both
have similar feathered divergent waves and an arched Kelvin envelope.

In figure SI-TA-1, the estimated λg is c(2/3). The dispersion relationship, λg =

2πU2(cos θ)2/g gives U = 1.0 m s−1 for θ = 0◦. This is the maximum value of U
at f = 1.25 Hz. This value of U is close to the maximum foil velocity V = 2πfr,
where for f = 1.25 Hz, average foil radius of 0.15 m, V = 1.18 m s−1. The value
of U would be lower at f = 0.75 Hz and 1.00 Hz in the ratio of f 2. Write Fr =
U/
√
(gL) =

√
(λg/(2πc)), where L is a length scaled to c for maximum blockage,

λg is the wavelength, c is the chord length and U is the longitudinal velocity of the
foil had there been no flow. The foil is a point source of pressure, and, theoretically,
a sailboat is like a point source of pressure being dragged in a channel at a velocity
of U, which gives rise to the Kelvin arch. A Kelvin-arched envelope is produced at
f = 1.25 Hz only at one instant of time when Fr= 1.0.

3.1.2. Capillary waves
In figure SI-TA-2, the foil stem is started impulsively. The radially propagating

capillary waves emerge at 1.20 s only when pitching is added to the rolling motion.
More waves appear with time as in internal gravity waves in stably stratified fluids
(equation (10) in Mowbray 1967; Movie 1).

Figure 1(e) shows standing waves in the funnel of the scale of the foil chord
growing from the radiating capillary waves. The waves stand because the opposing
wave speeds are equal in amplitude (Currie 1993). Many wavelengths are produced,
but the apparatus allows the selection of some of them.

A tuning fork in water produces similar capillary waves that do not last beyond a
few centimetres (Lighthill 1978, p. 225). The roll motion did not produce these
waves. Since the surface waves in figure SI-TA-2 are like ripples (i.e. short
wavelength <0.07 m), surface tension is the only force restoring flatness. The
capillary waves described here are not purely gravity waves. Still, for sinusoidal
waves of wavenumber k, surface tension (T) effects can be replicated exactly by
slightly increasing the acceleration due to gravity g by ρ−1Tk2 (Lighthill 1978,
p. 223), where T = 0.074 N m−1, ρ = 1000 Kg m−3. If k = 1/0.07 m−1 (stem
circumference is 0.0254π = 0.08 m, which is at the upper edge of being a ripple),
the incremental effect on g is 0.015 m s−2 (= 0.1 %). Hence, since the constant phase
rays are gravity waves, they agree remarkably with the schlieren pictures of gravity
waves (see figure SI-TA-3(c1–c3) in a laboratory stratified brine solution of uniform
Väisälä–Brunt frequency (Mowbray 1967; Stevenson 1968)).

3.2. Bursting of the ‘disturbed-laminar’ contra-rotating double helix root vortex
Figure 2 shows an aerated DH of contra-rotating vortices of the DL type at f =1.0 Hz.
While winding, first it inclines exactly to 45◦ to the vertical (β) in panel (1),
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the pointed apex being buckled by compression load Pc. In (2), barely higher than 45◦,
it starts to unwind, spreading immediately laterally in the inner half, but collapsing
in the outer half. In (3), it contracts laterally, disintegrating into bubbles. In (2),
the pitching motion has removed the foil obstruction in (1). The vortex motion
correlates with the axial adverse and favourable pressure gradients imposed by the
pitching motion. Measuring from the vertical, the vortex slant increases while the
length of the vortex increases between (1) and (2) indicating vortex stretching. There
are two stages of bursting: an unwinding and a disintegration into bubbles. Each
correlates with the relaxation of the stretching. Comparison of (1) and (2) shows
that the sudden vortex relaxation produces amplified vertical oscillations of the free
surface. This oscillation occurs prior to the disintegration into bubbles in (3). There
is a time delay between the vortex oscillation when released from stretching and
the disintegration into bubbles. The vertical oscillation is spread over an axial length
of λ, the DH wavelength. The vertical oscillation of the free surface is evidence of
vortex oscillation when released of stretching. A monochromatic compression and
rarefaction wave train will be produced.

The DH originates from the necklace vortex around the stem (figure 3). Out of
the two branches, one dominates (Movie 2). The DH mode does not rotate after
unwinding when the effect of pitching is no longer present. It is discussed later that
the vortex stretching reaches the maximum value at β = 45◦. The vortex is stable for
β 6 45◦, but unstable for β > 45◦. Here and later, the demarcation becomes clear by
observing where the bubbles are rare and where there is a preponderance of bubbles,
respectively.

The narrow tip of the vortex buckles under compression load Pc (panel 1) because
the compression stiffness exceeds the bending stiffness in the aerated elastic vortex.
Using the grid on the foil surface, the helix pitch in (2) is (δ1/2 + 2c/3), and the
helix spread is 2c/3, where c is the foil chord length and δ1 is the foil stem diameter
(see the inset (figure 2(4)) in figure 2(2)). The helix spread is zero in the outer half
in (2) where the bursting has commenced. The bursting spreads later to the inner half
in (3) where the helix spread is nearly zero. The foil pitches along the stem axis
at a distance of c/3 from the foil leading edge. Hence, 2c/3, the maximum pitch
radius, is the length scale of the helical mode of the instability in the root vortex that
is amplifying. The effective maximum blockage width is 2c/3, not c (see examples
in figures SI-IA-2 and SI-IA-3). The unwound vortex bursts (panel (3) in figure 2)
when the foil starts to increase the blockage again at φ = 105◦. The disintegration
into bubbles proceeds from the tip of the helix to the foil root (figure SI-IA-4). The
bubbles formed have low inertia and show a tendency to remain clustered along the
DH. Some spherical bubbles are formed, but they remain coalesced and not fully
separated.

The inset in figure 2(3) shows the schematic of the mechanism of bubble formation.
The stretched vortex tube is observed as suddenly released. Standing spiralling waves
of wavelength λd are produced. The red and blue arrows show waves rebounding
from the opposite ends of the aerated vortex tube. Ringing bubbles of diameter d
are produced. Here, c1 is the speed of sound in water. Later, it is shown that the
vortex inclination rises from 0◦ to 45◦ when stretching and turbulence amplification
are maximum. The sudden release of the maximally stretched vortex tubes produce
three ringings of wavelength λ, λd and d. Here, λ is the aerated DH wavelength, λd
is the wavelength of the standing waves (see the inset in figure 2(3)), and d is the
bubble diameter. Since the vortices receive orthogonally oscillating inputs of torque
and there are two preferred orthogonal directions of organization in the shear flow
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(Head & Bandyopadhyay 1981), the bubbles can be expected to undergo resonant
oscillations. The synchronized vertical oscillation of the free surface is an evidence.

Write that the wavelength λ∝ d and its values are functions of f (to be modelled
later). We estimate that the DH wavelength λ = 20d–30d. One turn of the bubble
gives λd = πd. We get, λ = 7λd to 10λd. The inverse of the time scales (s−1) are
c1/λ, c1/λd and c1/d, where c1 is the speed of sound in water, 1435 m s−1. At f =
1 Hz, λ = 0.13 m, λd = 0.019–0.013 m and d = 0.006–0.004 m. We expect spectral
peaks of sound level at 11, 75 and 239–359 kHz. The lower range overlaps the buoy
measurements in sea due to breaking surface waves (figure 1 in Nystuen 2002). The
measurements do not extend above 50 kHz. At f = 1.25 Hz, the wavelengths and
bubble diameter are smaller. The breaking wave sound measurements may be from the
ringing of the aerated vortex tubes and the induced oscillations of the free surface and
not from the bubbles. Buoy measurements above 50 kHz are needed. The mechanism
of bubble formation from the bursting of the aerated root vortex may bear relevance
to bubble formation due to breaking waves due to winds of 6–10 m s−1. The upper
limit of noise due to the collective oscillation of bubbles of the vortex tube is at least
11 kHz and not 1 kHz (Prosperetti 1988).

Figure 2(2) marks the location of vortex breakup where the opposing vorticities
cross. Panel 3 shows that the fine bubble DH pattern from the foil is fusing with the
main DH at the location of the vortex breakup. The fusing point is a vortex crossing
point of the arms of the ±Γ DH (Γ is circulation).

3.3. Synthesis of the motion of the ‘disturbed-laminar’ contra-rotating double helix
root vortex

The physical processes in figure 2 are shown in figure 3. The streamlines, representing
convection of vorticity, and the critical points (saddle points S1,, S2) for figure 2 are
sketched in figure 3(a) (Baker 1979; Chong, Perry & Cantwell 1990). The upstream
lateral vorticity bends to form two horseshoe vortices of size c (figures 2, 4a, f =
1 Hz) and δ1 (figure 4d1, f = 1.25 Hz). Saddles like S1, are created. The right side
of the figure shows the critical point of the cross-section of the dominant wound
asymmetric horseshoe vortex in the near wake. The cross-section has saddle points
(S2) where stretching takes place amplifying turbulence. The vortex stretching is due
to an axial velocity Ua which is the β-component of Uext that creates the vertical shear
in the wake (figure 3a, inset 2, and figure 3b; Bandyopadhyay 1980).

In a cylindrical gas–liquid separator (length L, diameter D) which has a tangential
entrance and exit, an aerated core vortex is formed that stands. A rectilinear vortex
spirals when the ratio L/D=π, 2π or 3π (see figure 3 in Bandyopadhyay & Gad-El-
Hak 1996). This positioning allows, between the ends, an axial spacing of L/D=Nπ,
where N is an integer 1,2,3, . . . . The root vortex is anchored at the root and the other
end experiences a compression, making the geometry essentially confined. Hence, the
aerated root vortex is also standing. Assume D is spiral diameter and vortex diameter
dv is proportional to D. With increasing Re, if L is constant, then, N will increase with
drop in spiral diameter D. Compare figures 9(b) and SI-IA-2 at f = 1 Hz with 4(d1)
at f = 1.25 Hz. For the similar cylindrical lengths of 8 cm, D is 2 cm versus 1 cm,
N is 1 versus 2, respectively. The vortex diameter also drops with increasing N.

The aerated vortex has structural properties such as compression (Kc) and bending
(Kb) stiffness. If Kc > Kb, the vortex will buckle. In both figures 2(1) and 6(b) the
buckling moves toward the stable zone of β 6 45◦. In figure 2(1), f = 1 Hz and
the centrifugal force is lower and the buckling creates a zig-zag shape. However,
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FIGURE 4. Vortex slant β increases to the angle of principal strain (45◦) when
vortex stretching and turbulence amplification become maximum and the vortex bursts.
(a) Examples of the maximum vortex stretching just prior to bursting; also see figure
SI-IA-3 in SI. (b) Vortex slant at the time of (in 1), and after bursting (in 2). (c) The
increasing slant β of the root vortex before (in 1 to 3) and at the time of bursting (in 4)
can be seen. (d) A multi pitch thin double helix grows and slants to 45◦ in the time step
of mere 0.03 s (1 and 2) and bursts (in 3). The acute angle subtended by the thin dotted
lines represents a slant β of 45◦ to the vertical direction. The nominal external flow is
left to right.
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in figure 6(b), f = 1.25 Hz, the centrifugal force is higher and the buckling makes
a toroid. The differences in buckling are due to differences in Kc and Kb. The
difference in fact proves that the vortex is an elastic structure. The example of
the toroidal buckling for high centrifugal forces will be considered again later in
figure 6(b2). The compression stiffness increases because surface tension acts to
reduce the surface area of the vortex to counter the centrifugal force. At f = 1 Hz,
the root double spiral has one full turn (of the π-type) in figures 2, SI-IA-2 to
SI-IA-4 and 9(b). At f = 1.25 Hz, the number of full turns may be 2 (of the 2π-type)
in figure 4(c,d). Therefore, the apex of the vortex is a stagnation point for the wave
to be standing. The vortex breakup at the apex is a stagnation point (Saffman 1990).
We are seeing evidence of elasticity of an aerated vortex. Therefore, the root vortex
is a standing vortex. Extending this result for increasing N, the standing DH appears
as contra-rotating Taylor cells (see figure 9e,g).

The funnelling and entrainment of air along the stretched vortex axis are shown
in figure 3. When the DH in (a) unwinds (b), the free surface oscillates vertically
over an axial length of λ, the wavelength of the unwound DH (figure 2(2)), radiating
noise. The lateral oscillations of the vortex tube, that start when the vortex is suddenly
released of the axial stretching, also oscillate the local air–water interface radially
within the vortex tube to form the bubbles. In figure 2 between panels 2 and 3, the
bubbles take 0.125 s to form after the onset of the oscillations of the interface. This
time scale is a 40 Hz bubble oscillation if five damped oscillations are present as is
common in spring, mass and damper analogues (Bandyopadhyay 2019).

In figure 2(2), there is a narrowing where the two arms of the DH meet with
vorticities (±ω) that viscosity acts to cancel. The vortex breaks at this location
(Saffman 1990). After the pitching blockage begins to relax at β = 45◦, β → 90◦,
(Vθ1, Vθ2, Vθ)→ 0, Ua → Uext, and the vortex bursting, indicated by the turbulence
of the bubbles, proceeds towards the root. How Kelvin waves produced at the tip
initiate the bursting is shown later. The bubbles form in the air tubes when stretching
is suddenly released.

Downstream of the intermittent turbulence patches, conical relaminarescent
regions have also been reported in the so called ‘puffs’ of transitional pipe flows
(Bandyopadhyay 1986) and in the turbulent trailing vortex cores (Bandyopadhyay
et al. 1992) just as in the conical relaminarescent vortex tip in figure 2(2). It was
shown in Bandyopadhyay et al. (1992) that the puff flow and the trailing vortex
contain helical motions which certainly is the case in figure 2.

3.4. The 45◦ vortex slant at the time of bursting
In figure 2(1) at f = 1 Hz, the vortex slope β was 45◦. In figure 4, f = 1 Hz in (a,b)
and 1.25 Hz in (c,d). Angle β increases to 45◦ until the root vortex bursts. In the
examples from different cycles in figure 4(a1–a3), β = 45◦. Such well-formed root
vortices are not seen for β > 45◦. In figure 4(b), the vortex is about to burst in (1),
when still at β = 45◦; but in (2), the vortex has burst and the slope β > 45◦.

Figure 4(c) shows an example from the same vortex of the time sequence of
increasing β until bursting at β = 45◦. Figure 4(c1) shows a small diameter DH
wound to a nearly vertical cone at f = 1.25 Hz. This vortex radially enlarges initially
but without increasing β. Its slant increases in (3) while also enlarging. In (4), while
still at β = 45◦, the vortex has just burst. Figure 4(d) shows a long cylindrical DH
of uniform diameter at f = 1.25 Hz at a shallow angle of β in (1), rising to 45◦ in
(2) and bursting in (3). In (c), the starting DH is conical and shorter in length. There
are more modes of DH at the root at f = 1.25 Hz.
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The root vortex slant β increases to 45◦ when bursting occurs (figures 4, 6 and 7).
The slanting of the Taylor tubes (figure 9) are close to 45◦ without much variation. In
figure 4(c,d), the Taylor tube slanting approach 45◦ before the root vortex axis does.
The vortex tubes of the foil-tip flow reach a straight slant of 45◦ to the external stream
(figure 11). The knotting of the tip of the DH in the final stages of bursting is also
into a cone of 45◦, slanted at 45◦ (figure 7(a6), (a7), (b3)). There is a wide prevalence
of the 45◦ slant of the vortex tubes just prior to bursting.

The vortex inclinations of 45◦ have been visualized in a wide range of Re in
turbulent boundary layers by Head & Bandyopadhyay (1981), confirmed by particle
image velocimetry by Adrian, Meinhart & Tomkins (2000) and also by direct
numerical simulation at low Reynolds numbers by Wu & Moin (2009).

Consider a parallel shear flow invariant with distance. Concentrations of vorticity
can appear only when a periodic disturbance is superimposed. As per Theodorsen’s
thesis (1952), these concentrations of vorticity will die down unless there is some
existing three-dimensionality. If the flow is three-dimensional, and some vorticity is
present, turbulence can be produced from the vorticity only if it is stretched. In a
turbulent boundary layer, which happens to be three-dimensional, Theodorsen (1952)
predicted the appearance of horseshoe vortices at 45◦. These arguments apply in the
present case.

The three-dimensionality introduces a term ωiωj∂ui/∂xj in the vorticity equation
which implicitly expresses the effects of stretching which must precede and
accompany the production of turbulence (Head & Bandyopadhyay 1981). Multiplying
the vorticity equation by ω, a vector in (x, y, z), in tensor notation, we get
D/Dt[1/2ωiωi] = ωiωj∂ui/∂xj + ωiν∇

2ωi, where ν is kinematic viscosity. If the
vorticity vectors in a concentration of vorticity are (ωx, ωy, ωz), since ∂u/∂y is greater
than any other component, the stretching term is approximated to ωxωy∂u/∂y. This
term will be a maximum when the component of the vorticity vector in the (x, y)
plane is at 45◦ to the main flow direction. In a horizontal shear flow, the downstream
angle of 45◦ represents the direction of principal axis along which the strain is of pure
extension and the rate of stretching is at maximum. The abrupt drop in the external
velocity when the foil blockage is removed eliminates the term ∂U/∂y making the
stretching term vanish in the vortex tubes. This event produces axial and radial waves
in the tubes precipitating the bursting and bubble formation.

Significantly, in four sets of examples of the present work, the varieties of vortices
have this inclination of 45◦ to the external flow just prior to bursting. The root vortex
slope β is given by the opposing effects of axial stretching on the induced velocity
and the external shear. See Bandyopadhyay (1980), where this balance accurately gives
the slope of the arrays of vortices formed sequentially in a turbulent boundary layer
large structure. The velocity balance is shown in figure 3(a, inset 2). The wall-normal
shear tries to rotate the horseshoe vortex in the boundary layer back, parallel to the
wall (see figure 33 in Head & Bandyopadhyay 1981). Similarly, in the present flow,
the direct effect of the shear tries to rotate the root vortex horizontally along the flow
direction near the free surface. As β increases from 0◦ to 45◦, the stretching increases
to the maximum value. The increased induced velocity then resists the direct effect
of the shear exactly. At β = 45◦, the vortex is in neutral equilibrium. It is sensitive
to disturbances and is prone to breakdown. The root vortex therefore is stable in the
range 0 6 β 6 45◦. However, for 45◦ < β < 90◦, the stretching drops and there is
nothing to resist the shear whereby β rapidly approaches 90◦ (figure SI-IA-4). In
support of this argument, we do see a preponderance of pre-burst root vortices for
06 β 6 45◦, but no pre-burst vortex is seen at 45◦<β < 90◦. Since bubbles can form
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only where the vortex is unstable, they are confined to 45◦ < β < 90◦ and virtually
none will appear where 0 < β < 45◦. The regions where β is stable and unstable
are shown schematically in figure 3(a). The statement on the relationship of bubble
formation and vortex instability is confirmed in figures 6(b) and 8(b–d).

Figure 6(d) and Movie 3 at a time stamp of 01:58 (m:s) show that a single coiled
vortex, marked V, migrates on the pressure side after formation, shown in panel (1).
It shows up over the leading edge from the pressure side in panel (4), stretching at
45◦ in (5). The pressure side vortex V bursts at the same time as the suction side
root vortex. Here also, the 45◦ slope demarcation of stability exists and the unstable
zone is complementary. The movie shows that, over time, the 45◦ unstable front of
the coarse bubble filled region over the foil coming from the pressure side, advances
diagonally upward and right toward the standing lower edge of the unstable region of
the root vortex closing the bubble-free alleyway shown in figure 6(b2). In this manner,
the advancing unstable region of the pressure side joins up with that of the suction
side obliterating the intervening stable region. Finally, one could also argue conversely
that since the bubbles are formed only in certain triangular sectors, the vortex must
be unstable only there.

3.5. Modelling of the nonlinear vortex lift of the root vortex
Figure 5 draws an analogy between the delta-wing high lift leading edge vortex and
the root vortex. Both are produced by salient edge separation. The lift producing the
root vortex is estimated in the following manner. The hydrostatic pressure p increases
with depth y. Therefore, the vortex grows axially in an adverse pressure gradient
∂p/∂y > 0, the depth acting like a diffuser. The vortex bursting experiments by
Sarpkaya (1995) and the Kelvin wave vortex experiments by Tsoy et al. (2018) have
been carried out in small angle diffusers. While pitching up or down in continuously
pitching delta wings, the bursting occurs farther back or forward compared to the
steady case, respectively. There is hysteresis in the measurements of lift compared to
the steady state case (Heron & Myose 2009). The unsteady measurements of lift force
in a flapping foil in the absence of any air entrainment show a similar hysteresis with
quasi-steady models (figure 7 in Bandyopadhyay et al. 2008a). For these similarities,
as shown in figure 5, an analogy is drawn between the root vortex and the leading
edge vortex of an asymmetric delta wing with salient leading edges. The vortex in
the inset in figure 5 is from figure 2(1).

The vortex lift model makes no distinction between the DL and the turbulent
root vortices. The root vortex is generally conical with the apex pointing diagonally
downward. Since the foil input torque does not change cycle to cycle, the lift values
are assumed to be similar to those modelled here. Measurements on flapping foils
show that lift force coefficient CL ∝ f 2 (Menozzi et al. 2008). Equation (2.6) is used
to model the linear and nonlinear components of the force, the variation with β, and
the nonlinear vortex lift just prior to bursting when β = 45◦.

Unsteady lift measurements in flapping foils can be modelled by assuming the flow
to be quasi-steady (Bandyopadhyay et al. 2008a). Define the aspect ratio (A) of a
delta wing as b2/aw, where b is the wing span and aw is the wing area. Theory and
measurements of lift forces in steady delta wings in figure 12 in Polhamus (1966)
show that the vortex lift in a delta wing is a function of A and the AOA β. Consider
using equation (2.6), where the total lift CL =CLP +CLV where CLP is the linear part
of wing lift obtained by potential flow method and CLV is the vortex lift component,
which is nonlinear. See inset 2 in figure 5. For A → 0, CLV → 0 and CL → CLP.
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FIGURE 5. Modelling of the root vortex lift based on the analogy of delta wing vortex
lift. Inset 1: pre-bursting root vortex in figure 2(1) superimposed on the schematic of the
delta wing leading edge vortex. Inset 2: quasi-steady model and measurements showing
nonlinear vortex lift CLV (Bandyopadhyay et al. 2008a).

To make the vortex predominantly one sided, the delta wing in figure 5 is shown
asymmetric, since smaller values of A produce lower values of lift. We assume that
the asymmetry is large and the entire lift force can be attributed to just one edge. It is
assumed that the vortex slant is the same as the angle of attack of the delta wing. The
maximum value of CL and CLP at an angle of attack, say β of 25◦, increases with A.
But CLV does not change much between the A values at the same AOA. The difference
is understandable because the nonlinear vortex lift is not produced by the foil area.
It is produced by the salient edge and β. The potential flow lift is produced by the
source–sink distributions over A and β. For example, at A= 0.5 and β= 25◦, CL= 0.7
and CLP = 0.24, giving CLV = 0.46. At A= 1.5 and β = 25◦, CL = 1.1 and CLP = 0.62
giving CLV = 0.48. Hence CLV trend with A and β is universal: CLV increases with β,
but is independent of A.

The value of A determines CL, CLP and CLV . In figure 6(a1), b = c and aw = c2,
giving A = 1.0. For β = 15◦, CL = 0.5, CLP = 0.35, giving CLV = 0.15. For β = 25◦,
CL= 0.90 and CLP= 0.45, giving CLV = 0.45. The vortex lift due to the root vortex in
figure 6(a1) is then 0.45 – the linear and nonlinear components of lift are the same.
When entrainment is prevented, these values are close to our unsteady flapping foil lift
measurements (figure 9 in Bandyopadhyay et al. 2008a). Hence, to estimate CLV alone,
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FIGURE 6. For caption see next page.

figure 9 in Bandyopadhyay et al. (2008a) may be used since the present apparatus
uses the same flapping foil and the delta wing analogy need not be invoked. The
suction lift analogy gives the origin of the root vortex a theoretical foundation and
helps to isolate the origins of the linear and nonlinear lift forces.

As per the measurements in figure 9 of Bandyopadhyay et al. (2008a), the nonlinear
vortex lift in the root vortex of 1.0 would be achievable at β = 45◦ when the vortex
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(d) (1)

V

(2) (3)

(4) (5) (6)

Image
expanded 2X

45°
45°

45°

V: from
pressure side

V

Trailing edge
vortex: stretched

coiled spring

Spring coils
up when

stretching 
relieved

FIGURE 6. (cntd). Sets of three images each of two examples of turbulent vortex
bursting (a,b) and the schematic (c) of variations in velocity profiles across the vortex axis
from jet to wake with changes in blockage. Panels b1 and b2: rotational effect (marking a
to b); panels a2, a3 and b3: 45◦ slope shows maximum axial stretching. The tiny aerated
Taylor cells in the root vortex are normal to the 25◦ slope in a1, and normal to the 45◦
slope in b1 and in figure 9(e). (d) Sequence of successive frames explaining how the
compact vortex in (b) is formed from the stretching and relieving of the trailing edge
vertically coiled vortex in panel (5); also shows the migration of the vortex V in the
pressure side. In (a), relative phase of φ = (1) 0◦, (2) 30◦, (3) 60◦. In (b), relative phase
of φ = (1) 0◦, (2) 76.5◦, (3) 135◦. Foil parameters are φo = 40◦, θo = 45◦, θto = 75◦,
f = 1.25 Hz, ψ = 90◦.

is about to burst. In figure 6(a), β = 25◦ at vortex formation and β = 45◦ at bursting,
being horizontal after bursting.

Figure 9 in Bandyopadhyay et al. (2008a) shows that the scatter in the lift
measurements is higher at AOA of 45◦ and −45◦ and negligible at other AOA.
The β = 45◦ slope of the root vortex, which is the boundary of the stable and the
unstable postures, is a neutral equilibrium posture, and cannot be held there for long.
Angle β increases rapidly after 45◦ because shear rotation is not counteracted.

The ‘reattachment lines’ (R1 and R2) of the wound vortices shown in figure 5 would
be saddles assuming mirror images of induced flows in the water. Vorticity stretching
is taking place along the downward line of the saddle points whereby entrainment and
rotational velocity are being accentuated.

The generally tapering shape of the DH root vortex (figures 2(1), 4, 9g,i,n) in the
stable region where 0◦6β645◦ is set by the balance between the centrifugal force Γc
of the vortex and the force of radial pressure (difference) gradient Pr. In this region,
at a given β, stretching is constant, hence Γc is constant with length, but Pr increases
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with depth. With increasing depth, a cone is produced. At the point where the DH
crosses, Γc drops to zero because the opposing vorticities (±ω) cancel each other
(Saffman 1990) causing vortex breaking and reconnection. In the unstable region 45◦>
β > 90◦, as Γc drops with loss of stretching, Pr > Γc crushing the vortex radially
inwards continuing toward the root. In panels (2, 3) of figure 2, β in panel 3 is greater
than in panel 2 which lowers the stretching (by 11 %) and Γc. The two arms of the
unwound vortex do collapse closer to the axis, first in the outer half in panel 2, and
then in the inner half in panel 3. In the vortex, breakdown proceeds toward the root
and radially inward.

At β= 45◦, Ui=Ua. The velocity of the external flow is set by φ and a disc model
shows that Uext = 0.08–0.09 m s−1 (Bandyopadhyay 2015). Taking the component of
Uext, the value of Ua and Ui rise to 0.06 m s−1 at β = 45◦.

Rossby number Ro is estimated as follows. Ascribe the axial velocity in the vortex
to φ̇, which produces the foil load and Uext, and the rotational velocity to θ̇ . Define
Ro as the ratio of the inertial to the Coriolis force components as Ro = Uext/Vθmax.
The maximum azimuthal velocity of the vortex Vθmax is 2πfr, where the pitch radius
r is 2c/3. For c= 0.10 m and f = 1 Hz, Vθmax = 0.419 m s−1. If the inertia force is
given by 0.085 m s−1, then Ro= 0.203. This estimate matches the value of 0.20, the
critical value when the ‘dramatic’ formation and bursting of small vortices occur in
a large rotating flow ascribable to the interaction between spiralling waves (Hopfinger
et al. 1982).

3.6. Modelling of the bubble diameter
Consider the scaling law of the bubbles. Movie 3 shows a large drop in the bubble
diameter with increasing torque input into the vortices from f = 1 Hz (figure 2) to
1.25 Hz (figure 6). The effects can be seen in the reductions in the diameters of the
individual arms of the DH vortices in figures 2 and 4(c1,c2). The DH is formed as
the foil undergoes ∂θ/∂t motion at the origin of the coordinate system in the inset of
figure 6(a) where the foil pierces the surface. Increasing centrifugal force (N) lowers
the vortex core pressure p (N m−2). The pressure of the surrounding water at the same
depth lowers the diameter of the tube and of the bubbles d (m). Surface tension γ
(N m−1) balances the pressure. The length scale of the vortex and bubble diameters
is γ /p (m). The scaling parameter (Nb) of the bubbles is

Nb = pd/γ . (3.1a)

The velocity scale (m s−1) is Γ /d (m s−1), where Γ (m2 s−1) is circulation. The
bubble scaling parameter (NB), in terms of Vθmax, is

NB = ρV2
θmaxd/γ . (3.1b)

Here, Vθmax (m s−1) is the maximum rotational velocity in the vortex and ρ (kg m−3)
is density. At f = 1 Hz, Vθmax = 0.42 m s−1, d = 0.005 m, γ = 0.072 (N m−1), ρ =
1000 kg m−3 and NB = 12. At f = 1.25 Hz, Vθmax = 0.523 m s−1, d = 0.003 m and
NB = 11.3. With the limited data and the uncertainties in the estimation of d, NB =

ρV2
θmaxd/γ = 11 to 12.

Figure 6(b) is a limiting case of the model. The vortex of Kelvin mode m = 0
has too small a diameter to be visible. (Figure 9(i) shows an example of the abrupt
reduction in diameter.) The hydrostatic pressure is larger down span. The vortex core
is compressed. The pre-bursting high circumferential velocity is obvious post-bursting.
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From the core, the bubbles are thrown out in an arc of 70◦ at the foil roll velocity
of the local span. The bubbles formed are most numerous per unit surface area and
also the smallest observed out of all cases. In (3.1b), the bubble diameter is inversely
proportional to the square of the circumferential velocity. Qualitatively, the model
extrapolates to figure 6(b).

3.7. Bursting of contra-rotating turbulent vortex
Two examples of turbulent vortex bursting at f = 1.25 Hz are shown in figure 6 and
may be contrasted with the DL case in figure 2 at f = 1.0 Hz. A root vortex of shorter
length but larger diameter is formed. Along its axis, the tightly wound vortex has an
array of small diameter, parallel Taylor–Couette roll cells. (The curved surface of the
air tubes acts as a lens producing the white lines.) As shown in figure 6(a1,b1), these
are tubes of air: the conventional cylinders have been substituted by the surrounding
rotating water and the inner air core. See the schematic in figure 6(c) for the velocity
profiles inside and outside the root vortex structure corresponding to figures 6(a1–a3)
and 6(b1–b3) following Batchelor (1967). The Reynolds number is higher than in
figure 2. The DH unwinding is not obvious. The free surface shows a dip as in a
funnel, and there is an abrupt breakdown into bubbles aligned in a circumferential
trajectory marked ‘a–b’ in figure 6(b2). As the blockage is reduced further, the surface
dip closes (figure 6b3) and the bubbles become aligned radially at 45◦ to the flow
direction (marked ‘c–d’; see figure 6b).

Figure 6(b) shows that the bubbles formed after bursting lie where 45◦ < β 6 90◦
and hardly any where 0◦ 6 β 6 45◦. These coincide with the regions where β is
unstable and stable, respectively. Over 45◦ < β 6 90◦, there is a declining force of
the induced velocity of the vortex available that counters the shear – a negative
feedback loop. The mean shear time scale is (∂U/∂y)−1, and the vortex time scale of
induction is (∂Vθ/∂r)−1, where Vθ is the rotational velocity of the vortex and r is the
radius. Here, (∂Vθ/∂r)−1

� (∂U/∂y)−1, changing to (∂Vθ/∂r)−1 < (∂U/∂y)−1. This
change exists because the exiting bubbles are carrying away the compressed elastic
energy, which serves as the main source of energy. This mechanism would explain
the short time scale of the bursting. The time interval between panels 1 and 2 is
0.17 s, whereas the quarter of the foil oscillation time scale is 0.2 s (= the stretching
duration) and the mean (∂U/∂y)−1 is approximately 1.5 s. There is a cumulative
depletion of the reserve vortex kinetic energy remaining over the duration of bursting.
Recall equation (1.3) where ν is absent; and dissipation, being a slow process, can
be neglected. The bubbles are being released gradually as the β of the weakening
vortex approaches 90◦. The arc ‘a b’ in figure 6(b panel 2) is created through this
process.

The horizontally lying bright groups of individually identifiable tubes near the root
are segments of the root vortex which release bubbles later. Over 45◦ < β 6 90◦, the
oscillating vortex breaks into axial segments. Bubbles are released, not from the entire
length simultaneously, but in about six to ten axial groups over an arc of 70◦. (Unlike
in the turbulent boundary layer analogy in Bandyopadhyay (1980) where there is a
solid wall, here, the vertical oscillation of the free surface allows β to go beyond
90◦ to 115◦.) The time scale of the bubble release is assumed to be given by the
time it takes for the vortex to change its slanting by 7◦–12◦. The bubble release time
duration from the compressed aerated vortex is estimated to be (0.17 s)/6= 0.03 s to
0.02 s, approximately 1/10th or less of the stretching duration. This release signifies
that as the balance between the centrifugal force and the surface tension is disturbed,
the bubbles would experience resonant oscillation and radiate sound.
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The schematic in figure 6(c) shows four velocity (U) profiles to relate the vortex
state to the changes across the vortex axis from jet to wake with changes in blockage.
Also see Movie 3 in the SI. The early understanding of vortex bursting was based
on the distribution of velocity profiles as in figure 6(c) (Batchelor 1967). Later, it
shifted to the mechanisms of vortex breakup and reconnection (Saffman 1990). In
both, jetting has roles making them easier to see in visualization. Local vorticity
cancellation, reduction of centrifugal forces and pressure build up result in jetting.
The present work takes the understanding toward maximum stretching in the direction
of principal strain just prior to terminal bursting.

Due to stretching, the root vortex elongates with time and the diameter decreases
with axial distance from the root. The aspect ratio (length/diameter) is 2π in the DL
vortex case (figure 2) and π in the turbulent case (figure 6). Figure 6(c) shows an axial
velocity inside the vortex. In figure 6(c), U1L is the DL jet velocity when the spread is
narrow, U1T is the turbulent jet velocity when the spread is wider, U2 is the external
axial velocity outside the jet, and U1w is the axial velocity along the vortex axis when
the jet weakens to a wake. In the short axial length of a cylindrical vortex, consider
the ratio U1/U2, where U1 = U1L or U1T . At the roll extremity farthest away from
the reader of the images, when the foil starts pitching, generating the vortex at the
trailing edge near the free surface, U1 >U2. When the foil pitches back reducing the
obstruction, the funnel dip closes (figure 6(b3)), stopping further entrainment of air.

When the fluid outside the vortex decelerates, the vortex diameter increases. The
increase causes an additional pressure gradient effect within the vortex which causes
further deceleration and thickening of the vortex. Small changes in the velocity outside
the vortex cause a large change in U1 and a (Batchelor 1967, p. 553). A time is
reached when the ratio U1/U2 crosses a critical threshold value at which the velocity
profile becomes unstable and causes the vortex to break. The thickening of the vortex
and bursting are rapid in the turbulent cases in figure 6 and cannot be delineated.
However, in the DL case in figure 2, they can be delineated as the stages of formation
of the DH and the subsequent bursting.

Figure 6(d) explains how the compact vortex in (b) is formed and why the bubbles
are spread in arcs extending over a span equalling the foil span while bursting. The
vertical trailing edge vortex in panel (5), not seen in (4), is joined to the slanted root
vortex at the kink; the vortex follows the trailing edge geometry in figure 1(b) which
has a diagonal cut near the root. The entire coiled vortex is experiencing stretching in
panel (5). However, in (6), the stretched vortex is suddenly released and the vertical
part coils up to the slanted root vortex to form the compact vortex.

Consider a spring, mass and damper system where the mass models the axial
compression of the distal end due to the stagnation point against the root. Ignore
the damper because the time scales are small in elastic effects as the rapidity of the
change between panels (5) and (6) shows. When the mass pulled down is released,
it will jump up axially to the uppermost position using the energy of the stretching.
The mass will oscillate backdown after that continuing the oscillation. The full vortex
is undergoing such axial oscillation and releases the bubbles radially from the root in
the process in the unstable range 45◦<β6 90◦ only during one half of the oscillation.
(In a low-friction mechanical apparatus of small forces (<1 N), up to five damped
oscillations have been seen when the mass is released (Bandyopadhyay 2019).) The
time period of axial oscillation is 0.067 s, which is two to three times the estimated
bubble release time. As per this model, the aerated coil is stretched radially outward
in the unstable range, then returns to the root to coil back and the cycle goes on.
The bubbles, and the compressed energy are released during the journey of the distal
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end back to the root. The radial arrays of bubbles in (b3) do show some lateral
spacing. This explains the synchronous lateral discharge of bubbles in figure 8( f ) in
the boxed area.

In figures 2(2), 6(a1) and SI-IA-2 to SI-IA-4, the ratio of the wavelength (λ) to
the lateral spread (∆) of the double helix is π/2 to π. If the circulation number
Γ /(vδ2) remains constant, then the kinetic energy of the vortex is proportional
to v2

∝ Γ 2/δ2
2
∝ f 4/δ2

2. Hence, from f = 1.0 Hz to 1.25 Hz, the kinetic energy
rises by a factor of at least 2.44 since the vortex diameter δ2 drops. If the vortex
diameter drops abruptly by a factor of 2 as in Tsoy et al. (2018) due to Kelvin mode
m= 0, the kinetic energy stored increases by a total factor 10. Instead of any m= 0
mode, figure 6(d) shows that a vertical coiled vortex does exist connected to the
slanted root vortex undergoing stretching (see left panel in figure SI-IA-6 for greater
clarity). In figure 6(d5), the vortex diameter does drop by half for at least part of
the length. (Compressibility is another mechanism of storing elastic energy, discussed
later.) When the stretching is relieved, like a spring–mass system, the vortex jumps
up to the root vortex and forms a compacted coil together. This is compacting of
vorticity and elastic energy. An oscillation along the vortex axis would ensue. The
compacted vortex expands and shrinks axially, bursting and filling up the sector over
the span with bubbles where the vortex inclination is unstable. The bubble arrays
are radial in figure 6(b3) aligning with the axis of the root vortex. But in earlier
time, the arrays are orthogonal circular arcs as seen in figure 6(b2), aligning along
the direction of the Taylor axis. The bubble separation from the tubes is incomplete
in the inner half of the sector in figure 6(b2), but is complete later in figure 6(b3).
Figure 2 also did show that bursting proceeds radially inward. Hence, on relaxation,
the vortex coil experiences orthogonal oscillations, along the Taylor and the DH axes,
and more complete bubble separation proceeding inward from the distal end. When
the turbulent vortex bursts, the energy is immediately spread over sometimes 70◦ of
the quadrant extending over the entire span (figure 6b2).

The foil circulation is sensitive to any air entrainment (figure SI-DA-4), hence
variations in the spread of the vortex bursting, particularly in the case when
f = 1.25 Hz, can be expected. Because of a lack of perfect lock-in between the
foil oscillation and the wake, the wake frequency would have a jittering effect, but
the foil would have none. The variation in the wake frequency would result in an
amplified variation in the kinetic energy of the root vortex which is what is seen
cycle to cycle.

Because of fluid rotation, wave motion is possible in the root, the foil leading
edge vortices and vortices in the rolled-up flow in the foil tip (to be shown below).
The entrainment of air in the core, which is compressible, increases the elasticity
(Batchelor 1967, p. 555). The Kelvin mode m= 0, energy amplification factors of up
to 10 and the post-bursting vortex spread angle of 70◦ are net measures of the elastic
energy in the vortex.

3.8. Vortex breaking and jetting near the apex of the root vortex just prior to
bursting

The vortex narrowing in figure 7 shows a breaking point where the DH (±Γ ) crosses
and the vorticities cancel. See figure 3(b) sketch. The breakup point has fragmented
or there is no aeration. The growth of a vortex blob after that point and its bursting
are shown in figure 7. In figure 7(a), in (1) and (2), the main part of the root is
slanted at β = 45◦ meaning that it is undergoing maximum turbulence amplification.
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The bottom tip of the vortex shows a breaking, a growth of the vortex beyond and
reconnection. In Saffman’s (1990) model, viscosity cancels the vorticity at the breakup
point, centrifugal forces drop and pressure builds up which produces a jet. The jet
convects vorticity away and an ‘apparent reconnection’ is produced. The breakup
point is stretched in the visualization. The visualization shows that the breakup and
reconnection do not immediately lead to bursting. There is one more event involved,
considered below.

Beyond the breakup, the vortex is radially growing. The tip of the jet in figure 7(a)
shows unexpected examples of vortices spiralling on a conical surface: one in panel 2
and one in panels 6 and 7. The concentration of bubbles is inclined. The time interval
between panels 1 and 2, and between 5 and 6 is 0.033 s and a higher framing rate
than in Movie 3 is needed. The cone becomes upright in panel 7. The surface of the
cone is at 45◦ to the flow direction. The cone is also radially stretching at 45◦ to the
flow direction, but this time in the orthogonal direction. What occurs is a maximum
vorticity and turbulence intensification in all possible directions. Due to the finiteness
of the lateral rolling excursion, the shear is not confined to the longitudinal plane only.
There is shear in the lateral direction also (see the triangular region in figure SI-IA-5).
Between panels 6 and 7 in figure 7(a), the cone becomes upright because it is moving
to the stable posture of maximum stretching. The DH is spiralling from the base to
the apex in one example and from the apex to the base in another. The formation of
the cones is modelled below.

Panels 2 and 5 in figure 7(a) show that the tip of the root vortex is jetting twice.
The vortex grows radially in between. Figure 7(b) shows breaking in panels 1 and 2,
and reconnection in panel 3; the terminal bursting is shown in panel 4.

The root vortex, formed by the pitching motion of the foil, is a pitch vortex. But
the vortex formed in figure 7 after the breakup and reconnection has a horizontal axis
and is modelled to be produced by the rolling motion. It is a roll vortex. The breakup
has eliminated the memory of the initial condition.

Mechanism of the formation of the roll vortex and Kelvin mode m = 1. After the
breakup point, the vortex in figure 7 develops a swirling jet of velocity Uj. The
swirling jet is straight, horizontal and of uniform diameter. It is called a ‘vortex rod’.
The examples appear in figures 7(a2) and 7(cA); also see figure 9(n). The vortex rod
and the conical vortex flows are modelled. See Movie 3 at time stamps 01:10 and
01:12 (m:s) for two examples of the formation of the m= 1 vortex.

The rolling (φ) ‘vortex rod’ (see figure 7c) is not expanding. Hence, the local
circumferential velocity Vφ is >Uj, the local jet velocity, which is subcritical. Assume
Vθmax = Vφ = 0.43 m s−1. The transverse boundary layer thickness δtr = 0.5ε, half of
the local vortex rod diameter, where the estimated ε= 0.0043 m. Transverse boundary
layer Reynolds number Reφ = (Vφδtr)ν = 921, a low value. Axially, the jet Re of the
vortex rod is Rej = Ujε/ν = 1843, taking ν of water (1.003 × 10−6 m2 s−1), also a
low value. The j and φ motions, although treated separately, produce a spiral. The
air flow can be neglected whereby, on the water side of the interface, the flow is
of a stabilizing convex curvature and not of a destabilizing concave curvature air
flow. The rod is straight, so longitudinal curvature effects are not present, and the
transverse curvature effects are present throughout the transverse water boundary layer.
At low Re, such transverse curvature boundary layers are relaminarizing (Piquet &
Patel 1999). For these reasons the Taylor number Ta (defined later in the context of
figure 9) is subcritical, and the aerated transverse pairs of contra-rotating vortex tubes
are not formed, although some striations on the interface are present. This vortex rod
is stable and is not a source of bubbles.
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FIGURE 7. Vortex breaking, jetting, reconnection and stretching along 45◦ to flow
direction just prior to terminal bursting (a,b), and mechanism of formation of roll vortex
at vortex tip (c). (a,b) These sequences take place after the slant β of the main root
vortex reaches 45◦; repeated jetting and spiralling at vortex tip are shown, and formation
of spiralling cones and stretching along 45◦ are shown. (c) Insets 1 and 2 in (A) show
examples of ‘vortex rods’ which are swirling jets as in (a2); (B) schematic of the
mechanism of the formation of the roll vortex cones at the tip of the swirling jets shown
in (a,b).
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The mechanism of the Kelvin mode m= 1 is shown schematically in figure 7(cB,
cC). Define a cylindrical coordinate system (x, r, φ). At the terminal stage, the
horizontal jet impinges on the cross-stream vortex-free body of water, creating a
stagnation point. The swirling jet does not translate horizontally to any significant
extent (about 0.02 m) confirming the formation of a stagnation point. Under certain
conditions of the Reynolds number Rej = Ujε/ν, based on Uj, the vortex diameter ε
and kinematic viscosity ν, the flow very near the stagnation point becomes unstable
to azimuthal foil roll oscillation (φ). The DH tip experiences a motion that combines
the axial displacement of the jet and the instability of the stagnation point flow which
causes a motion in the cross-stream plane. As a result, the tip traverses a conical
surface, as seen in figure 7. There is a vertical shear (∂U/∂y) normal to x. In order
to maximize stretching, the vortex is oriented along 45◦ to x (the −45◦ orientation
is also present). Depending on the initial conditions, this 45◦ cone can have a source
or a sink type, radially outward or inward flow (figures 7(a6,a7) and 7(b3,b4)). In
the cross-stream plane, the equation of a source spiral (growing spiral) can be fitted
as r=Kφ, and of a sink spiral (damping spiral) as r=−Kφ, where K is a constant.
The position vector on the cone is s= (x, r). The cone in figure 7(a) shows that K is
a constant. Accounting for the axial jet and maximum stretching, ∂r/∂x = tan(π/4).
The mechanism of the elastic vortex (which is more viscous and less elastic) is both
similar and dissimilar to the viscoelastic fluid buckling (which is more elastic and
less viscous) (Mahadevan, Ryu & Samuel 1998).

The annotation on the right of figure 7(c) mentions that the vorticity in the cross-
stream plane develops a negative component (−ωφ) with respect to that found in the
upstream ‘vortex rod’. This negative component causes a spiral to form (Batchelor
1967). The spiral is stretched to the maximum extent, triggering the bursting of the
entire articulated vortex. The mechanism is discussed in § 3.10.1 in the context of the
formation of similar Kelvin m= 1 spirals in the rolled up foil-tip flow.

From figure 7, it is estimated that Uj is 0.13 m s−1, which is less than the
maximum foil velocity. Radial velocity dr/dt = 1.5Vθmax, and Vθmax = 4.6Uj. The
radial velocity (0.9 m s−1) is close to the foil velocity and is 6.9 times Uj. The
maximum swirl velocity of the jet may be just below Vθmax of the root vortex,
assuming some dissipation, because the diameter ε is similar to the root vortex or
pitch vortex diameter, as in figure 7(d1).

What happens if two co-rotating vortex tubes (Γ , Γ ) come close to one another?
Comparison of figures 7 (±Γ ) and 11 (Γ , Γ ; appears later) show that the vortex
breakup is not present in the (Γ , Γ ) case. Both flows encounter regions of ∂p/∂x> 0
and develop a stagnation point. The instability of the stagnation point flow leading to
the development of a Kelvin m= 1 mode single spiral occurs in the (Γ ,Γ ) case. This
case is similar to the spiralling cone in the (±Γ ) example. Both undergo stretching
along the principal plane direction (45◦ to x). Finally, the form after bursting is similar:
bursting into an arrowhead in the (Γ , Γ ) case, and into a cone in the (±Γ ) case.
In the region of ∂p/∂x > 0, ahead of the stagnation point, the displacement of a
vortex line radially outward creates an imbalance between the Coriolis and the viscous
components, setting up a resonant oscillation. This event creates the m = 1 Kelvin
spiral in both.

3.9. Two mechanisms of bubble formation in turbulent vortex bursting
Figures 1(c), 8(a) and 10 show that two sizes of bubbles are formed (more examples
appear in the SI). The coarse bubbles are formed near the free surface mostly in
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FIGURE 8. Bubbles are formed in clusters: fine bubbles in the foil boundary layer (a) and
coarse bubbles near the free surface or away from the foil (b–d); see figure SI-TA-4 for
ranges of Re and We where coarse and fine bubbles are formed in relation to Re versus
Cd and We versus Cd due to Haberman & Morton (1953) for bubbles rising at terminal
velocities in filtered water. Arrays of coarse bubbles are formed when a stretched aerated
vortex tube is suddenly released (b). All coarse bubbles are formed at the same time.

the foil wake-free surface quadrant. Here, the spiralling tubes (figures SI-TA-1(a),
1(e), 6(a1)) of the capillary surface waves are first stretched into the funnel of the
root vortex by the pitch oscillation. Arrays of bubbles of fairly uniform diameter are
formed (figure 8b–d) when the foil blockage is removed. Fine bubbles form on the
foil surface farther from the foil root where the bubble size would be influenced by
the wetting properties and viscous drag forces (Lepercq-Bost et al. 2008).

3.9.1. Mechanism of the formation of coarse bubbles: Taylor air tubes of the root
vortex

From the images, the diameters in the DH, where Re is lowest, are from 7.0× 10−3

to 20.0× 10−3 m. These bubbles are arched and distorted ellipsoids, and the diameter
refers to the minor axis. The diameters of the bubbles at higher Re are from 1.5 ×
10−3 to 20.0 × 10−3 m (Talaia 2007). As shown in figure SI-TA-4(g,h), the present
work lies in these ranges. The coarse bubbles are in these ranges: d= 0.0015–0.02 m,
v∞ = 0.20–0.40 m s−1, Bo = 0.303–53.82, Ca = 0.0028–0.0055, Fr = 2.72–0.8155,
Mo = 2.5638 × 10−11–2.5638 × 10−11, Re = 300–8000 and We = 0.8239–44. Because
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Bo is close to 1.0 at d = 0.0015 m, both surface tension and gravity forces act as
stabilizing forces in the Taylor air tube case. But Bo is �1.0 when d is 0.02 m; hence,
only gravity, not surface tension, will dominate as a stabilizing force in the DH case.
Repeating the helix experiment at 6 and 49 ◦C would vary the Mo by a factor of 10.
The coarse to fine diameter ratio is 104–105 (see § 3.9.2).

The marked example in figure 8(b) shows the presence of an array of coarse bubbles
of nearly the same size slanted at precisely 45◦ to the flow direction. Near the foil,
the slant of the bubble array is shallow. But downstream and away from the foil, the
slope of the bubble array is largely 45◦. The diagonally arrayed bubbles are formed
simultaneously in the entire field of view. This idea supports the hypothesis of bubble
diameter number (NB) modelling given earlier, namely that maximum stretching of the
vortex at 45◦ followed by sudden relaxation causes the discrete bubbles to form out of
the continuous aerated tube. In the modelling of NB in § 3.6, the vortex core pressure
due to centrifugal effects is balanced by surface tension. Equations (3.2) and (3.3), on
the other hand, do not include any property of the vortex.

The elliptic region in figure 8(c) is in reference to figure 3(a), where there are two
scales of foci. Short bubble arrays meet where the foil stem pierces the free surface.
These capillary tubes are forming small horseshoe vortices and may be the origin of
the small diameter DH root spirals in figure 4(c1, d1). Future research on the stability
of the contra rotating foci in figure 3(a) would be useful.

What happens if aerated capillary tubes in proximity are suddenly released en
masse? Figure 8(c,d) shows the near-surface bubble arrays upstream and midstream
of the foil in (c) and in the immediate downstream root region in (d). There are few
bubbles in the stable region of the root vortex 0◦ 6 β < 45◦, but there is a dense
cluster of bubbles in the unstable region of the vortex 45◦<β690◦. The linear bubble
arrays upstream are at an inclination of �45◦ (figure SI-IA-4). A few plausible short
segments of dashed lines are shown of bubble arrays originating from the same
aerated vortex tube. As marked by the box, the neighbouring tubes discharge the
bubbles simultaneously. The neighbouring tubes are oscillating synchronously when
suddenly released after stretching.

Figure 9 shows the formation of stacks of aerated tubes whose diameter is similar
to the coarse bubbles. Figure 9 has two parts: 9(a) and 9(b–n), with part 9(b–n)
being subdivided into 9(b–h) and 9(i–n). Figure 9(a) shows an unwound DH where
the bubbles, one of them marked by the arrow, are forming at axial intervals (λd/2)
approximately equal to half the diameter d of the tube locally. However, λd varies
axially, and the bubbles do not separate at axial distances of d (figure 2). The interface
necks locally because of the sudden loss of the tube stretching and the onset of radial
oscillation. Theoretically, in progressive capillary waves, the maximum value of the
ratio d/λ is 0.73 (where d is the height of the crest relative to the trough) if g is
ignored and γ is the only restoring force on a nominally flat free surface (Crapper
1957).

In figure 9(b–h), f = 1.0 Hz; in figure 9(i–n), f = 1.25 Hz. Figure 9(b–n) shows the
foil root vortex and a stack of air tubes wrapped around. They are arranged in order
of increasing complexity. Further examples of air tubes appear in figure SI-IA-6.

Taking centrifugal force as the destabilizing force and viscosity as a stabilizing
force, define Ta= (V2

θmax/R
2
1)R1(R2 − R1)

3/ν2 for concentric rotation cylinders (White
1994). Here, R1 is the external radius of the internal cylinder, and R2 is the internal
radius of the external cylinder. Applying to the present case and taking the gap (R2−

R1) to be d (= 0.006 m), the high value of R2/R1 is 0.85. The ratio can vary cycle
to cycle from 0.22 to 0.61. In solid cylinders, R2/R1 is 0.883 in Andereck et al.
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FIGURE 9. For caption see page 41.

(1986). It is easier to measure the diameter of the root vortex, than the diameters
of the vortices or bubbles. The critical value of Ta is 1700 is taken to calculate the
‘cylinder’ gap which in the present case is the diameter of a Taylor roll cell or bubble
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FIGURE 9. For caption see next page.
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FIGURE 9 (cntd). Aerated Taylor tubes of the root vortex: f = 1 Hz (a–h) and f =
1.25 Hz (i–n). The images are arranged in order of increasing but stable complexity such
as the emergence of fine pitch spiralling and patches of disorganization. The increasing
complexities are reminiscent of increasing Re in Taylor–Couette experiments but with solid
cylinders (Coles 1965; Andereck, Liu & Swinney 1986). In the air tubes of the double
helix (a), the pitching motion has suddenly removed the flow obstruction, and discrete
bubbles are forming in the tube but are not separated yet; the necking about one bubble
is marked by the arrow. The helical root vortex (b), modelled in (c,d) has one full turn
(the previous panel showing clear one turn appears in the inset, image reduced by half;
see figure SI-IA-2) and is experiencing maximum stretching (given by the 45◦ slope).
Organized Taylor roll cells of air tubes (e) are shown in contra-rotation in a schematic ( f ).
Taylor tubes on a top-like root vortex (g,i–k) are modelled in (h,m). The flow in (i,j,k) is
modelled in (l,m). A root vortex with multiple azimuthal lobes of instability is shown
in (n). The curved arrow in (e) marks the curl over at the tip of the Taylor tube. The
abrupt reductions in diameter at the apex, marked in (g,i), indicate the presence of Kelvin
mode m = 0 (Tsoy et al. 2018). The root vortex cone (i–k) has just been relaxed after
maximum stretching and the cone diameter shrinks; surface tension is reducing the surface
area; see notes in (l).

diameter (d). Taking all cases, the root vortex diameter near the origin is 0.0154 m
to 0.08 m. At f = 1 Hz, take 2R2 as 0.08 m in one example of a large value and
Vθmax = 0.419 m s−1. For critical Ta, these give d = 0.0008 m, a reasonable value.
Due to high background turbulence, the critical Ta may be <1700; U∞c/ν is 750,
a transitional value for reverse Kármán jets (Bandyopadhyay et al. 2012).

The conical form of the root vortex sets up an internal helical flow toward the
apex. Hence, the flow is open axially (Wereley & Lueptow 1999). The spiralling core
vortex is represented by the eigenvector shown schematically in figures 9(c), 9(d),
9(h) and 9(m). The flow is closed radially because it is rotating. The rotary motion
of the air–water interface forms ripples (millimetre scale) creating the air tubes in
figure 9(d–n). The tubes may also be originating in the free surface when the ripples
are drawn into the funnel. In the lowest Re case in figure 9(b) at f = 1 Hz, the Taylor
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tubes are incipient and formed in pairs. Hence, the Taylor number (Ta) is barely
critical (Tac). Owing to a lack of accurate lock-in, Re is slightly higher in figure 9(g),
although figure 9( f ) is still at 1 Hz. A model of the top-shaped vortex in figure 9(g)
is shown in figure 9(h), which shows the spiralling eigenvector and an interesting
narrowing of the tip where the rotational velocity is high. Stacks of Taylor tubes
appear at the interface with some waviness. The nipple in figure 9(b) is rounded,
but it is conical in figure 9(g). In both figures 9(b) and 9(g), the vortex has a
narrowing half-way along the axis, meaning that the mode of the eigenvector has
developed a ‘coning’ in figure 9(g). This conical mode of the root vortex is stable
because, overall, it is identical at f = 1.25 Hz, as shown in figure 9(i–k). It has been
shown earlier that the stability is due to the fact that the vortex is stable for β 6 45◦.
In figure 9(n), Re is higher, and the vortex cross-section has circumferential (but
non-axisymmetric) Widnall-type instabilities (Pierrehumbert & Widnall 1982).

In figures 9(i–k) and 9(n), Ta> Tac because the number of air tubes is large. In the
case of figures 9(i–k) and 9(n), the number of bubbles formed per unit length of the
tube would be numerous since the air tube diameter is smaller than in figure 9(a).

Compared to figure 9(e), as shown schematically in figure 9( f ), the Taylor tubes in
figure 9(i–k) show breaks that are the twisting of the air tubes. The breaks indicate
that spiralling waves are present in the Taylor tube stacks, in figure 9(i) an example
is marked by a pair of arrows, and the wavelength of the spiral is similar to the tube
diameter. The elasticity magnifies the effect. From the standing wave model in an
air tube, the local L/D= Nπ, where N is an increasingly large integer. The bubbles
formed would spin in relation to N.

Figure 9(g) is modelled in figure 9(h), and figure 9(i–k) is modelled in figure 9(m).
While the vortex eigenvectors are identical, the Re of the Taylor tubes has increased,
and the tubes are distorting and showing intermittency in the distortion. The dispersed
packets of unstable vorticity in the sequence (i–k) co-exist below the stable stacks of
air tubes still being stretched at 45◦. The unstable packets appear down below in the
increasing adverse pressure gradient region where the root vortex is narrowing. They
are already bursting in (k). The air tube in the straight part of the root vortex, however,
is able to sustain the standing waves by selecting a higher value of N. This feature
is not seen in the narrowing part. It is suggested that, for instability and bursting to
be triggered, the waves must stop standing first due to some larger-scale (�D) non-
uniformity in the boundary condition.

The side-to-side rolling motion of the foil produces an overall horizontal jet flow
from left to right in the images in figure 9. In figure 9(e,g,i–k), the Taylor tubes are
inclined to the horizontal external flow direction at a mean angle of 45◦ which is the
direction of principal strain. A few examples are marked by the pairs of thin arrows in
(e,g,i), and the direction of each arrow indicating the direction each stretches. In (e),
the curved arrow marks an upstream curling over of the tip. The air tubes are expected
to be elliptical in the transverse plane. Near the tip, if the induced flow between the
legs of a Taylor tube lying in the transverse plane (not visible) is upward, then, in the
absence of any external mean flow shear, an upstream curling over would be produced.
In turbulent boundary layers, which are jungles of hairpin vortices, in the outer part of
the layer and away from the wall, the hairpins also lie at a mean angle of 45◦ to the
flow direction, and at low Re, similar upstream curling over do occur (Bandyopadhyay
1980; Head & Bandyopadhyay 1981; Perry & Chong 1982; Adrian et al. 2000; Wu
& Moin 2009).

The slanting of the Taylor tubes is close to 45◦ without much variation. We attribute
this organization to the external forcing of the flapping foil. In low Re turbulent
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boundary layers, such a forcing mechanism accurately models the spatio-temporal
drag reduction (Bandyopadhyay & Hellum 2014).

Although the no-slip boundary condition of conventional Taylor–Couette cylinders
(Taylor 1923) is modified to a slip condition of a rippled free surface, the growth
of waviness, spiralling and intermittency of the air tubes with Re are similar (Coles
1965; Andereck et al. 1986; Tritton 1989). The states of the Taylor air tubes are stable,
organized and not turbulent (Gollub & Sweeny 1975). The bubbles from neighbouring
tubes would rotate in the opposite directions (figures 9d, 9f and 9l). The rotation helps
provide the stable trajectory in figure 9(b2). The above is an uncommon example of
Taylor–Couette flow.

3.9.2. Mechanism of the formation of fine bubbles: wall effects
In the foil boundary layer, with increasing wall shear stress (decreasing viscous

sublayer thickness δs) with increasing f , the fine bubble diameter would decrease. The
capillary number Ca is defined as the ratio of the viscous force to the interfacial
tension force and is given by

Ca=µU/γ , (3.2)

where µ (Pa s) is the absolute viscosity of water, U(m s−1) is the velocity at the edge
of the viscous sublayer and γ is the surface tension (N m−1). The bubble diameter
would be smaller than δs.

The bubbles would form when the difference in pressure, 1P, between the
surrounding water and the air jacket overcomes the capillary pressure difference.
From Young’s thermodynamic equation, the minimum pressure difference, Pmin, is a
function of the contact angle (the wetting property), as

Pmin = 4γ cos θ/d, (3.3)

where θ is the contact angle between the water and air on the foil surface, and d is
the bubble diameter. Here, γ remains constant, but the head increases with the span
of the foil. So, near the foil tip, the water will advance into the air jacket, but, at a
shallower span, the air jacket will advance into the surrounding water. Depending on
whether the interface on the foil surface is advancing or receding, θ can be acute or
obtuse. This mechanism can be called a wall-based mechanism.

Figure 1(b,e) and SI-TA-3(c) show two paths of air entrainment (see Eggers 2001).
Figure 10 shows the wall-based mechanism of the formation of fine bubbles. The
funnel centre, marked by a point source of pressure −p, is moving closer to the fin
while air is sucked in jacketing the suction side of the foil. Clouds of bubbles form
near the trailing edge of the jacket toward the foil tip. The edge of the fine bubble
cloud toward the foil tip is moving upstream. But the trailing edge of the air jacket
closer to the root is moving slightly toward the foil trailing edge. Near the foil root,
there is an advancing wave front forming bellows in the jacket – the arcs around the
centre −p, as shown in the schematic in figure 10(c). As shown in the elliptical insets
in figure 10(c), near the root, the air front advances toward the trailing edge, following
the arc of the bellows, while the water front advances upstream toward the foil leading
edge. Hence, the contact angle on the water side recedes near the root (γR < 90◦),
while it advances near the foil tip (γR> 90◦). The contact angle is at equilibrium near
the foil root where the spanwise edge of the cloud is.

The fine bubbles are produced by the bursting of the air-jacketed boundary layer
over the suction side of the foil near the outer end of the span where the foil
surface velocity is higher (figure 10). The fine bubbles are not formed at f = 0.75 Hz.
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FIGURE 10. Formation of fine bubbles on the foil surface: time sequence of air jacket
and regions of clouds of fine bubbles over the suction side of the fin (a,b); schematic
of surface tension mechanism of the formation of fine bubbles (c). Two elliptical insets
in (c) show cross-sections of areas where the foil surface and the air and water interfaces
meet. In (a), the markings ‘a’ and ‘b’ draw attention to an extremely thin aerated vortex
with small amplitude waves, aligned with the centre of the funnel; when stretched to the
maximum extent due to the 45◦ slope, this vortex buckles to a sinusoid marked (c,d)
in (b).

Assuming a Blasius boundary layer to be developing over the foil, the foil velocity
is V = 2πfr, where r, the average foil span= 0.15 m. Assuming a Blasius profile, the
boundary layer thickness at the half-chord distance of l = 0.05 m from the leading
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FIGURE 11. Time sequence showing that the foil-tip vortex and the root vortex burst
simultaneously at f = 1.25 Hz. A row of two spiralling vortices (m= 1) from the foil tip
is being stretched at 45◦ to the vertical, moving diagonally upwards. Subsequently, they
burst simultaneously with the root vortex. Arrows of the tiny spiral schematics on the
right side of the panels in (1) and (2) show the eigenvector of the vortex line. The inset
in panel 1 shows how a pair of co-rotating vortex lines spiral to produce the chevron; they
then fuse and produce the single spiral bursting eventually as shown in panel 2. Regions
of favourable and adverse pressure gradients are marked in (1); x is along foil chord.

edge is δ =
√
νl/V = 1.9952 × 10−4 m at f = 1.0 Hz and = 1.7846 × 10−4 m at

f = 1.25 Hz. These values are the upper limit of the fine bubble diameters. Use
v∞ = gd2(ρw − ρa)/(18µw) (Stokes 1880) to get the terminal v∞ = 0.0216 m s−1 at
f = 1.0 Hz and 0.0173 m s−1 at f = 1.25 Hz. We estimate these values: at f = 1.0 Hz,
Bo=0.0054, Ca=2.98×10−4, Fr=0.2394, Mo=2.5638×10−11, Re=4.30 and We=
0.0013; at f = 1.25 Hz, Bo= 0.0043, Ca= 2.38× 10−4, Fr= 0.1713, Mo= 2.5638×
10−11, Re= 3.08 and We= 7.3487× 10−4. Because Bo< 1.0, γ , not g, dominates as
a stabilizing force, unlike in the coarse bubbles (see figure SI-TA-4(g,h) to compare).

3.10. Co-rotating vortex tubes of rolled-up foil tip flow
The boundary layer flow from the pressure side near the foil tip rolls up to the suction
side in a 270◦ arc, as shown in figures 11, 12, SI-IA-7 and SI-IA-8. The rolled-up
foil-tip vortex is marked by fine bubbles. Due to the absence of any breakup, the
vortex tubes are inferred to be co-rotating, represented as (Γ , Γ ).

In figure 11, the rolled up foil-tip flow has a row of two single spirals (they are not
DH) that are being stretched at 45◦ to the horizontal external flow direction as the DH
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root vortex does. The spirals, 2 cm× 2 cm in size, are larger than the local boundary
layer thickness. In figure SI-IA-7, the formation, bursting and the continued motions
of the two spirals downstream of the foil are tracked frame by frame (see Movie 3,
time stamp 01:38 (m:s)). Due to the passage over the accelerating part of the foil
boundary layer, the spirals 1 and 2 in figure 11 form beyond the chord location of
maximum foil thickness after the vortex tube has thinned. The spiral 1 bursts into
an arrowhead form (see figure 3b), first seen in panel (2), where the external flow
velocity has dropped in conformity with Batchelor (1967).

Panels 3 to 6 in figure SI-IA-7 show two sequences of the formation of a single
spiral, bursting into an arrowhead and the formation of chevron in the rear. The rear
end of the burst arrowhead does not move over the time step of one frame indicating,
the presence of a stagnation point.

The inset in panel 1 of figure 11 clarifies that the chevron in the rear of the spiral
is actually the helical interaction of two co-rotating vortex tubes. On entering the
adverse pressure gradient boundary layer, the chevron widens laterally, the two vortex
tubes subsequently fuse and a single spiral (or coil) is produced which eventually
bursts. Spirals form when vorticity becomes negative (figure 7(cB)). The spirals in
figure 11(1) exist outside the Blasius layer which is only 2 mm thick. The spirals
and the chevrons are not associated with any externally imposed perturbation, such
as boundary layer injection, and do not trigger any boundary layer transition and
thickening over the foil (Perry, Lim & Teh 1981).

Apart from providing direct experimental evidence in support of Batchelor’s (1967)
theoretical statements on vortex elasticity, we show that vortex bursting requires a
necessary condition to be satisfied, namely, that the vorticity amplification needs
to be maximized prior to bursting by bringing the alignment of the vortex to the
direction of principal strain. Cross-stream views of principal strain may be explored
in vortex bursting where the maximum vortex stretching has not yet been reported.
In future research, turbulent boundary layer over the underside of a horizontal plate
in water would subject the hairpin vortices to both principal strain stretching and
adverse pressure gradient.

The foil-tip rolled up flow has signs (Γ ,Γ ) because it originates from the boundary
layer vorticity on the pressure side where there is no separation. The stretching along
the 45◦ inclination intensifies the vorticity bringing the two vortex cores closer. The
vortex tubes fuse into one (2Γ ), and do not cancel their vorticities as in the contra-
rotating DH (±Γ ). The fused tube (2Γ ) develops Kelvin instability of mode m = 1
(Tsoy et al. 2018) in the adverse pressure gradient region of the foil boundary layer.
The foil-tip single spiral (2Γ ) bursts simultaneously with the root vortex DH (±Γ ).

3.10.1. Formation of single spirals of Kelvin mode m= 1 and bursting
In a vortex tube, in the cylindrical coordinates (x, r, φ), let (u, v,w) be the respective

velocities, (ωx, ωr, ωφ) be the vorticity components and a and b represent the radii in
the accelerating and decelerating zones of the foil boundary layer. In a swirling flow,
the relationship of w with (u, v), produce unexpected changes. Using the steady, linear
and axisymmetric analysis of Batchelor (1967, §§ 7.5 and 7.6), the formation of the
spirals, the bursting and the origin of waves and chevrons are explained. These are the
properties of a vortex, and including the origin of waves in a vortex, the explanations
do not need the vortices to be aerated, although that could enhance elasticity.

In the accelerating leading edge of the foil, as the vortex tube is stretched, the
components (u,w, ωx, ωφ) increase and the radius a is reduced (a< b). As the vortex
tube enters the decelerating region of the foil boundary layer, the radius b increases
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and (u,w,ωx,ωφ) drop. Since wrv= const. (rv is radius), a vortex line going around the
centreline of the vortex tube would be pushed outward in the transition zone. While
going around, compared to the upstream zone, the vortex line will fall behind and
a spiral with (−ωφ) will result because this component was (ωφ) in the accelerating
zone. This produces a positive ∂u/∂r in the downstream region so that a minimum
value of u is produced at the centre of the tube. Across the vortex tube, the velocity
profile changes from a jet to a wake (figure 6c).

In a pipe flow, Brown & Lopez (1990) have shown the development of a negative
component of vorticity as the reason for bursting attributing this to tilting and
stretching. We give direct evidence of (−ωφ), including that for tilting which produces
maximum stretching. We give visual evidence of bursting. We have seen similar
evidence in the root vortex post-breakup, making the evidence sufficiently broad. We
have interpreted these orderly spirals as Kelvin mode m = 1. The understanding of
the vortex bursting mechanism is now unifying some key elements scattered in the
literature.

The sudden increase in the vortex diameter into a confused arrowhead shape flow,
seen in figure 11(2), is called vortex breakdown or bursting. This event happens at
the critical or minimum value of U2/U1, where U2 is the external velocity and U1
is the axial velocity in the vortex centreline. There are other explanations, such as
a hydraulic jump by Benjamin (1962). In contrast, we find that spiralling precedes
bursting which is not stated in Batchelor (1967), although spiralling and bursting are
discussed separately.

Due to the presence of the restoring forces in the vertical direction, there are
several possible mechanisms that could lead to a self-oscillation of the vortex tube
and the generation of waves that travel along the vortex axis. The bubbles in the
vortex tube are subjected to gravity, buoyancy forces and viscous resistance. If they
are perturbed vertically, a damped self-oscillation can ensue about a neutral position.
Other sources of self-oscillation can be coalescence and interactions between the
bubbles. The bubbles can also bounce over the foil surface. Since the streamlines
in the vortex tube are not spreading apart and the tube is largely remaining tube
like, Ro→ 0. When a vortex line in the vortex tube is displaced radially due to the
pressure gradient, the Coriolis forces will try to restore the displacement. As a result,
a self-oscillation would ensue. The degree of freedom of the vortex tube is large
because the number of bubbles is large. Hence, the bubble filled vortex tube will
behave like a continuous medium. The oscillation of the vortex tube will manifest
as many waves which will travel. However, the presence of the spirals and vortex
bursting are evidence of resonant waves in the vortex tubes, which scale with the
diameter of the vortex tube (Bandyopadhyay et al. 1992; Bandyopadhyay & Hellum
2014).

The Kelvin wave spiral (mode m= 1) appears along the 45◦ slope to Uext when the
vortex tube is stretched and the radial spread of the foil-tip vortex agglomeration is a
maximum (figure SI-IA-8; the foil roll velocity (∂φ/∂t) reaches its maximum value).
The increase in the centrifugal force destabilizes the balance with resistive viscous
force and an oscillation in the vortex tube ensues creating the spiral.

3.10.2. Modelling of chevrons of co-rotating vortex tubes
Waves form past the stagnation points of vortex crossings in both types (±Γ )

and (Γ , Γ ). In (Γ , Γ ), we look for waves in the chevrons in figure 12 ahead of
the vortex fusion. The chevron is spread apart further when the co-rotating tubes
in figure 11 enter the adverse pressure gradient region of the foil. The spread out
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FIGURE 12. Kelvin divergent wave model of a foil-tip chevron; f = 1.25 Hz. The model
is empirical. A pair of co-rotating spiralling vortex tubes are coming from the pressure
side of the foil tip. While being stretched at 45◦, the combined vortex tube bursts into an
arrowhead shape. This panel appears in between the panels in figure 11(1 and 2). Curved
big arrow represents the bundle of streamlines of the rolled up flow of the foil tip. Regions
of favourable and adverse pressure gradients are marked; x is along the foil chord, Uext
is the external flow velocity.

chevron, resisting fusing, is modelled below as experiencing trains of Kelvin divergent
waves. This example is similar to what is briefly seen on the surface in figure SI-TA-1
also at f = 1.25 Hz. The chevron has symmetrical branches lying in a plane. This
occurrence is consistent with that for Ro� 1, where the waves are planar and at an
angle to the axis of rotation of the upstream vortex (Batchelor 1967). Assume that
the stagnation point at the apex of the chevron and upstream of the burst vortex is
translating along the 45◦ slope, producing a divergent wave train. Figure 12 shows a
plausible empirical explanation that the plane waves divide symmetrically at angles
of ±19◦ to the upstream vortex axis. The agreement is good. The transverse waves
being weak are not seen. The pressure point in the parlance of divergent waves (say,
a sailboat is being dragged in a channel), or the stagnation point, also match.

We use the dispersion relationship λg = 2πU2(cos θ)2/g to estimate the wavelength
λg. The stagnation point moves at an estimated velocity of 0.14 m s−1. For θ = 45◦,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1075


Vortex bursting near a free surface 888 A27-51

λg = 0.006 m. This value is in agreement with figure 12. The pitch of the spirals
is similar to λg. Independent verification of the hypothesis is required. The stretched
aerated vortex line at 45◦ slope sustains waves and is elastic.

3.11. Initial condition dependence: cycle-to-cycle concatenation
Like equation (2.7), the sum of roll (τφ), pitch (τθ ) and twist (τθ t) torques introduced
is conserved cycle to cycle. If the sharp leading edge of the foil at its root penetrates
the funnel, entrainment by the foil leading edge takes place. The funnel oscillates. The
root vortex may spawn small funnels in the large funnel above it (figure 13c,d, SI,
Movies 1 and 4). A concatenation model of this variation is given below.

The entrainment at the root (Ωroot) and the foil (Ωfoil) shown in figure SI-DA-4 are
given by

Ωroot = erf(x)=
2
√

π

∫ x

0
e−t2 dt, and (3.4)

Ωfoil = erf c(x)= 1− erf(x). (3.5)

Here, t is time, and x is the surplus or deficiency in entrainment (mass or volume of
air) from a long time average. In figure SI-DA-4, the total normalized entrainment of
1.0 is given by the applied torque.

Figure 13 shows vertical secondary DL and turbulent surface vortices on the lee
side, translating horizontally. Figures 13(a) and 13(b) show that the funnel mouth, of
diameter q, indicated by the dark spot on the free surface – an indentation on the
surface – is small and translates with the air-entrained vortex below it, at a depth
of p. Due to a pressure difference with the vortex core, the cusp of the tiny funnel
sends air to the vortex through a very thin (invisible) tube. The elastic vortex is pinned
between the unstable stagnation point below and the free surface as it pushes against
the pressure gradient downwards. A leeward shear of the stagnation point buckles
the vortex producing a standing Kelvin wave. A third mode of buckling – a two
wavelength long dashed and dotted line – is fitted. Since p� q, the unstable elastic
vortex has an abrupt drop in the diameter as in Kelvin mode m= 0. For p 6 q, there
is nothing to buckle as in (d). The m= 0 mode does not undergo maximum stretching
because it is not aligned to the direction of principal strain and is not active in the
production of visible bubbles. In the turbulent case in figures 13(c) and 13(d), the
funnel is wider. The funnel oscillations and the secondary surface vortices in the near
wake control the apportioning of the air entrainment between the foil and the root
vortex.

3.12. Modelling of the modulus of elasticity of an aerated vortex
Figure 10(a) shows a thin vortex with small amplitude waves, aligned with the centre
of the funnel, later buckling to a sinusoid in (b) when stretching reaches the maximum
level due to the mean vortex slope of 45◦. Below, a buckling model of the modulus of
elasticity E of the vertical elastic vortex tube, near the free surface in figure 13(a,b),
is given. Added mass effects are ignored. The vortex length in (a) allows a spiral
of two turns; see figure 3 in Bandyopadhyay & Gad-El-Hak (1996). Ignoring the
spiralling, this is simplified to a planar buckling and aerated ‘bar’ of third mode. Two
wavelengths lying between the stagnation point and the free surface (the dashed and
dotted lines) can be fitted to the elastic vortex in (a).
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Buckling vortex

Unstable
stagnation point

flow

Connecting at
breakup point

P3

P3

q

q

ÁKÁ

pSinÁ

Á p ≫ q

p ≤ q
q

q

m = 0

45°

(a) (b)

(c) (d)

™p/™y > 0

FIGURE 13. Time frames of lee-side air-entrained secondary surface vortices:
‘laminar’ (a,b) and turbulent (c,d). In (a,b), the upper arrow marks a surface indentation
that is the funnel mouth of diameter q. This funnel translates down with the air-entrained
vortex, as marked by the lower arrow, at a depth of p; p� q. The Kelvin mode m= 0
is formed, shown by the dotted line part (the upper wave of buckling). The vortex in (a)
is a spiral of two turns (see figure 3 in Bandyopadhyay & Gad-El-Hak 1996). Ignoring
the spiralling, this is simplified to a buckling aerated ‘bar’ of third mode. That is, a
wave of two wavelengths lying between the stagnation point and the free surface (the
dashed and dotted lines) can be fitted to the elastic vortex in (a). KΨ is torsional spring
constant. In (c,d), the dashed perimeters enclose the turbulent secondary surface vortex;
p 6 q in (d). Coordinate y is downwards from the free surface; P3 is axial load for the
third mode of buckling.

The deflection of an elastic solid bar undergoing the third mode of buckling is given
by P3= 9π2EI/p2, where P3 is axial load (N), and p is the length (m)= 1.2c, where
c is the foil chord, and I is the second moment of area = π(q/2)4/4. For critical
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buckling, I should be from the minimum value of the diameter q (m). The value of
the visible q varies from 0.01 m at the axial location where the deflection is zero
to just under 0.02 m where the deflection is the maximum. Take P3 = ρgp(πq2/4)
(N). Ignoring the reduction in the vortex diameter, P3= 0.37 (N) for q= 0.02 m, and
P3 = 0.0924 (N), for q = 0.01 m. For P3 = 0.37 N, E = 7.6× 103 N m−2. For P3 =

0.0924 N, E=3.05×104 N m−2. For comparison, E for gelatin gels is 1×103 N m−2

(Lucas et al. 2015), and for water, E is 2.2× 109 N m−2.
The above simplification holds for the lower wavelength since the axis remains

vertical where the foil trailing edge effect is uniformly felt. For the upper wavelength,
the foil trailing edge effect is less due to a foil truncation (figure 1a). There is a
resistance of torsional spring constant KΨ due to the effects of the lower trailing edge
vortex, and this applies at the lower boundary condition. See figure 13(a). A net lateral
buckling displacement of pSinΨ is produced. Since Ψ is small, the critical value of
the compression load is Pcr = KΨ /p. Assuming Pcr = P3 = 0.0924 N, the estimated
spring constant KΨ is 0.011 Nm rad−1.

A force of 0.0924 N is 1/10th of the lowest load in air in a small flapping fin
produced in our gearless hemispherical motor drive, which is the lowest-friction drive
built by us (Bandyopadhyay 2019). Say, the root vortex in figure 6(b) oscillates axially
10 to 20 times while discharging bubbles in the unstable zone. Assume that such loss
of energy due to release of compressed air in the form of bubbles is similar to the
frictional losses in the flapping mechanism of flying insects, and that the number of
natural damped oscillations in the spring–mass–damper system is equal to the quality
factor Q. Then the Q of the damped oscillation of the bursting root vortex is similar
to that of fruit fly, hawkmoth and bumblebee (Ellington 1999).

4. Discussion
Examples are shown of aerated vortices undergoing changes in cross-section near

a free surface. Table 1 is a listing of the new vortex flows observed in the swirling
surroundings. They show the breakup clearly where the double helix crosses near the
apex and the jetting at the apex of the cone, as postulated by Saffman (1990). Kelvin
mode of 1 is shown to be present; the presence of mode 0 is limited.

The root vortex is composed of contra-rotating vortices (±Γ ) but the foil-tip vortex
spiral is composed of co-rotating vortices (Γ , Γ ). In the absence of a theory of
instability explaining vortex bursting and bubble formation near a free surface, and
to minimize the number of assumptions, a simplified overview is given. The flow
has shear and an adverse pressure gradient. After formation, induced velocity cones
down both vortices to a crossing. In the shear, both vortices are stretched causing
turbulence and vorticity amplification until the maximum level is reached in the plane
of principal strain. The vortex crossing causes the (±Γ )-type to break up reconnecting
later, while the (Γ , Γ )-type is fused. Both types undergo Kelvin wave instabilities
first of mode m = 0, followed by m = 1 spiralling. It is assumed that the uniform
diameter ‘vortex rod’, and the abrupt diameter reductions in the (±Γ ) type, as well
as the straight section of fused vortex tube between the chevron and the m= 1 spiral
in the (Γ , Γ )-type, represent the m = 0 waves. In both types after the m = 1 mode
is formed, the entire vortex family stretched optimally bursts creating smaller scales.
Extending Theodorsen’s (1952) and Lundgren’s (1982) theories relating structures to
scales, the elements of the energy spectrum is present in the concatenating vortex
instabilities.

(a) Summary conditions of vortex bursting: in the rotating flow near a free surface,
several organized vortex structures with an air core are produced. Exhibiting elastic
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properties, they buckle and sustain waves. The stretching and bursting properties are
common whether the vortex structure is a double helix at the root or is a single spiral
originating near the foil-tip boundary layer. After the formation, the progression of the
DH root vortex to bursting is given by

β→ 45◦, and (4.1)
CLV→ 1.0. (4.2)

The vortex bursts when these limits are crossed,

β = 45◦, and (4.3)
CLV = 1.0. (4.4)

Strictly speaking, CLV = 1.0 is due to both the root and the leading edge vortices.
However, due to large span/chord, only one vortex is strong. Near the free surface,
the leading edge contribution is smaller.

The stages of bursting observed can be compared with theory noting that: (a) the
vorticity form of the Navier–Stokes equations gives the effect of stretching in shear
and shows that vorticity becomes a maximum when the stretching is along the
principal strain; and (b) bursting can be seen as vortex breaking, modelled by
hyperbolic equations. When two vortex cores cross, the vortices break. Vortex
breaking is seen only after the vortex has been maximally stretched. The effect
of external strain is given by r = παbh/Γ (equation (2.12), Saffman 1990), where
b, h are minor and major axes of the elliptic cross-section of the vortex core, Γ is
circulation at time t and α is a function of the initial geometry of the vortex and
circulation Γo. The axial strain reaches a maximum value just before Γ becomes
negligible. By then A= bh drops by 75 %, causing the vortex breakup. In the present
experiments, Γ ≈ 0 and A≈ 0 when no bubble is seen locally along the vortex axis,
and yet there are vortex lines and a blob aligned downstream. Our results are in
agreement with the mechanisms of Saffman’s model of vortex breakup in case of
(±Γ ) type. In case of the (Γ , Γ ) type, wave equation modelling is required. The
following is a summary of the related aspects of the flow.

(i) Due to vorticity cancellation by viscosity, the DH breaks where the tapering
opposite helix touch farthest from the root, creating a stagnation point, pressure build
up and a swirling jet. By pulling in vorticity from the DH, the jet reconnects the
breakup. The swirling jet is a vortex tube with a remarkably uniform diameter, and is
horizontal, experiencing no stretching. The jet strikes the water, creating a spiralling
vortex cone of Kelvin mode m = 1 of negative vorticity because it falls behind the
rotation in the upstream swirling jet. The conical aerated vortex is stretched along
multiple 45◦ slants while bursting.

(ii) Spatially separated from the root vortex, co-rotating vortex tubes of the rolled-
up foil-tip flow spiral around one another over the foil. They also proceed along
an inclination of β = 45◦ to the vertical whereby the vorticity is stretched to the
maximum extent. These vortex tubes fuse but do not break as in the co-rotating case.
Over the adverse pressure gradient region of the foil, an m = 1 mode of negative
vorticity is produced, but this vortex spiral is small and is of uniform diameter – not
conical, as in the contra-rotating case. This small vortex spiral bursts simultaneously
with the root vortex.

(iii) Pinned between the free surface and the breakup point, the DH spiral stands,
appearing as stacks of Taylor tubes as in Taylor–Couette flows, although aerated. The
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Taylor tubes are radially closed, albeit not with the wall boundary condition. This
perspective contrasts with past Taylor–Couette experiments with solid cylinders.

(iv) The wavelengths of the bursting aerated vortex tubes are compared with the
sound measurements in oceanic breaking waves.

(v) While coarse bubbles form in the root vortex away from the foil, fine bubbles
form only in the foil boundary layer owing their origin to the instability of the contact
interface.

(vi) Since the water is thermally stratified, an impulsive initiation of the foil pitching
motion (not rolling) creates capillary waves induced by surface tension emanating
radially from the surface piercing foil stem, with the number of rays increasing with
time. Impulsive disturbances produce similar waves in stably stratified salt solutions
of constant Brunt–Väisälä frequency. Here, the impulse is resolved into orthogonal
waves.

(b) Comparison of terminal spirals with large structures of turbulent boundary layer
separation: consider the similarities between the post-breakup vortex formation in
figure 7(a) and the breakdown of the sublayer vorticity causing incipient separation in
a nominally two-dimensional flat plate turbulent boundary layer (TBL) where a series
of large structures (LSs) forms; each LS consists of several hairpin vortices. Both are
adverse pressure gradient flows where ω→ 0. The apex of the vortex cone is similar
to the point of separation and the vortex cone is similar to the LSs of the separating
TBL. Let x, y, z be the longitudinal, surface-normal and transverse distances in the
wall over which the TBL is developing. The vorticity equation (1.1) can be simplified
in the viscous sublayer of the nominally two-dimensional (0, 0, ωz) flat plate TBL
(Bandyopadhyay 1995). Here, ωz is the transverse vorticity given as ωz = −∂U/∂y
where U is the longitudinal velocity. The velocity and vorticity gradients in the
longitudinal and lateral directions are small compared to those in the surface-normal
direction. The vorticity equation then simplifies to (1/ρ)∂p/∂x+ ν∂ωz/∂y= 0 which
can be solved for ωz if ∂p/∂x is measured at an instant of time. The equation
shows that the longitudinal pressure gradient and vorticity in the normal direction
are related near the wall (y→ 0) where there is a powerhouse of vorticity waiting
to be ejected in the normal direction (Tritton 1989, p. 142; Lighthill 1963, p. 69).
Measurements from closely spaced temporal wall-pressure sensors applied to the
simplified vorticity equation show that in the boundary layers, the vorticity flux lines
are inclined at a mean slope of 45◦ ± 5◦ (Andreopolous & Agui 1996). The vorticity
flux lines are similarly inclined in the conical vortices in figure 7 also. Extending
the two-dimensional argument, the vortex cone, free to rotate in (x, r, φ), has a
3× 3 matrix of torque and strain with a set of mutually perpendicular principal axes.
A converse argument can also be made.

(c) Comments on stretching: in (Γ , Γ ), maximum stretching along the principal
strain direction, spiralling between tubes, merging and bursting are seen. However,
vortex breaking is not seen in the rolled-up foil-tip flow and the bursting is not as
catastrophic. Due to a lack of entrainment and bubble formation, the elastic energy is
much lower. The bursting of aerated vortices can scatter more than bubble type does.

In the rare example in figure SI-IA-9 at f =1.25 Hz, there are two DH root vortices:
one DH is slanted at 45◦ and has Taylor tubes, as common for f = 1.25 Hz, but
the other is at a shallower angle and has a DH without Taylor cells as seen at f =
1 Hz, exactly as in figure SI-IA-2. While the former bursts, the latter merely expands
radially due to the loss of stretching. This behaviour may be due to a lack of lock-
in. Only vortices experiencing maximum turbulence amplification broaden the energy
spectrum.
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FIGURE 14. Example of preferred connection point of several aerated vortices in
proximity in a relatively pristine surrounding at f = 1.25 Hz. The vortex undergoing
maximum stretching, given by the 45◦ slope, is experiencing a breakup at the tip where
the arms of the double helix with opposing circulations (±Γ ) cross. This breakup point
in panel 1 becomes the reconnection point later in panel 2. The neighbouring vortices
fuse at this reconnection point as shown in panels 3 and 4. The aerated connection point
manifold with multiple vortices is 0.01 m in diameter.

(d) Preferred connection point of multiple vortices in proximity: How would the
vortices in proximity in figures 2 and 14 interact? Figure 14 shows an example at
f = 1.25 Hz of vortices connecting at the same point (panel 4). Figure 2 shows two
examples at f = 1 Hz both connecting at the breakup point. The initial free surface is
flat. In figure 14 panel 1, there are three vortices: a DH root vortex, a twisted trailing
edge vortex down below and a surface vortex on the right (unmarked) formed first
(Movie 3). The vortices are formed in the same cycle. As per Kelvin’s theorem, their
circulation must have been connected to start with. The root vortex is undergoing
maximum turbulence intensification because it is slanted at 45◦. The root vortex is
also undergoing breakup (panel 1) and reconnection (panel 2) near the apex where the
arms of the DH (±ω) must be crossing. Panels 3 and 4 show that all three vortices
have fused at this breakup point of the most stretched vortex. Moreover, figure 2(3)
shows that the connection takes place only at the vortex crossing points in each DH;
even the stray vortex also meets there although disintegration into bubbles has taken
place. As per Biot–Savart’s law, vorticity intensification enlarges the induced velocity
field to make this possible. The rule of vortex congregation and connection is as
follows. In a random agglomeration of vortices in a swirling shear flow, the vortices
will congregate near the vortex undergoing maximum stretching, fusing at the point
where the crossing of opposing circulation is causing a breakup. Saffman’s (1990)
positive feedback loop accelerates this process.

(e) Flow dimension: examine the dimensions and the stability of the flow. Consider
the Cartesian roll, pitch and yaw angles (φ, θ, ψ) as in figure 1, where the rate of
separation of the neighbouring fluid motion trajectories is measured by the Lyapunov
exponents (λφ, λθ , λψ ). Since θbias = 0◦ in the foil (equations (2.2) and (2.3)), there
is no yawing motion (Menozzi et al. 2008) making λψ 6 0. The flow is stable in ψ .
Hence the flow is low-dimensional. Compare the capillary waves due to (φ and θ ) as
in figure 1(d) and SI-TA-(2, 3). The fluid trajectories on the surface remain periodic in
φ and do not grow, hence λφ=0. But they do grow in θ , hence λθ 660. Figure SI-IA-9
shows two periodic aerated double helix vortex flows of different pitches co-existing
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and growing simultaneously – uncommon occurrences. Hence the flow is chaotic in θ
and λθ >0. The periodicity restricts the dimensions of the instabilities making the flow
weakly nonlinear. The root vortex system has some dependence on initial condition
but only in θ .

(f) Breaking and reconnection time scales: for the geometric parameters of initial
vortex core radius and the radius of a ring vortex, equations (3.8) and (3.9) of
Saffman (1990) give connection and rejoining times (T) as Γ T = constant, where
Γ is circulation. His model equations are hyperbolic (wave equations). Take the
Kelvin wavelength λ, a property external to the aerated vortex core, as a length
scale. Therefore, the vortex breaking and rejoining time scales can be modified
non-dimensionally as Γ T/λ2

= constant.
In the foils flapping at f , the lift force L, and also for equivalent orthogonal

oscillatory surface waves, f 2
∝ L = ρUΓ , Γ ∝ f 2/U, where ρ is density. Changing

the constant of proportionality by multiplying by λ3 to balance the dimension m2 s−1,
Γ ∝ f 2λ3/U. Therefore, equations (3.8) and (3.9) in Saffman (1990) represent Strouhal
numbers writing Γ T/λ2

∝ ( f 2λ3/U)(T/λ2)= fλ/U = a constant if f T = const. which
relates the foil oscillation time scale with the time scales of vortex breaking and
reconnection. With increasing f , T is lower, a correct trend.

At f = 1 Hz, the time for vortex breaking and rejoining is 0.13–0.26 s. This range
is lower than in Schatzl’s (1987) experiment on colliding ring vortices where it is
(0.2 s+ 0.4 s). This trend is in the right direction since the foil circulation is likely
higher than the ring vortex circulation (Saffman 1990).

Saffman (1990) mentions the ‘significant’ discrepancy between his model and Kerr
& Hussain’s (1989) simulation on one hand, and Schatzl’s (1987) measurements on
the other. The former groups expected a doubling of the maximum vorticity during
core merging, whereas the measurements obtained none. The vortex stretching until
maximization that we observe prior to bursting would also lead to increase in vorticity
in agreement with the former two groups.

(g) Future work on vortex elasticity: the Deborah number De measures the relative
fluidity and elasticity of a medium – how Newtonian or non-Newtonian a medium is.
Measuring the time scales of adjustment to applied stresses, define De= tc/tp, where
tc is the relaxation time and tp is the time scale of the process. The value of De is
low for fluids and high for solids. Pipe & Monkewitz (2005) have shown that the
vortex shedding behind a cylinder is stabilized in a polymer solution even at very low
De. Water temperature near 0 ◦C or addition of a polymer may affect the storage and
release of elastic energy.

Evidence of spring–mass-like oscillation of aerated vortex tubes subjected to
stretching and relaxation appears in figure 6(d), supported by equations (1.1) and (1.2).
Evidence of buckling of aerated vortex has been given. If the vortex slope of 45◦ is
a state of neutral equilibrium, then what nudges the vortex to the unstable zone of
β > 45◦? Figure 2(1,2) suggests that buckling is the nudge that tilts the vortex, tip
first, to the unstable zone. In (1), initially, the buckling is in the stable zone. Here, the
upper boundary condition has a torsional spring of constant κΨ resisting the lateral
buckling displacement LvSin(Ψ ). Here Lv is the vortex length and Ψ is the angle
subtended by the displacement at the root. For small Ψ , the critical compression for
buckling is Pc=Pcr = κΨ /Lv. The zig-zag buckling in (1) moves to the unstable zone
of β in (2), bursting and developing into the Euler–Bernoulli mode 1 of cantilever
beams.

The vortex in figure 6(b1) has aerated Taylor air tubes around the toroidal axis.
Following Moore & Pullin (1998), if the vorticity of the Taylor tube is ω, density is ρ
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and radial distance from the toroidal axis is rc, then ω/(ρrc) is a constant. This ratio
captures the countering effects of centrifugal force and the area reducing compressive
effects of surface tension. Those authors remark: ‘We know of no existence theorems
relevant to transonic rotational flow with compact vorticity. The question of existence
of this type of vortex flow for non-trivial boundary conditions remains an open
question’. The present work does give the example of an aerated compact vortex
with elastic properties that is kind of a Hill’s vortex. During compaction and bursting,
the aerated vortex probably does go locally sonic. High-speed schlieren video at
f > 1.25 Hz may reveal the mechanism of vortex buckling, compaction and release
of elastic energy.
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