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UNIMODULARITY UNIFIED

DARÍO GARCÍA AND FRANKO. WAGNER

Abstract. Unimodularity is localized to a complete stationary type, and its properties are analysed.
Some variants of unimodularity for definable and type-definable sets are introduced, and the relationship
between these different notions is studied. In particular, it is shown that all notions coincide for non-
multidimensional theories where the dimensions are associated to strongly minimal types.

§1. Introduction. Unimodularity was defined by Hrushovski in [4] where he
proved that a unimodular strongly minimal set is one-based, thus generalising
Zilber’s result that a locally finite strongly minimal set is 1-based. Recently,
Hrushovski has re-visited unimodularity in the context of pseudofinite structures,
aiming to develop an intersection theory for definable pseudofinite sets.
It was claimed in [4] that unimodularity was equivalent to an a priori weaker
notion called functional unimodularity in [1] and [3]. This was then used by Elwes
as part of a proof that measurable stable structures are 1-based [1, Lemma 6.4] and
was repeated in [6] and the survey article [2]. In an attempt to clarify the situation,
Pillay and Kestner [5] have distinguished two types of functional unimodularity:
one for definable sets and one for type-definable sets. They also studied the rela-
tionships between various notions and definitions, mainly in the context of strongly
minimal structures. In particular, they showed that for strongly minimal theories,
unimodularity is equivalent to functional unimodularity for arbitrary types, and
is also equivalent to the structures being measurable in the sense of [7]. They also
presented an example intended to be a strongly minimal set which is functionally
unimodular but not unimodular. However, the example actually turns out not to
be functionally unimodular; in fact our Theorem 4.14 states that all variants of
unimodularity coincide for non-multidimensional theories where the dimensions
are associated to strongly minimal types.
This paper can be seen as yet another attempt to clarify the situation, and is orga-
nized as follows: In Section 2 we introduce the notion of a uniform correspondence,
measurability of a (partial) type, and commensurability between (partial) types,
and develop the basic properties. In Section 3 we introduce the concept of corre-
spondence unimodularity and functional unimodularity for complete types, partial
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types, and definable sets, and give a correction to Proposition 3.2 in [5]. The main
result in this section is Theorem 3.11, which states that unimodularity is equivalent
to both correspondence unimodularity and to functional unimodularity for com-
plete types, and Theorem 3.12, which says that in an�-stable theory unimodularity
is equivalent to both correspondence and functional unimodularity for partial types.
In Section 4 we localize unimodularity to complete stationary types and finally
show that all concepts coincide for non-multidimensional theories where the dimen-
sions are associated to strongly minimal types, and in particular for ℵ1-categorical
theories and groups of finite Morley rank.
We use standard model-theoretic notation and work in some big sufficiently
saturated and ultrahomogeneous monster model of the theory. Lower case letters
a, b, c, etc. will denote finite tuples. If a tuple a is algebraic over b, we use m(a/b)
for the (finite) number of realizations of tp(a/b). We shall not distinguish between
singletons and tuples or between real and imaginary elements (i.e., we work in Teq).

§2. Correspondences.
Definition 2.1 (Correspondence). Let � and �′ be two type-definable sets.
(1) A correspondence between � and �′ is a nonempty type-definable set
C (x, y) � �(x)×�′(y) such that all fibresCx = {y |= �′ : C (x, y)} andCy =
{x |= � : C (x, y)} are finite. If �′ = � we call C a correspondence on �.

(2) A correspondence C is complete if it is a complete type.
(3) A correspondence C is uniform if the fibre sizes kC = |Cx | and �C = |Cy |
are constant, independently of x |= � and y |= �′.

(4) A (k, �)-correspondence is a uniform correspondence with k = kC and
� = �C .

(5) For a uniform correspondence C , the ratio of C is mC = kC
�C
.

(6) A correspondence C is balanced if it is uniform and kC = �C (equivalently,
mC = 1).

If �, �′ andC are all type-definable over some parametersA, we say thatC is overA.

Note that a uniform correspondence is actually relatively definable, by compact-
ness. If C (x, y) is a correspondence between �(x) and �′(y), then C−1(y, x) =
C (x, y) is a correspondence between �′(y) and �(x). Clearly, (C−1)y = Cy and
(C−1)x = Cx. So C−1 is uniform/complete/balanced if and only if C is.

Correspondences between complete types are particularly well behaved.
Lemma 2.2. LetC be a correspondence between a complete typep and some partial
type �(y), all over the same parameters A. Then,
(1) |Cx | does not depend on x |= p.
(2) C can bewritten as the disjoint union of finitely many complete correspondences
C = C0 ∪̇ · · · ∪̇ Cn, with n ≤ |Cx |.

Proof. (1) If a, a′ |= p, then there is an automorphism � fixing A with
�(a) = a′. Then Ca′ = �(Ca), so |Ca′ | = |Ca |.

(2) If tp(ai , bi/A) for i ∈ I are the completions of C , then ai |= p and we may
assume ai = a0 for all i ∈ I . But then bi ∈ Ca0 ; since the types tp(a0, bi/A)
are all different, we have bi �= bj for i �= j, and |I | ≤ |Ca0 |. It follows that
C =

⋃̇
i∈I Ci with Ci = tp(ai , bi/A). �
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Corollary 2.3. A correspondence C between complete types is automatically
uniform, and if all its completions have the same ratiom, then mC = m.
Proof. Suppose C (x, y) is a correspondence between complete types p(x) and
q(y). Then |Cx | = kC and |Cy | = |(C−1)y | = �C are constant for x |= p and
y |= q by Lemma 2.2, hence the correspondence is uniform. If C0, . . . , Cn are the
completions of C (x, y), then

k = |Cx | =
∣∣∣ n⋃̇
i=0

(Ci)x
∣∣∣ = n∑

i=0

kCi and � = |Cy | =
∣∣∣ n⋃̇
i=0

(Ci)y
∣∣∣ = n∑

i=0

�Ci . (1)

If all the completions Ci have the same ratio m, then kCi = m�Ci for all i , whence
k = m� and mC = m. �
Definition 2.4 (Measurable, Commensurable). Let � be a partial type over A.
We say that � is measurable over A if every A-type-definable uniform correspon-
dence C on � is balanced.
Two partial types � and �′ over A are commensurable over A if there is a uniform

correspondence C from � to �′, and for any other uniform correspondence C ′

over A between � and �′ one has mC ′ = mC . In this case we put m�
′
� = mC .

If � is measurable over any B ⊇ A, we say that � is measurable; if � and �′ are
commensurable over any B ⊇ A we say that they are commensurable.
Thus � is measurable (over A) if and only if � and � are commensurable
(over A). It follows from Corollary 2.3 that for complete types we may restrict
ourselves to complete correspondences in Definition 2.4.
If B ⊇ A and � and �′ are commensurable over B, and if there is a correspon-
dence between � and �′ overA, then � and �′ are commensurable over A. However,
commensurability or measurability over A need not imply commensurability or
measurability over B.
Lemma 2.5. Two complete types p and q are commensurable over A if and only if
there is a complete correspondence C over A between p and q, and all such complete
correspondences take the same valuemC = m

q
p.

Proof. The left to right direction follows directly from thedefinitions.Conversely,
let C0, . . . , Cn be the completions of C . By (1),

kC =
n∑
i=0

kCi =
n∑
i=0

mqp · �Ci = mqp�C .

This yields the result. �
We shall now study composition of correspondences.

Definition 2.6 (Composition). Let �, �′, and �′′ be partial types over A, and
suppose C , C ′ are correspondences between � and �′ and between �′ and �′′,
respectively. The composition C ′ ◦ C is defined by

(a, c) ∈ C ′ ◦ C ⇔ ∃b [(a, b) ∈ C ∧ (b, c) ∈ C ′].

By compactness and saturation,C ′ ◦C is type-definable; note that any witness b
for the existential quantifier must automatically satisfy �′. It is clear that (C ′ ◦C )a
and (C ′ ◦C )c are finite for every a |= � and c |= �′′, so C ′ ◦C is a correspondence
between � and �′′.
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If � and �′′ are complete types overA, thenC ′ ◦C can be written as a finite union
D0 ∪ · · · ∪Dn of complete correspondences between � and �′′ by Lemma 2.2, each
of which is uniform by Corollary 2.3. If moreover C and C ′ are both uniform (for
instance if �′ is also complete), given (a, c) ∈ Di define

ri = |{b |= �′ : (a, b) ∈ C and (b, c) ∈ C ′}|.
Since Di is complete, this number only depends on Di and not on the choice of
(a, c) |= Di . Then for a |= �
kC · kC ′ = |{(b, c) : (a, b) ∈ C ∧ (b, c) ∈ C ′}|

= |
⋃
i≤n

{(b, c) : (a, c) ∈ Di ∧ (a, b) ∈ C ∧ (b, c) ∈ C ′}| =
n∑
i=0

ri · kDi .

(2)

Similarly �C · �C ′ =
n∑
i=0

ri · �Di .

Proposition 2.7. Let p, q, and r be complete types, and supposeC is a correspon-
dence between p and q and C ′ is a correspondence between q and r, all over A. If p
and r are commensurable over A, then mC ′◦C = mC ·mC ′ .
Proof. By Lemma 2.2 the correspondences C , C ′, and C ′ ◦ C are all uniform;
let (Di : i ≤ n) be the finitely many completions of C ′ ◦ C . Since p and r are
commensurable over A, we have thatmDi = m

r
p for every i ≤ n. By (2) we obtain

kC · kC ′ =
n∑
i=1

ri · kDi =
n∑
i=1

ri · (mrp · �Di ) = mrp
n∑
i=1

ri · �Di = mrp · (�C · �C ′),

whence

mC ′◦C = mrp =
kC · kC ′

�C · �C ′
= mC ·mC ′ . �

Corollary 2.8. Let p and q be complete types over A.
(1) Suppose there is a correspondenceC betweenp and q. Ifp is measurable overA,
then so is q, and p and q are commensurable over A.

(2) If p and q are commensurable overA, then p and q are both measurable overA.
(3) For any three complete commensurable types p, q, and r over A we have
mqp mrq = m

r
p.

Proof. (1) If C ′ is any other correspondence between p and q over A, then
C ′−1(y, x) = C ′(x, y) is a correspondence from q top. ClearlymC ′−1 = m−1

C ′ .
By Lemma 2.7 we have

1 = mpp = mC ·mC ′−1 = mC/mC ′ ,

so mC ′ = mC = m
q
p. Hence p and q are commensurable over A.

(2) Suppose that p and q are commensurable over A. If C is a complete corre-
spondence on p over A, then mCm

q
p = m

q
p by Proposition 2.7, and mC = 1.

Thus p is measurable overA; measurability of q overA follows by symmetry.
(3) This follows immediately from Proposition 2.7. �
Theorem 2.9. Let � be a partial type over A and suppose MR(�) < ∞. If all
completions of � over A of maximal Morley rank are measurable over A, so is �.
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Proof. Suppose C is a (kC , �C )-correspondence on � over A. Let (pi : i ∈ I )
be the finitely many completions of � over A of maximal Morley rank. Then for
all i, j ∈ I , if Cij = C ∩ (pi × pj) is nonempty, it is a correspondence between
pi and pj , so the two types are commensurable by Corollary 2.8. If Cij = ∅ put
kCij = �Cij = 0. Put

I0 = {i ∈ I : p1 and pi are commensurable over A}.
If (a, b) ∈ C with a |= pi for some i ∈ I0, then by interalgebraicity

RM (b/A) = RM (ab/A) = RM (a/A),

so b |= pj for some j ∈ I0. It follows that for each i ∈ I0∑
j∈I0
kCij = kC and

∑
j∈I0
�Cji = �C .

For i ∈ I0 putmi = mpip1 . If Cij �= ∅ we havemj = mi ·mCij by Corollary 2.8, that is
mj · �Cij = mi · kCij .

Note that the latter equation trivially holds if Cij = ∅.
Put � =

∑
i∈I0 mi . Then � �= 0 and

� · kC =
∑
i∈I0
(mi · kC ) =

∑
i∈I0

(
mi

∑
j∈I0
kCij

)
=

∑
i∈I0

∑
j∈I0
(mi · kCij )

=
∑
i∈I0

∑
j∈I0
(mj · �Cij ) =

∑
j∈I0

∑
i∈I0
(mj · �Cij ) =

∑
j∈I0

(
mj

∑
i∈I0
�Cij

)
=

∑
j∈I0
(mj · �C ) = � · �C .

It follows that kC = �C . �
Example 2.10. LetM = Z × 2� in the language {f,En : n ∈ �}, where the En
are equivalence relations with 2n classes given by

(z, �) En (z′, �′)⇔ z ≡ z′ mod 2n

and
f(z, �) = (z + 1, � ◦ S),

where S is the successor function on �. Then En+1 cuts each En-class in half, and
f : M → M is a surjective function with fibres of size two. Moreover, x En y ⇔
f(x)En f(y), and for anym ∈M the 2n elements m,f(m), f2(m), . . . , f2n−1(m)
are in different En-classes. This theory is complete of Lascar rank one, but
not �-stable. Every stationary complete type is measurable, but the model itself
(equivalently, the partial type x = x) is not. So �-stability is necessary in
Theorem 2.9.

§3. Unimodularity and its variations. Weshall now study the relationship between
unimodularity introduced in [4], functional unimodularity and its variants formally
introduced in [5], and correspondence unimodularity for definable sets, complete
types or types. We start with some definitions.
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Definition 3.1 (Unimodularity). A complete theory is unimodular if for any two
tuples a, b, and parameters A in the monster model, if a ≡A b and a and b are
interalgebraic over A, then m(a/Ab) = m(b/Aa).

Lemma 3.2. A theory is unimodular if and only if every complete type is measurable
over its domain.
Proof. Let p(x) be a complete type. Note that two realizations a, b |= p are
A-interalgebraic if and only if C = tp(a, b/A) is a complete correspondence on
p over A. Then m(b/Aa) = kC and m(a/Ab) = �C . So m(a/Ab) = m(b/Aa) if
and only if C is balanced. By Corollary 2.3, any correspondence on p is balanced
if and only if all complete correspondences on p are balanced. Thus shows the
equivalence. �
Definition 3.3 (Functional unimodularity). Let T be a complete theory. Then
T is
(1) functionally unimodular (FU) if for any two definable sets X and Y we have
the following:
(*) If two definable functions f, g : X → Y have constant fibre sizes k
and � , respectively, then k = � ;

(2) functionally unimodular for types (FU-t) if property (*) holds for any type-
definable sets X , Y ;

(3) functionally unimodular for complete types (FU-ct) if property (*) holds for
any complete types X , Y .

Kestner and Pillay [5] proved that if T is strongly minimal, then unimodularity is
equivalent to functional unimodularity for types, and in this case it is also equivalent
to MS-measurability. We shall now show that functional unimodularity allows
finitely many exceptional finite fibres.
Proposition 3.4. Let X and Y be two infinite definable sets, and f, g : X → Y
two definable functions with finite fibres, such that |f−1(y)| = k and |g−1(y)| = � for
all but finitely many y ∈ Y . If k �= � , there are definable sets X ′ and Y ′, as well as
definable functions f′, g ′ : X ′ → Y ′ such that the fibres of f′ and g ′ have constant
sizes k and � , respectively.
Proof. Put

Y0 = {y ∈ Y : |f−1(y)| �= k or |g−1(y)| �= �}.
Let F = f−1(Y0) andG = g−1(Y0).Without loss of generality wemay assume that
|F | ≤ |G |; modifying f definably on finitely many points we may further assume
F ⊆ G . Put
X ′′ = X \ F, Y ′′ = Y \Y0, G ′ = G \ F, and f′′ = f �X ′′ : X ′′ → Y ′′.

Then f′′ has constant fibre size k, and

g �X ′′\G′ : X ′′ \G ′ → Y ′

has constant fibre size � . Put n = |G ′|.
Case 1. k < � . Let n′ = � − k. Let P be a set of cardinality kn and Q a set of
cardinality n. Put

X ′ = (X × n′) ∪ P, Y ′ = (Y ′′ × n′) ∪Q,
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and define f′ : X ′ → Y ′ via f′((y, i)) = (f′′(y), i) for (y, i) ∈ X ′′ × n′, and
f′ : P → Q arbitrarily with fibres of constant size k. Finally, define g ′ : X ′ → Y ′

via g ′((y, i)) = (g(y), i) for (y, i) ∈ (X ′′ \ G ′) × n′, and g ′ : (G ′ × n′) ∪ P → Q
arbitrarily with fibres of constant size � , which is possible since

|(G ′ × n′) ∪ P| = nn′ + kn = n(� − k + k) = �n = � |Q|.
Case 2. � < k. Let n′ = k − � − 1. Let Q ⊂ Y ′′ have cardinality n, and put
P = f′′−1(Q) ⊂ X ′′, of cardinality kn. We choose Q such that P ∩ G ′ = ∅. Put
X ′ = (X ′′ × n′) ∪ ((X ′′ \ P)× {n′}), Y ′ = (Y ′′ × n′) ∪ ((Y ′′ \Q)× {n′}),
and define f′ : X ′ → Y ′ via f′((y, i)) = (f′′(y), i), with fibres of constant size k.
Note that the map

g ′′ : (X ′′ \G ′)× (n′ + 1)→ Y ′′ × (n′ + 1)
defined by g′′((y, i)) = (g(y), i) has constant fibre size � . Now X ′ has

|P| − |G ′ × (n′ + 1)| = kn − n(n′ + 1) = (k − (k − �))n = �n
points less than (X ′′\G ′)×(n′+1), andY ′ has |Q| = n points less thanY ′′×(n′+1).
Modifying g′′ on finitely many points, we can thus define a map g′ : X ′ → Y ′ with
constant fibre size � . �
Corollary 3.5. Let T be functionally unimodular. If X and Y are two definable
sets, and f, g : X → Y are two definable maps of constant fibre sizes k and � ,
respectively, except for finitelymany exceptional fibreswhich are still finite, then k = � .

Proof. This follows immediately from Proposition 3.4. �
Example 3.6. Consider the structure M = 〈2<�, S〉 where S is interpreted as
the successor relation, that is, D |= S(a, b) if and only if aˆ0 = b or aˆ1 = b.
This structure is strongly minimal and was proposed in [5] as an example of a
strongly minimal structure which is functionally unimodular but not unimodular.
The nonunimodularity follows from the fact that if S(a, b) holds, then a and b are
interalgebraic but m(a/b) = 1 �= 2 = m(b/a).
Contrary to [5, Proposition 3.2], in fact this structure is not functionally unimod-
ular: The identity function idM is clearly 1-to-1, while the predecessor function f
defined by the formula

ϕ(x, y) = S(y, x) ∨ (∀z(¬S(z, x)) ∧ x = y)
is 2-to-1 almost everywhere, with an exceptional fibre of size 3 at ∅. So M is not
functionally unimodular by Corollary 3.5. This can also be seen directly: Add an
additional point ∞ to the structure and define f′(x) = f(x) for x �= ∅, and
f′(∅) = f′(∞) =∞. Then f′ is surjective and 2-to-1 onM ∪ {∞}, contradicting
functional unimodularity.

Definition 3.7 (Correspondence unimodularity). A complete theory T is
correspondence unimodular (CU) if for any two definable sets X and Y we have
the following:

(**) If C1 and C2 are uniform correspondences between X and Y , then
mC1 = mC2 .
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We say thatT is correspondence unimodular for (complete) types (CU-t andCU-ct,
respectively), if (**) holds whenever X and Y are (complete) types.

Lemma 3.8. A theory T is correspondence unimodular (resp. for types or complete
types) if and only if all definable sets (resp. types or complete types) are measurable.

Proof. (⇒) Suppose C is a uniform correspondence on �. Then C−1 is
again a uniform correspondence on �. By correspondence unimodularity,
mC = mC−1 = 1/mC , whence mC = 1 and C is balanced.

(⇐) Suppose C1, C2 are uniform correspondences between �1 and �2. Define C
on �1 × �2 by

(a1, b1) C (a2, b2)⇔ a1 C1 b2 ∧ a2 C2 b1.
It is easy to see that C is a uniform correspondence on �1 × �2, with

kC = kC1 · �C2 and �C = kC2 · �C1 .
By assumption kC = �C , whencemC1 = mC2 . SoT is correspondence unimodular.�
Example 3.9. It is easy to show that all pseudofinite structures are correspon-
dence unimodular (for definable sets): If M =

∏
UMi is an ultraproduct of finite

structures and C is a uniform correspondence on a definable set X ⊆ M , then in
the finite structuresMi we have that

|Ci | =
∣∣ ⋃
x∈Xi

{(a, b) ∈ Ci : a = x}
∣∣ = ∑

x∈Xi
|(Ci)x | = |Xi | · kC

for U-almost all indices i . Similarly, |Ci | = |Xi | · �C , whence kC = �C and C
is balanced. Therefore all definable sets are measurable; by Lemma 3.8 we have
correspondence unimodularity.

We shall now identify various implications between the different notions of
unimodularity. It is clear that functional unimodularity for types implies both
functional unimodularity for complete types and for definable sets, and similarly
for correspondence unimodularity. We shall show the implications given by the
dotted arrows in the diagram below, sometimes under additional model-theoretic
hypotheses.

Unimodularity

CU-ct

FU-ct

CU-t

FU-t

CU

FU

(1)

(1)

(2)

(2)

(1) T �-stable.
(2) T non-multidimensional, with strongly minimal dimensions.

We first note that the functional and correspondence versions of unimodularity
are equivalent.

Proposition 3.10. A theory is functionally unimodular (resp. FU-t or FU-ct) if
and only it is correspondence unimodular (resp. CU-t or CU-ct).
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Proof. (⇒) : Let C (x, y) be a uniform correspondence on a definable set X
(resp. type-definable set or complete type). Note that if X is a complete
type, by Corollary 2.3 wemay assume thatC is complete. Consider the two
functions f, g : C → X , where f is the projection to the first and g the
projection to the second coordinate. Then f is kC -to-1 and g is �C -to-1.
By functional unimodularity (resp. FU-t or FU-ct) we have kC = �C , and
C is balanced. By Lemma 3.8 we are done.

(⇐) : Suppose X and Y are type-definable sets, and f, g : X → Y are rela-
tively definable surjective functions that are, respectively, k-to-1 and �-to-1.
Consider the correspondence C on X defined by

(a, a′) ∈ C ⇔ f(a) = g(a′).
Then C is a (�, k)-correspondence on X , and k = � by correspondence
unimodularity. �
As a corollary, we obtain in general the equivalence between unimodularity and
functional unimodularity for complete types, originally shown byKestner and Pillay
for strongly minimal theories.
Theorem 3.11. Let T be a complete theory. The following are equivalent:
(1) T is unimodular.
(2) T is correspondence unimodular for complete types.
(3) T is functionally unimodular for complete types.
Proof. This follows from Lemmas 3.2 and 3.8 and Proposition 3.10. �
Example 3.6 shows that our next theorem does need �-stability.
Theorem 3.12. Let T be �-stable unimodular. Then T is correspondence
unimodular for types.
Proof. This follows from Lemmas 3.2 and 3.8 and Theorem 2.9. �
The following is an example of a functionally unimodular structure which is
not unimodular. We shall show in Theorem 4.14 that for a non-multidimensional
theory with strongly minimal dimensions, functional unimodularity does imply
unimodularity.

Example 3.13. For each n < �, let Mn = 2<n. We consider Mn as a finite
structure in the language L = {Ri : i < �} ∪ {f} by interpreting the predicates as
RMni = {� ∈Mn : length(�) = n− i} for i ≤ n, andRMni = ∅ for i > n. To interpret
the function f we put:

f(�)) =

{
� �length(�)-1 if length(�) > 1,
∅ if � = ∅.

Let M =
∏

UMn, where U is a nonprincipal ultrafilter over �. Note that in the
ultraproduct, f : M → M is a definable function such that f �Ri : Ri � Ri+1 is a
2-to-1 function.
Since M is pseudofinite, it is correspondence unimodular (Example 3.9). It is
easy to check that M is �-stable, even non-multidimensional of Morley rank 2.
However, M is not correspondence unimodular for complete types: Consider the
complete type given by

q(x) = {¬Ri(x) : i < �} ∪ {fi(x) �= x : i < �}.
Then f(q) = q, and f �q is 2-to1, so q is not measurable.
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§4. Unimodularity for types. Throughout this section we shall work in a sta-
ble theory with elimination of imaginaries. We first introduce some notions from
geometric stability theory. For further reading, the reader can consult [9] or [11].

Definition 4.1. Let � be a partial type over A, and Σ an A-invariant family of
partial types. Then � is

• (almost) Σ-internal if for every realization a of � there is B |	A
a and a tuple b̄

of realizations of types in Σ based onB, such that a ∈ dcl(Bb̄) (or a ∈ acl(Bb̄),
respectively),

• Σ-analysable if for any realization a of � there are (ai : i < α) ∈ dcl(Aa) such
that tp(ai/A, aj : j < i) is Σ-internal for all i < α, and a ∈ acl(A, ai : i < α).
We call α the length of the analysis.

We shall say that a is (almost) Σ-internal or Σ-analysable over b if tp(a/b) is.

Definition 4.2. Two types p ∈ S(A) and q ∈ S(B) are orthogonal if for all
C ⊇ AB, a |= p, and b |= q with a |	A

C and b |	B
C we have a |	C

b.
A type p is regular if it is orthogonal to all its forking extensions.
A theory is non-multidimensional if every type is nonorthogonal to a type over ∅.
Equivalently, a theory is non-multidimensional if there are only boundedly many
pairwise orthogonal types.

Definition 4.3 (Unimodularity). A complete stationary type p is unimodu-
lar if over any set A of parameters containing dom(p), whenever a and b are
A-interalgebraic realizations of the nonforking extension of p to A, then
m(a/Ab) = m(b/Aa).

Remark 4.4. Equivalently, p is unimodular if all its nonforking extensions are
measurable over their domain.

Lemma 4.5. Let p and p′ be unimodular stationary types of finite Lascar rank
over A. Let aa′ and bb′ be A-interalgebraic realizations of the free product p ⊗ p′.
Suppose a |	A

b′ and a′ |	A
b. Then m(aa′/Abb′) = m(bb′/Aaa′).

Proof. By stationarity and independence, a and b both realize p|Aa′. Moreover,
b ∈ acl(Aaa′). By the Lascar equalities in finite rank,
U (a/Aa′b)=U (aa′b/A)−U (a′b/A)=U (aa′b/A)−U (aa′/A)=U (b/Aaa′)= 0.
So a and b are Aa′-interalgebraic, whence m(a/Aa′b) = m(b/Aaa′) by
unimodularity of p. Thus

m(bb′/Aaa′) = m(b′/Aaa′b)·m(b/Aaa′) = m(b′/Aaa′b)·m(a/Aba′) = m(ab′/Aba′).
Similarly, b′ and a′ are Ab-interalgebraic realizations of p′|Ab. So m(b′/Aba′) =
m(a′/Abb′) by unimodularity of p′, and

m(ab′/Aba′) = m(a/Aba′b′) ·m(b′/Aba′) = m(a/Aba′b′) ·
m(a′/Abb′) = m(aa′/Abb′). �

Corollary 4.6. If p and q are orthogonal unimodular stationary types of finite
Lascar rank, then their free product p ⊗ q is unimodular.
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Proof. This follows immediately from the definitions and Lemma 4.5. �
Corollary 4.7. If p is a unimodular regular stationary type of finite Lascar rank,
then the free power p(n) is unimodular for all n ≥ 1.
Proof. We can assume p ∈ S(∅). If (ai : i < n) and (bi : i < n) are two
interalgebraic realizations of p(n), put ā = (ai : i > 0). Let b̃ = (bi : bi � |	 ā).
Since a0 |	 ā we have a0 |	 b̃. Let b̄ ⊇ b̃ be maximal with a0 |	 b̄. Then b̄ has
length n − 1, and there is a unique bj /∈ b̄. Note that bj |	 ā. As ā and b̄ satisfy
p(n−1) =: p′, and a0 and bj satisfy p, the hypotheses of Lemma 4.5 are satisfied,
and we conclude. �
Lemma 4.8. Let � and �′ be partial types over A, and A ⊆ B. Put

�̄(x) := �(x) ∧ x |	
A

B and �̄′(y) := �′(y) ∧ y |	
A

B.

If C is a uniform correspondence between � and �′ over A, then C ′ = C ∩ (�̄× �̄′) is
a uniform correspondence between �̄ and �̄′ with mC ′ = mC .

Proof. For a |= �̄ we have a |	A
B. If (a, b) ∈ C , then b |= �′ and b ∈ acl(Aa),

whence b |	A
B and b |= �̄′. Thus (a, b) ∈ C ′, and |(C ′)a | = kC . Similarly

|(C ′)b | = �C for all b |= �̄′. Therefore C ′ is uniform, with kC ′ = kC and �C ′ = �C ,
whence mC ′ = mC . �
Corollary 4.9. Suppose q is a nonforking extension of a stationary type p.
Then p is unimodular if and only if q is unimodular.

Proof. (⇒) follows from the definition. For the converse, consider a non-
forking extension p′ of p, and the common nonforking extension q′ of
p′ ∪ q. Take � = �′ = p′ and �̄ = �̄′ = q′ in Lemma 4.8. As mC ′ = 1
by measurability of q, we get mC = 1 and p′ is measurable. Hence p is
unimodular. �

Corollary 4.10. Let p and q be stationary types over A whose realizations are
A-interalgebraic. Suppose p is unimodular.

(1) Then q is unimodular, and p and q are commensurable.
(2) If p′ and q′ are nonforking extension of p and q to the same domain, then p′

and q′ are again commensurable, and mqp = m
q′
p′ .

Proof. As p is measurable, p and q are commensurable by Corollary 2.8. More-
over, p′ and q′ are also commensurable by Lemma 4.8, and mqp = m

q′
p′ . Hence all

nonforking extensions of q are measurable, and q is unimodular. �
Corollary 4.11. Let P be an ∅-invariant family of unimodular weakly minimal
stationary types. If q is almost P-internal, then q is unimodular.

Proof. Since q is almost P-internal, there is a realization a |= q, some set A
of parameters independent of a, and realisations b̄ of types in P over A with
a ∈ acl(Ab̄). As P consists of weakly minimal types, we may assume that b̄ is inde-
pendent overA. Let b̄ = b̄′b̄′′, where b̄′ is a maximal subtuple of b̄ independent of a
over A. Then tp(a/Ab̄′) is a nonforking extension of q, and a and b̄′′ are interalge-
braic over Ab̄′ by weak minimality of the types in P. Moreover, b̄′′ is independent
over Ab̄′. The result now follows from Corollaries 4.6, 4.7, 4.9, and 4.10. �
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We now turn to analysability. Let us first consider an example which shows that
non-multidimensionality is necessary in Theorem 4.14.

Example 4.12. Let E be an equivalence relation with infinitely many infinite
classes, andf a unary surjective function with fibres of size two, such that xE x′ ⇔
f(x)E f(x′) and that neither f nor the induced relation fE on E-classes have any
nonoriented cycles (and in particular ¬xE f(x)). It is easy to see that this theory is
multidimensional of Morley rank 2; one dimension is carried by the type tp(aE) of
theE-classes, and the other dimensions by tp(a/aE), for any a. Each dimension has
Morley rank 1 and is unimodular. Nevertheless, tp(a) is clearly not unimodular, as
a ≡ f(a), m(f(a)/a) = 1 but m(a/f(a)) = 2.
Theorem 4.13. Let P be a set of unimodular strongly minimal types over ∅. Then
any P-analysable stationary type is unimodular.

Proof. By Corollary 4.9 we may add parameters to the language and suppose
that the types in P are over ∅. Note that as the types in P are strongly minimal, any
P-analysable stationary type q is contained in a definable setϕ which isP-analysable
of finite length. Then ϕ is non-multidimensional, and its dimensions are strongly
minimal. So ϕ is �-stable by [10, Corollaire 2.14].
We shall use induction on the length of aP-analysis of q. If it is 1, then q is almost
P-internal, and we are done by Corollary 4.11.
So suppose q has a P-analysis of length n + 1. For b |= q put

B = {e ∈ acl(b) : tp(e) has a P-analysis of length at most n},
the n-th P-level �Pn (b) (see [8, Definition 3.1]). Put A = B ∩ dcl(b). If e ∈ B
and e′ ≡b e, then e′ ∈ B, and there are only finitely many such e′. Let ē be any
imaginary element coding this finite set. Then ē ∈ dcl(b), and ē ∈ dcl{e′ : e′ ≡b
e} ⊆ B, so ē ∈ A. Hence B = acl(A). Moreover, the type tp(b/A) is stationary, as
tp(b/B) is stationary, b |	A

B, and for every A-definable finite equivalence relation
E the class bE of b modulo E is in

dcl(Ab) ∩ acl(B) = dcl(b) ∩ B = A.
By�-stability ofϕ wecan choose a ∈ A such that b |	a

A and tp(b/a) is stationary;
note that then A = dcl(a). Since tp(b) has a P-analysis of length n + 1, the type
tp(b/B) and thus also tp(b/a) is almost P-internal, whence unimodular. Finally,
tp(a) is stationary since tp(b) is, and unimodular by inductive hypothesis.
If b′ |= q and b and b′ are interalgebraic, choose a′ with a′b′ ≡ ab. Note that
Cb(a′/b) is definable over aMorley sequence in tp(a/b′), and thus has a P-analysis
of length at most n. It follows that Cb(a′/b) ∈ B and a′ |	B

b, whence a′ |	a
b.

Similarly, a |	a′
b′. But

a ∈ dcl(b) ⊆ acl(b) = acl(b′) and a′ ∈ dcl(b′) ⊆ acl(b′) = acl(b),
so the independences above imply that a and a′ are interalgebraic.
By stationarity of tp(b/a), the independence b |	a

a′ and unimodularity of tp(a)
we have

m(a′/ab) = m(a′/a) = m(a/a′) = m(a/a′b′).
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Since tp(b) is almost P-internal, there is D |	a
b containing a and some tuple d

of realizations of types in P overD such that b and d areD-interalgebraic. As tp(d )
is P-internal, it is unimodular by Corollary 4.11, as is tp(b/a). Put p = tp(b/a),
q = tp(b′/a′), and r = tp(d ). Let p∗ and q∗ be the nonforking extensions of p and
q to aa′. As b and b′ are aa′-interalgebraic and p is unimodular, p∗ and q∗ are
commensurable and

mq
∗
p∗ =

m(b′/aa′b)
m(b/aa′b′)

.

Let � be a strong ∅-automorphism mapping a to a′, and put D′ = �(D). Let p′

and r′ be the nonforking extensions of p and r to D, and q′ and r∗ the nonforking
extensions of q and r to D′. As p is unimodular, p′ and q′ are commensurable, as
are �(p′) = q′ and �(r′) = r∗. Clearly mr

′
p′ = m

r∗
q′ .

Finally, let p′′, q′′, and r′′ be the nonforking extensions of p, q, and r to DD′.
Then p′′, q′′, and r′′ are commensurable by Corollary 4.10, and by Lemma 2.7
we get

mr
′′
p′′ = m

q′′
p′′m

r′′
q′′ .

But now by Corollary 4.10 again,

m(b′/aa′b)
m(b/aa′b′)

= mq
∗
p∗ = m

q′′
p′′ =

mr
′′
p′′

mr
′′
q′′
=
mr

′
p′

mr
∗
q′
= 1.

Hencem(b′/aa′b) = m(b/aa′b′). As a ∈ dcl(b) and a′ ∈ dcl(b′), we finally obtain
m(b/b′) = m(ab/a′b′) = m(b/aa′b′)m(a/a′b′)

= m(b′/aa′b)m(a′/ab) = m(a′b′/ab) = m(b′/b).

It follows that q is unimodular. �
Theorem 4.14. Let T be a non-multidimensional theory whose dimensions are
associated to strongly minimal types. The following are equivalent:
(1) T is unimodular.
(2) T is functionally unimodular.
(3) All strongly minimal types are unimodular.
Proof. (1) ⇒ (2) : By [10, Corollaire 2.14] the theory T is �-stable, so uni-
modularity implies functional unimodularity for partial types by Theorem 3.12.
Functional unimodularity (for sets) follows.
(2) ⇒ (3) : Let p be a strongly minimal type which is not unimodular. We may
assume p is over ∅. So there are interalgebraic realizations a, b |= p withm(a/b) �=
m(b/a). Then tp(a, b) has Morley rank 1. Choose definable sets X ∈ tp(a, b) and
Y ∈ p ofMorley rank 1, such thatY hasMorley degree 1 andX ⊂ Y×Y . Consider
the functions f, g : X → Y , where f is the projection to the first coordinate, and
g is the projection to the second coordinate. Restricting Y we may assume that f
has fibres of size at most m(b/Aa), and g has fibres of size at most m(a/Ab). As Y
is strongly minimal and the fibre sizes are bounded, there are only a finite number
of exceptional fibres, of size less than m(b/a) for f and of size less than m(a/b)
for g. By Proposition 3.4 there are definable sets X ′ and Y ′ and definable functions
f′, g ′ : X ′ → Y ′ whose fibres all have size m(b/a) and m(a/b), respectively. As
m(b/a) �= m(a/b), this contradicts functional unimodularity.
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(3) ⇒ (1) : Let P be a set of strongly minimal types containing a representative
for each dimension. Then every type is P-analysable, and hence unimodular by
Theorem 4.13. �
Examples of non-multidimensional theories whose dimensions are associated
to strongly minimal types are almost strongly minimal theories, uncountably
categorical theories, and groups of finite Morley rank.

§5. Further remarks. Although we have defined unimodularity for arbitrary sta-
tionary types, we could only show that it is well behaved for types of finite rank.
The problem obviously comes from the fact that in infinite rank, say close to a
regular type p, we should work with p-closure rather than algebraic closure, which
is unbounded. Thus multiplicity is not the correct measure.
A possibility might be to define Lascar unimodularity: Let us say that a station-
ary type p over A is Lascar unimodular if for any realizations a, b |= p we have
U (a/Ab) = U (b/Aa). Theories of finite Lascar rank are clearly Lascar unimodu-
lar. This notion may be particularly pertinent if p is a regular type, as then a and
b are dependent if and only if either one is in the p-closure of the other. However,
we have not studied the properties of Lascar unimodularity, nor have we looked for
interesting examples.
Another question concerns unimodularity for nonstationary types. Section 2
of our paper does not assume stationarity, so one might be tempted to develop
unimodularity, at least for Lascar strong types, in a simple theory in analogy with
Section 4.
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