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This paper deals with existence and non-existence of global solutions of certain
fast–slow diffusion systems with nonlinear boundary conditions. Necessary and
sufficient conditions for global existence of positive solutions are obtained in terms of
various parameters which appear explicitly in the definition of the systems.

1. Introduction

In this paper we study the following fast–slow diffusion systems with nonlinear
boundary conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(umi
i )t = ∆ui, x ∈ Ω, t > 0,

∂ui

∂η
=

n∏
j=1

u
mij

j , x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x) > 0, x ∈ Ω̄,

(1.1)

for 1 � i � n, where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, η is
the unit outward normal vector on ∂Ω, the exponents mi are positive and indices
mij are non-negative, i, j = 1, . . . , n. In addition, initial data ui0(x) ∈ C1(Ω̄),
(1 � i � n) are positive functions and satisfy the compatibility conditions.

When n = 1, we have the familiar equation (um)t = ∆u, or vt = ∆v1/m. It is
clear that m > 1 corresponds to the fast diffusion equation, whereas m < 1 the
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porous medium equation (PME) or slow diffusion equation. But, since the initial
value is positive in Ω, we encounter no difficulty of the typical PME problem when
one is forced to deal with the weak solution due to the finite speed propagation of
initial disturbance whose support is strictly contained inside Ω.

Likewise, for the system under consideration, we say that (1.1) is a fast diffusion
system if mi � 1 for all i, a fast–slow diffusion system if there exist i and j such
that mi > 1 but mj < 1, and a slow diffusion system if mi � 1 for all i.

The system models diffusion of n different physical substances that are linked by
the influx of energy input at the boundary. Our primary concern is to work out
conditions on the exponents mi and indices mij so that every solution with the
given positive C1 initial data exists globally or blows up in finite time.

We note that most previous works deal with special cases such as n = 1 (see [5])
or n = 2 (see [2,4,6,7]). For systems involving more than two equations, the special
case of mi = 1, 1 � i � n, is discussed in [8], whereas the slow diffusion case is
studied in [9].

In this paper, we focus on two remaining cases: (i) fast diffusion and (ii) fast–slow
diffusion, which are our standing assumptions unless otherwise stated. We write
M = (mij)n×n, bi = min{mi,

1
2 (mi + 1)}, bij = biδij , i, j = 1, . . . , n, B = (bij)n×n,

F = B − M . The main results of this paper are as follows.

Theorem 1.1. If all the principal minor determinants of F are non-negative, then
every solution of (1.1) exists globally.

Theorem 1.2. If one of the following three conditions holds, then every solution
of (1.1) blows up in finite time.

(i) There exists i : 1 � i � n such that bi < mii.

(ii) F has a negative principal minor determinant in which bi � 1.

(iii) There exists a negative principal minor determinant of F and Ω = B(0, R)
is the ball in RN centred at the origin with radius R.

Remark 1.3. For the special case Ω = B(0, R), these two theorems show that all
solutions of (1.1) exist globally if and only if all the principal minor determinants
of F are non-negative.

Remark 1.4. It is clear from the statement of our results that the global existence
or blow-up depends entirely on the exponents mi, 1 � i � n, and mij , 1 � i, j � n.
It is a very different situation when one considers the same kind of systems in an
unbounded domain, for example, in the whole space RN . The spatial dimension
plays a very important role in determining global existence or blow-up for the
unbounded domain case. We refer the interested reader to the survey paper [1].

Remark 1.5. A very interesting feature of our results is that the fine structure of
the matrix F , which is a nonlinear function of the exponents mi and indices mij ,
1 � i, j � n, is crucially important. Therefore, the tools to study our problem are a
combination of algebraic matrix theory and analytical partial-differential-equation
theory.
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We note that, using the method of [2], it can be proved that if there exists T < ∞
such that the solution (u1(·, t), . . . , un(·, t)) of (1.1) exists on the interval [0, T ), but
cannot be extended beyond time T , then

lim
t→T −

sup
n∑

i=1

‖ui(·, t)‖∞ = +∞,

i.e. (u1, . . . , un) blows up in finite time. Moreover, the comparison principle for
the positive upper and lower solutions holds (for details, see [2]). Consequently,
ui(x, t) � δ, 1 � i � n, where δ = min1�i�n minΩ̄ ui0(x) > 0.

2. Preliminaries

In this section, we prove some preliminary results which will be used in the proof
of our main theorems.

Notation 2.1.

(i) |F | = det F is the determinant of matrix F .

(ii) F l
k is the square sub-matrix of F with entries fij , i, j = k, . . . , l.

(iii) F̄ l
k is sub-matrix of F made of fij , i ∈ {k, . . . , l}, j ∈ {1, . . . , k−1, l+1, . . . , n}.

Lemma 2.2 (cf. [3]). Suppose that A is a non-negative matrix. If A is irreducible,
then A has a positive eigenvalue λ which is the largest, i.e. |µ| � λ for any eigenvalue
µ of A, and the corresponding eigenvector α = (α1, . . . , αn)T is positive, i.e. αi > 0
(i = 1, . . . , n).

Lemma 2.3. Assume that all the principal minor determinants of F are non-nega-
tive and fnn > 0. Let gij = fij − finfnj/fnn and G = (gij)(n−1)×(n−1). Then the
following conclusions hold.

(i) Any kth-order (1 � k � n − 1) principal minor determinant of G has the
same sign as some (k + 1)th-order principal minor determinant of F , and
vice versa.

(ii) gij � 0 for i �= j.

Proof. The second conclusion is obvious. To prove the first one, without loss of
generality, we only prove that |Gk

1 | has the same sign as |F k
(n)|, where

|F k
(n)| =

∣∣∣∣∣∣∣∣∣

f11 · · · f1k f1n

...
. . .

...
...

fk1 · · · fkk fkn

fn1 · · · fnk fnn

∣∣∣∣∣∣∣∣∣
.

Direct computation gives
|F k

(n)| = fnn|Gk
1 |.

Since fnn > 0, the conclusion holds.
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Lemma 2.4 (cf. [8]). Assume that all the principal minor determinants of F are
non-negative. Then det(F + xI) > 0 for any x > 0.

Lemma 2.5. Suppose that all the lower-order principal minor determinants of F
are positive. If |F | = 0, then there does not exist α = (α1, . . . , αn)T > 0 such that

Fα � 0, �= 0,

where a vector β � 0, �= 0 means that β is non-negative and non-trivial.

Proof. We use induction to prove this lemma. If n = 1, the conclusion is obvious.
Suppose that the conclusion holds for n−1. By the hypothesis, we have that fii > 0
for 1 � i � n. Suppose there exists a positive vector α such that Fα � 0, �= 0, i.e.

n∑
j=1

fijαj � 0 for 1 � i � n,

and at least one of them is strict. Without loss of generality, we assume that the first
one is strict. From the last equation, we get αn � (

∑n−1
j=1 mnjαj)/fnn. Substituting

it into the other equations, we find that

n−1∑
j=1

g1jαj > 0,

n−1∑
j=1

gijαj � 0, 2 � i � n − 1.

By lemma 2.3 and the inductive assumption, we get a contradiction.

Lemma 2.6. Assume that all the principal minor determinants of F are non-nega-
tive. If F has a lower-order principal minor determinant which equals zero, then F
is reducible.

Proof. Without loss of generality, we assume that |F l
1| = 0 and l is the smallest,

i.e. for any k < l, all kth-order principle minor determinants of F are positive.
(This implies that all lower-order principle minor determinants of F l

1 are positive.)
It is obvious that l < n. Since F = B − M and M is non-negative, there exist
a non-negative matrix D and a positive constant µ such that F = µI − D. If F
is irreducible, so is D. From lemma 2.2, we know that D has the largest posi-
tive eigenvalue λ and the corresponding eigenvector α = (α1, . . . , αn)T is positive.
Therefore,

Fα = µIα − Dα = (µ − λ)α.

By lemma 2.4, it follows that µ − λ � 0. Consequently, Fα � 0. We write

α(l) = (α1, . . . , αl)T, ᾱ(l) = (αl+1, . . . , αn)T.

Then we have
F l

1α
(l) + F̄ l

1ᾱ
(l) � 0.

Because fij � 0 for all 1 � i � l, l +1 � j � n, F is irreducible and αi > 0 for all i,
it follows that

F l
1α

(l) � 0, �= 0.

But this is in clear contradiction with lemma 2.5.
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Similar to the proof of proposition 5 of [8], it can be shown that the following
result holds.

Lemma 2.7. Suppose all the principal minor determinants of F are non-negative.
If F is irreducible, then there exists α = (α1, . . . , αn)T, with αi > 0 (1 � i � n),
such that Fα � 0, i.e. biαi −

∑n
j=1 mijαj � 0.

Lemma 2.8. Suppose that all the lower-order principal minor determinants of F are
non-negative and F is irreducible. For any s (1 � s � n) and positive constant Q,
there exist positive constant θ and large positive constants Li (1 � i � n) such that

θ

n∏
j=1

L
fij

j � Q, 1 � i � s,

n∏
j=1

L
fij

j � Q, s + 1 � i � n.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

Proof. When s = n, we choose θ = Q and let Li = Lαi for some fixed constant
L > 1. Then (2.1) is equivalent to Fα � 0, α = (α1, . . . , αn)T. From lemma 2.7, we
know that the conclusion holds. When s � n−1, consider the following inequalities:

θ
n∏

j=1

L
fij

j � Q, 1 � i � s,

n∏
j=1

L
fij

j � Q, s + 1 � i � n − 1,

n∏
j=1

L
fnj

j = Q.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

Using lemma 2.6, we know that all the lower-order principal minor determinants
of F are positive. Consequently, fnn > 0. By direct computations, equations (2.2)
can be reduced to the following inequalities,

θ

n−1∏
j=1

L
gij

j � Q′, 1 � i � s,

n−1∏
j=1

L
gij

j � Q′, s + 1 � i � n − 1,

n∏
j=1

L
fnj

j = Q,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

for some positive constant Q′. Because the first n − 1 inequalities of (2.3) do not
depend on Ln and fnn > 0, by induction, we can prove that there exist a suitable
positive constant θ and large positive constants Li (1 � i � n) such that (2.3)
holds. In consequence, so does (2.2).
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Lemma 2.9. Suppose that all the lower-order principal minor determinants of F
are non-negative and |F | < 0. Then F is irreducible and there exists

α = (α1, α2, . . . , αn)T,

with αi > 0 (1 � i � n) and ε ∈ (0, 1), such that

miαi −
n∑

j=1

mijαj < −1 for mi � 1,

mi + ε

1 + ε
αi −

n∑
j=1

mijαj < −1 for mi > 1,

miαi −
n∑

j=1

mijαj < −1 for mi > 1.

Proof. Similar to the proof of proposition 6 of [8], it can be shown that there exist
αi > 0 (1 � i � n) such that biαi −

∑n
j=1 mijαj < 0. If we take αi (1 � i � n)

to be large enough, then biαi −
∑n

j=1 mijαj < −1. When mi � 1, the conclusion
holds. When mi > 1, since bi = 1

2 (1 + mi), it is obvious that ∃ε ∈ (0, 1) such that
((mi + ε)/(1 + ε))αi −

∑n
j=1 mijαj < −1.

3. Proof of theorem 1.1

First we note that if F is reducible, then the full system can be reduced to several
sub-systems, independent of each other. Therefore, in the following, we assume
that F is irreducible. In consequence, lemma 2.8 holds. In addition, we suppose
that m1 � m2 � · · · � mn. We divide our proof into four different cases.

Case 1. (mi > 1, 1 � i � n.) Let λ0 > 0 and ϕ(x) be the first eigenvalue and
the corresponding eigenfunction of −∆ with homogeneous Dirichlet boundary con-
ditions with maxΩ̄ ϕ(x) = 1

2 . Then ϕ(x) > 0 in Ω and ∂ϕ/∂η < 0 on ∂Ω. We
write

max
Ω̄

|∇ϕ(x)| = c1 and min
∂Ω

−∂ϕ

∂η
= c2 > 0.

Let

ūi(x, t) = LiA
2/(1−mi)
i , Ai(x, t) = e−Mt − 1

4 (1 − ϕ(x))θpi , 1 � i � n,

where

M = max
1�i�n

θ

8mi

[
λ0 + 2θc2

1 +
(mi + 1)c2

1θ

2(mi − 1)

]
, pi = Li

(mi−1)/2 > 1,

and θ and Li(1 � i � n) will be determined later. We only assume θpi > 2 for now.
Take T = M−1 log 2, e−Mt � 1

2 for all 0 � t � T . We do our analysis for 0 � t � T .

https://doi.org/10.1017/S030821050000370X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000370X


Existence and non-existence of global solutions 1205

By direct computations, we have

(ūmi
i )t =

2miM

mi − 1
Lmi

i A
(3mi−1)/(1−mi)
i e−Mt,

∇ūi =
θpi

2(1 − mi)
LiA

(1+mi)/(1−mi)
i (1 − ϕ(x))θpi−1∇ϕ(x),

∆ūi =
1

mi − 1
Li

(mi+1)/2

×
[

1
2θλ0ϕA

(1+mi)/(1−mi)
i (1 − ϕ(x))θpi−1

+ 1
2θ(θpi − 1)(1 − ϕ(x))θpi−2|∇ϕ(x)|2A(1+mi)/(1−mi)

i

+
θ2pi(m1 + 1)

8(mi − 1)
(1 − ϕ(x))2(θpi−1)|∇ϕ(x)|2A(2mi)/(1−mi)

i

]

=
1

mi − 1
Lmi

i A
(3mi−1)/(1−mi)
i

×
[

1
2θλ0ϕ(1 − ϕ(x))θpi−1L

(1−mi)/2
i A2

i

+ 1
2θ(θpi − 1)(1 − ϕ(x))θpi−2|∇ϕ(x)|2L(1−mi)/2

i A2
i

+
θ2(mi + 1)
8(mi − 1)

(1 − ϕ(x))2(θpi−1)Ai|∇ϕ(x)|2
]
.

Since Ai � e−Mt � 1 and (θpi − 1)L(1−mi)/2
i = θ − L

(1−mi)/2
i < θ, we get

∆ūi � 1
mi − 1

Lmi
i A

(3mi−1)/(1−mi)
i e−Mt

[
1
4λ0θ + 1

2θ2c2
1 +

(mi + 1)c2
1θ

2

8(mi − 1)

]
.

Thus we have, by the choice of M ,

(ūmi
i )t � ∆ūi. (3.1)

It is clear that 1
4 � Ai � 1 for all (x, t) ∈ Ω̄ × [0, T ]. Consequently, for x ∈ ∂Ω

and 1 � i � n,

∂ūi

∂η
= L

(mi+1)/2
i

θ

2(mi − 1)
(1 − ϕ(x))θpi−1

(
−∂ϕ

∂η

)
A

(1+mi)/(1−mi)
i

� θc2

2(mi − 1)
L

(mi+1)/2
i

and
n∏

j=1

ū
mij

j =
n∏

j=1

Lj
mij A

(2mij)/(1−mj)
j

�
n∏

j=1

Lj
mij (16)

∑n
j=1 mij/(mj−1).
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Then we have
∂ūi

∂η
�

n∏
j=1

ū
mij

j , x ∈ ∂Ω, 1 � i � n, (3.2)

if

θc2

2(mi − 1)
L

(mi+1)/2
i

n∏
j=1

Lj
−mij � (16)

∑n
j=1 mij/(mj−1), 1 � i � n. (3.3)

From lemma 2.8, we know that inequality (3.3) holds for suitable choices of θ and
Li (1 � i � n). Moreover, if we choose Li to be large enough, then

ūi(x, 0) � Li � ui0(x), x ∈ Ω̄, 1 � i � n. (3.4)

From (3.1), (3.2) and (3.4), we know that (ū1, . . . , ūn) is an upper solution
of (1.1) on Ω × [0, T ]. By the comparison principle, it follows that ui(x, t) � ūi(x, t)
(1 � i � n) on Ω̄ × [0, T ], and hence (u1, . . . , un) exists on [0, T ]. Since T is a con-
stant and does not depend on the initial data ui0(x), 1 � i � n, we can prove that
(u1, . . . , un) exists on [T, 2T ] by a similar argument to the above. Repeating this
procedure, we get that (u1, . . . , un) exists globally by a standard continuation-of-
solutions method.

In the following, we always take T = M−1 log 2. From the above discussion, it is
clear that we need only prove that solution of (1.1) exists on [0, T ].

Case 2. (mi > 1 for 1 � i � s; mi = 1 for i = s + 1, . . . , n.) Let

ūi(x, t) = LiA
2/(1−mi)
i for 1 � i � s, (3.5)

ūi(x, t) = Lih(x)eσt for s + 1 � i � n, (3.6)

where

Ai = e−Mt − 1
4 (1 − ϕ(x))θpi , M = max

1�i�s

θ

8mi

[
1
4λ0 + 2θc2

1 +
(mi + 1)c2

1θ

2(mi − 1)

]
,

θ and Li (1 � i � n) are determined as in lemma 2.8, σ = |∂Ω|/c|Ω|, pi = L
(mi−1)/2
i ,

1 � i � s, and h(x) is a positive solution of the linear elliptic equation

∆h =
|∂Ω|
|Ω| , x ∈ Ω,

∂h

∂η
= 1, x ∈ ∂Ω,

with c � h(x) � d for some positive constants c and d. It is easy to prove that

(ūmi
i )t � ∆ūi, 1 � i � n. (3.7)

Now consider the boundary condition. For 1 � i � s and x ∈ ∂Ω, we have

∂ūi

∂η
� θc2

2(mi − 1)
L

(mi+1)/2
i .
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For s + 1 � i � n and x ∈ ∂Ω, we have

∂ūi

∂η
� Lieσt ∂h

∂η
� Li.

For 1 � i � n and x ∈ ∂Ω, we have

n∏
j=1

ū
mij

j �
s∏

j=i

L
mij

j (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1

(Ljh(x)eσt)mij �
n∏

j=i

L
mij

j Q,

where

Q = (16)
∑s

j=1 mij/(mj−1)d
∑n

j=s+1 mij exp
{

σ

M
log 2

n∑
j=s+1

mij

}
.

Hence we get
∂ūi

∂η
�

n∏
j=1

ū
mij

j , x ∈ ∂Ω, 1 � i � n, (3.8)

if

θc2

2(mi − 1)

n∏
j=1

L
fij

j � Q, 1 � i � s, (3.9)

and
n∏

j=1

L
fij

j � Q, s + 1 � i � n. (3.10)

From lemma 2.8, we know that both (3.9) and (3.10) hold if we choose suitable Li

(1 � i � n) and θ. Moreover, if we choose Li to be large enough, then

ūi(x, 0) � ui0(x), x ∈ Ω̄, 1 � i � n. (3.11)

Inequalities (3.7), (3.8) and (3.11) show that (ū1, ū1, . . . , ūn) is an upper solution
of (1.1) in Ω × [0, T ]. Therefore, (u1, . . . , un) exists on [0, T ].

Case 3. (mi > 1 for 1 � i � s; mi < 1 for s+1 � i � n.) For 1 � i � s, let ūi(x, t)
be as in (3.5). For s + 1 � i � n, let

ūi(x, t) = Lqi

i [B1/qi

i − (1 − mii)ϕ(x)]1/(1−mii), (3.12)

where

Bi = (2 − mii)qi +
(

mi − mii

mi

)
L

qi(1−mi)
i (miic

2
1 + 1

2λ0)t, qi =
mi − mii

1 − mii

and θi and Li (1 � i � n) are to be determined. From lemma 2.6, we know that
qi > 0, s + 1 � i � n. Now we prove that (ū1, . . . , ūn) is an upper solution of (1.1)
in Ω × [0, T ]. As in the proof of case 2, we find that

(ūmi
i )t � ∆ūi, 1 � i � s. (3.13)
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For s + 1 � i � n, we have

(ūmi
i )t = Lqi

i (miic
2
1 + 1

2λ0)[B
1/qi

i − (1 − mii)ϕ(x)](mi−1+mii)/(1−mii)B
1/qi−1
i ,

∇ūi = −Lqi

i [B1/qi

i − (1 − mii)ϕ(x)]mii/(1−mii)∇ϕ(x),

∆ūi = miiL
qi

i [B1/qi

i − (1 − mii)ϕ(x)](2mii−1)/(1−mii)|∇ϕ(x)|2

+ λ0L
qi

i [B1/qi

i − (1 − mii)ϕ(x)]mii/(1−mii)ϕ(x)

� miic
2
1[B

1/qi

i − (1 − mii)ϕ(x)](2mii−1)/(1−mii)

+ 1
2λ0L

qi

i [B1/qi

i − (1 − mii)ϕ(x)]mii/(1−mii).

Since Bi � (2 − mii)qi , it follows that

B
1/qi

i − (1 − mii)ϕ(x) � 2 − mii − (1 − mii) = 1.

Using (2mii − 1)/(1 − mii) � mii/(1 − mii), we have

∆ūi � Lqi

i (miic
2
1 + 1

2λ0)[B
1/qi

i − (1 − mii)ϕ(x)]mii/(1−mii)

� Lqi

i (miic
2
1 + 1

2λ0)[B
1/qi

i − (1 − mii)ϕ(x)](mii−1+mi)/(1−mii)

× [B1/qi

i − (1 − mii)ϕ(x)](1−mi)/(1−mii)

� Lqi

i (miic
2
1 + 1

2λ0)[B
1/qi

i − (1 − mii)ϕ(x)](mii−1+mi)/(1−mii)B
1/qi−1
i .

Thus
(ūmi

i )t � ∆ūi, s + 1 � i � n. (3.14)

For s + 1 � i � n, if we choose Li large enough, it yields (2 − mii)qiL
qi(mi−1)
i � 1.

Consequently, for x ∈ ∂Ω,

ūi(x, t) � Lqi

i

[
(2 − mii)qi +

(
mi − mii

mi

)
L

qi(1−mi)
i (miic

2
1 + 1

2λ0)t
]1/(mi−mii)

= Li

[
(2 − mii)qiL

qi(mi−1)
i +

(
mi − mii

mi

)
(miic

2
1 + 1

2λ0)t
]1/(mi−mii)

� Li

[
1 +

(
mi − mii

mi

)
(miic

2
1 + 1

2λ0)M−1 log 2
]1/(mi−mii)

� LiDi, s + 1 � i � n.

For 1 � i � s and x ∈ ∂Ω, we get

∂ūi

∂η
� θc2

2(mi − 1)
L

(mi+1)/2
i

and
n∏

j=1

ū
mij

j �
s∏

j=1

L
mij

j (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1

L
mij

j D
mij

j

�
n∏

j=1

L
mij

j (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1

D
mij

j .
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For s + 1 � i � n and x ∈ ∂Ω, we have

∂ūi

∂η
= Lqi

i B
mii/(mi−mii)
i

(
−∂ϕ

∂η

)

� c2L
qi

i B
mii/(mi−mii)
i ūmii

i L−miiqi

i B
−mii/(mi−mii)
i

= c2L
(mi−mii)
i ūmii

i

and
n∏

j=1

ū
mij

j � ūmii
i

s∏
j=1

L
mij

j (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1, j �=i

L
mij

j D
mij

j

= ūmii
i

n∏
j=1, j �=i

L
mij

j (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1, j �=i

D
mij

j .

Therefore, when 1 � i � n and x ∈ ∂Ω,

∂ūi

∂η
�

n∏
j=1

ū
mij

j (3.15)

holds if

θc2

2(mi − 1)
L

(m+1)/2
i

n∏
j=1

L
−mij

j

� (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1

D
mij

j , i = 1, . . . , s, (3.16)

and

c2L
mi
i

n∏
j=1

L
−mij

j � (16)
∑s

j=1 mij/(mj−1)
n∏

j=s+1, j �=i

D
mij

j , i = s + 1, . . . , n. (3.17)

By an argument similar to that of case 2, we know that (3.16) and (3.17) hold. At
the same time, for x ∈ Ω̄,

ūi(x, 0) � Li, 1 � i � s,

ūi(x, 0) � Lqi

i (2 − mii)1/(1−mii), s + 1 � i � n.

If we choose Li to be large enough, then

ūi(x, 0) � ui0(x), x ∈ ∂Ω, 1 � i � n. (3.18)

Inequalities (3.13), (3.14), (3.15) and (3.18) show that (ū1, . . . , ūn) is an upper
solution of (1.1) in Ω × [0, T ], so (u1, . . . , un) exists on [0, T ].

Case 4. (mi > 1 for 1 � i � s1; mi = 1 for s1 + 1 � i � s2; mi < 1 for
s2+1 � i � n.) Let ūi(x, t) be as in (3.5), (3.6), (3.12) for 1 � i � s1, s1+1 � i � s2
and s2 + 1 � i � n, respectively. Using the same methods as in the above, we can
prove that (ū1, . . . , ūn) is an upper solution of (1.1) on Ω × [0, T ], so (u1, . . . , un)
exists on [0, T ].
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The proof of theorem 1.1 is complete.

4. Proof of theorem 1.2

All three cases in theorem 1.2 imply that there exists a negative principal minor
determinant. Hence we assume that one lth-order (1 � l � n) principal minor
determinant of F is negative, and, without loss of generality, |F l

1| < 0, and all the
pth-order (1 � p < l) principal minor determinants of F are non-negative. We
consider the following problem,

(umi
i )t = ∆ui, x ∈ Ω, t > 0,

∂ui

∂η
= Ki

l∏
j=1

u
mij

j , x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x) > 0, x ∈ Ω̄,

i = 1, . . . , l,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

where

Ki =
n∏

j=l+1

δ
mij

j and δi = min
Ω̄

ui0(x).

If we can prove that the solution (u∗
1, . . . , u

∗
l ) of (4.1) blows up in finite time, then

(u∗
1, . . . , u

∗
l , δl+1, . . . , δn) is a lower solution of (1.1) that blows up in finite time.

Therefore, the solution of (1.1) blows up in finite time. In the following, we focus
on (4.1). Denote δ = min1�i�n δi.

(i) If there exists i, 1 � i � n, such that bi < mii, then l = 1. It follows from [5]
that the solution of (4.1) blows up in finite time.

(ii) If bi � 1, then mii � 1, i = 1, . . . , l. The case follows from the result in [9].

(iii) If Ω = B(0, R), without loss of generality, we assume that Ki = 1 (1 � i � l)
and l = n. We establish the result for different cases.

Case 1. (mi > 1 for 1 � i � n.) Let

u
¯i(x, t) = δA

(1+ε)/(1−mi)
i and Ai = (1 − σt)ki + θ(R − r), (4.2)

where r = |x|,

θ = min
1�i�n

mi − 1
1 + ε

δ
∑n

j=1 mij−1, σ = min
1�i�n

θ2(mi + ε)
mi(mi − 1)ki

δ1−mi , ki =
mi − 1
1 + ε

αi

and the αi are as given in lemma 2.9 and satisfy

αi >
1 + ε

(1 − ε)(mi − 1)
.

In particular, ki > 1/(1 − ε).
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It is clear that functions u
¯i(x, t) are defined on [0, 1/σ) and maxΩ̄ u

¯i(x, t) =
u
¯i(R, t) → ∞ as t → 1/σ, 1 � i � n, i.e. (u

¯1, . . . , u¯n) blows up in finite time. For
0 � t � 1/σ, by direct computations, we have

(u
¯

mi
i )t =

mikiσ

mi − 1
(1 + ε)δmi(1 − σt)ki−1A

((2+ε)mi−1)/(1−mi)
i ,

(u
¯i)r = δθ

1 + ε

mi − 1
A

(mi+ε)/(1−mi)
i ,

(u
¯i)rr = δθ2 (1 + ε)(mi + ε)

(mi − 1)2
A

(2mi+ε−1)/(1−mi)
i ,

∆u
¯i = (u

¯i)rr +
N − 1

r
(u
¯i)r

� (u
¯i)rr

= δθ2 (1 + ε)(mi + ε)
(mi − 1)2

A
((2+ε)mi−1)/(1−mi)
i (1 − σt)ki−1Aε

i (1 − σt)1−ki

� δθ2 (1 + ε)(mi + ε)
(mi − 1)2

A
((2+ε)mi−1)/(1−mi)
i (1 − σt)ki−1(1 − σt)εki−ki+1

� δθ2 (1 + ε)(mi + ε)
(mi − 1)2

A
((2+ε)mi−1)/(1−mi)
i (1 − σt)ki−1

� mikiσ

mi − 1
(1 + ε)δmi(1 − σt)ki−1A

((2+ε)mi−1)/(1−mi)
i ,

since ki > 1/(1 − ε). Hence

(u
¯

mi
i )t � ∆u

¯i, 1 � i � n. (4.3)

For x ∈ ∂Ω, i.e. r = R, we find that

∂u
¯i

∂η
= (u

¯i)r = δθ
1 + ε

mi − 1
A

(mi+ε)/(1−mi)
i

= δθ
1 + ε

mi − 1
(1 − σt)((mi+ε)/(1−mi))ki

= δθ
1 + ε

mi − 1
(1 − σt)−((mi+ε)/(1+ε))αi

and
n∏

j=1

u
¯

mij

j =
n∏

j=1

δmij A
((1+ε)/(1−mj))mij

j

= δ
∑n

j=1 mij (1 − σt)−
∑n

j=1 mijαj .

Thus
∂u
¯i

∂η
�

n∏
i=1

u
¯

mij

j , 1 � i � n, (4.4)

if

θδ1−
∑n

j=1 mij
mi + ε

1 + ε
(1 − σt)−(((mi+ε)/(1+ε))αi−

∑n
j=1 mijαj) � 1, 1 � i � n. (4.5)

https://doi.org/10.1017/S030821050000370X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000370X


1212 Y. Qi, M. Wang and Z. Wang

Since

−
(

mi + ε

1 + ε
αi −

n∑
j=1

mijαj

)
> 0, 1 � i � n,

it yields that

(1 − σt)−(((mi+ε)/(1+ε))αi−
∑n

j=1 mijαj) � 1, 1 � i � n.

Using

θ � mi − 1
1 + ε

δ
∑n

j=i mij−1,

it follows that inequality (4.5) holds.
It is obvious that

u
¯i(x, 0) � δ � ui0(x), x ∈ Ω̄, 1 � i � n. (4.6)

Inequalities (4.3), (4.4) and (4.6) show that (u
¯1, . . . , u¯n) is a lower solution of

problem (4.1). Therefore, u
¯i � ui, 1 � i � n. Consequently, (u1, . . . , un) blows up

in finite time.

Case 2. (mi > 1 for 1 � i � s; mi = 1 for s + 1 � i � n.) Let u
¯i(x, t) be as given

in (4.2), 1 � i � s,

u
¯i(x, t) = δ

[(
1 − θ

2N
(R2 − r2)

)−1

− σt

]−αi

� δB−αi
i , s + 1 � i � n, (4.7)

where

θ = min
{

N

R2 , min
1�i�s

mi − 1
1 + ε

δ
∑n

j=1 mij−1, min
s+1�i�n

N

R
δ

∑n
j=1 mij−1

}
,

σ = min
{

θ

N
, min
1�i�s

θ2(mi + ε)
mi(mi − 1)ki

δ1−mi

}
, ki =

mi − 1
1 + ε

αi (1 � i � s)

and the αi are as given in lemma 2.9 and satisfy αi � (1 + ε)/((1 − ε)(mi − 1)) for
1 � i � s, αi � 1 for s + 1 � i � n. By direct computation, we have

(u
¯

mi
i )t � ∆u

¯i, x ∈ Ω, 1 � i � s. (4.8)

When s + 1 � i � n,

(u
¯i)t = δαiσB−αi−1

i ,

(u
¯i)r = δαiθrB

−αi−1
i

[1 − (θ/2N)(R2 − r2)]−2

N
,

(u
¯i)rr = δαiθB

−αi−1
i

[1 − (θ/2N)(R2 − r2)]−2

N

+ δαiθ
2r2(αi + 1)B−αi−2

i

[1 − (θ/2N)(R2 − r2)]−4

N2

− 2δαiθ
2r2B−αi−1

i

[1 − (θ/2N)(R2 − r2)]−3

N2 .
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Since Bi � [1 − (θ/2N)(R2 − r2)]−1 and αi � 1, we have

δαiθ
2r2

N2 (αi + 1)B−αi−2
i

[
1 − θ

2N
(R2 − r2)

]−4

� 2δαiθ
2r2

N2 B−αi−1
i

[
1 − θ

2N
(R2 − r2)

]−3

.

Consequently,

(u
¯i)rr � δαiθ

N
B−αi−1

i

[
1 − θ

2N
(R2 − r2)

]−2

� δαiθ

N
B−αi−1

i .

Since σ � θ/N and (u
¯i)r � 0, we have

(u
¯i)t � ∆u

¯i, s + 1 � i � n, x ∈ Ω. (4.9)

When r = R, we have

∂u
¯i

∂η
= (u

¯i)r = δθ
1 + ε

mi − 1
(1 − σt)−(mi+ε)/(1+ε)αi , 1 � i � s,

∂u
¯i

∂η
= (ui)r = δαi

θR

N
(1 − σt)−αi−1, s + 1 � i � n,

and
n∏

j=1

u
¯

mij

j = δ
∑s

j=1 mij (1 − σt)−
∑s

j=1 mijαj δ
∑n

j=s+1 mij (1 − σt)−
∑n

j=s+1 mijαj

= δ
∑n

j=1 mij (1 − σt)
∑n

j=1 −mijαj , 1 � i � n.

Therefore, when r = R,

∂u
¯i

∂η
�

n∏
j=1

u
¯

mij

j , 1 � i � n, (4.10)

hold if

θδ1−
∑n

j=1 mij
1 + ε

mi − 1
(1 − σt)−(((mi+ε)/(1+ε))αi−

∑n
j=1 mijαj) � 1, 1 � i � s, (4.11)

and

δ1−
∑n

j=1 mij αiθR

N
(1 − σt)−(αi−

∑n
j=1 mijαj+1) � 1, s + 1 � i � n.

(4.12)

Since

−
(

mi + ε

1 + ε
αi −

n∑
j=1

mijαj

)
> 0 for 1 � i � s,
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and

−
(

αi −
n∑

j=1

mijαj + 1
)

> 0 for s + 1 � i � n,

it follows that

(1 − σt)−(((mi+ε)/(1+ε))αi−
∑n

j=1 mijαj) < 1 for 1 � i � s.

From these two inequalities and the choice of θ, we know that (4.11) and (4.12)
hold, and, in consequence, so does (4.10).

It is obvious that

u
¯i(x, 0) � δ � ui0(x), x ∈ Ω̄, 1 � i � n. (4.13)

Inequalities (4.8), (4.9) and (4.10) show that (u
¯1, . . . , u¯n) is a lower solution of (4.1).

Since (u
¯1, . . . , u¯n) blows up in finite time, it follows that the solution of (4.1) blows

up in finite time.

Case 3. (mi > 1 for 1 � i � s; mi < 1 for s + 1 � i � n.) Let u
¯i(x, t), 1 � i � s,

be as given in case 2. Then

u
¯i(x, t) = δ0

[
(1 − σt)−li +

θ

2R
r2

]αi/li

� δ0B
αi/li
i , s + 1 � i � n, (4.14)

where

δ0 = min
s+1�i�n

2−αi/liδ,

ki =
mi − 1
1 + ε

αi, 1 � i � s,

li = αi(1 − mi) − 1, s + 1 � i � n,

θ = min
(

2
R

, min
1�i�s

mi − 1
1 + ε

δ
∑n

j=1 mij−1
0 , min

s+1�i�n

li
αi

21−αi/liδ
∑n

j=1 mij−1
0

)
,

σ = min
{

θ

N
, min
1�i�s

θ2(mi + ε)
mi(mi − 1)ki

δ1−mi , min
s+1�i�n

θ

Rlimi
δ1−mi
0

}

and the αi are as given in lemma 2.9 and satisfy

αi >

⎧⎪⎪⎨
⎪⎪⎩

1 + ε

(1 − ε)(mi − 1)
for 1 � i � s,

1
1 − mi

for s + 1 � i � n.

Hence li > 0, s + 1 � i � n.
First, by direct computation, we get

(u
¯

mi
i )t � ∆u

¯i, x ∈ Ω, 0 � t <
1
σ

, 1 � i � s. (4.15)
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When s + 1 � i � n, since Bi � (1 − σt)−li , we obtain

(u
¯

mi
i )t = αimiσδmi

0 B
αimi/li−1
i (1 − σt)−li−1

= αimiσδmi
0 B

(αimi−li)/li
i (1 − σt)−αi(1−mi)

� αimiσδmi
0 B

(αi−li)/li
i ,

(u
¯i)r =

δ0αiθrB
(αi−li)/li
i

liR
� 0

and

∆u
¯i =

Nδ0αiθ

liR
B

(αi−li)/li
i +

δ0αiθ
2r2

liR2

(
αi

li
− 1

)
B

(αi−2li)/li
i

� Nδ0αiθ

liR
B

(αi−li)/li
i ,

since αi > li. Therefore,

(u
¯

mi
i )t � ∆u

¯i, i = s + 1, . . . , n. (4.16)

When 1 � i � s and r = R,

∂u
¯i

∂η
= δ0θ

1 + ε

mi − 1
(1 − σt)−((mi+ε)/(1+ε))αi .

When s + 1 � i � n and r = R, since 1
2θR � 1 � (1 − σt)−li , we have

∂u
¯i

∂η
=

1
li

θδ0αi((1 − σt)−li + 1
2θR)(αi−li)/li

� 1
li

θδ0αi2(αi−li)/li(1 − σt)−miαi−1.

When 1 � i � n and r = R,

n∏
j=1

u
¯

mij

j = δ
∑s

j=1 mij

0 (1 − σt)−
∑s

j=1 mijαj δ
∑n

j=s+1 mij

0

×
n∏

j=s+1

[(1 − σt)−lj + 1
2θR]mijαj/lj

� δ
∑n

j=1 mij

0 (1 − σt)−
∑n

j=1 mijαj .

Consequently, for r = R,

∂u
¯i

∂η
�

n∏
j=1

u
¯

mij

j , i = 1, . . . , n, (4.17)

hold if

θδ
1−

∑n
j=1 mij

0
1 + ε

mi − 1
(1 − σt)−(((mi+ε)/(1+ε))αi−

∑n
j=1 mijαj) � 1, 1 � i � s, (4.18)
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and
1
li

αiθδ
1−

∑n
j=1 mij

0 2(αi−li)/li(1 − σt)−(miαi−
∑n

j=1 mijαj+1) � 1, s + 1 � i � n.

(4.19)

Since

−
(

mi + ε

1 + ε
αi −

n∑
j=1

mijαj

)
> 0, 1 � i � s,

−
(

miαi −
n∑

j=1

mijαj + 1
)

> 0, s + 1 � i � n,

and

θδ
1−

∑n
j=1 mij

0
1 + ε

mi − 1
� 1, 1 � i � s,

αi

li
θδ

1−
∑n

j=1 mij

0 2(αi−li)/li � 1, s + 1 � i � n,

we know that (4.18) and (4.19) hold.
It is obvious that

u
¯i(x, 0) � δ0 � δ � ui0(x, 0), 1 � i � s, (4.20)

u
¯i(x, 0) � δ02αi/li � δ � ui0(x, 0), s + 1 � i � n. (4.21)

Inequalities (4.15)–(4.17), (4.20) and (4.21) show that (u
¯1, . . . , u¯n) is a lower

solution of (4.1). Since (u
¯1, . . . , u¯n) blows up in finite time, so does (u1, u2, . . . , un).

Case 4. (mi > 1 for 1 � i � s1; mi = 1 for s1 + 1 � i � s2; mi < 1 for
s2+1 � i � n.) Let u

¯i(x, t) be as in (4.2), (4.7), (4.16) for 1 � i � s1, s1+1 � i � s2
and for s2 + 1 � i � n, respectively. Using the same method as in the above, it
can be proved that (u

¯1, . . . , u¯n) is a lower solution of (4.1). Therefore, (u1, . . . , un)
blows up in finite time.

The proof of theorem 1.2 is now complete.
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